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Abstract

There exist many methods to explain how an image clas-
sification model generates its decision, but very little work
has explored methods to explain why a classifier might lack
confidence in its prediction. As there are various reasons
the classifier might lose confidence, it would be valuable
for this model to not only indicate its level of uncertainty
but also explain why it is uncertain. Counterfactual images
have been used to visualize changes that could be made to
an image to generate a different classification decision. In
this work, we explore the use of counterfactuals to offer an
explanation for low model competency–a generalized form
of predictive uncertainty that measures confidence. Toward
this end, we develop five novel methods to generate high-
competency counterfactual images, namely Image Gradi-
ent Descent (IGD), Feature Gradient Descent (FGD), Au-
toencoder Reconstruction (Reco), Latent Gradient Descent
(LGD), and Latent Nearest Neighbors (LNN). We evalu-
ate these methods across two unique datasets containing
images with six known causes for low model competency
and find Reco, LGD, and LNN to be the most promising
methods for counterfactual generation. We further evalu-
ate how these three methods can be utilized by pre-trained
Multimodal Large Language Models (MLLMs) to generate
language explanations for low model competency. We find
that the inclusion of a counterfactual image in the language
model query greatly increases the ability of the model to
generate an accurate explanation for the cause of low model
competency, thus demonstrating the utility of counterfactual
images in explaining low perception model competency 1.

1. Introduction
Convolutional neural networks (CNNs) have shown im-
pressive performance across a range of image classification

1The code for reproducing our methods and results is available on
GitHub: https://github.com/sarapohland/competency-counterfactuals.

tasks, but their black-box nature limits their applicability
to real-world systems. Without a thorough understanding
of these models and their failure modes, one cannot con-
fidently employ such models for critical decision-making
tasks. Within the field of explainable artificial intelligence
(xAI), there is extensive work on explaining CNN classifi-
cation decisions to better understand how models generate
their output predictions. However, there has been very lim-
ited work on explaining model competency to better under-
stand why a model lacks confidence in its prediction.

Previous work has explored the use of saliency mapping
methods to offer explanations for model confidence by iden-
tifying particular image regions for which the trained classi-
fication model is unfamiliar [45]. This is a useful approach
when anomalous regions cause the reduction in model com-
petency. However, there are many other non-spatial factors
that could lead to a reduction in model confidence, such
as changes in image properties like brightness, contrast, or
saturation, as well as holistic image corruption like noise or
pixelation. We need other methods to offer explanations for
low model competency in these cases.

We explore the use of counterfactual images–images as-
sociated with high levels of model competency that are sim-
ilar to the original low-competency image. We develop and
compare five approaches for generating counterfactual ex-
amples across two distinct datasets with various causes of
low model competency. We then evaluate the ability of
Multimodal Large Language Models (MLLMs) to generate
interpretable explanations for low competency with the aid
of these counterfactuals. To our knowledge, this is the first
work that uses counterfactual images as an explanatory tool
for low model confidence.

2. Background & Related Work

In this work, we offer explanations for why an image classi-
fication model lacks confidence in its prediction for a given
image. There are many methods to quantify model confi-
dence, but we focus on a particular measure of perception



model competency, as described in Section 2.1. In Section
2.2, we explore many methods employed to explain the pre-
dictions of image classifiers and consider their ability to of-
fer explanations for low model competency. Finally, in Sec-
tion 2.3, we explore the use of language models to expand
on these explanations.

2.1. Quantifying Model Confidence
CNNs for image classification usually output softmax
scores, which can be interpreted as the probability that an
image belongs to each of the training classes. The maxi-
mum softmax probability (MSP) can serve as a measure of
the confidence of the vision model for a given image, but
this probability tends to be very close to one [17] and is
particularly unreliable for data outside of the original train-
ing distribution [43]. This has motivated many other ap-
proaches to quantify model uncertainty, typically through
the use of Bayesian Neural Networks (BNNs) [41, 42],
Monte Carlo (MC) dropout [11], or ensembles of models
[29]. These methods capture many aspects of uncertainty,
but tend not to capture distributional uncertainty resulting
from mismatched training and test distributions [47]. This
has led to methods that specifically seek to detect inputs that
are out-of-distribution (OOD), through classification-based
[6, 32, 34, 57], density-based [28, 50, 51, 72], distance-
based [19, 30, 58], or reconstruction-based [13, 54, 64] ap-
proaches. These methods better address distributional un-
certainty, but generally rely on thresholds to generate a bi-
nary decision, rather than capturing a holistic measure of
uncertainty.

We are interested in perception model competency–a
generalized form of predictive uncertainty that combines
various aspects of uncertainty into a single probabilistic
score [49]. To estimate model competency, we employ the
PaRCE score [44], which computes the product of the MSP
and the probability that the image is in-distribution (ID). To
estimate the ID probability, PaRCE uses a function of the
reconstruction loss of an autoencoder trained to reconstruct
the training images. The scores are calibrated via an ID
holdout set such that the PaRCE score directly reflects the
prediction accuracy of the perception model.

2.2. Explainable Image Classification
Explainable image classification is a rich field that seeks to
offer explanations for why a model makes the decisions that
it does [3, 53]. While there are many methods to enhance
the understanding of image classifiers, they generally do not
deal with model competency, and thus cannot offer expla-
nations for how confident a model is in its prediction. We
previously explored saliency mapping methods to explain a
model’s lack of competency, by identifying and displaying
key image regions that contribute to the observed low model
competency [45]. However, while this work offered useful

explanations for images with regional features that were un-
familiar to the perception model, there are many other im-
age properties that do not exist at the regional level but may
contribute to low competency. To address this limitation,
we explore counterfactual methods.

Rather than seeking to explain why a certain prediction
was made, counterfactual methods analyze changes that
could be made to the input to obtain a different predic-
tion [62]. Many methods for counterfactual explanations
of image classifiers involve pixel-level edits, pinpointing
regions for minimal change to achieve the desired class.
These approaches frequently use generative models, such
as autoencoders, generative adversarial networks (GANs),
or diffusion models, to synthesize counterfactual images
[23, 24, 33, 37, 55, 56]. There are also a number of
optimization-based methods that treat counterfactual gen-
eration as a constrained optimization problem in the pixel
space [9, 14, 46, 61, 63]. Similarly, one could design an
optimization problem in some latent space with the goal of
finding minimal perturbations in the latent representation
of an image to effect a change in the classification deci-
sion [5, 18, 26, 35, 59]. Other methods that perform la-
tent space manipulation focus on leveraging the learned se-
mantic structure for interpretable counterfactual generation
[8, 27, 31, 52]. A diverging line of work uses conceptual
counterfactuals, emphasizing human-interpretable seman-
tics. These approaches guide concept-level edits, identi-
fying minimal semantic features that need modification to
change a classification [1, 2, 12, 15, 16].

While all these methods help explain image classifica-
tion decisions, none offer explanations for model confi-
dence and all would need to be adapted to varying degrees
for this purpose. We explore five novel counterfactual meth-
ods that seek to explain why a perception model is not con-
fident for a given image, focusing only on methods that do
not require training with low-competency examples.

2.3. Language Models for Anomaly Explanation

In our effort to generate counterfactual explanations for low
model competency, we explore the use of MLLMs. Al-
though much work has explored the use of visual language
models (VLMs) for OOD and anomaly detection [39], of-
ten using CLIP [48] to detect samples that do not belong
to any ID class [38, 40] or to distinguish between normal
and abnormal samples [25, 70], far less work has considered
the use of LLMs to provide explanations for anomaly and
OOD detection outcomes [65]. Within the area of LLMs
for explanation generation, most work has focused on video
anomaly detection (VAD)–the task of identifying unusual or
unexpected events in video streams [36, 66–68]–or time se-
ries anomaly detection (TSAD)–the task of identifying un-
usual patterns or behaviors in time-ordered data points [71].
We are interested in the use of LLMs to offer explanations



of low model competency for individual images, which has
yet to be explored. Unlike VAD and TSAD, which ana-
lyze temporal changes to detect anomalies, our focus is on
identifying spatial features that contribute to uncertainty in
a single image.

3. Generating Counterfactual Images
In this work, we explore methods to generate high-
competency counterfactual images for low-competency
samples and offer explanations for low model competency
using MLLMs. In this section, we focus on generating
counterfactuals.

3.1. Counterfactual Generation Methods
We develop and compare five distinct methods for generat-
ing a high-competency counterfactual image that is quali-
tatively similar to the original low-competency image. Let
X be the original image with a competency score, ρ̂(X),
which is below some competency threshold. We hope to
generate a counterfactual image, X ′, whose competency
score, ρ̂(X ′), is above this competency threshold.

3.1.1. Image Gradient Descent (IGD)
The goal of the first method is to gradually modify the input
image to increase the estimated competency, while main-
taining visual similarity. More specifically, we seek to min-
imize the loss function

L(X ′) = −ρ̂(X ′) + γd(X,X ′), (1)

where d(·) is a distance function and γ is a parameter that
trades off between increasing the competency of the coun-
terfactual and maintaining similarity between the counter-
factual image and the original. We define distance in terms
of the Learned Perceptual Image Patch Similarity (LPIPS)
metric, which measures how visually similar the original
and counterfactual images are [69].

To obtain a counterfactual image that minimizes Equa-
tion 1, we initially set X ′ to be the original image, X . We
then gradually update the image via gradient descent, stop-
ping once the competency of the counterfactual is above
the specified threshold or the maximum allowable iterations
have been reached.

3.1.2. Feature Gradient Descent (FGD)
In the second method, rather than seeking to maintain vi-
sual similarity between the original and counterfactual im-
age, our goal is to increase the estimated competency, while
ensuring that the feature vector used for classification does
not change substantially. Let f(·) be the feature extrac-
tor, which is used to obtain the feature vector, f(X), pro-
vided as input to the final softmax layer of the classification
model. Our goal now is to minimize

L(X ′) = −ρ̂(X ′) + γd(f(X), f(X ′)). (2)

Again, d(·) is a distance function and γ is a tunable pa-
rameter. By default, we use the negative cosine similarity
to represent the distance between two feature vectors, but
other distance metrics can be used as well.

As with IGD, to obtain an image that minimizes Equa-
tion 2, we initially set X ′ to be the original image. We
then gradually update the image via gradient descent, stop-
ping once the competency of the counterfactual is above
the specified threshold or the maximum allowable iterations
have been reached.

3.1.3. Autoencoder Reconstruction (Reco)
Recall from Section 2.1 that we consider a competency esti-
mation method that relies on an autoencoder to reconstruct
the input image [44]. Because this reconstruction model
outputs images similar to those with which it is familiar, we
can treat the reconstructed image as a counterfactual. Let
g(·) be the encoder of the reconstruction model and h(·) be
the decoder. The counterfactual image is then simply given
by X ′ = h(g(X)).

3.1.4. Latent Gradient Descent (LGD)
Improving upon the previous approach, rather than simply
using the reconstructed image, we manipulate the latent rep-
resentation in the reconstruction model to increase the com-
petency of the prediction, while ensuring that the latent vec-
tor does not change substantially. Let z = g(X) be the la-
tent representation of the original image and z′ = g(X ′) be
the latent representation of the counterfactual image. In this
approach, we seek to find the latent vector that minimizes
the loss function

L(z′) = −ρ̂(h(z′)) + γd(z, z′). (3)

Once again, d(·) is a distance function and γ is a tunable
parameter. By default, we use the negative cosine similar-
ity to represent the distance between two latent vectors, but
other distance metrics can be used as well.

To obtain a latent vector that minimizes Equation 3, we
initially set z′ to be the original latent representation, z. We
then gradually update the latent vector via gradient descent,
stopping once the competency of the counterfactual is above
the specified threshold or once the maximum number of al-
lowable iterations has been reached. We use the decoder
of the reconstruction model to generate the counterfactual
image from the latent representation: X ′ = h(z′).

3.1.5. Latent Nearest Neighbors (LNN)
Recall from Section 2.1 that competency scores are cali-
brated via an ID holdout set [44]. In our final method, we
first find the latent vector, zNN , from the calibration set that
is closest to the latent representation of the image of interest.
By default, we use the ℓ1 norm to find the nearest neighbor,
but other distance metrics may be used as well. We then use
the reconstruction of this latent vector as the counterfactual
image: X ′ = h(zNN ).



3.2. Comparison of Counterfactual Images
We compare our counterfactual image generation methods
both quantitatively and visually across two datasets and a
number of performance metrics.

3.2.1. Datasets
We conduct analysis across two unique datasets. The first
dataset is obtained from a simulated lunar environment. The
classifier trained on this dataset learns to distinguish be-
tween different regions in the environment, such as bumpy
terrain, smooth terrain, regions inside a crater, etc. The
second dataset contains speed limit signs in Germany [21].
The classifier learns to distinguish between seven common
speed limit signs, ranging from 30 to 120 km/hr.

While competency tends to be high for both of these
datasets, we identify six key causes of low model compe-
tency: spatial, brightness, contrast, saturation, noise, and
pixelation [44]. For each dataset, we generate 600 low-
competency example images, for which the lack of com-
petency can be attributed to one of these six factors (with
100 images per factor). For the lunar dataset, images with
spatial anomalies contain astronauts or human-made struc-
tures that were not present in the training set. For the speed
limit dataset, spatial anomalies are images of an uncom-
mon speed limit, 20 km/hr, which was not present during
training. We generate example images for the other causes
of low model competency from high-competency test im-
ages by increasing or decreasing the given image property
(brightness, contrast, or saturation), adding uniform random
noise, or compressing the image to create pixelation. Exam-
ples of images with these causes of low model competency
are shown in column 1 of Figures 2–7 for the lunar dataset
and in Figures 8–13 for the speed dataset in Appendix A.

3.2.2. Evaluation Metrics
Recall from Section 2.2 that in the field of explainable im-
age classification, counterfactual methods analyze changes
that could be made to the input to obtain a different predic-
tion through the generation of counterfactual images. There
are five desirable properties of counterfactual images [27]:
(I) Validity The classification model should correctly assign
the counterfactual to the desired class. (II) Proximity The
counterfactual should remain close to the original in terms
of some distance function. (III) Sparsity A minimal number
of features should be changed in generating the counterfac-
tual. (IV) Realism The counterfactual should lie close to the
data manifold such that it appears realistic. (V) Speed The
counterfactual should be generated quickly.

We consider the same properties to be desirable for coun-
terfactuals used to explain why model competency is low
for a given image. Rather than defining validity in terms
of the classifier’s prediction, we say that a counterfactual
is valid if the competency estimator assigns it a high com-

petency score. We generate a number of metrics to evalu-
ate our counterfactual generation methods in terms of these
properties. (1) Success rate To measure validity, we com-
pute the percentage of counterfactuals with high model
competency. (2) Perceptual loss We evaluate proximity us-
ing the LPIPS metric for visual similarity [69] described in
Section 3.1. (3) Feature similarity We evaluate sparsity in
terms of the average cosine similarity between the original
and valid counterfactual feature vectors used by the classifi-
cation model. (4) Latent similarity We also evaluate sparsity
in terms of the average cosine similarity between the orig-
inal and valid counterfactual latent representations within
the autoencoder of the competency estimator. (5) Fréchet
Inception Distance (FID) We measure realism first in terms
of the FID, which is a metric used to assess the quality of
images created by a generative model by comparing the dis-
tribution of generated images with the distribution of a set
of real images [20]. The set of real images we use is the set
used to calibrate the competency estimator [44]. (6) Kernel
Inception Distance (KID) We also assess realism in terms of
the KID, which measures the maximum mean discrepancy
between features extracted from real and fake images [7].
(7) Computation time Finally, we measure speed in terms
of the average time required to compute a counterfactual
for a single image.

3.2.3. Results & Analysis
We compare the five counterfactual methods discussed in
Section 3.1 for both the lunar dataset (Table 1) and the speed
dataset (Table 2). For reference, we provide metrics for the
original images (Orig) as well. We also visually compare
the generated counterfactual images in Figure 1. Several
additional example images are visualized in Figures 2–13
in Appendix A.

Comparing the five counterfactual generation methods
across both datasets, we first observe that LGD most re-
liably generates high-competency counterfactual images,
achieving a 100% success rate on the speed limit dataset
and nearly 100% success for the lunar dataset. LNN also
achieves nearly 100% on the lunar dataset but its success
rate is closer to 90% for the speed dataset. IGD and FGD
tend to perform similarly, generating high-competency
counterfactuals for over 95% of the low-competency im-
ages in the speed limit dataset but around 80% for the lunar
dataset. Finally, Reco is close to 90% successful for lunar
but only around 75% for speed, indicating that this method
is not the most reliable.

Comparing the proximity of counterfactual images to the
original images, we notice that IGD performs the best in
terms of perceptual loss, followed by FGD. Reco, LGD, and
LNN perform similarly with higher perceptual losses.

We also see similar results for sparsity, for which we
consider changes in both the feature vectors and latent rep-
resentations of the original low-competency images. We



Table 1. Comparison of counterfactual generation methods for the lunar dataset.

Method Success
Rate ↑

Perceptual
Loss ↓

Feature
Similarity ↑

Latent
Similarity ↑ FID ↓ KID ↓ Computation

Time ↓
Orig 0.00% 0.00 1.00 1.00 10.81 21.67 0.0002 sec
IGD 80.00% 0.02 0.98 0.97 12.39 19.38 1.1911 sec
FGD 81.33% 0.13 0.99 0.97 10.97 15.82 3.1559 sec
Reco 88.67% 0.59 0.95 0.98 2.63 2.05 0.0053 sec
LGD 98.33% 0.59 0.95 0.98 2.61 2.06 1.0479 sec
LNN 99.50% 0.60 0.90 0.92 2.59 2.26 0.0069 sec

Table 2. Comparison of counterfactual generation methods for the speed limit dataset.

Method Success
Rate ↑

Perceptual
Loss ↓

Feature
Similarity ↑

Latent
Similarity ↑ FID ↓ KID ↓ Computation

Time ↓
Orig 0.00% 0.00 1.00 1.00 29.79 82.23 0.0001 sec
IGD 98.33% 0.01 0.54 0.99 83.64 315.99 2.8882 sec
FGD 95.83% 0.02 0.81 0.99 80.11 297.85 5.4005 sec
Reco 74.67% 0.49 0.59 0.88 8.65 8.23 0.0140 sec
LGD 100.00% 0.47 0.56 0.88 8.48 8.12 4.2700 sec
LNN 91.33% 0.53 0.41 0.58 9.18 8.72 0.0159 sec

find that FGD tends to produce counterfactual images with
the most similar feature vectors, while both IGD and FGD
produce counterfactuals with very similar latent represen-
tations. We also notice that, overall, more elements of
the original feature vectors and latent representations are
changed with LNN.

However, we see nearly opposite results in terms of real-
ism. We observe that Reco, LGD, and LNN produce coun-
terfactual images that are much more realistic than the orig-
inal low-competency images, with little difference between
these three methods. In contrast, IGD and FGD produce
counterfactuals that are similarly unrealistic to the original
images or sometimes even more unrealistic.

The visual comparison of these methods sheds some
light on these quantitative results. From rows 1, 3, and 4
of Figure 1, we observe that IGD and FGD sometimes pro-
duce counterfactual images with unrealistic artifacts. It is
also clear that IGD and FGD often produce counterfactuals
that are proximal, but this is not necessarily achieved in a
positive way. As is observed in rows 2 and 6 of Figure 1, the
differences between the original and counterfactual images
are not always clearly observable, which is not beneficial
for an explanatory tool.

Finally, comparing the speed of the five methods, we ob-
serve that Reco is the fastest on average, but LNN is simi-
larly fast. IGD and LGD are significantly slower than these
two methods, and FGD tends to be the slowest. It is also in-
teresting to note that computation time varies significantly
with the dataset.

Returning to our visual comparison (Figure 1), we see
that Reco, LGD, and LNN often produce counterfactuals

that correct the cause of low model competency observed
in the original images. In Figure 2, we see objects were re-
moved from examples with spatial anomalies, and in Figure
8, we observe the digit 2 associated with an unfamiliar class
was replaced with a digit associated with a seen class. Sim-
ilarly, Figures 3 and 9 demonstrate that brightness of over-
exposed images is corrected in the counterfactuals, contrast
for high-contrast images is reduced in Figures 4 and 10, and
saturation is reduced for overly saturated images in Figures
5 and 11. We also notice that noise was removed from noisy
images in Figures 6 and 12, and pixelation was corrected in
7 and 13.

In general, the “best” method depends on which prop-
erties of counterfactual image generation are valued most
highly. IGD and FGD are probably not particularly useful
because they often produce unrealistic images that gener-
ally do not address the true cause of low model competency.
However, they would be useful if proximity and similarity
are a major concern. If speed is a high priority, one might
opt for Reco or LNN over LGD. However, if it is most im-
portant to reliably produce high-competency counterfactu-
als, then LGD should be chosen instead. The appropriate
method largely depends on how the counterfactual will be
used. In the next section, we consider how these counter-
factuals might be used by an MLLM to generate language
explanations for low model competency.

4. Explaining Counterfactual Images

In this section, we consider how to obtain language expla-
nations for low model competency using the counterfactual



Figure 1. Example counterfactuals generated through different methods (columns) for various causes of low model competency (rows).

images generated in Section 3.

4.1. Counterfactual Explanation Method
We focus on explaining potential causes for low model com-
petency with the help of MLLMs. We consider the expla-
nation provided when the model sees only the original im-
age, as well as the explanation provided upon seeing both
the original and counterfactual image. Based on our results
from Section 3.2, we use the autoencoder reconstruction
(Reco), latent gradient descent (LGD), and latent nearest
neighbors (LNN) methods to generate counterfactuals.

4.1.1. LLaMA Model
While a number of MLLMs were considered for the purpose
of counterfactual explanation, all explanations are gener-
ated using the LLaMA 3.2 model (in the 11B size) [60] be-
cause it is a publicly available model that has demonstrated

strong performance in Visual Question Answering (VQA)
tasks [10]. The LLaMA 3.2 model is a pre-trained and
instruction-tuned image reasoning generative model that is
optimized for visual recognition, image reasoning, caption-
ing, and answering general questions about an image. This
model allows one to set the context in which to interact with
the AI model, which typically includes rules, guidelines, or
necessary information that help the model respond effec-
tively. It also allows for user prompts, which include the
inputs, commands, and questions to the model that could
contain an image with text or text only.

4.1.2. Model Prompts
To obtain an explanation from the language model of low
model competency for a given image, we first describe the
training set, using Prompt B.1 for the lunar dataset and
Prompt B.2 for the speed limit dataset. We also give a



description of the competency estimator using Prompt B.3.
We then provide instructions about the desired output, using
Prompt B.4 if we are not using a counterfactual image and
Prompt B.5 otherwise.

4.2. Comparison of Counterfactual Explanations
For each language model explanation, we manually evalu-
ate whether the response correctly describes the true cause
of low model competency. We compare the correctness of
the explanations that do not use counterfactual images to
those aided by the counterfactuals generated by the Reco,
LGD, and LNN methods. The accuracies of the explana-
tions across each of the six causes of low model compe-
tency, along with the average accuracy, are provided for the
lunar dataset in Table 3 and the speed limit dataset in Ta-
ble 4. Note that we primarily assess the performance of
the pre-trained LLaMA model in generating appropriate ex-
planations, but we report the performance for a fine-tuned
model as well.

4.2.1. Pre-Trained Model
From our results using the pre-trained LLaMA model (the
prominent results displayed in Tables 3 and Table 4), we
observe that the explanations generated without the help of
counterfactual images were only correct around one-fifth of
the time. In contrast, the explanations aided by counterfac-
tual images produced by Reco, LGD, and LNN were correct
closer to one-third of the time, indicating that counterfac-
tual images can greatly improve the accuracy of language
explanations for low model competency. Examples of this
improvement are provided in Figures 14–19 of Appendix
D. We did not observe significant differences between the
Reco, LGD, and LNN methods.

It should be noted that accuracy varies substantially
across the true causes of low model competency. The lan-
guage model is fairly accurate at identifying noise and pix-
elation as causes of low competency when a counterfactual
image is provided. This may be because noise and pixela-
tion are easily observable features, and image corruption
is known to reduce classification performance. The lan-
guage model can also often identify anomalous objects as
a cause for low model competency with the aid of a coun-
terfactual, but the accuracy is much lower than for noise and
pixelation. Although correct explanations are often gener-
ated for spatial anomalies in the lunar dataset, the language
model very rarely notices digits associated with an unknown
class in the speed limit dataset. The lower performance may
be seen because these spatial anomalies require some high-
level understanding of the training set. Finally, the language
model is far more accurate in identifying brightness, con-
trast, and saturation as causes of low model competency
when a counterfactual is provided, but accuracy still tends
to be low. This poor performance may be observed because
brightness, contrast, and saturation are not widely discussed

causes of low model competency with which the pre-trained
language model would be familiar.

While counterfactual images can greatly increase the
ability to generate language explanations that correctly
identify the causes of low model competency, accuracy is
still not as high as we would hope, especially for particular
causes of low model competency. We notice that the lan-
guage model often hallucinates in its explanations–an issue
commonly observed with MLLMs [4]. (See Figure 20 for
an example of this.) We also find that the rationale for low
model competency is sometimes inverted, especially when
using a counterfactual, as in Figure 21.

4.2.2. Fine-Tuned Model
Although it may not always be practical to fine-tune the
language model depending on computational constraints
and availability of training data, we note that the accuracy
of language explanations increases significantly after fine-
tuning the model with some image-explanation pairs. (A
description of the fine-tuning process is provided in Ap-
pendix C.) For both the lunar dataset (Table 3) and the speed
limit dataset (Table 4), we notice that the average accuracy
of the fine-tuned language explanations is close to 100%
across all methods. When fine-tuning is an option, the util-
ity of counterfactual images decreases because the model
can learn reasonable explanations using only the original
images. A counterfactual image may even become unhelp-
ful for a model that has been fine-tuned well because it in-
troduces additional variance into the data and may serve as
a distraction to the fine-tuned language model.

5. Conclusions
In this work, we explore the use of counterfactual images to
explain why an image classification model lacks confidence
in its prediction. We develop five counterfactual genera-
tion methods: image gradient descent (IGD), feature gradi-
ent descent (FGD), autoencoder reconstruction (Reco), la-
tent gradient descent (LGD), and latent nearest neighbors
(LNN). We evaluate the images generated by these meth-
ods in terms of their validity, proximity, sparsity, realism,
and speed across two unique datasets with six identified
causes of low model competency: spatial, brightness, con-
trast, saturation, noise, and pixelation. While IGD and FGD
generate sparse and proximal solutions, they are slow, un-
reliable, and tend to generate unrealistic images. Reco,
LGD, and LNN tend to generate high-competency counter-
factual images that appear more realistic than their original
low-competency counterparts and correct for the cause of
low competency observed in the original images. The best
method among these three depends on the application and
the properties of counterfactual images valued most highly.

To further evaluate the utility of counterfactual images as
an explanatory tool for low model competency, we develop



Table 3. Accuracy of competency explanations for the lunar dataset across various true causes of low model competency. Results for the
pre-trained model are displayed more prominently, while results for the fine-tuned model are provided in parentheses.

Method Spatial Brightness Contrast Saturation Noise Pixelation Average
None 8% 1% 6% 1% 6% 91% 18.83%

(99%) (90%) (100%) (100%) (100%) (100%) (98.17%)

Reco 28% 10% 13% 7% 73% 77% 34.67%
(95%) (83%) (96%) (100%) (100%) (100%) (95.67%)

LGD 25% 10% 8% 14% 73% 85% 35.83%
(99%) (84%) (97%) (100%) (100%) (100%) (96.67%)

LNN 21% 7% 12% 14% 82% 87% 37.17%
(99%) (81%) (100%) (100%) (100%) (100%) (95.83%)

Table 4. Accuracy of competency explanations for the speed limit dataset across various true causes of low competency. Results for the
pre-trained model are displayed more prominently, while results for the fine-tuned model are provided in parentheses.

Method Spatial Brightness Contrast Saturation Noise Pixelation Average
None 2% 4% 0% 0% 10% 98% 19.00%

(99%) (100%) (100%) (100%) (100%) (100%) (99.83%)

Reco 1% 12% 3% 14% 74% 81% 30.83%
(100%) (99%) (98%) (100%) (100%) (100%) (99.50%)

LGD 0% 21% 1% 12% 64% 81% 29.83%
(100%) (100%) (100%) (100%) (100%) (100%) (100.00%)

LNN 0% 12% 1% 11% 70% 81% 29.17%
(100%) (100%) (99%) (100%) (100%) (100%) (99.83%)

a pipeline to generate language explanations using a pre-
trained MLLM with the aid of high-competency counter-
factual images. We find that, while explanations generated
without the help of counterfactual images were only cor-
rect around one-fifth of the time, the explanations aided by
counterfactual images produced by Reco, LGD, and LNN
were correct closer to one-third of the time. This indicates
that counterfactual images can greatly improve the accu-
racy of language explanations for low model competency.
We also find that the accuracy of explanations increases to
nearly 100% after fine-tuning the MLLM with a few thou-
sand image-explanation pairs.

Although counterfactual images appear useful for ex-
plaining the reason why an image classifier lacks confi-
dence in its prediction, much work could be done to im-
prove the utility of these counterfactuals. Most immedi-
ately, one could more carefully select optimization param-
eters for the gradient descent-based methods and improve
the stopping criterion. In addition, one could consider other
distance metrics in the loss functions. It would also be in-
teresting to combine these methods–in a single objective or
by utilizing multiple counterfactual images. One might also
design a metalearner to dynamically select the most appro-
priate counterfactual for an image, rather than relying on a
fixed generation method.

There is also much work to be done in generating lan-
guage explanations from the provided counterfactual im-
ages. First, one could evaluate other pre-trained MLLMs,
beyond LLaMA. One might also explore the design of

VLMs specifically for the purpose of low model compe-
tency explanation and analyze the generalizability of such
methods to new datasets. It would also be beneficial to
explore methods to reduce language model hallucinations–
potentially through prompt engineering techniques or post-
processing filters.

To more fully understand the utility of counterfactual im-
ages and language explanations, as well as how to improve
them, it would be valuable to perform user studies. Future
work should analyze how useful counterfactual images are
to human users, allowing the user to play the role of the
MLLM and evaluating how often they determine the correct
cause of low competency with and without the aid of a coun-
terfactual. It would also be interesting to receive feedback
from users about the perceived utility of these counterfactu-
als. Similarly, users could evaluate how accurate and useful
the language explanations are to them. While expanding on
the analysis of counterfactual methods and explanations, it
would also be useful to conduct evaluations with more di-
verse and complex datasets.

Finally, there remains the question of what should be
done with these explanations. It would be interesting to ex-
plore the use of counterfactual images and their language
explanations as a corrective tool to improve model predic-
tions. For example, if a model is not confident because im-
age brightness is high, perhaps the system adjusts bright-
ness before making a prediction. We may also use these ex-
planations to train better models. One might use knowledge
of low model competency causes for data augmentation.
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[47] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil Lawrence, editors. Dataset shift in
machine learning. The MIT Press, Cambridge, MA, 2008. 2

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, and et al.
Learning transferable visual models from natural language
supervision. In International Conference on Machine Learn-
ing (ICML), 2021. 2

[49] Vickram Rajendran and William LeVine. Accurate layerwise
interpretable competence estimation. In Advances in Neural
Information Processing Systems (NeurIPS), 2019. 2

[50] Jie Ren, Peter J. Liu, Emily Fertig, and et al. Likelihood ra-
tios for out-of-distribution detection. In Advances in Neural
Information Processing Systems (NeurIPS), 2019. 2

[51] Danilo Jimenez Rezende and Shakir Mohamed. Variational
Inference with Normalizing Flows. In Proceedings of Ma-
chine Learning Research (PMLR), 2015. 2

[52] Pau Rodrı́guez, Massimo Caccia, Alexandre Lacoste, and et
al. Beyond trivial counterfactual explanations with diverse
valuable explanations. In International Conference on Com-
puter Vision (ICCV), 2021. 2
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A. Comparison of Counterfactual Images

Figure 2. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the lunar dataset with spatial anomalies (Original, Column 1).

Figure 3. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the lunar dataset with modified brightness (Original, Column 1).



Figure 4. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the lunar dataset with modified contrast (Original, Column 1).

Figure 5. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the lunar dataset with modified saturation (Original, Column 1).



Figure 6. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the lunar dataset with additive noise (Original, Column 1).

Figure 7. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the lunar dataset with pixelation (Original, Column 1).



Figure 8. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the speed limit dataset with spatial anomalies (Original, Column 1).

Figure 9. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the speed limit dataset with modified brightness (Original, Column 1).



Figure 10. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the speed limit dataset with modified contrast (Original, Column 1).

Figure 11. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the speed limit dataset with modified saturation (Original, Column 1).



Figure 12. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the speed limit dataset with additive noise (Original, Column 1).

Figure 13. Counterfactual images generated using Image Gradient Descent (IGD, Column 2), Feature Gradient Descent (FGD, Column 3),
Autoencoder Reconstruction (Reco, Column 4), Latent Gradient Descent (LGD, Column 5), or Latent Nearest Neighbors (LNN, Column
6) for three low-competency examples in the speed limit dataset with pixelation (Original, Column 1).



B. Language Model Prompts

Prompt B.1: Description of Lunar Training Set

I trained a CNN for image classification from a set of images obtained from a simulated lunar environment. The
classifier learns to distinguish between different regions in this environment, such as regions with smooth terrain,
regions with bumpy terrain, regions at the edge of a crater, regions inside a crater, and regions near a hill.

Prompt B.2: Description of Speed Limit Training Set

I trained a CNN for image classification from a dataset containing speed limit signs. The classifier learns to distinguish
between seven (7) different speed limits: 30, 50, 60, 70, 80, 100, and 120 km/hr.

Prompt B.3: Description of Competency Estimator

In addition to the classification model, I trained a reconstruction-based competency estimator that estimates the
probability that the classifier’s prediction is accurate for a given image.

Prompt B.4: Instructions without Counterfactual Image

Here is an image for which the classifier is not confident. In a single sentence, explain what properties of the image
itself might lead to the observed reduction in model confidence.

Prompt B.5: Instructions using Counterfactual Image

Here are two images side-by-side. The first (on the left) is the original image, for which my classifier is not confident.
The second image (on the right) is a similar image, for which my model is more confident. In a single sentence,
explain what properties of the original image might have led to the observed reduction in model confidence.

C. Fine-Tuning Language Model
To fine-tune the LLaMA model to generate model competency explanations for a given dataset, we first collect 3000 addi-
tional low-competency images that have not been used for training or evaluation–500 from each of the six low competency
categories. For each dataset, we gather 500 previously unseen images with spatial anomalies and generate 500 images with
each of the image modifications from previously unused high-competency images. We automatically assign each of these
new low-competency images a sample explanation based on their known cause of low model competency. For example, for
an image with increased saturation, we would assign the explanation: “The original image is over-saturated.”

We perform fine-tuning on a single NVIDIA GeForce RTX 4090, which has 24GB of GDDR6X RAM. To significantly
reduce the size of the pre-trained model, we load the model in 4-bit quantization. To further reduce the computational
effort required for fine-tuning, we use LoRA (Low-Rank Adaptation)–a technique for efficiently fine-tuning large pre-trained
models by introducing learnable low-rank matrices into specific parts of the model [22]. Rather than updating the weights of
the entire model, we only modify the vision layers, language layers, attention modules, and MLP modules during fine-tuning.
We use a supervised fine-tuning (SFT) trainer with the Adam optimizer. We fine-tune for 10 epochs, using a training batch
size of 4 and 4 gradient accumulation steps.



D. Language Model Explanations

Figure 14. (i) Low-competency image with increased saturation. (ii) Counterfactual generated by Reco. (iii) Incorrect LLaMA explanation
generated from original image alone. (iv) Correct LLaMA explanation generated with aid of counterfactual.

Figure 15. (i) Low-competency image with spatial anomaly (ladder at top left). (ii) Counterfactual generated by LGD. (iii) Incorrect
LLaMA explanation generated from original image alone. (iv) Correct LLaMA explanation generated with aid of counterfactual.

Figure 16. (i) Low-competency image with reduced contrast. (ii) Counterfactual generated by LNN. (iii) Incorrect LLaMA explanation
generated from original image alone. (iv) Correct LLaMA explanation generated with aid of counterfactual.



Figure 17. (i) Low-competency image with increased brightness. (ii) Counterfactual generated by Reco. (iii) Incorrect LLaMA explanation
generated from original image alone. (iv) Correct LLaMA explanation generated with aid of counterfactual.

Figure 18. (i) Low-competency image with additive noise. (ii) Counterfactual generated by LGD. (iii) Incorrect LLaMA explanation
generated from original image alone. (iv) Correct LLaMA explanation generated with aid of counterfactual.

Figure 19. (i) Low-competency image with pixelation. (ii) Counterfactual generated by LNN. (iii) Correct LLaMA explanation generated
from original image alone. (iv) Correct LLaMA explanation generated with aid of counterfactual.



Figure 20. (i) Low-competency image with increased saturation. (ii) Counterfactual generated by LGD. (iii) Incorrect LLaMA explanation
that contains a hallucination.

Figure 21. (i) Low-competency image with increased contrast. (ii) Counterfactual generated by Reco. (iii) LLaMA explanation that inverts
the reason for low competency.
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