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Abstract

A common retrieve-and-rerank paradigm in-001
volves retrieving a broad set of relevant candi-002
dates using a fast bi-encoder, followed by ap-003
plying expensive but accurate cross-encoders004
to a limited candidate set. However, relying on005
this small subset is often prone to error propaga-006
tion from the bi-encoders, restricting the over-007
all performance. To address these issues, we008
propose the Comparing Multiple Candidates009
(CMC) framework, which compares a query and010
multiple candidate embeddings jointly through011
shallow self-attention layers. While provid-012
ing contextualized representations, CMC is scal-013
able enough to handle multiple comparisons014
simultaneously, where comparing 2K candi-015
dates takes only twice as long as comparing016
100. Practitioners can use CMC as a lightweight017
and effective reranker to improve top-1 ac-018
curacy. Moreover, negligible extra latency019
through parallelism enables CMC reranking to020
virtually enhance a neural retriever. Experi-021
mental results demonstrate that CMC, virtually022
enhancing retriever, significantly improves re-023
call@k (+6.7, +3.5%-p for R@16, R@64) com-024
pared to the first retrieval stage on the ZeSHEL025
dataset. Also, we conduct experiments for026
direct reranking on entity, passage, and dia-027
logue ranking. The results indicate that CMC is028
not only faster (11x) than cross-encoders but029
also often more effective, with improved pre-030
diction performance in Wikipedia entity link-031
ing (+0.7%-p) and DSTC7 dialogue ranking032
(+3.3%-p).033

1 Introduction034

The two-stage approach of retrieval and rerank-035

ing has become a predominant approach for open-036

domain question answering (ODQA) (Nogueira037

and Cho, 2019; Agarwal et al., 2022b; Shen et al.,038

2022; Qu et al., 2020), entity linking (EL) (Wu039

et al., 2020; Zhang and Stratos, 2021; Xu et al.,040

2023), and dialogue systems (Mele et al., 2020).041

Typically, bi-encoders (BE) are used to efficiently042

retrieve relevant candidates among a large set 043

of documents (e.g. knowledge base), and then 044

cross-encoders (CE) effectively rerank only a con- 045

fident subset of candidates already retrieved by BE 046

(Nogueira and Cho, 2019) (Figure 1.a-b). 047

The current BE-CE approach, although widely 048

used, has an efficiency-effectiveness trade-off and 049

is susceptible to error propagation. When less ac- 050

curate BE retrieves too few candidates, the whole 051

framework risks missing the gold candidates due 052

to the error propagation from the retriever. Simply 053

increasing the number of candidates is not a viable 054

solution considering the slow serving time of CE12. 055

Consequently, users are faced with the dilemma of 056

deciding which is worse: error propagation from 057

BE versus the slow runtime of CE. 058

To resolve this issue, various strategies have 059

been proposed to find an optimal balance in the 060

efficiency-effectiveness tradeoff. Khattab and Za- 061

haria (2020); Zhang and Stratos (2021); Cao et al. 062

(2020); Humeau et al. (2019) have enhanced bi- 063

encoder architectures with a late interaction com- 064

ponent. However, these models only focus on sin- 065

gle query-candidate pair interaction. Also, they 066

sometimes require saving entire token embeddings 067

per candidate sentence which results in tremendous 068

memory use (Figure 1.c). 069

Our proposed Comparing Multiple Candidates 070

(CMC) makes reranking easier by comparing 071

neighbors together. CMC performs on par or better 072

than existing methods by jointly contextualizing 073

similar candidates through shallow bi-directional 074

self-attention layers. Also, CMC extracts only a sin- 075

gle embedding per candidate and compares them 076

once, making CMC more efficient than previous 077

methods that required multiple vector embeddings. 078

In other words, CMC only takes single forward 079

1For the serving time of cross-encoders, see §E.1.
2Furthermore, increasing the number of candidates for CE

does not necessarily improve end-to-end accuracy (Wu et al.,
2020). We confirm this in the experiments. See appendix E.6.
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Figure 1: Ranking model architectures for retrieval tasks. (a), (b), and (c) are existing architectures. (d) is our
proposed ‘Comparing Multiple Candidates (CMC)’ architecture, which computes compatibility score by comparing
the embeddings of a query and K multiple candidates via self-attention layers. Contary to (a)-(c), CMC can process
multiple candidates at once rather than conducting several forward passes for each (query, candidate) pair.

pass for input (query, candidate1, ..., candidatek),080

while other models such as CE and other081

late interaction models take k separate082

forward passes for multiple input pairs083

(query, candidate1), ..., (query, candidatek).084

CMC maintains both the efficiency of BE with085

pre-computed candidate embeddings, and the086

effectiveness of CE with interactions between087

query and multiple candidates. (Figure 1.d)088

Practitioners can use CMC as a fast and effective089

reranker enhancing top-1 retrieval (↑R@1). Also,090

its efficiency enables CMC to virtually enhance re-091

triever. When integrated with neural retrievers,092

such as BE, CMC efficiently identifies better can-093

didates (enhanced; ↑R@k) from a large pool with094

minimal additional latency (vitrual). As slow CE095

can only process a limited number of candidates,096

providing a few high-quality candidates from CMC097

contributes to minimizing the error propagation in098

the retrieval process. (Figure 2, 3)099

In experiments, we evaluate CMC on Zero-SHot100

Entity-Linking dataset (ZeSHEL; Logeswaran et al.101

(2019)) to investigate how much CMC virtually en-102

hances a retriever’s performance. The results show103

CMC provides higher recall than baseline retrievers104

at a marginal increase in latency (+0.07x; Table105

1). Compared to standard BE-CE, plugging in CMC106

(BE-CMC-CE) can provide smaller, higher-quality107

candidates to CE, ultimately improving the perfor-108

mance of CE reranking. (Table 2). To examine the109

effectiveness of CMC as a reranker itself (R@1), we110

also evaluate CMC on entity, passage, and dialogue111

ranking tasks. We observe that CMC outperforms CE112

on Wikipedia entity linking datasets (+0.7p accu-113

racy) and DSTC7 dialogue ranking datasets (+3.3p114

MRR), requiring only a small amount (0.09x) of115

CE’s reranking latency (Table 3).116

The main contribution of the paper is as follows: 117

• We present a novel retrieval framework CMC, 118

which improves both accuracy and scalabil- 119

ity by enriching the representations of candi- 120

dates through contextualizing itself along with 121

similar candidates (neighbors) in an efficient 122

manner, rather than solely focusing on single 123

query-candidate pair relationships. (§3) 124

• We show that CMC can virtually enhance re- 125

triever, increasing the recall of the first-stage 126

retriever at a marginal cost and improving 127

overall reranking performance even with a 128

few candidates. (§4.3) 129

• We provide experimental results which show 130

CMC reranking has a strong performance on 131

passage, entity, and dialogue ranking tasks 132

compared to various baselines among the low- 133

latency models. (§4.4) 134

• Additionally, we show that CMC can benefit 135

from domain transfer from sentence encoders 136

while BE and many others cannot (§4.5). 137

2 Background and Related Works 138

2.1 Retrieve and Rerank 139

Two-stage retrieval systems commonly consist of 140

an efficient retriever and an effective reranker. A 141

fast retriever scores the query q with each candidate 142

c ∈ C. Although the retriever is fast, its top-1 accu- 143

racy tends to be suboptimal. Therefore, a candidate 144

set Cq = {cq,1, cq,2, . . . , cq,K} ⊆ C is identified 145

whose elements are K most relevant candidates in 146

the corpus C, to be reranked. 147

A reranker sθ(q, cq,j)(1 ≤ j ≤ K) is a model 148

learned to assign a fine-grained score between the 149

query q and each candidate cq,j from the relatively 150

small set of candidates Cq. It is an expressive 151
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Figure 2: Overview of the proposed CMC framework that compares multiple candidates at once. CMC can virtually
enhance retriever, finding top-K’ candidates, or function as a direct reranker which outputs top-1 candidate.
Candidate embeddings for bi-encoders and CMC are both precomputed while query embeddings for bi-encoders and
CMC are computed in parallel on the fly. After bi-encoders retrieve top-K candidates, CMC indexes the corresponding
candidate embeddings and passes through a two-layer transformer encoder. Here, the additional latency is limited to
the execution of self-attention layers.

model that is slower but more accurate than the152

retriever. The candidate with the highest score153

ĉq = argmaxcq,j∈Cq
sθ(q, cq,j) is the final output154

where query q should be linked.155

2.2 Related Work156

Bi-encoders and Cross-encoders In the two-157

stage retrieval, the compatibility score between the158

query and candidate can be computed by diverse159

functions. Nogueira et al. (2019a) first retrieves160

candidates using the bag-of-words BM25 retriever161

and then employs a cross-encoders, transformer162

encoders that take the concatenated query and can-163

didate tokens as an input (Logeswaran et al., 2019;164

Wu et al., 2020). Numerous works (Lee et al., 2019;165

Gillick et al., 2019; Karpukhin et al., 2020) employ166

a pre-trained language model for bi-encoders to en-167

code a query and a candidate separately, and get the168

compatibility score. The scalability of bi-encoders169

comes from the indexing of candidates and maxi-170

mum inner-product search (MIPS); however, they171

are less effective than cross-encoders as candidate172

representations do not reflect query information173

(Figure 1.a-b). To enhance the performance of bi-174

encoders, follow-up works propose a task-specific175

fine-tuned model (Gao and Callan, 2022), injecting176

graph information (Wu et al., 2023; Agarwal et al.,177

2022a), and multi-view text representations (Ma178

et al., 2021; Liu et al., 2023).179

Late Interaction Late interaction models, which 180

typically function as either a retriever or a reranker, 181

enhance bi-encoder architectures with an interac- 182

tion component between the query and candidates. 183

Poly-encoder (Humeau et al., 2019) and Mix- 184

Encoder (Yang et al., 2023) represent query in- 185

formation through cross-attention with individual 186

candidates to calculate matching scores. However, 187

these models have overlooked the opportunity to 188

explore the interaction across candidates. 189

Sum-of-Max (Khattab and Zaharia, 2020; Zhang 190

and Stratos, 2021) and DeFormer (Cao et al., 2020) 191

rely on maximum similarity operations or extra 192

cross-encoder layers on top of bi-encoders. How- 193

ever, they lack scalability due to expensive offline 194

indexing costs for storing the entire set of token 195

embeddings per each candidate.3 As a collection of 196

documents continuously changes and grows, this 197

storage requirement poses practical limitations on 198

managing and updating the document indices. 199

CMC differs from these models by only using 200

a single embedding for each candidate, enabling 201

interactions across multiple candidates with en- 202

hanced scalability. This approach helps to explore 203

deeper relational dynamics among candidates while 204

improving memory efficiency. 205

3For example, 3.2TB is required for storing ∼5M entity de-
scriptions from Wikipedia, each with 128 tokens. In contrast,
storing a single vector embedding for each entity description
only requires 23GB.
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Listwise Ranking CMC is not the first approach206

to compare a list of documents to enhance rank-207

ing performance (Han et al., 2020; Zhang et al.,208

2022; Xu et al., 2023). This listwise ranking209

method processes cross-encoder logits for the list210

(query, candidate1, . . . , candidateK) to rerank K211

candidates from cross-encoders. Focusing on per-212

formance, these approaches lack scalability due to213

reliance on representations from cross-encoders.214

Unlike previous listwise ranking models, we pro-215

pose a method that employs representations from216

independent sentence encoders rather than cross-217

encoders. Boosting scalability with independent218

representations, CMC can virtually enhance retriever219

while maintaining accurate predictions.220

3 Proposed Method221

3.1 Model Architecture222

Comparing Multiple Candidates, CMC, employs223

shallow self-attention layers to capture both query-224

candidate and candidate-candidate interactions.225

Unlike other late interaction models (Khattab and226

Zaharia, 2020; Humeau et al., 2019; Yang et al.,227

2023), which compute the compatibility scores by228

only considering a single query-candidate pair, CMC229

represents the query along with all candidates at the230

same time (Figure 1.(d)). The self-attention layer in231

CMC is designed to process the aggregated encoder232

output (i.e. [CLS] embedding) of the query and233

multiple candidates, which are derived from sep-234

arate query and candidate encoders. By doing so,235

CMC enriches the representations of the query and236

all candidates by contextualizing them with each237

other. Also, this architecture enhances scalability238

by pre-computing and saving individual candidate239

embeddings as discussed in §3.3.240

Query and Candidate Encoders Prior to CMC,241

the first-stage retriever identifies the candidate set242

with K elements Cq = {cq,1, ...cq,K} for query q.243

Initially, CMC obtains the aggregated encoder output244

of query sentence tokens hsent
q and candidate sen-245

tence tokens hsent
cq,j from the query encoder Encqry246

and the candidate encoder Enccan. These encoders247

play the same role as conventional bi-encoders in248

that condensing each query and candidate informa-249

tion into single vector embedding but are trained250

separately from the first-stage stage retriever.251

hsent
q = agg(Encqry([CLS]x0q . . . xkq )) (1)252

hsent
cq,j = agg(Enccan([CLS]x0cq,j . . . xkcq,j )) (2)253

Each query and candidate is represented by tokens 254

xq and xcq,j . The aggregator function agg extracts 255

[CLS] embedding from the last layer of encoder4. 256

Self-attention Layer The shallow self-attention 257

layer processes concatenated embeddings of a 258

query and all candidates. This lightweight module 259

enables parallel computation (efficient) and gener- 260

ates contextualized embeddings via interactions be- 261

tween query and candidates (effective). Represent- 262

ing candidates together with self-attention (Attn) 263

enables fine-grained comparison among candidates. 264

The self-attention layer consists of two layers of 265

vanilla transformer encoder (Vaswani et al., 2017) 266

in Pytorch without positional encoding. 267[
hCMC
q ;hCMC

cq,1 ; . . . ;h
CMC
cq,K

]
= Attn

([
hsent
q ;hsent

cq,1 ; . . . ;h
sent
cq,K

])
(3) 268

3.2 Training 269

CMC and other baselines follow the same optimiza- 270

tion and negative sampling strategy.5 271

Optimization The training objective is mini- 272

mizing the cross-entropy loss regularized by the 273

Kullback-Leibler (KL) divergence between the 274

score distribution of the trained model and the bi- 275

encoder. The loss function is formulated as: 276

L(q, C̃q) =
∑K

i=1(−λ1yi log(pi) + λ2pi log
(
pi
ri

)
)

(4) 277

yi and pi are the ground truth and predicted prob- 278

ability for i-th candidate. The retriever’s probability 279

for the candidate is represented as ri. λ1 and λ2 280

are weights combining the two losses. 281

Negative Sampling We sample negatives based 282

on the first-stage retriever’s score for query- 283

candidate pair (q, cq,j): ∀j ∈ {1, . . . ,K} \ 284

{gold index}, 285

cq,j ∼
exp(sretriever(q, cq,j))∑K

k=1&
k ̸=gold index

exp(sretriever(q, cq,k))
(5) 286

3.3 Inference 287

Offline Indexing CMC is capable of pre- 288

computing the candidates in the collection (e.g. 289

4For entity linking tasks, both the query (mention) and
candidate (entity) sentences include custom special tokens
that denote the locations of mention and entity words. These
include [SEP], [query_start], [query_end], and [DOC]
tokens following Wu et al. (2020).

5The code and link to datasets are available at
https://anonymous.4open.science/r/cmd/

4



knowledge base) and storing candidate embeddings290

offline, unlike cross-encoders (Figure 1). Offline291

indexing significantly reduces the inference time292

compared to that of cross-encoders, enabling the293

runtime performance of CMC to be comparable to294

that of bi-encoders (§4.4). While reducing time295

complexity, the space requirement for CMC is less296

than 1% of that required by Sum-of-Max and De-297

former which store the entire set of token embed-298

ding, whereas CMC requires only a single vector299

embedding per candidate.300

Parallel Computation The end-to-end runtime301

for retrieving and reranking with CMC can be com-302

parable to that of bi-encoder retrieval. This is303

achieved by parallelization of query encoders at304

bi-encoder and CMC (Figure 2). Consequently, the305

additional latency for running CMC is limited to the306

execution of a few self-attention layers.307

CMC Virtually Enhances Retriever CMC virtually308

enhances retriever with the parallel computation309

(§3.3). It requires only a slight increase in comput-310

ing resources (virtual) while significantly improv-311

ing recall at various k (↑R@k; enhanced). This312

process begins with the first-stage retrievers such313

as bi-encoders, which retrieve a broad set of candi-314

dates. CMC then retrieves fewer and higher quality315

candidates with a more manageable number (e.g.,316

64 or fewer) from this set. Since CMC can rerank317

candidates from the first-stage retriever with only a318

marginal increase in latency, the runtime for CMC to319

virtually enhance retriever is comparable to that of320

bi-encoders. Consequently, the improved quality of321

candidates contributes to the performance increase322

of the final stage reranker (e.g., cross-encoders) at323

a marginal cost (§4.3).324

CMC as a Reranker The obvious application of325

CMC is final stage reranker to increase R@1. Effec-326

tive reranking is achieved by enriching query and327

candidates’ representations through contextualiz-328

ing each other while maintaining efficiency using329

a single vector embedding for each. In training,330

CMC is usually fed 64 candidates per query. Sur-331

prisingly, CMC proves effective even for varying332

numbers of candidates during inference. For ex-333

ample, although CMC is trained with 64 candidates334

on MS MARCO passage ranking dataset, it is ef-335

fective when handling up to 1K candidates (§4.4).336

This evidence shows not only the scalability of CMC337

but its robustness in processing a diverse range of338

candidates.339

4 Experiments 340

4.1 Dataset 341

To evaluate the robustness of CMC, we conduct 342

experiments on diverse ranking tasks where the 343

retrieve-and-rerank approach is commonly em- 344

ployed. For entity linking, we utilize datasets 345

linked to the Wikipedia knowledge base (AIDA- 346

CoNLL (Hoffart et al., 2011), WNED-CWEB 347

(Guo and Barbosa, 2018), and MSNBC (Cucerzan, 348

2007)), as well as a ZEro-SHot Entity Linking 349

dataset (ZeSHEL; Logeswaran et al. (2019)) based 350

on the Wikia7 knowledge base. The candidates 351

are retrieved from bi-encoders fine-tuned for each 352

knowledge base (Wu et al., 2020; Yadav et al., 353

2022). For passage ranking, we conduct an ex- 354

periment on MS MARCO with 1K candidates from 355

BM25 as an initial retriever following Bajaj et al. 356

(2016). For dialogue ranking tasks, we test our 357

model on DSTC7 challenge (Track 1) (Yoshino 358

et al., 2019), where conversations are extracted 359

from technical support chats. The primary metric 360

used is recall@k, as datasets typically have only 361

one answer or rarely a few answers per query. Fur- 362

ther details are presented in §C. 363

4.2 Training Details 364

CMC and other baselines are trained under the same 365

training strategies. All models use the same loss 366

function and negative sampling (§3.2) with the 367

AdamW optimizer and a 10% linear warmup sched- 368

uler. Also, we examine diverse sentence encoder 369

initialization for CMC and late interaction models, 370

including vanilla BERT and BERT-based models 371

fine-tuned on in- and out-of-domain datasets. After 372

training, we select the best results for each model.8 373

For ZeSHEL, training CMC and other low-latency 374

baselines for one epoch on an NVIDIA A100 GPU 375

takes about 4 hours. The training details for each 376

dataset are in §D, and the ablation study for training 377

strategies is presented in §4.5 and §E.5. 378

4.3 CMC Virtually Enhances Retriever 379

We conduct two experiments on the ZeSHEL to ver- 380

ify the impact of CMC virtually enhancing retriever. 381

In the first experiment, we conduct experiments 382

to evaluate how CMC outperforms other retrievers. 383

6recall@64 of Poly-encoder and Sum-of-max from Zhang
and Stratos (2021) is reported as 84.34 and 89.62, respectively.

7now Fandom: https://www.fandom.com
8If more favorable results are found in prior works over

the same candidates, we use those results.
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Test Speed Index Size
Method R@1 R@4 R@8 R@16 R@32 R@64 (ms) (GB)

Single- BM25 25.9 44.9 52.1 58.2 63.8 69.1
View Bi-encoder (BE♠) 52.9 64.5 71.9 81.5 85.0 88.0 568.9 0.2

Arbo-EL 50.3 68.3 74.3 78.4 82.0 85.1 - -
GER 42.9 66.5 73.0 78.1 81.1 85.7 - -
Poly-encoder (Poly) ♡ 40.0±0.7 60.2±0.9 67.2±0.7 72.2±0.8 76.5±0.8 80.2±0.8 581.0 0.2
BE + Poly♡ 56.9±0.8 74.8±0.6 80.1±0.7 84.2±0.5 87.5±0.4 90.2±0.3 574.6 0.4
Sum-of-max (SOM)♡ 27.1±1.8 64.1±1.4 73.2±0.9 79.6±0.7 84.1±0.4 88.0±0.4 6393.0 25.7
BE + SOM♡

58.5±1.0 76.2±1.1 81.6±1.0 85.8±0.9 88.9±0.7 91.4±0.6
2958.3 0.2

- w/ offline indexing 597.3 25.9
BE♠ + CMC(Ours) 59.1±0.3 77.6±0.3 82.9±0.1 86.3±0.2 89.3±0.2 91.5±0.1 607.2 0.4

Multi- MuVER 43.5 68.8 75.9 77.7 85.9 89.5 - -
View MVD 52.5 73.4 79.7 84.4 88.2 91.6 - -

MVD + CMC(Ours) 59.0 77.8 83.1 86.7 89.9 92.4 - -

Table 1: Retrieval performance over ZeSHEL dataset. The best and second-best results are denoted in bold and
underlined. BE♠ is bi-encoder from Yadav et al. (2022) which is used for CMC. ♡ indicates our implementation as
recall@k for all k are not provided in previous work6. results on BE + Reranker (e.g. BE+CMC) are conducted over
the top 512 candidates from the first-stage retriever and averaged over experiments with 5 random seeds.

Especially, we show that even when candidates384

from the same bi-encoder are reranked by different385

rerankers, CMC still achieves the highest Recall@k386

(Table 1). In the second experiment, we investigate387

how a confident set of candidates retrieved by CMC388

can contribute to improving end-to-end accuracy,389

even with fewer candidates than those retrieved by390

conventional bi-encoders (Figure 3).391

Baselines To assess CMC’s performance as a re-392

triever, we compare CMC against baselines catego-393

rized into two types: single- and multi-view retriev-394

ers.9 As the first-stage retriever that provides can-395

didates for CMC, we use bi-encoders (Yadav et al.,396

2022) for and MVD (Liu et al., 2023) for the single-397

and multi-view retriever. For baselines, we select398

the SOTA retrievers for the ZeSHEL dataset. For399

single-view retrievers, we select the poly-encoder400

(Humeau et al., 2019), Sum-of-max (Zhang and401

Stratos, 2021), Arbo-EL (Agarwal et al., 2022b),402

and GER (Wu et al., 2023). Among these, Arbo-EL403

and GER utilize graph information while CMC and404

other baselines do not. For multi-view retrievers,405

we include MuVER (Ma et al., 2021) and MVD406

(Liu et al., 2023).407

Experimental Results In Table 1, adopting CMC408

with a single-view retriever outperforms baselines409

across all k, demonstrating its effectiveness in the410

end-to-end retrieval process. With a marginal in-411

crease in latency (+0.07x), CMC boosts recall@64412

to 91.51% with candidates from the initial re-413

triever, which has a recall@64 of 87.95%. Espe-414

9Single-view retrievers consider only a single global view
derived from the entire sentence, whereas multi-view retriev-
ers divide candidate information into multiple local views.

cially, the performance of Poly-encoder and Sum- 415

of-max lags behind CMC even when they are used 416

as rerankers (BE+Poly & BE+SOM). Sum-of-max, 417

which closely follows CMC, requires a tremendous 418

index (60x of CMC) to achieve comparable latency 419

to CMC. To show that CMC virtually enhances retriev- 420

ers regardless of the retriever type, we examine 421

the performance increase of CMC upon a multi-view 422

retriever (MVD). The results show that CMC consis- 423

tently improves recall performance, moving from 424

91.55% to 92.36% at recall@64. This demonstrates 425

the general capability of CMC regardless of the first- 426

stage retrievers used. For effect of the number of 427

candidates from the initial retriever, see §E.2. 428

We question whether a virtually enhanced re- 429

triever utilizing CMC can reduce the latency of the 430

overall BE-CE reranking process while maintain- 431

ing the performance (Figure 3). In essence, if we 432

can have fewer but higher quality candidates, end- 433

to-end accuracy can be improved while fewer CE 434

forward passes are called. To examine the effective- 435

ness of BE-CMC-CE enhanced retriever, we report 436

the final reranking performance of cross-encoders 437

(Table 2) when candidates are selected from BE- 438

CMC and compare it to conventional BE retrieval. 439

Table 2 shows that cross-encoders perform better 440

even with fewer candidates retrieved by CMC com- 441

pared to conventional bi-encoders. Cross-encoders 442

with 16 candidates from CMC are 1.75x faster with 443

slightly better accuracy than with 64 bi-encoder 444

candidates (line 3 vs. 8-9). Furthermore, cross- 445

encoders reach the best performance with 64 can- 446

didates from CMC surpassing the performance with 447

an equal number of bi-encoder candidates (line 3 448

vs. 11) with a marginal latency overhead. 449
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Figure 3: Illustration of candidate retrieval for cross-
encoders (CE). Suppose cross-encoders can process up
to M candidates due to limited scalability. (a) In bi-
encoder (BE) retrieval, the BE-CE framework takes M
candidates and risks missing the gold candidates due
to inaccurate bi-encoders, causing the entire system to
suffer from error propagation from the retriever and fail
to get the correct candidate. (b) When CMC is introduced
to virtually enhance retriever (BE-CMC-CE), CMC can
consider a significantly larger pool (K) of BE candidates.
This allows CMC to provide much fewer K’ (K>M>K’)
and higher-quality candidates to the CE while increasing
the chance to include the positive candidate.

4.4 CMC as a Reranker450

Baselines Baselines are categorized into high-,451

intermediate-, and low-latency models. We adopt452

cross-encoders as our primary baseline for the high-453

latency approach. For the intermediate-latency454

models, we include Deformer and Sum-of-max,455

which utilize all vector embeddings to represent456

candidate information. For the low-latency mod-457

els, we include the Bi-encoder, Poly-encoder, and458

Mixencoder, all of which require a single vector em-459

bedding for representation and have a serving time460

similar to that of the Bi-encoder. In this context,461

CMC is classified as a low-latency method because it462

requires a single embedding for the candidate and463

takes 1.17x serving time of the Bi-encoder.464

Comparison with High-latency Models Given465

the importance of computational resources and466

serving time in applications, CMC is a practical al-467

ternative to cross-encoders, with 11.02x speedup468

and comparable prediction performance. CMC out-469

performs the cross-encoder in the Wikipedia en-470

tity linking (+0.7p accuracy) and DSTC7 dialogue471

ranking (+3.3p MRR). Also, CMC presents a com-472

10The unnormalized accuracy of the reranker in ZeSHEL is
defined as the performance computed on the entire test set. In
contrast, the normalized accuracy is evaluated on the subset
of instances where the ground truth is successfully retrieved.

Retrieved (k) Recall@k Unnormalized Accuracy Comparative

Bi-encoder CMC
Forgotten
Realms

Lego
Start
Trek

Yugioh
Macro
Avg.

Latency
(%)

1 8 - 77.72 78.92 65.14 62.76 48.64 63.87 38.90%
2 16 - 81.52 80.17 66.14 63.69 49.64 64.91 48.85%
3 64 - 87.95 80.83 67.81 64.23 50.62 65.87 100%
4 64 8 82.45 80.67 66.56 64.54 50.71 65.62 43.04%
5 256 8 82.86 80.92 66.89 64.42 50.86 65.77 43.36%
6 512 8 82.91 80.75 67.14 64.35 51.01 65.81 43.55%
7 64 16 85.46 80.5 66.97 64.47 50.68 65.66 56.76%
8 256 16 86.22 80.75 67.31 64.63 51.1 65.95 57.08%
9 512 16 86.22 80.83 67.64 64.49 50.95 65.98 57.27%
10 256 64 90.91 81.17 67.64 64.37 50.92 66.03 104.46%
11 512 64 91.51 81.00 67.89 64.42 50.86 66.04 104.65%

Table 2: Unnormalized accuracy10 of cross-encoders
across various candidate configurations on the ZeSHEL
dataset. We underlined when the cross-encoders
show superior accuracy with candidates generated by
CMC compared to those from bi-encoders. The top-
performing scenarios in each category are highlighted
in bold. We measure the comparative latency required
for running cross-encoders over 64 bi-encoder candi-
dates (260.84ms). For your reference, the CMC runtime
2x when increasing the number of candidates by 16x
(from 128 to 1048), while able to compare up to 16k
candidates at once. (§E.1)

petitive performance in MS MARCO and ZeSHEL 473

dataset, achieving the second- or third-best predic- 474

tion performance. This comparison in performance 475

suggests that the self-attention layer in CMC effec- 476

tively replaces the token-by-token interaction in 477

cross-encoders while enhancing the computational 478

efficiency of the reranking process. 479

Comparison with Intermediate-latency Models 480

When compared with intermediate-latency models 481

such as Deformer and Sum-of-max, CMC demon- 482

strates its capability not just in memory efficiency 483

but also in maintaining competitive performance. 484

CMC mostly surpasses these models in entity link- 485

ing and passage ranking tasks. Also, CMC offers 486

significant improvements in speed over Deformer 487

(1.17x vs. 4.39x) and Sum-of-max without caching 488

(1.17x vs. 5.20x). For Sum-of-max with caching, 489

it requires a huge memory index size (125x) to ac- 490

complish a similar latency to CMC. If 125x more 491

memory is not available in practice, the speed be- 492

comes impractical posing a scalability issue. This 493

analysis suggests that CMC’s single-vector approach 494

is not only significantly faster but also demonstrates 495

a comparable capability to represent candidate in- 496

formation with less information, often surpassing 497

more complex methods. 498

Comparison with Low-latency Models CMC 499

matches or surpasses the performance of other low- 500

latency baselines like Bi-encoder, Poly-encoder, 501

and Mixencoder across diverse datasets. Compared 502

with bi-encoders, substituting simple dot products 503
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Tasks Entity Linking Passage Ranking Dialogue Ranking Compuational Efficiency
Datasets Wikipedia ZeSHEL MS MARCO Dev DSTC7 Challenge Total Speed Extra Memory

Accuracy Accuracy R@1 MRR@10 R@1 MRR@10
High-latency Cross-encoder 80.2±0.2 65.9† 25.4 36.8 64.7 73.2 12.9x -
Intermediate- Deformer 79.6±0.8 63.6±0.3 23.0† 35.7† 68.6 76.4 4.39x 125x
Latency Sum-of-max

80.7±0.2 58.8±1.0 22.8
†

35.4
†

66.9 75.5
5.20x -

- w/ offline indexing 1.05x 125x
Low-Latency Bi-encoder 77.1† 52.9† 22.9 35.3 67.8 75.1 1x 1x

Poly-encoder 80.2±0.1 57.6±0.6 23.5 35.8 68.6 76.3 1.01x 1.0x
MixEncoder 75.4±1.4 57.9±0.3 20.7† 32.5† 68.2† 75.8† 1.12x 1.0x
CMC (Ours) 80.9±0.1 59.2±0.3 23.9 35.9 68.0 75.7 1.17x 1.0x

Table 3: Reranking Performance on four datasets with three downstream tasks: Entity Linking (Wikipedia-KB based
datasets (Hoffart et al., 2011; Guo and Barbosa, 2018; Cucerzan, 2007), ZeSHEL (Logeswaran et al., 2019), Passage
Ranking (MS MARCO Passage Ranking (Bajaj et al., 2016), and Dialogue Ranking (Gunasekara et al., 2019). The
best result is denoted in bold and the second-best result is underlined. MRR stands for mean reciprocal rank. In
the entity linking datasets, the results are averaged across five random seeds. To show the computing resources
required for the reranking process, we define reranking latency in terms of relative latency and additional memory
usage compared to bi-encoders. † indicates that more favorable results are sourced from Wu et al. (2020); Yang et al.
(2023); Yadav et al. (2022), respectively.

into a self-attention layer with multiple candidates504

contributes to enhanced performance across every505

dataset. Evaluated against the Poly-encoder, CMC506

outperforms on every dataset except for conversa-507

tional datasets. Notably, CMC demonstrates superior508

performance in tasks like passage ranking and en-509

tity linking, which were not covered in the original510

Poly-encoder paper (Humeau et al., 2019) and de-511

mand advanced reading comprehension capability.512

Similarly, CMC outperforms MixEncoder in entity513

linking and passage ranking.514

4.5 Ablation Study515

Through the experiments, we notice an improved516

performance on CMC when transferring the sen-517

tence encoder from another domain. To examine518

whether this is CMC-specific characteristic, we con-519

duct extensive experiments that investigate how520

different sentence encoder initializations affect the521

performance of late-interaction models. For each522

model, we consider sentence encoder initializations523

with BERT-based bi-encoders fine-tuned for an in-524

domain (ZeSHEL; (Yadav et al., 2022)) and out-525

domain (MS-MARCO; (Guo and Barbosa, 2018)),526

as well as vanilla BERT (Devlin et al., 2018);527

then for each combination of model and sentence-528

encoder initialization, we fine-tune the model on529

ZeSHEL dataset and report its test set results.530

In Table 4, different initialization strategies show531

different effects for each model. CMC and Poly-532

encoder show significant performance increases533

with out-of-domain sentence encoder initialization.534

This can be attributed to both models utilizing sin-535

gle candidate embeddings. Other models, such as536

Sum-of-max and MixEncoder, show negligible im-537

pact from sentence encoder initialization, whereas 538

Deformer and Bi-encoder perform best with vanilla 539

BERT. These findings suggest that CMC’s scoring 540

function is more effective for domain transfer from 541

other datasets to ZeSHEL than other functions such 542

as the dot product used in bi-encoders. 543

(Valid/Test) Sentence Encoder Initialization
Vanilla
BERT

Fine-tuned with

Model
In-domain
(ZeSHEL)

Out-of-domain
(MS MARCO)

Intermediate- Deformer 65.40/63.58 64.42/62.43 57.01/57.46
Latency Sum-of-max 59.57/58.37 58.77/57.65 59.15/58.79
Low- Bi-encoder 55.54/52.94 55.54/52.94 49.32/44.01
Latency Poly-encoder 53.37/52.49 55.75/54.22 57.41/58.22

MixEncoder 58.63/57.92 58.32/57.68 58.52/57.70
cmc (Ours) 56.15/55.34 58.04/56.20 60.05/59.23

Table 4: Comparison of unnormalized accuracy on
valid/test set of ZeSHEL over different sentence en-
coder initialization (Vanilla BERT (Devlin et al., 2018),
Bi-encoder fine-tuned for in- (Yadav et al., 2022) and
out-of-domain (Guo et al., 2020)) dataset. We denote
the best case for each method as bold.

5 Conclusion 544

In this paper, we present Comparing Multiple Can- 545

didates (CMC) which offers a novel approach to re- 546

trieve and rerank framework, addressing key issues 547

in scalability and runtime efficiency. By utilizing 548

language models for independent encoding and 549

leveraging the self-attention layer, CMC achieves 550

a balance of speed and effectiveness. Its ability 551

to pre-compute candidate representations offline 552

significantly reduces latency, making it a practi- 553

cal solution for enhancing end-to-end performance. 554

Extensive experimentation validates CMC’s effec- 555

tiveness, marking it as a promising advancement in 556

the field of neural retrieval and reranking. 557
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A Limitations750

In the future, we plan to test the CMC’s performance751

with over 1000 candidates using batch processing.752

This is because it has not yet been extensively re-753

searched whether CMC can effectively retrieve from754

a large collection, e.g. a collection comprising755

more than 1 million candidates. Furthermore, we756

plan to tackle the issue that arises from the con-757

current operation of both a bi-encoder and CMC758

index, which currently requires double the index759

size. This is a consequence of running two separate760

encoder models in parallel. To address this, we will761

investigate various data compression techniques762

aimed at reducing the space footprint, thereby en-763

hancing the practicality and efficiency of running764

both the Bi-encoder and CMC simultaneously.765

B Potential Risks766

This research examines methods to accelerate the767

two-stage retrieval and reranking process using768

efficient and effective CMC. While the proposed769

CMCmight exhibit specific biases and error patterns,770

we do not address these biases in this study. It re-771

mains uncertain how these biases might affect our772

predictions, an issue we plan to explore in future773

research.774

C Detailed Information of Datasets775

Wikipedia Entity Linking For standard entity776

linking, we use AIDA-CoNLL dataset (Hoffart777

et al., 2011) for in-domain evaluation, and WNED-778

CWEB (Guo and Barbosa, 2018) and MSNBC779

(Cucerzan, 2007) datasets for out-of-domain eval-780

uation. These datasets share the same Wikipedia781

entity linking set. For comparison with the baseline782

results from (Wu et al., 2020), we employ the 2019783

English Wikipedia dump, containing 5.9M entities.784

We employed a bi-encoder as an initial retriever785

that yields an average unnormalized accuracy of786

77.09 and a recall@10 of 89.21. Unnormalized787

accuracy is measured for each dataset and macro-788

averaged for test sets.789

Regarding the license for each dataset, AIDA-790

CoNLL dataset is licensed under a Creative Com-791

mons Attribution-ShareAlike 3.0 Unported License.792

We are not able to find any license information793

about WNED-CWEB and MSNBC datasets.794

Zero-shot Entity Linking (ZeSHEL) ZeSHEL795

(Logeswaran et al., 2019) contains mutually ex-796

clusive entity sets between training and test data.797

The dataset comprises context sentences (queries) 798

each containing a mention linked to a correspond- 799

ing gold entity description within Wikia knowledge 800

base. The entity domain, also called “world”, vary- 801

ing from 10K to 100K entities, is unique to each 802

domain, testing the model’s ability to generalize to 803

new entities. We employed a bi-encoder from (Ya- 804

dav et al., 2022) whose recall@64 is 87.95. On top 805

of these candidate sets, we report macro-averaged 806

unnormalized accuracy, which is calculated for 807

those mention sets that are successfully retrieved 808

by the retriever and macro-averaged across a set 809

of entity domains. For statistics of entity linking 810

datasets, see Table 5. ZeSHEL is licensed under 811

the Creative Commons Attribution-Share Alike Li- 812

cense (CC-BY-SA). 813

The predominant approach for reranking in 814

ZeSHEL dataset is based on top-64 candidate sets 815

from official BM25 (Logeswaran et al., 2019) or 816

bi-encoder (Wu et al., 2020; Yadav et al., 2022). 817

On top of these candidate sets, we report macro- 818

averaged normalized accuracy, which is calculated 819

for those mention sets that are successfully re- 820

trieved by the retriever and macro-averaged across 821

a set of entity domains. 822

Dataset # of Mentions # of Entities
AIDA Train 18848

5903530
Valid (A) 4791
Valid (B) 4485

MSNBC 656
WNED-WIKI 6821

ZeSHEL
Train 49275 332632
Valid 10000 89549
Test 10000 70140

Table 5: Staistics of Entity Linking datasets.

MS MARCO We use a popular passage rank- 823

ing dataset MS MARCO which consists of 8.8 824

million web page passages. MS MARCO origi- 825

nates from Bing’s question-answering dataset with 826

pairs of queries and passages, the latter marked as 827

relevant if it includes the answer. Each query is 828

associated with one or more relevant documents, 829

but the dataset does not explicitly denote irrele- 830

vant ones, leading to the potential risk of false 831

negatives. For evaluation, models are fine-tuned 832

with approximately 500K training queries, and 833

MRR@10, Recall@1 are used as a metric. To 834

compare our model with other baselines, we em- 835

ployed Anserini’s BM25 (Nogueira et al., 2019b). 836

The dataset is licensed under Creative Commons 837

11



Attribution 4.0 International.838

DSTC 7 Challenge (Track 1) For conversation839

ranking datasets, we involve The DSTC7 challenge840

(Track 1) (Yoshino et al., 2019) . DSTC 7 involves841

dialogues taken from Ubuntu chat records, in which842

one participant seeks technical assistance for di-843

verse Ubuntu-related issues. For these datasets, an844

official candidate set which includes gold is pro-845

vided. For details for MS MARCO and DSTC 7846

Challenge, see Table 6

Datasets Train Valid Test # of Candidates
per Query

MS MARCO 498970 6898 6837 1000
DSTC 7 100000 10000 5000 100

Table 6: Statistics of MS MARCO & Conversation
Ranking Datasets.

847

D Training Details848

Negative Sampling Most of previous studies that849

train reranker (Wu et al., 2020; Xu et al., 2023)850

employ a fixed set of top-k candidates from the851

retriever. In contrast, our approach adopts hard neg-852

ative sampling, a technique derived from studies853

focused on training retrievers (Zhang and Stratos,854

2021). Some negative candidates are sampled855

based on the retriever’s scoring for query-candidate856

pair (q, cq,j):857

∀j ∈ {1, . . . ,K} \ {gold index},

c̃q,j ∼
exp(sretriever(q, c̃q,j))∑K
k=1

k ̸=gold index
exp(sretriever(q, c̃q,k))

(6)858

To provide competitive and diverse negatives859

for the reranker, p% of the negatives are fixed as860

the top-k negatives, while the others are sampled861

following the score distribution.862

As detailed in Table 7, we implement a hard863

negative mining strategy for training CMC and com-864

parable baseline methods. Specifically, for the MS865

MARCO dataset, hard negatives are defined as the866

top 63 negatives derived from the CoCondenser867

model, as outlined in (Gao and Callan, 2022). In868

the case of entity linking datasets, we adhere to the869

approach established by (Zhang and Stratos, 2021),870

where hard negatives are selected from the top 1024871

candidates generated by a bi-encoder. Meanwhile,872

for dialogue ranking datasets, we do not employ873

hard negative mining, owing to the absence of can-874

didate pool within these datasets.875

Sentence Encoder Initialization The initial 876

starting point for both the query and candidate en- 877

coders can significantly impact performance. The 878

sentence encoders for late interaction models in- 879

cluding CMC are initialized using either vanilla hug- 880

gingface BERT (Devlin et al., 2018) or other BERT- 881

based, fine-tuned models. These models include 882

those fine-tuned on the Wikipedia dataset (BLINK- 883

bi-encoder; Wu et al. (2020)) or MS MARCO (Co- 884

condenser; Gao and Callan (2022)). As the cross- 885

encoder is the only model without sentence en- 886

coder, we initialize cross-encoder using pre-trained 887

BERT (BLINK-cross-encoder; Wu et al. (2020)) or 888

vanilla BERT. 889

We initialize the sentence encoder for CMC and 890

other baselines using (1) vanilla BERT and (2) the 891

BLINK bi-encoder for Wikipedia entity linking 892

datasets, and the MS-MARCO fine-tuned Cocon- 893

denser for other datasets. After conducting exper- 894

iments with both starting points, we selected the 895

best result among them. If more favorable results 896

are found from prior works that conduct reranking 897

over the same candidates, we sourced the numbers 898

from these works. 899

Optimization Our model employs multi-class 900

cross-entropy as the loss function, regularized by 901

Kullback-Leibler (KL) divergence between the 902

reranker’s scores and the retriever’s scores. The 903

loss function is formulated as follows: 904

L(q, C̃q) = −λ1

K∑
i=1

yi log(pi) + λ2

K∑
i=1

pi log

(
pi
ri

)
(7)

905

For the query q, yi represents the ground truth 906

label for each candidate c̃q,i, pi is the predicted 907

probability for candidate c̃q,i derived from the score 908

function sθ, ri is the probability of the same can- 909

didate from the retriever’s distribution, and λ1 and 910

λ2 are coefficients forming a convex combination 911

of the two losses. 912

Extra Skip Connection CMC is trained end-to- 913

end, where the self-attention layer is trained con- 914

currently with the query and candidate encoders. 915

In addition to the inherent skip connections present 916

in the transformer encoder, we have introduced 917

an extra skip connection following (He et al., 918

2016) to address the vanishing gradient problem 919

commonly encountered in deeper network layers. 920

Specifically, for an encoder layer consisting of self- 921

attention layer F(x), the output is now formulated 922
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Entity Linking Passage Ranking Dialogue Ranking
AIDA-train ZeSHEL MS MARCO DSTC7

max. query length 32 128 32 512
max. document length 128 128 128 512
learning rate {1e-5,5e-6,2e-6} {1e-5,2e-5,5e-5} {1e-5,5e-6,2e-6} {1e-5,2e-5,5e-5}
batch size 4 4 8 8
hard negatives ratio 0.5 0.5 1 -
# of negatives 63 63 63 7
training epochs 4 5 3 10

Table 7: Hyperparameters for each dataset. We perform a grid search on learning rate and the best-performing
learning rate is indicated as bold.

Figure 4: The relationship between the number of can-
didates and the corresponding time measurements in
milliseconds for two different models: Cross-encoder
(CE) and Comparing Multiple Candidates (CMC).

as x + F(x), with x being the input embedding.923

This training strategy ensures a more effective gra-924

dient flow during backpropagation, thereby improv-925

ing the training stability and performance of our926

model.927

E Additional Results and Analysis928

E.1 Reranking Latency of cross-encoders and929

CMC930

In Figure 4, we present the plot of runtime against931

the number of candidates. For CMC, the model can932

handle up to 16,384 candidates per query, which933

is comparable to the speed of cross-encoders for934

running 64 candidates. Running more than 128 and935

16,384 candidates cause memory error on GPU for936

cross-encoders and CMC, respectively.937

E.2 Effect of Number of Candidates on938

Retrieval Performance939

In Table 8, we present detailed results of retrieval940

performance on varying numbers of candidates941

from the initial bi-encoder. Recall@k increased942

with a higher number of candidates. It indicates 943

that CMC enables the retrieval of gold instances that 944

could not be retrieved by a bi-encoder, which pre- 945

vents error propagation from the retriever. It is also 946

noteworthy that CMC, which was trained using 64 947

candidates, demonstrates the capacity to effectively 948

process and infer from a larger candidate pool (256 949

and 512) while giving an increase in recall@64 950

from 82.45 to 82.91. 951

E.3 Detailed Information of Entity Linking 952

Performance 953

In Table 9, we present detailed results from 954

Wikipedia entity linking datasets. Also, in table 955

10, we present detailed results for each world in 956

ZeSHEL test set. 957

E.4 Ranking Performance on ZeSHEL BM25 958

candidate sets 959

In many previous works (Wu et al., 2020; Xu et al., 960

2023), the performance of models over BM25 can- 961

didates (Logeswaran et al., 2019) has been reported. 962

In Table 11, we present the performance of CMC to 963

illustrate its positioning within this research land- 964

scape. 965

E.5 Ablation Study on Training Strategies 966

In Table 12, we evaluated the impact of different 967

training strategies on the CMC’s reranking perfor- 968

mance on the ZeSHEL test set. The removal of ex- 969

tra skip connections results in only a slight decrease 970

ranging from 0.03 to 0.39 points in normalized ac- 971

curacy. Also, to examine the effects of a bi-encoder 972

retriever, we remove regularization from the loss. It 973

leads to a performance drop but still shows higher 974

performance than sum-of-max, the most powerful 975

baseline in the low latency method. Lastly, we 976

tried to find the influence of negative sampling by 977

using fixed negatives instead of mixed negatives. 978
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Test Valid
Method R@1 R@4 R@8 R@16 R@32 R@64 R@1 R@64
Bi-encoder 52.94 64.51 71.94 81.52 84.98 87.95 55.45 92.04
Bi + CMC(64) 59.22 77.69 82.45 85.46 87.28 87.95 60.27 92.04
Bi + CMC(128) 59.13 77.65 82.72 85.84 88.29 89.83 60.24 93.22
Bi + CMC(256) 59.13 77.6 82.86 86.21 88.96 90.93 60.13 93.63
Bi + CMC(512) 59.08 77.58 82.91 86.32 89.33 91.51 60.1 93.89

Table 8: Retrieval performance by the number of candidates from the initial retriever. The numbers in parentheses
(e.g., 128 for cmc(128)) indicate the number of candidates which CMC compares, initially retrieved by the bi-
encoder. The best result is denoted in bold and the second-best result is underlined.

Method Valid (A) Test (B) MSNBC*
WNED-
CWEB*

Average

High- Cross-encoder 82.12 80.27 85.09 68.25 77.87
Latency Cross-encoder † 87.15 83.96 86.69 69.11 80.22
Intermediate- Sum-of-max † 90.84 85.30 86.07 70.65 80.67
Latency Deformer† 90.64 84.57 82.92 66.97 78.16
Low- Bi-encoder 81.45 79.51 84.28 67.47 77.09
Latency Poly-encoder† 90.64 84.79 86.30 69.39 80.16

MixEncoder† 89.92 82.69 78.24 64.00 76.27
CMC† 91.16 85.03 87.35 70.34 80.91

Table 9: Unnormalized accuracy on Wikipedia entity
linking dataset (AIDA (Hoffart et al., 2011), MSNBC
(Cucerzan, 2007), and WNED-CWEB (Guo and Bar-
bosa, 2018)). Average means macro-averaged accuracy
for three test sets. The best result is denoted in bold and
the second best result is denoted as underlined. * is out
of domain dataset. † is our implementation.

Valid Test (By Worlds)

Method
Forgotten
Realms

Lego Star Trek Yugioh Avg.

High- Cross-encoder 67.41 80.83 67.81 64.23 50.62 65.87

Latency
Cross-encoder
(w/ CMC)

70.22 81.00 67.89 64.42 50.86 66.04

Intermediate- Sum-of-max 59.15 73.45 58.83 57.63 45.29 58.80
Latency Deformer 56.95 73.08 56.98 56.24 43.55 57.46
Low- Bi-encoder 55.45 68.42 51.29 52.66 39.42 52.95
Latency Poly-encoder 57.19 71.95 58.11 56.19 43.60 57.46

MixEncoder 58.64 73.17 56.29 56.99 43.01 57.36
CMC(Ours) 60.05 73.92 58.96 58.08 45.69 59.16

Table 10: Detailed Reranking Performance on Zero-shot
Entity Linking (ZeSHEL) valid and test set (Logeswaran
et al., 2019). Macro-averaged unnormalized accuracy is
measured for candidates from Bi-encoder (Yadav et al.,
2022).The best result is denoted in bold.

Methods
Forgotten
Realms

Lego Star Trek Yugioh Macro Acc. Micro Acc.

Cross-encoder (Wu et al., 2020) 87.20 75.26 79.61 69.56 77.90 77.07
ReS (Xu et al., 2023) 88.10 78.44 81.69 75.84 81.02 80.40
ExtEnD (De Cao et al., 2020) 79.62 65.20 73.21 60.01 69.51 68.57
GENRE (De Cao et al., 2020) 55.20 42.71 55.76 34.68 47.09 47.06
Poly-encoder† 78.90 64.47 71.05 56.25 67.67 66.81
Sum-of-max† 83.20 68.17 73.14 64.00 72.12 71.15
Comparing Multiple Candidates (Ours) 83.20 70.63 75.75 64.83 73.35 72.41

Table 11: Test Normalized accuracy of CMC model over
retrieved candidates from BM25. ∗ is reported from Xu
et al. (2023). † is our implementation.

w/ bi-encoder retriever w/ BM25 retriever
Methods Valid Test Test
CMC 65.29 66.83 73.10
w/o extra skip connection 64.78 66.44 73.07
w/o regularization 64.45 66.31 72.94
w/o sampling 65.32 66.46 72.97

Table 12: Normalized Accuracy on ZeSHEL test set for
various training strategies

The result shows a marginal decline in the test set, 979

which might be due to the limited impact of random 980

negatives in training CMC. 981

E.6 Reranking Performance of 982

Cross-encoders for Various Number of 983

Candidates 984

In Table 13, we evaluated the impact of the differ- 985

ent number of candidates on the cross-encoder’s 986

reranking performance on the ZeSHEL test set with 987

a candidate set from the bi-encoder retriever. Even 988

with a larger number of candidates, the unnormal- 989

ized accuracy of the cross-encoder does not in- 990

crease. Although the number of candidates from 991

the bi-encoder increases from 64 to 512, recall@1 992

decreases by 0.01 points.

# of candidates Recall@1
(Unnormalized Accuracy)

16 65.02
64 65.87
512 65.85

Table 13: Normalized Accuracy on ZeSHEL test set for
various training strategies

993
994
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