
Learning to Stop: Deep Learning for Mean Field Optimal Stopping

Lorenzo Magnino * 1 Yuchen Zhu * 2 Mathieu Lauriere 1 3

Abstract
Optimal stopping is a fundamental problem in
optimization with applications in risk manage-
ment, finance, robotics, and machine learning.
We extend the standard framework to a multi-
agent setting, named multi-agent optimal stopping
(MAOS), where agents cooperate to make optimal
stopping decisions in a finite-space, discrete-time
environment. Since solving MAOS becomes com-
putationally prohibitive as the number of agents is
very large, we study the mean-field optimal stop-
ping (MFOS) problem, obtained as the number of
agents tends to infinity. We establish that MFOS
provides a good approximation to MAOS and
prove a dynamic programming principle (DPP)
based on mean-field control theory. We then
propose two deep learning approaches: one that
learns optimal stopping decisions by simulating
full trajectories and another that leverages the
DPP to compute the value function and to learn
the optimal stopping rule using backward induc-
tion. Both methods train neural networks to ap-
proximate optimal stopping policies. We demon-
strate the effectiveness and the scalability of our
work through numerical experiments on 6 differ-
ent problems in spatial dimension up to 300. To
the best of our knowledge, this is the first work
to formalize and computationally solve MFOS in
discrete time and finite space, opening new di-
rections for scalable MAOS methods. Code is
available at Learning-to-Stop.

1. Introduction
Optimal stopping (OS) has emerged as a powerful frame-
work for addressing real-world problems involving uncer-

*Equal contribution, random order 1Shanghai Frontiers Sci-
ence Center of Artificial Intelligence and Deep Learning,
NYU Shanghai 2Machine Learning Center, Georgia Institute
of Technology 3NYU-ECNU Institute of Mathematical Sci-
ences, NYU Shanghai. Correspondence to: Mathieu Lauriere
<mathieu.lauriere@nyu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

tainty and sequential decision-making, where the goal is
to determine the best time to stop a stochastic process to
achieve a specific objective (see (Shiryaev, 2007), (Ekren
et al., 2014) for theoretical foundations; (Lippman & Mc-
Call, 1976) for the well-known secretary problem; and
(Wang et al., 1993; Dai et al., 2019) for machine learning
perspectives)

The OS framework has been extended to cover multi-agent
scenarios, in which the aim is to stop several (possibly in-
teracting) dynamical systems (agents) at different times in
order to minimize a common cost function. We will refer
to this setting as multi-agent optimal stopping (MAOS). It
has gained significant importance in a variety of fields. In
robotics, it has been applied to mission monitoring tasks,
where multiple robots track the progress of other robots
performing a specific operation (Best et al., 2018). In fi-
nance, the problem of pricing options with multiple stopping
times (see (Kobylanski et al., 2011)) can be formulated as
an MAOS problem, motivating recent studies (Talbi et al.,
2023; 2024).

However, the problem’s complexity increases drastically
as the number of agents grows. To address this challenge,
we consider the limit as the number of agents tends to in-
finity and study mean-field approximations (see Fig. 1). In
multi-agent control, this approach leads to the theory of
Mean Field Control (MFC), which models large systems
of interacting agents that cooperatively minimize a social
cost by selecting optimal controls (see (Bensoussan et al.,
2013; Carmona & Delarue, 2018)). Applications include
crowd motion (Achdou & Laurière, 2016b; Achdou & Lasry,
2019), flocking (Fornasier & Solombrino, 2014), finance
(Carmona & Laurière, 2023), opinion dynamics (Liang &
Wang, 2019), and artificial collective behavior (Carmona
et al., 2019; Gu et al., 2021; Cui et al., 2024). Computa-
tional methods for MFC problems include numerical meth-
ods for partial differential equations (Achdou & Laurière,
2015; Achdou & Laurière, 2016a; Briceño Arias et al.,
2018; Reisinger et al., 2024), numerical methods for back-
ward stochastic differential equations (Chassagneux et al.,
2019; Balata et al., 2019), deep learning methods (Fouque
& Zhang, 2020; Carmona & Laurière, 2021; Germain et al.,
2022a; Dayanıklı et al., 2024) and reinforcement learning
methods (Carmona et al., 2019; Gu et al., 2023; Chen et al.,
2020; Carmona et al., 2023; Cui et al., 2024).

1

https://github.com/yuchen-zhu-zyc/Learning-to-Stop

Learning to Stop: Deep Learning for MFOS

1 Agent

What probability of stopping?

N agents

Xi,α
n+1 =

{
Xi,α

n , if stopped

F (n,Xi,α
n , µN,α

n , ϵin+1), otherwise

Interdependence

N → ∞

Approximation Theorem

Representative Agent

Xα
n+1 =

{
Xα

n , if stopped

F (n,Xα
n ,L(Xα

n), ϵn+1), otherwise

Figure 1: Finite-agent vs mean-field: Each agent decides to stop or continue. In the multi-agent setting, agents interact
via the empirical distribution. As N → ∞, this interaction is captured by the Ap. The approximation theorem (Thm 3.2)
ensures that MFOS is a good proxy for MAOS.

In contrast with optimal control and Markov decision pro-
cesses, mean-field approximations have not been used for
OS problems, except for (Talbi et al., 2024; 2023; Yu &
Yuan, 2023; Agram & Øksendal, 2024; He, 2025) in the
continuous time and continuous space setting, and compu-
tational methods have not yet been developed.

Our work takes a first step in this direction by focusing
on discrete-time, finite-space MFOS models. We establish
a theoretical foundation and introduce two deep learning
methods capable of solving MFOS with many states by
learning optimal stopping decisions as functions of the en-
tire population distribution. We refer to these methods as the
Direct Approach (DA) and the Dynamic Programming Ap-
proach (DP) and evaluate their performance across multiple
environments (see Fig. 2).

Contributions. Our main contributions are twofold:

Theoretically: we provide a DPP for MFOS and we
prove that MFOS in discrete space and time yields to
an approximate optimal stopping decision forN -agent
MAOS with a rate of O(1/

√
N) (Thm 3.2).

Computationally: we propose two deep learning meth-
ods to solve MFOS problems, by learning the optimal
stopping decision as a function of the whole population
distribution (Alg. 2 and 1).

To the best of our knowledge, this is the first work to study
discrete-time, finite-space MFOS problems. Our theoretical
results rely on the interpretation of MFOS problems as MFC
problems, which provides a new perspective and opens up
new directions to study MFOS problems. Additionally, it
is the first time that computational methods are proposed to
solve MFOS. This is a first step towards solving complex

MAOS problems with a large number of agents.

Time: 0 Time: 10 Time: 30 Final State

Random initial distribution of drones

Target distribution

Figure 2: An infinite population of agents (e.g., drones)
evolves from a random initial distribution to a target one by
stopping each agent at the right time (Appx E.6).

Related works. MFOS has been recently studied in contin-
uous time and space from a purely theoretical view by Talbi
et al. (2023; 2024) who studied the connection with finite-
agent MAOS problems and characterized the solution of
(continuous) MFOS using a PDE on the infinite-dimensional
space of probability measures, which is intractable. Instead,
we focus on discrete time scenarios with finite state space
(i.e., an individual agent’s state can take only finitely many
different values), and hence the distribution is finite dimen-
sional. This setting can be viewed as an approximation
of the continuous setting. Another difference with (Talbi
et al., 2023; 2024) is that these work purely rely on an OS
viewpoint, while we unveil a connection with MFC prob-
lems. This is a conceptual contribution of our work. Some
popular classical methods for OS problems are the least-
square Monte Carlo approach of (Longstaff & Schwartz,
2001) for American options in finance and numerical meth-
ods for partial differential equations (Achdou & Pironneau,
2005). Early works on machine learning methods for opti-
mal stopping problems include the dynamic programming

2

Learning to Stop: Deep Learning for MFOS

approach of (Tsitsiklis & Van Roy, 1999). Deep learning
methods have been proposed for discrete time single-agent
OS problems. (Becker et al., 2019) proposed to learn the
stopping decision at each time using a deep neural network.
(Herrera et al., 2023) extended the approach using random-
ized neural networks. (Damera Venkata & Bhattacharyya,
2024) proposed to use recurrent neural networks to solve
non-Markovian OS problems. Other approaches have been
proposed, particularly for continuous-time OS problems,
such as learning the stopping boundary (Reppen et al., 2022).
These single-agent OS approaches cannot be easily adapted
to solve MAOS problems: the solution obtained by treating
the whole system as one agent would lead to stopping all the
agents at the same time, and, more importantly, single-agent
methods do not capture the interdependence between agents.
Furthermore, these approaches are not suitable to tackle
continuous space MFOS problems as introduced by Talbi
et al. (2023) because the value function must be a function
of the population distribution, which leads to an infinite-
dimensional problem. For this reason, there are no existing
computational methods for MFOS.

2. Model
When the number of agents tends to infinity, an aggregation
effect takes place, allowing us to represent the influence
of the community using an “average” term, commonly re-
ferred to as the mean-field term. As the number of agents
approaches infinity, they become independent and identi-
cally distributed (i.i.d.), and the behavior of each individual
agent is determined by a stochastic differential equation
(SDE) of McKean-Vlasov type. This phenomenon is often
known as the “propagation of chaos” (Sznitman, 1991). The
objective is to discern the properties of the solutions to the
limiting problem. By integrating these properties into the
formulation of the N -agent control framework, we can de-
rive approximate solutions to the latter problem (for more
theoretical background on MFC, see (Bensoussan et al.,
2013; Carmona et al., 2013; Carmona & Delarue, 2018)).

2.1. Motivation and challenges: finite agent model

The mean-field problem that we will solve is motivated by
the N -agent problem that we are about to describe. Let
X be a finite state space. Let us denote by P(X) the set
of probability distributions on X , and let E be the set of
realizations of the random noise. Let T be a time horizon
and let N be the number of agents that are interacting..
Each agent i has a state denoted by Xi

n at time n. At
time n, each agent stops with probability pin(X

α
n), where

piT (·) = 1. We introduce αi
n a random variable taking

value 0 if the agent continues and 1 if it stops. We denote
by πi

n(·|Xα
n) = Be(pin(X

α
n)) its distribution, which is a

Bernoulli distribution. We denote by Xα
n = (X1

n, . . . , X
N
n)

and α = (α1, . . . , αN) the vectors of states and stopping
decisions at time n.

Dynamics. We assume that the agents are indistinguishable
and interact in a symmetric fashion, i.e. through their em-
pirical distribution µN,α

n (x) := 1
N

∑N
i=1 δXi,α

n
(x), which

is the proportion of agents at x at time n with δ the indica-
tor function. The system evolves according to a transition
function F : N×X × P(X)× E → X . In particular: for
every i = 1, . . . , N ,




Xi,α
0 ∼ µ0 αi

n ∼ πi
n(·|Xα

n),

Xi,α
n+1 =

{
F (n,Xi,α

n , µN,α
n , ϵin+1), if

∑n
m=0 α

i
m = 0

Xi,α
n , otherwise,

(1)
where ϵin is a random noise that affects the evolution of
agent i and m0 is the initial distribution.

Let us define the stopping time for agent i: τ i = inf{n ≥
0 :

∑n
m=0 α

i
m ≥ 1}, which is the first time for player i

that the decision is to stop. Note that, since piT (·) = 1, this
means that τ i ≤ T for all i = 0, . . . , N .

Objective function. Let us consider a function Φ : X ×
P(X) → R. Φ(x, µ) denotes the cost that an agent incurs
if she stops at x and the current population distribution is µ.
The goal for all the N agents is to collectively minimize the
following social cost function:

JN (α1, . . . , αN) = E

[
1

N

N∑

i=1

Φ(Xi,α
τ i , µ

N,α
τ i)

]
. (2)

The problem consists in finding the best controls
(α1, . . . , αN) ∈ argmin JN . Next, we give an example.

Motivating Example: We take as a state space X =
{1, 2, 3, 4, 5, 6, 7} with boundaries (i.e., in 1 agents cannot
move left and in 7 they cannot move right), time horizon
T = 3, transition function F (n, x, µ, ϵ) = x+ ϵ, where ϵ =
0 with probability p = 1/2, ϵ = 1 with probability p = 1/4
and ϵ = −1 with probability p = 1/4. Following (1), the
dynamics of agent i is: Xi

n+1 = Xi
n+ϵ

i
n+1 if the agent does

not stop, and Xi
n+1 = Xi

n otherwise. All agents start in
x = 4. We define a target distribution ρtarget = 1

2δ4+
1
4δ5+

1
4δ3. If the agent i stops at time n, then she is incurred the
cost: Φ(Xi

n, µ
N
n) =

∑
x∈X |µN

n (x) − ρtarget(x)|2, which
is smaller if the agent stops when the population distribution
matches the target one. Notice that some agents might
have to stop even though the target distribution is not
matched, so that other agents can later have a lower cost
because this is a cooperative task. Solving exactly this
problem (i.e., finding the optimal stopping time for every
agent) is very complex. Our approach is to consider the
mean-field problem, which leads to an efficient approximate
solution (see Example 4 in Section 6).

3

Learning to Stop: Deep Learning for MFOS

Challenges: Single-agent methods cannot be readily
applied to the multi-agent setting since they cannot
capture the interdependence due to the distribution in
the cost and in the dynamics. In particular, in the multi-
agent setting, we allow agents to stop at different times.
When the number of agents is very large, computing
exactly the optimal stopping times is infeasible. Mean-
field optimal stopping (MFOS) can intuitively provide
an approximate solution, but (1) this needs to be jus-
tified, and (2) scalable numerical methods for MFOS
need to be developed.

2.2. Mean-field model

As mentioned earlier, if we let the number of players tend
to infinity, we expect, thanks to propagation of chaos type
results, that the states will become independent and each
state will have the same evolution, which will be a nonlinear
Markov chain. More precisely, passing formally to the limit
in the dynamics (1), we obtain the following evolution:




Xα
0 ∼ µ0 αn ∼ πn(·|Xα

n) = Be(pn(X
α
n))

Xα
n+1 =

{
F (n,Xα

n , µ
α
n, ϵn+1), if

∑n
m=0 αm = 0

Xα
n , otherwise,

(3)
where pn(x) denotes the probability with which the agent
continues if she is in state x at time n, and µα

n is the distri-
bution of Xα

n itself, which we may also denote by L(Xα
n).

We want to emphasize the fact that the introduction of ran-
domized stopping times for individual agents is crucial for
our purpose; see the example in Appx. A.1.

We can define, in the same way we did before, the first
time at which the control α is 1 as τ := inf{n ≥ 0 :∑n

m=0 αm ≥ 1}. Then the social cost function in the mean-
field problem is defined as:

J(α) = E
[
Φ(Xα

τ ,L(Xα
τ))

]
. (4)

Notice that here the expectation has the effect of averaging
over the whole population, so there is no counterpart to the
empirical average that appears in the finite agent cost (2).
To stress the dependence on the initial distribution, we will
sometimes write J(α,m0).

2.3. Mean-field model with extended state

A key step towards building efficient algorithms is dy-
namic programming, which relies on the Markovian prop-
erty. However, in its current form, the above problem is
not Markovian. To ensure Markovianity, we need to keep
track of the information about whether the player’s pro-
cess has been stopped in the past. This information is not
contained in the state, so we need to extend the state. Let

Aα = (Aα
n)n=0,...,T the process such that Aα

n = 0 if the
agent has already stopped before time n, and 1 otherwise.
We can interpret this process as the “Alive” process, while
α stands for the “action”, namely, to stop or not. So Aα

n = 1
means the agent has not stopped yet; when the agent stops,
αn = 1 and Aα

n+1 switches to 0. It is important to notice
that if the agent is stopped precisely at time n then, we still
have Aα

n = 1 but Aα
m = 0 for every m > n. We define

the extended state as: Y α
n = (Xα

n , A
α
n), which takes value

in the extended state space S := X × {0, 1}. Then, the
dynamics (3) of the representative player can rewritten as:




Xα
0 ∼ µ0, Aα

0 = 1

αn ∼ πn(·|Xα
n) = Be(pn(X

α
n)); A

α
n+1 = Aα

n(1− αn)

Xα
n+1 =

{
F (n,Xα

n ,L(Xα
n), ϵn+1), if Aα

n(1− αn) = 1

Xα
n , otherwise.

(5)

The idea of extending the state using the extra information
is similar to Talbi et al. (2023) in continuous time and space.
The mean-field social cost (4) can rewritten as:

J(α) = E
[T∑

m=0

Φ(Xα
m,L(Xα

m))Aα
mαm

]
(6)

Actually, notice that the expectation amounts to taking a
sum with respect to the extended state’s distribution. Let
us denote by νpn = L(Y α

n) the distribution at time n. We
denote νpX the first marginal of νp (sometimes also denoted
by µ). Note that it does not depend on α but only on the
stopping probability p, so we use the superscript p when
referring to ν. This distribution evolves according to the
mean-field dynamics:

{
νp0 (x, 0) = 0, νp0 (x, 1) = µ0(x), x ∈ X ,
νpn+1 = F̄ (νpn, pn),

(7)

where the function F̄ is defined as follows. We denote
by H the set of all functions h : X → [0, 1], which
represent a stopping probability (for each state). Then,
F̄ : {0, . . . , T} × P(S)×H → P(S) is defined, for every
x ∈ X , a ∈ {0, 1}, by:

(F̄ (ν, h))(x, a) =

(
ν(x, 0) + ν(x, 1)h(x)

)
(1− a)+

(∑

z∈X
ν(z, 1)

(
qνz,x(1− h(z))

))
a, (8)

where Qν = (qνz,x)z,x∈X is the transition matrix associated
to the unstopped process X , i.e. qνz,x is the probability to
go from the state z to the state x knowing that we are not
going to stop in x. Notice that in general the transitions
may depend on ν itself, which is why this type of dynamics

4

Learning to Stop: Deep Learning for MFOS

101 102 103 104

Number of agents N

10 2

10 1

L2 e
rro

r t
o

M
ea

n
fie

ld
 d

ist
rib

ut
io

n Multi-agent numerical result
f(N) = 1.635N 1/2

101 102 103 104

Number of agents N

10 2

10 1

Op
tim

al
ity

 g
ap

 to
 M

ea
n

fie
ld

 c
os

t Multi-agent numerical result
f(N) = 0.456N 1/2

0.0

0.5

1.0

N
=

10

Time 0 Time 1 Time 2 Time 3 Time 4 Final State

0.0

0.5

1.0

N
=

10
0

0.0

0.5

1.0

N
=

10
00

0 1 2 3 4
X

0.0

0.5

1.0

M
ea

n
fie

ld

0 1 2 3 4
X

0 1 2 3 4
X

0 1 2 3 4
X

0 1 2 3 4
X

0 1 2 3 4
X

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Stopped
Continuing
Target dist.

Figure 3: MFOS v.s. MAOS. We use the stopping probability function learned by Algorithm 1 for MFOS to simulate the
multi-agent OS. Top left: L2 distance of multi-agent empirical distribution to mean-field distribution, averaged over 10
runs. Top right: Optimality gap between multi-agent and mean-field cost, averaged over 10 runs. Bottom: Evolution of
multi-agent empirical distribution for different agents N .

is sometimes referred to nonlinear dynamics. The mean-
field social cost can be rewritten purely in terms of the
distribution as follows:

J(p) =

T∑

m=0

∑

(x,a)∈S

νpm(x, a)Φ(x, µp
m)apm(x), (9)

where p : {0, . . . , T} × X → [0, 1] is the function that
associates to every time step and state the probability to stop
(in that state at that time). Let us define P0,T to be the set
of all such functions.

The link with the formulation in (6) is that αn(x) is dis-
tributed according to Be(pm(x)), and νpm := L(Y α

m) is
the extended state’s distribution. Moreover, νpm(x, 0) is the
mass in x that has stopped. Last, L(Xα

m) = µα
m(x) =∑

a∈{0,1} ν
p
m(x, a) is the first marginal of this distribution.

3. Approximate optimality for finite-agent
model

In this section, we aim to address the following questions:
Q:“Is the mean-field model capable of solving the original
problem of N agents? If so, in what sense?”

Specifically, we demonstrate that the MFOS solution pro-
vides an approximately optimal solution for the finite-agent
MAOS problem. The main assumption we use is:
Assumption 3.1. Let Lp > 0 and let us define P := {p :
{0, . . . , T} × X × P(S) → [0, 1] : p is Lp-Lipschitz}, the
set of all possible admissible policies p. Assume that the
mean-field dynamics F̄ described in (8) is LF̄ - Lipschitz.

Assume also that the function Ψ : P(X×{0, 1})×P(X) →
R defined as Ψ(ν, h) :=

∑
(x,a)∈S ν(x, a)Φ(x, νX)ah(x)

is LΨ-Lipschitz.

Assuming Lipschitz dynamics, cost, and policies is clas-
sical in the literature on mean-field control problems, see
e.g. (Mondal et al., 2022; Pásztor et al., 2023; Cui et al.,
2023) and can be achieved using neural networks (Araujo
et al., 2022). Due to space constraints, we simply provide an
informal statement here. The precise statement is deferred
to Appx. A.2, see Theorem A.3, along with the detailed
setting and notations.

Theorem 3.2 (ε-approximation of the N -agent prob-
lem). Suppose Assumption 3.1 holds. If p∗ is the op-
timal policy for the MFOS problem and p̂ is the op-
timal policy for the N -agent problem (when all the
agents use the same policy), then: as N → +∞,
JN (p∗, . . . , p∗)−JN (p̂, . . . , p̂) → 0, with rate of con-

vergence O
(
1/
√
N
)

(the explicit bound is given in
the proof).

A key step in the proof consists in analyzing the difference
between theN -agent dynamics and the mean-field dynamics
under a stopping policy, see Lemma A.1 (“Convergence of
the measure”) in the Appendix.

Theorem 3.2 is further supported through empirical evidence
as is shown in Fig. 3, where we apply the stopping probabil-
ity function learned by Algorithm 2 on MFOS in Example 1
(see Section 5 and 6 for details) to theN -agent problem with
varying N (see Appx. E.1). We compute the L2 distance of

5

Learning to Stop: Deep Learning for MFOS

multi-agent empirical distribution to mean-field distribution
and the optimality gap between multi-agent and mean-field
cost, both averaged over 10 runs. The plots demonstrate
a clear decay rate of order N−1/2. This theorem justifies
that MFOS is not only an intrinsically interesting problem,
but the solution to MFOS also serves as an approximate
solution to the corresponding MAOS problem. In the sequel,
we will focus on solving the MFOS problem.

4. Dynamic programming
Our motivation for developing a dynamic programming
principle (DPP) for our formulation comes from both the
literature and numerical purposes. In the control theory of a
dynamic system, it has been studied and used very often to
find solutions to a given optimization problem. Moreover,
implementing an algorithm that is built on DPP often leads
to precise optimal solutions that perform better than other
methods.

We introduce the dynamical form of the social cost (9) as:

Vn(ν) := inf
p∈Pn,T

J(p(x), ν) (10)

:= inf
p∈Pn,T

T∑

m=n

∑

(x,a)∈S

νp,ν,nm (x, a)Φ(x, µp,ν,n
m)apm(x),

where Pn,T is the set of all possible function p :
{n, . . . , T}×X → [0, 1] and νp,ν,n denotes the distribution
of the process that starts at time n with a given distribution
ν; it satisfies (7) but starting at time n instead of 0 with
νp,ν,nn = ν. The optimal value at time 0 will be denoted:
V ∗(ν) = V0(ν), which is also equal to infp J(p, ν). We
can now state and prove the following DPP.

Theorem 4.1 (Dynamic Programming Principle). For
the dynamics given by (5) and the value function given
by (10) the following dynamic programming principle
holds:




VT (ν) =
∑

(x,a)∈S ν(x, a)Φ(x, νX)a,

Vn(ν) = infh∈H
∑

(x,a)∈S ν(x, a)Φ(x, νX)ah(x)

+ Vn+1(F̄ (ν, h)), n < T,
(11)

where νX is the first marginal of the distribution ν, i.e.,
νX(x) = ν(x, 0)+ν(x, 1). The sequence of optimizers
define an optimal stopping decision that we will denote
by h∗ : {0, . . . , T −1}×X ×P(S) → [0, 1] and satis-
fies: for every n ∈ {0, . . . , T−1} and every ν ∈ P(S),
Vn(ν) =

∑
(x,a)∈S ν(x, a)Φ(x, νX)ah∗n(x, ν) +

Vn+1(F̄ (ν, h
∗
n(x, ν))).

To prove this result, we will show that we can reduce the
problem to a mean-field optimal control problem in dis-
crete time and continuous space. See details in Appx. B.

Dynamic programming for MFC problem (Laurière & Piron-
neau, 2014; Pham & Wei, 2017) and mean-field MDPs (Gu
et al., 2023; Motte & Pham, 2022; Carmona et al., 2023)
have been extensively studied, and DPP for continuous time
MFOS has been established by (Talbi et al., 2023) using a
PDE approach. However, to the best of our knowledge, this
is the first DPP result for MFOS problems in discrete time.
It serves as a building block for one of the deep learning
methods proposed below.

Algorithm 1 Dynamic Programming (DP)

Require: stopping decision neural networks: ψn
θ : X ×

P(S) → [0, 1] for n ∈ {0, . . . , T − 1}, max training
iteration Niter.

1: Set ψT
θ = 1

2: for n = T − 1, . . . , 0 do
3: for k = 0, . . . , Niter − 1 do
4: Sample νpn
5: for m = n, . . . , T do
6: if m = n then
7: pm(x) = ψm

θ (x, νpm; θnk)
8: else
9: pm(x) = ψm

θ (x, νpm; θm,∗)

10: ℓm =
∑

x ν
p
m(x, 1)Φ(x, µm)pm(x)

11: νpm+1 = F̄ (νpm, pm)

12: ℓ =
∑T

m=n ℓm
13: θnk+1 = optim up(θmk , ℓ(θ

n
k))

14: Set θn,∗ = θnNiter

15: return (ψn
θn,∗)n=0,...,T

In fact, we can show that this DPP still holds for a restricted
class of randomized stopping times in which all the agents
(regardless of their own state) have the same probability of
stopping. Let P̃n,T be the set of p : {0, . . . , T} → [0, 1].
Notice that here pn does not depend on the individual state
x. At every time step n = m, all agents have the same
probability to stop pm, i.e., for every x ∈ X at time n = m,
pn(x) = pn. We call this set synchronous stopping times.
Let us define the value:

Ṽn(ν) := inf
p∈P̃n,T

T∑

m=n

pm
∑

(x,a)∈S

νp,ν,nm (x, a)Φ(x, µp,ν,n
m)a.

Theorem 4.2. For the setting of synchronous stopping
times, the value function satisfies:




ṼT (ν) =
∑

(x,a)∈S ν(x, a)Φ(x, νX)a,

Ṽn(ν) = infh∈[0,1]

∑
(x,a)∈S ν(x, a)Φ(x, νX)ah

+ Vn+1(F̄ (ν, h)), n < T.
(12)

6

Learning to Stop: Deep Learning for MFOS

The proof follows the same argument as that of Theorem 4.1,
therefore we omit it here.

Algorithm 2 Direct Approach (DA)

Require: time-dependent stopping decision neural net-
work: ψθ : {0, . . . , T} × X × P(S) → [0, 1], max
number of training iteration Niter

1: for k = 0, . . . , Niter − 1 do
2: Sample initial νp0
3: for n = 0, . . . , T do
4: pn(x) = ψθ(x, ν

p
n, n; θk),x ∈ X

5: ℓn = Φ̄(νpn, pn)
6: νpn+1 = F̄ (νpn, pn)

7: ℓ =
∑T

n=0 ℓn
8: θk+1 = optim up(θk, ℓ(θk))

9: Set θ∗ = θNiter

10: return ψθ∗

5. Algorithms
To address the MFOS problem numerically, we propose two
approaches based on two different formulations. As the
most naive approach, we can attempt to directly minimize
the mean-field social cost J(p) stated in (9), where we op-
timize over all the possible stopping probability functions
p : {0, . . . , T} × X → [0, 1]. A more ideal treatment is to
leverage the Dynamic Programming Principle (DPP) dis-
cussed in Theorem 4.1 and solve for the optimal stopping
probability using induction backward in time. For each of
the timestep n, we implicitly learn the true value function
Vn(ν) by solving the optimization problem in (11), where
we search over all possible one-step stopping probability
function h : X → [0, 1] for each time n. We refer to the
method of directly optimizing mean-field social cost as the
direct approach (DA) and the attempt to solve MFOS via
backward induction of the DPP approach. Short versions of
the pseudocodes are presented in Alg. 2 and 1. Long ver-
sions are in Appx. C (see Alg. 3 and 4). To alleviate the nota-
tions, we denote: Φ̄(ν, h) =

∑
x∈X ν(x, 1)Φ(x, νX)h(x),

which represents the one-step mean-field cost. In the code,
optim up denotes one update performed by the optimizer
(e.g. Adam in our simulations).

6. Experiments
In this section, we present 6 experiments of increasing com-
plexity to validate our proposed method and demonstrate
its potential applications. Due to space constraints, two
of them have been included in Appx. E. It is important to
emphasize that each experiment reflects a distinct scenario,
varying both in dynamics (random, deterministic; with or
without mean-field interactions) and in the cost function
(with or without mean-field dependence). This provides
a comprehensive overview of the method’s versatility and
potential applications. We solve all 6 environments with

both algorithms (the details are in Appx. E).

Problem Dimensions: For the problem dimension, we
count it as the sum of the dimensions of the information
input to the neural network. Since the state is in X , which is
finite, we encode it as a one-hot vector in R|X | before pass-
ing it to the neural network to ensure differentiability. For
the mean-field distribution with stopped and non-stopped
parts, it is an element of the (2|X | − 1)-simplex, and is
represented as a non-negative vector in R2|X |. Therefore,
MFOS tasks are of spatial dimension |X | + 2|X | = 3|X |,
|X | being the cardinality of an individual agent’s state space.

Comparison of the Two Proposed Algorithms: While
in theory both algorithms are equally capable of tackling
MFOS problems, in practice, these algorithms have advan-
tages in different settings. Empirically, we found that the op-
timal stopping decision is learned faster by DA than by DP
when the amount of compute is not a restriction. However,
DA requires differentiating through the whole trajectory at
each gradient step, which requires a large amount of mem-
ory when the dimension is high. The minimum required
memory for training with DA increases with T , whereas DP
requires only constant order memory that is independent of
the time horizon, since it trains independently per time step.
Therefore, when targeting MFOS problems with a long time
horizon T , DPP becomes more efficient, at least memory-
wise. For similar observations in the context of continuous
time optimal control, see (Germain et al., 2022b).

Example 1 (Towards the uniform) and Example 2 (Rolling
a die), on a 1D gridworld state space, are described in details
in Appx. E.1 and E.2 respectively due to space constraint.

Example 3: Crowd Motion with Congestion. This
example extends the setting of Example 2 by incorporat-
ing a congestion term into the dynamics. The outcome
of the die takes the role of the noise ϵ ∼ U(X) where
X = {1, 2, 3, 4, 5, 6}. The system starts in the initial distri-
bution η = 1

4δ1 +
1
4δ2 +

1
2δ5, and evolves according to the

dynamics (5) with µ0 = η, and F (n, x, µ, ϵ) = ϵ where we
are going to introduce a term of congestion multiplying the
probability of moving by (1−Ccongµ(x)) to model the fact
that it is difficult to move from a state x if the distribution is
concentrated in that state (see Appx. E.3). The social cost
function associated to this scenario is Φ(x, µ) = x. Time
horizon is set to T = 4. We perform the experiment without
congestion (see Appx. E.2), and we expect congestion to
slow down the movement. DA results are shown in Fig. 4.

This example demonstrates that two classes of stopping
times (synchronous and asynchronous) can lead to very dif-
ferent optimal stopping decisions and induce distributions.
Although the true value is unknown, the results indicate
that synchronous stopping times yield a higher value, while
asynchronous stopping times lead to a significant reduction

7

Learning to Stop: Deep Learning for MFOS

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State
Pr

ob
ab

ilit
y

M
as

s

Stopped
Continuing

Figure 4: Example 3. DA results, asynchronous vs synchronous stopping times. Comparison of the evolution of the
distribution after training (asynchronous stopping class on top, synchronous stopping class on bottom).

0 1 2 3 4 5 6
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4 5 6
X

Time 1

0 1 2 3 4 5 6
X

Time 2

0 1 2 3 4 5 6
X

Time 3

0 1 2 3 4 5 6
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing
Target dist.

Figure 5: Example 4. DA results, asynchronous stopping. Evolution of the distribution after training.

in the cost. Additionally, in the asynchronous case, conges-
tion leads to reduced movement, as observed between time
0 and time 1 in state 4. See Appx. E.3 for the DPP results.

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.4

0.6

0.8Decision Prob

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

Figure 6: Example 5. DA results, asynchronous stopping.
Left: stopping decision probability. Right: evolution of the
distribution after training.

Example 4: Distributional Cost. This example extends,
at the mean field level, the motivating example described at
the end of Section 2.1. Based on Theorem 3.2, the mean-
field solution provides a good approximation of theN -agent
problem. DA results are shown in Fig. 5. The results for
other settings are shown in Appx. E.4.

Example 5: Towards Uniform in Dimension 2. This
example extends Example 1 (see Appx. E.1) to two di-
mensions, demonstrating how the algorithm performs in
higher-dimensional settings. We take state space X =
{0, 1, 2, 3, 4} × {0, 1, 2, 3, 4}, time horizon T = 4, tran-
sition function F (n, x, µ, ϵ) = x+ (1, 0) which means that

the agent deterministically moves to the state on the right
on the same row, with boundary at x = 4, and cost func-
tion Φ(x, µ) = µ(x) which depends on the mean field only
through the state of the agent (this is sometimes called local
dependence). For the testing distribution, we take a distri-
bution concentrated on state x = 0, denoted as µ0 = δ0.
Fig. 6 shows that the distribution evolves towards a uniform
distribution across each row, as expected, and also illus-
trates the optimal strategy (decision probability) required to
achieve this outcome. Results for the DPP algorithm and
the synchronous stopping are in Appx. E.5.

Example 6: Matching a Target with a Fleet of Drones.
We conclude with a more realistic and complex example to
showcase the potential applications of our algorithms. This
example aims to align a fleet of drones with a given target
distribution at terminal time T , starting from a random ini-
tial distribution. To make this experiment more interesting,
we expand the framework described so far by considering a
different type of cost and by including a noisy obstacle hin-
dering the drones’ movements (see Appx. E.6 for the mathe-
matical formulation). We take X = {0, . . . , 9}×{0, . . . , 9}
that represents a 10× 10 grid. Hence, the neural network’s
input is of dimension 3|X | = 300. The system follows the
dynamics that diffuse uniformly over the possible neigh-
bors, where the possible neighbors of x ∈ X are defined
as x ± (0, 1) or x ± (1, 0) if the resulting state is still an
element of X . Moreover, we introduce extra stochastic-
ity into the dynamics by placing an obstacle at a random
state on the grid at each time step. The location is uni-
formly selected from X and is viewed as a common noise
affecting the dynamics of all the agents. This introduces
additional complexity in the learning problem because even

8

Learning to Stop: Deep Learning for MFOS

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

Figure 7: Example 6. DPP results, asynchronous stopping. Match the Letter “M” in 10× 10 grid with common noise. We
plot the stopped distribution, continuing distribution, and decision probability function every 5 timestep. The marked red
square indicates the random obstacles (common noise).

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

0.05

0.06

0
2

4
6

8
In

iti
al

 D
ist

.

Test Dist. : 1 Test Dist. : 2 Test Dist. : 3 Test Dist. : 4

0 2 4 6 8

0
2

4
6

8Te
rm

in
al

 D
ist

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.01

0.02

0.03

0.04

Figure 8: Example 6. DPP results, asynchronous stopping. Match the Letter “M”, “F”, “O”, and “S”. Tested with the
randomly sampled initial distribution.

for a fixed stopping decision rule, the evolution of the popu-
lation is stochastic. We consider the target distribution ρ to
be the uniform distribution over the grid of the letter “M”,
“F”, “O”, and “S” respectively, and we set the terminal cost
gρ(ν) =

∑
x∈X |ν(x)− ρ(x)|2 (see results in Fig. 7). We

choose the time horizon T = 50. Another important aspect
of the algorithms’ outcome is that the learned stopping de-
cisions are agnostic to the initial distribution in the sense
that the same stopping decision rule can be used on different
initial distributions and always leads to matching the target
distribution. Fig. 8 shows the terminal distributions under
random initial testing distributions: the learned stopping
probability function is robust to any test distribution used at
inference time. Results for the DA algorithm are shown in
Appx. E.6.

7. Conclusion
We proposed a discrete-time, finite-state MAOS problem
with randomized stopping times and its mean-field version.

We proved that the latter is a good approximation of the
former, and we established a DPP for MFOS. These new
problems cannot be directly tackled by adapting previous
methods for single-agent OS problems. To overcome these
challenges, we proposed two deep learning methods and
evaluated their performance over six different scenarios.
When an analytical solution exists, our method recovers it
in just a few iterations. In complex settings, it efficiently
achieves high performance. This work lays the foundation
for understanding and learning optimal stopping problems
in complex interacting systems.

Limitations and Future Works: We did not establish a
convergence proof for our algorithms due to the complex-
ity of analyzing deep networks. Additionally, we left for
future work a detailed analysis of different classes of stop-
ping times. Finally, extending our framework to continuous
spaces and validating it on real-world, ambitious applica-
tions remains an exciting direction for future research.

9

Learning to Stop: Deep Learning for MFOS

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
The authors are grateful to the anonymous reviewers and
area chairs for their comments, which helped improve the
quality of the paper. M. L. and L. M. were partially sup-
ported by the Shanghai Frontiers Science Center of Artifi-
cial Intelligence and Deep Learning at NYU Shanghai. M.L.
was partially supported by the grant “AI-driven Initiative to
Promote Research Paradigm Reform and Empower Disci-
pline Advancement.” M. L. and Y. Z. would like to thank
Lexie Zhu for fruitful discussions at the early stage of this
project.

References
Achdou, Y. and Lasry, J.-M. Mean field games for model-

ing crowd motion. Contributions to partial differential
equations and applications, pp. 17–42, 2019.

Achdou, Y. and Laurière, M. On the system of partial
differential equations arising in mean field type con-
trol. Discrete Contin. Dyn. Syst., 35(9):3879–3900,
2015. ISSN 1078-0947. doi: 10.3934/dcds.2015.35.3879.
URL https://DOI.org/10.3934/dcds.2015.
35.3879.

Achdou, Y. and Laurière, M. Mean Field Type Control with
Congestion (II): An augmented Lagrangian method. Appl.
Math. Optim., 74(3):535–578, 2016a. ISSN 0095-4616.
doi: 10.1007/s00245-016-9391-z. URL http://dx.
DOI.org/10.1007/s00245-016-9391-z.

Achdou, Y. and Laurière, M. Mean field type control with
congestion. Applied Mathematics & Optimization, 73:
393–418, 2016b.

Achdou, Y. and Pironneau, O. Computational methods for
option pricing. SIAM, 2005.

Agram, N. and Øksendal, B. Optimal stopping of con-
ditional McKean–Vlasov jump diffusions. Systems &
Control Letters, 188:105815, 2024.

Araujo, A., Havens, A. J., Delattre, B., Allauzen, A., and Hu,
B. A unified algebraic perspective on Lipschitz neural
networks. In The Eleventh International Conference on
Learning Representations, 2022.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International conference
on machine learning, pp. 214–223. PMLR, 2017.

Balata, A., Huré, C., Laurière, M., Pham, H., and Pimentel,
I. A class of finite-dimensional numerically solvable
McKean-Vlasov control problems. ESAIM: Proceedings
and Surveys, 65:114–144, 2019.

Bäuerle, N. Mean field markov decision processes. Applied
Mathematics & Optimization, 88(1):12, 2023.

Becker, S., Cheridito, P., and Jentzen, A. Deep optimal
stopping. Journal of Machine Learning Research, 20(74):
1–25, 2019.

Bensoussan, A., Frehse, J., and Yam, S. C. P. Mean field
games and mean field type control theory. Springer Briefs
in Mathematics. Springer, New York, 2013. ISBN 978-1-
4614-8507-0; 978-1-4614-8508-7.

Best, G., Huang, S., and Fitch, R. Decentralised mission
monitoring with spatiotemporal optimal stopping. In
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4810–4817. IEEE, 2018.

Briceño Arias, L. M., Kalise, D., and Silva, F. J. Proximal
methods for stationary mean field games with local cou-
plings. SIAM J. Control Optim., 56(2):801–836, 2018.
ISSN 0363-0129. doi: 10.1137/16M1095615. URL
https://DOI.org/10.1137/16M1095615.

Carmona, R. and Delarue, F. Probabilistic theory of mean
field games with applications. I, volume 83 of Probability
Theory and Stochastic Modelling. Springer, Cham, 2018.
ISBN 978-3-319-56437-1; 978-3-319-58920-6. Mean
field FBSDEs, control, and games.

Carmona, R. and Laurière, M. Convergence analysis of
machine learning algorithms for the numerical solution
of mean field control and games i: The ergodic case.
SIAM Journal on Numerical Analysis, 59(3):1455–1485,
2021.

Carmona, R. and Laurière, M. Deep learning for mean
field games and mean field control with applications to
finance. Machine Learning and Data Sciences for Finan-
cial Markets: A Guide to Contemporary Practices, pp.
369, 2023.

Carmona, R., Delarue, F., and Lachapelle, A. Control
of McKean-Vlasov dynamics versus mean field games.
Math. Financ. Econ., 7(2):131–166, 2013. ISSN 1862-
9679.

Carmona, R., Laurière, M., and Tan, Z. Linear-quadratic
mean-field reinforcement learning: convergence of pol-
icy gradient methods. arXiv preprint arXiv:1910.04295,
2019.

10

https://DOI.org/10.3934/dcds.2015.35.3879
https://DOI.org/10.3934/dcds.2015.35.3879
http://dx.DOI.org/10.1007/s00245-016-9391-z
http://dx.DOI.org/10.1007/s00245-016-9391-z
https://DOI.org/10.1137/16M1095615

Learning to Stop: Deep Learning for MFOS

Carmona, R., Laurière, M., and Tan, Z. Model-free mean-
field reinforcement learning: mean-field MDP and mean-
field Q-learning. The Annals of Applied Probability, 33
(6B):5334–5381, 2023.

Chassagneux, J.-F., Crisan, D., and Delarue, F. Numerical
method for FBSDEs of McKean-Vlasov type. Ann. Appl.
Probab., 29(3):1640–1684, 2019. ISSN 1050-5164. doi:
10.1214/18-AAP1429. URL https://DOI.org/10.
1214/18-AAP1429.

Chen, D., Qi, Q., Zhuang, Z., Wang, J., Liao, J., and Han,
Z. Mean field deep reinforcement learning for fair and
efficient UAV control. IEEE Internet of Things Journal,
8(2):813–828, 2020.

Cui, K., Hauck, S. H., Fabian, C., and Koeppl, H. Learning
decentralized partially observable mean field control for
artificial collective behavior. In The Twelfth International
Conference on Learning Representations, 2023.

Cui, K., Hauck, S. H., Fabian, C., and Koeppl, H. Learning
decentralized partially observable mean field control for
artificial collective behavior. In The Twelfth International
Conference on Learning Representations, 2024.

Dai, Z., Yu, H., Low, B. K. H., and Jaillet, P. Bayesian
optimization meets Bayesian optimal stopping. In Inter-
national conference on machine learning, pp. 1496–1506.
PMLR, 2019.

Damera Venkata, N. and Bhattacharyya, C. Deep recur-
rent optimal stopping. Advances in Neural Information
Processing Systems, 36, 2024.

Dayanıklı, G., Laurière, M., and Zhang, J. Deep learning
for population-dependent controls in mean field control
problems with common noise. In Proceedings of the
International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS, volume 2024, pp. 2231–
2233, 2024.

Ekren, I., Touzi, N., and Zhang, J. Optimal stopping under
nonlinear expectation. Stochastic Processes and Their
Applications, 124(10):3277–3311, 2014.

Fornasier, M. and Solombrino, F. Mean-field optimal con-
trol. ESAIM: Control, Optimisation and Calculus of
Variations, 20(4):1123–1152, 2014.

Fouque, J.-P. and Zhang, Z. Deep learning methods for
mean field control problems with delay. Frontiers in
Applied Mathematics and Statistics, 6:11, 2020.

Germain, M., Laurière, M., Pham, H., and Warin, X.
Deepsets and their derivative networks for solving sym-
metric pdes. Journal of Scientific Computing, 91(2):63,
2022a.

Germain, M., Mikael, J., and Warin, X. Numerical reso-
lution of mckean-vlasov fbsdes using neural networks,
2022b.

Gu, H., Guo, X., Wei, X., and Xu, R. Mean-field controls
with Q-learning for cooperative MARL: convergence and
complexity analysis. SIAM Journal on Mathematics of
Data Science, 3(4):1168–1196, 2021.

Gu, H., Guo, X., Wei, X., and Xu, R. Dynamic program-
ming principles for mean-field controls with learning.
Operations Research, 71(4):1040–1054, 2023.

He, X. On the limit theory of mean field optimal stopping
with non-markov dynamics and common noise. Stochas-
tic Processes and their Applications, pp. 104681, 2025.

Herrera, C., Krach, F., Ruyssen, P., and Teichmann, J. Opti-
mal stopping via randomized neural networks. Frontiers
of Mathematical Finance, pp. 0–0, 2023.

Kobylanski, M., Quenez, M.-C., and Rouy-Mironescu, E.
Optimal multiple stopping time problem. The Annals of
Applied Probability, 21(4):1365 – 1399, 2011.

Laurière, M. and Pironneau, O. Dynamic programming for
mean-field type control. C. R. Math. Acad. Sci. Paris, 352
(9):707–713, 2014. ISSN 1631-073X.

Liang, Y. and Wang, B. Robust mean field social opti-
mal control with applications to opinion dynamics. In
2019 IEEE 15th International Conference on Control
and Automation (ICCA), pp. 1079–1084, 2019. doi:
10.1109/ICCA.2019.8899655.

Lippman, S. A. and McCall, J. J. The economics of job
search: A survey. Economic inquiry, 14(2):155–189,
1976.

Longstaff, F. A. and Schwartz, E. S. Valuing American
options by simulation: a simple least-squares approach.
The review of financial studies, 14(1):113–147, 2001.

Mondal, W. U., Agarwal, M., Aggarwal, V., and Ukkusuri,
S. V. On the approximation of cooperative heterogeneous
multi-agent reinforcement learning (MARL) using mean
field control (MFC). Journal of Machine Learning Re-
search, 23(129):1–46, 2022.

Motte, M. and Pham, H. Mean-field Markov decision pro-
cesses with common noise and open-loop controls. The
Annals of Applied Probability, 32(2):1421–1458, 2022.

Pásztor, B., Krause, A., and Bogunovic, I. Efficient model-
based multi-agent mean-field reinforcement learning.
Transactions on Machine Learning Research, 2023.

11

https://DOI.org/10.1214/18-AAP1429
https://DOI.org/10.1214/18-AAP1429

Learning to Stop: Deep Learning for MFOS

Pham, H. and Wei, X. Dynamic programming for optimal
control of stochastic McKean-Vlasov dynamics. SIAM
J. Control Optim., 55(2):1069–1101, 2017. ISSN 0363-
0129.

Reisinger, C., Stockinger, W., and Zhang, Y. A fast iterative
PDE-based algorithm for feedback controls of nonsmooth
mean-field control problems. SIAM Journal on Scientific
Computing, 46(4):A2737–A2773, 2024.

Reppen, A. M., Soner, H. M., and Tissot-Daguette, V.
Neural optimal stopping boundary. arXiv preprint
arXiv:2205.04595, 2022.

Shiryaev, A. N. Optimal stopping rules, volume 8. Springer
Science & Business Media, 2007.

Sznitman, A.-S. Topics in propagation of chaos. In Ecole
d’été de probabilités de Saint-Flour XIX—1989, pp. 165–
251. Springer, 1991.

Talbi, M., Touzi, N., and Zhang, J. Dynamic programming
equation for the mean field optimal stopping problem.
SIAM Journal on Control and Optimization, 61(4):2140–
2164, 2023.

Talbi, M., Touzi, N., and Zhang, J. From finite population
optimal stopping to mean field optimal stopping. The
Annals of Applied Probability, 34(5):4237 – 4267, 2024.

Tsitsiklis, J. N. and Van Roy, B. Optimal stopping of
markov processes: Hilbert space theory, approximation al-
gorithms, and an application to pricing high-dimensional
financial derivatives. IEEE Transactions on Automatic
Control, 44(10):1840–1851, 1999.

Villani, C. The Wasserstein distances. Optimal transport:
old and new, pp. 93–111, 2009.

Wang, C., Venkatesh, S., and Judd, J. Optimal stopping and
effective machine complexity in learning. Advances in
neural information processing systems, 6, 1993.

Yu, X. and Yuan, F. Time-inconsistent mean-field stopping
problems: A regularized equilibrium approach. arXiv
preprint arXiv:2311.00381, 2023.

12

Learning to Stop: Deep Learning for MFOS

A. N -agent cooperative optimal stopping
A.1. Why do we need randomization in the control? An Example

We want to show with an example that the extension to randomized stopping times is necessary in the mean-field formulation,
because when we try to plug an optimal strategy into the N -agent problem, we notice that the latter is no longer optimal.
Example 1 (Randomized is better). Let consider the following scenario: we take the state space X = {T,C} and initial
distribution µ0 = 3/4δT + 1/4δC ; transition function F (T, x, µ, ϵ) = C, F (C, x, µ, ϵ) = T , meaning that the system at
any time step, can stop or switch the state. We take as social cost:

Φ(x, µ) =

{
1 if µ(x) ≤ 1/2

5 if µ(x) > 1/2.
(13)

Notice that without allowing the randomized stopping the value is V ∗ = 3/4 · 5 + 1/4 · 1 = 4, which corresponds
to stop all the distribution (in every state) at time n = 0. In the end, this formulation cannot reflect the optimum
in the association of N agents. Indeed when we plug this policy into the N agent formulation we obtained the value
V N = 1/N(3N/4 · 5 +N/4 · 1) = 4, which is not optimal since we can use the strategy (which is going to be optimal for
the N -agent problem) to stop, at time 0, only the 1/3 of players in state T , allowing the others to change state. This leads to
a final configuration of m1 = 1/2δT + 1/2δC and a value of V ∗,N = 1/N(N/4 · 5 + 3N/4 · 1) = 2 < V N = 4.

In particular, we want to emphasize the fact that, without allowing a randomized stopping time in the MF formulation, we
find an optimal state-dependent strategy, which corresponds , in the problem with finite agents, to the fact that every player
in the same state will have the same stopping time.

A.2. Proof of Theorem 3.2

This section demonstrates that solving the optimal control problem at the asymptotic regime for the number of agents
tending to infinity allows one to find the solution to the multi-agent problem by including the solution found at the regime in
the latter. This is of fundamental importance in applications as it allows a simpler and clearer situation to be analyzed for the
purpose of solving a complicated problem. Let us recall the N -agent formulation. We are going to work in the framework
where the central planner use the same policy p to control each agent. We suppose Assumption 3.1 holds.

Let us fix the following notation νN,p
m := 1

N

∑N
i=1 δY i,α

m
and νpm := L(Y α

m) .





Xi,α
0 ∼ µ0, Ai,α

0 = 1

αi
n ∼ πi

n(·|Xi,α
n) = Be(pn(X

i,α
n))

Ai,α
n+1 = Ai,α

n · (1− αi
n)

Xi,α
n+1 =

{
F (n,Xi,α

n , 1
N

∑N
j=0 δY j,α

n
, ϵin+1), if Ai,α

n · (1− αi
n) = 1

Xi,α
n , otherwise.

(14)

The social cost is defined as:

JN (p) := JN (p, . . . , p) :=
1

N

N∑

i=1

E

[
T∑

m=0

Φ(Xi,α
m ,

1

N

N∑

i=0

δXi,α
m

)Ai,α
m αi

m

]

= E

[
T∑

m=0

1

N

N∑

i=1

Φ(Xi,α
m ,

1

N

N∑

i=0

δXi,α
m

)Ai,α
m αi

m

]

= E




T∑

m=0

∑

(x,a)∈S

νN,p
m (x, a)Φ(x, νN,p

X,m)apm(x)




= E

[
T∑

m=0

Ψ(νN,p
m , pm(νN,p

m))

]

(15)

13

Learning to Stop: Deep Learning for MFOS

The asymptotic problem is written as:




Xα
0 ∼ µ0, Aα

0 = 1

αn ∼ πn(·|Xα
n) = Be(pn(X

α
n))

Aα
n+1 = Aα

n · (1− αn)

Xα
n+1 =

{
F (n,Xα

n ,L(Xα
n), ϵn+1), if Aα

n · (1− αn) = 1

Xα
n , otherwise,

(16)

where the social cost is defined as:

J(p) :=

T∑

m=n

∑

(x,a)∈S

νp,ν,nm (x, a)Φ(x, νpX,m)apm(x)

=

T∑

m=n

Ψ(νpm, pm(νpm)).

(17)

Let us recall that P := {p : {0, . . . , T}×X ×P(S) → [0, 1] : p is Lp-Lipschitz}, the set of all possible admissible policies
p. From now we are going to use the notation ∥ · ∥ for the norm associated to the total variation distance. Firstly we want to
prove the at time time n the distributions νN,p

m and νpm are close in the following sense (see (Cui et al., 2023) for a similar
setting).

Lemma A.1 (Convergence of the measure). Suppose Assumption 3.1 holds. Given the dynamics (14) and (16) for every
n = 0, . . . , T it holds:

sup
p∈P

E
[
∥νN,p

n − νpn∥
]
= O(1/

√
N). (18)

Proof. We are going to follow an induction argument over the time steps:

Initialization: for n = 0, since we have indipendent samples at the starting point, by the law of large numbers (LLN) we
have:

sup
p∈P

E
[
∥νN,p

0 − νp0∥
]
→ 0

with rate of convergence O
(

1√
N

)
.

In particular, let us denote S := {y1, · · · , yK}, νp0 (yi) = pi, ν
N,p
0 (yi) =

1
N

∑N
i=1 δY α

i
(yi) =

C(yi)
N , where C(yi) is defined

as the number of agent that are in the state yi at time 0. We can write:

E
[
∥νN,p

0 − νp0∥
]
=

1

2
E




|S|∑

i=1

∣∣∣∣
C(yi)

N
− pi

∣∣∣∣


 ≤

√
|S|
2

E




|S|∑

i=1

(
C(yi)

N
− pi

)2


1/2

by Cauchy-Schwarz inequality. Notice now that C(yi) ∼ Bin(N, pi) and so

|S|∑

i=1

Var

(
C(yi)

N

)
=

|S|∑

i=1

pi(1− pi)

N
=

1−∑|S|
i=1 p

2
i

N
≤ |S| − 1

N |S|

since the quantity 1−∑|S|
i=1 p

2
i has its max when pi = 1

|S| .

Eventually, we obtain the explicit constant:

E
[
||νN,p

0 − νp0 ||
]
≤

√
|S| − 1

2
√
N

.

14

Learning to Stop: Deep Learning for MFOS

Remark A.2. Notice that the bound depends on the cardinality of the state space: more states lead to a larger upper bound,
meaning possibly a larger discrepancy between the empirical and mean-field distributions. This is due to the fact that we
used the total variation distance as metric, which sums over all possible states. In continuous space, this metric is not feasible
and so usually the Wasserstein distance is used for convergence analysis (see (Carmona & Delarue, 2018)). Actually, in the
finite space and discrete time setting, we have the following inequality:

dmin∥µ− ν∥TV ≤W1(µ, ν) ≤ D∥µ− ν∥TV,

where dmin := minx ̸=y d(x, y) and D := maxx ̸=y d(x, y). Notice that the Wasserstein distance in finite space and discrete
time is defined as:

Wp(µ, ν) =


 min

T∈C(µ,ν)

n∑

i=1

n∑

j=1

d(xi, xj)
p · Ti,j




1
p

,

where C(µ, ν) is the set of couplings defined as:

C(µ, ν) =



T ∈ Rn×n

∣∣∣∣
n∑

j=1

Ti,j = µi,

n∑

i=1

Ti,j = νj , Ti,j ≥ 0, ∀i, j



 ,

and d(xi, xj) is the distance between points xi and xj in the metric space. More details on Wasserstein distances are
described in (Villani, 2009) and (Arjovsky et al., 2017).

Induction step: assume now that (18) holds at time n. Using triangle inequality, at time n+ 1 we have, for any p ∈ P ,

E
[
∥νN,p

n+1 − νpn+1∥
]
≤ E

[
∥νN,p

n+1 − F̄ (νN,p
n , pn(ν

N,p
n))∥

]
+ E

[
∥F̄ (νN,p

n , pn(ν
N,p
n))− νpn+1∥

]

where we recall the expression of F̄ described by (8).

For the first term, we have:

E
[∥∥∥νN,p

n+1 − F̄ (νN,p
n , pn(ν

N,p
n))

∥∥∥
]

= E

[∥∥∥∥∥
1

N

N∑

i=1

δY i,α
n+1

− F̄ (νN,p
n , pn(ν

N,p
n))

∥∥∥∥∥

]

=
1

2
E



∣∣∣∣∣∣
∑

y∈S

1

N

N∑

i=1

δY i,α
n+1

(y)− F̄ (νN,p
n , pn(ν

N,p
n))(y)

∣∣∣∣∣∣




=
1

2

∑

y∈S
E

[∣∣∣∣∣
1

N

N∑

i=1

δY i,α
n+1

(y)− F̄ (νN,p
n , pn(ν

N,p
n))(y)

∣∣∣∣∣

]

=
1

2

∑

y∈S
E

[
E

[∣∣∣∣∣
1

N

N∑

i=1

δY i,α
n+1

(y)− F̄ (νN,p
n , pn(ν

N,p
n))(y)

∣∣∣∣∣

∣∣∣∣Y
α
n

]]

The interpretation of F̄ gives us:

F̄ (νN,p
n , pn(ν

N,p
n))(y) =

∑

y′

νN,p
n (y′)P(Y p

n+1 = y|Y p
n = y′)

=
1

N

N∑

i=1

P(Y p
n+1 = y|Y p

n = Y i,p
n)

=
1

N

N∑

i=1

P(Y i,p
n+1 = y|Y i,p

n)

=
1

N

N∑

i=1

E[δi,pYn+1
(y)|Y i,p

n]

15

Learning to Stop: Deep Learning for MFOS

where we used that the i particles are indistinguishable and have the same transition functions.

So we can conclude the argument as:

E
[∥∥∥νN,p

n+1 − F̄ (νN,p
n , pn(ν

N,p
n))

∥∥∥
]
=

1

2

∑

y∈S
E

[
E

[∣∣∣∣∣
1

N

N∑

i=1

δY i,α
n+1

(y)− E

[
1

N

N∑

i=1

δY i,α
n+1

(y)

∣∣∣∣Y
α
n

]∣∣∣∣∣

∣∣∣∣Y
α
n

]]
≤ |S|

4
√
N

by the LLN, where again the bound is independent of p ∈ P .

Indeed, given the past history Y α
n the random variables δY i,α

n+1
become conditionally independent for every i = 1, . . . , N .

Furthermore each δY i,α
n+1(y)

is a Bernoulli random variable, therefore its variance V ar(δY i,α
n+1

(y)|Y α
n) ≤ 1

4 . Summing over

all agents, the variance of the empirical mean becomes 1
4N . Using Cauchy-Schwarz inequality, for any random variable Z

with finite variance E[|Z − E[Z]|] ≤
√
V ar(Z), so in our case we obtained the constant |S|

4
√
N

.

For the second term, by Lipschitz property of F̄ and p(ν), we can write :

E
[
∥F̄ (νN,p

n , pn(ν
N,p
n))− νpn+1∥

]

= E
[
∥F̄ (νN,p

n , pn(ν
N,p
n))− F̄ (νpn, pn(ν

p
n))∥

]

≤ LF̄E
[
|∥νN,p

n − νpn∥+ ∥pn(νN,p
n)− pn(ν

p
n)∥|

]

≤ LF̄E
[
|∥νN,p

n − νpn∥+ Lp∥νN,p
n − νpn∥|

]

= (LF̄ (1 + Lp))E
[
∥νN,p

n − νpn∥
]

≤ |S|
4
√
N

(
1−Kn+1

1−K

)
+Kn+1

√
|S| − 1

2
√
N

− |S|
4
√
N

by induction step, where K := LF̄ (1 +Lp) and the upper bound is independent of p ∈ P (since the constant Lp is the same
for all the control p ∈ P).

We have thus proved by induction that:

E
[
∥νN,p

n+1 − νpn+1∥
]
≤ |S|

4
√
N

(
1− (LF̄ (1 + Lp))

n+1

1− (LF̄ (1 + Lp))
) + (LF̄ (1 + Lp)))

n+1

√
|S| − 1

2
√
N

,

for every time step n = 0, . . . , T .

This result allows us to prove the following main theorem on the optimal cost approximation in the N -agent problem. This
is a precise version of the informal statement in Theorem 3.2.

Theorem A.3 (ε-approximation of the N -agent problem). Suppose Assumption 3.1 holds. Given the dynamics (14) and (16)
and the social cost associated (15), (17), let us denote by p∗ the optimal policy for the mean-field problem and by p̂ the
optimal policy for the N -agent problem. It holds:

JN (p∗, . . . , p∗)− JN (p̂, . . . , p̂) = O(1/
√
N). (19)

Proof. We can write:

JN (p∗, . . . , p∗)− JN (p̂, . . . , p̂) =

(
JN (p∗, . . . , p∗)− J(p∗)

)
+

(
J(p∗)− J(p̂)

)
+

(
J(p̂)− JN (p̂)

)

Notice first that we can bound this term simply deleting the second term in the r.h.s noticing J(p∗)− J(p̂) ≤ 0 since p∗ is

16

Learning to Stop: Deep Learning for MFOS

optimal for the mean-field cost J(p). For the first term we can write:

JN (p∗, . . . , p∗)− J(p∗)

= E

[
T∑

m=0

Ψ(νN,p∗

m , p∗m(νN,p∗

m))

]
−

T∑

m=n

Ψ(νp
∗

m , p∗m(νp
∗

m))

=

T∑

n=0

E
[
Ψ(νN,p∗

n , p∗n(ν
N,p∗

n))−Ψ(νp
∗

n , p∗n(ν
p∗

n))
]

≤ LΨ

T∑

n=0

E
[∥∥∥νN,p∗

n − νp
∗

n

∥∥∥+
∥∥∥p∗n(νN,p∗

)− p∗n(ν
p∗

n)
∥∥∥
]

≤ LΨ(1 + Lp)

T∑

n=0

E
[∥∥∥νN,p∗

n − νp
∗

n

∥∥∥
]

≤ TLΨ(1 + Lp) sup
n∈{0,...,T}

E
[∥∥∥νN,p∗

n − νp
∗

n

∥∥∥
]

≤ TLΨ(1 + Lp)

[|S|
4
√
N

(
1− (LF̄ (1 + Lp))

T

1− (LF̄ (1 + Lp))

)
+ (LF̄ (1 + Lp)))

T

√
|S| − 1

2
√
N

]
,

by Lemma A.1. For the last term J(p̂) − JN (p̂), we can apply the same argument that we just described. Similarly, we
obtain:

JN (p∗, . . . , p∗)− JN (p̂, . . . , p̂) ≤ 2TLΨ(1 + Lp)

[|S|
4
√
N

(
1− (LF̄ (1 + Lp))

T

1− (LF̄ (1 + Lp))

)
+ (LF̄ (1 + Lp)))

T

√
|S| − 1

2
√
N

]

B. Proof of Theorem 4.1
Let us prove Theorem 4.1.

Proof. To prove this result, we will show that we can reduce the problem to a mean-field optimal control problem in discrete
time and continuous space. Then we can apply the well-studied dynamic programming principle for mean-field Markov
decision processes (MFMDPs) (see e.g. (Motte & Pham, 2022; Carmona et al., 2023; Bäuerle, 2023)). We have:

Vn(ν) = inf
p∈Pn,T

T∑

m=n

∑

(x,a)∈S

νp,ν,nm (x, a)Φ(x, µp,ν,n
m)apm(x)

= inf
p∈Pn,T

T∑

m=n

Ψ(νp,ν,nm , pm),

where Ψ : P(X × {0, 1})× P(X) → R and it is defined as:

Ψ(ν, q) :=
∑

(x,a)∈S

ν(x, a)Φ(x, νX)aq(x).

Then we can define the process Z taking value in P(X × {0, 1}):

Zp
n = z = ν; Zp

m := νp,ν,nm ∀m ≥ n

such that it follows the dynamics Zp
m+1 = F̄ (Zp

m, pm) for every m = n, . . . , T − 1. We can write:

Vn(z) = inf
p∈Pn,T

T∑

m=n

Ψ(Zp
m, pm),

17

Learning to Stop: Deep Learning for MFOS

and we recognize a well-studied control problem for which the DPP is:

Vn(z) = inf
h∈H

Ψ(z, h) + Vn+1(F̄ (z, h)).

where H is the set of all functions h : X → [0, 1]. Finally, we can recover our result:

Vn(ν) = inf
h∈H

∑

(x,a)∈S

ν(x, a)Φ(x, νX)ah(x) + Vn+1(F̄ (ν, h)). (20)

where νX is the first marginal of the distribution ν.

C. Algorithms
Alg. 3 and 4 present respectively the direct approach and the DP-based method.

Algorithm 3 Direct Approach for MFOS

Require: Time-dependent stopping decision neural network: ψθ : {0, . . . , T} × X × P(S) → [0, 1], cost function Φ,
mean-field dynamic transition F̄ , time horizon T , max training iteration Niter.
// TRAINING

1: for k = 0, . . . , Niter − 1 do
2: Uniformly sample initial distribution νp0 from the probability simplex on R2|X |

3: for n = 0, . . . , T do
4: pn(x) = ψθ(x, ν

p
n, n; θk) for any x ∈ X ▷ Compute stopping probability

5: ℓn =
∑

x∈X ν
p
n(x, 1)Φ(x, µn)pn(x) ▷ Compute loss at time n

6: νpn+1 = F̄ (νpn, pn) ▷ Simulate MF dynamic

7: ℓ =
∑T

n=0 ℓn ▷ Compute the total loss
8: θk+1 = optimizer update(θk, ℓ(θk)) ▷ AdamW optimizer step
9: Set θ∗ = θNiter

10: return ψθ∗

Algorithm 4 Dynamic Programming Approach for MFOS

Require: A sequence of stopping decision neural network: ψn
θ : X ×P(S) → [0, 1] for n ∈ {0, . . . , T − 1}, cost function

Φ, mean-field dynamic transition F̄ , time horizon T , max training iteration Niter.
// TRAINING

1: Set ψT
θ = 1 since all distribution stopped at time T .

2: for n = T − 1, . . . , 0 do ▷ Train backward in time
3: for k = 0, . . . , Niter − 1 do
4: Uniformly sample initial distribution νpn from the probability simplex on R2|X |

5: for m = n, . . . , T do
6: if m = n then
7: pm(x) = ψm

θ (x, νpm; θnk) ▷ Compute with NN for current time
8: else
9: pm(x) = ψm

θ (x, νpm; θm,∗) ▷ Compute with trained NN from future time
10: ℓm =

∑
x∈X ν

p
m(x, 1)Φ(x, µm)pm(x) ▷ Compute loss at time m

11: νpm+1 = F̄ (νpm, pm) ▷ Simulate MF dynamic

12: ℓ =
∑T

m=n ℓm ▷ Compute the total loss from time n to T
13: θnk+1 = optimizer update(θmk , ℓ(θ

n
k)) ▷ AdamW optimizer step

14: Set θn,∗ = θnNiter
▷ Stored trained weight

D. Implementation details
In this section, we will discuss the choice of neural networks, training batch size, learning rate, and iterations, and all the
related hyperparameters as well as computational resources used.

18

Learning to Stop: Deep Learning for MFOS

Neural Network Architectures: We have 4 variants of neural networks.

For the direct approach, the neural network takes an input time t, while for the DPP approach, the neural network does not
need time input.

For the asynchronous stopping problem, besides time, the neural network has two spatial inputs 1) the state x, represented
as an integer, goes through an embedding layer with learnable parameters and the results are fed to other operations. 2)
the distribution ν, represented as a vector, is inputted to the neural net directly. For the synchronous stopping problem, the
neural network only has one spatial input, which is the distribution ν, and is treated as the same way as discussed before.

In general, our neural network has the following structure. Our neural network takes an input pair (x, t), where x is the
spatial input, t is the time. If t is a needed input, then it is passed through a module to generate a standard sinusoidal
embedding and then fed to 2 fully connected layers with Sigmoid Linear Unit (SiLU) and generate an output tout. Spatial
input x is passed through an MLP with k residual blocks, each containing 4 linear layers with hidden dimension D and
SiLU activation. This generates an output yout. Our final output out is computed through,

out = Outmod(GroupNorm(yout + tout))

where Outmod is an out module that consists of 3 fully connected layers with hidden dimension D and SiLU activation,
GroupNorm stands for group normalization. If t is not a needed input, then set tout = 0.

For all the test cases we have experimented with, we use k = 3, D = 128 for all the 1D experiments and k = 5, D = 256
for the 2D experiments.

Computational Resources: We run all the numerical experiments on an RTX 4090 GPU and a MacBook Pro with M2
Chip. For any of the test cases, one run took at most 3 minutes on GPUs and 7 minutes on CPUs.

Training Hyperparameters: For all the experiments, we choose an initial learning rate 10−4 of the AdamW optimizer.
Each training is at most 104 iterations, with a batch size 128. The number of training iterations is chosen based on numerical
evidence and trial and error. We start with a moderate number and then increase it if the model shows signs of undertraining
and is far from convergence.

E. Numerical Experiments details
This section aims to complete the results of the 6 numerical experiments conducted. While some of the following plots have
been previously discussed in Section 6, we provide the full descriptions of Example E.1 and Example E.2 here for the sake
of completeness.

E.1. Example 1: Towards the Uniform

We take state space X = {0, 1, 2, 3, 4}, time horizon T = 4, transition function F (n, x, µ, ϵ) = x+ 1 which means that the
agent deterministically moves to the state on the right, with boundary at x = 4 (meaning that once at 4, the agent does not
move anymore), and cost function Φ(x, µ) = µ(x) which depends on the mean field only through the state of the agent
(this is sometimes called local dependence). For the testing distribution, we take a distribution concentrated on state x = 0,
denoted as µ0 = δ0. It can be seen that the optimal strategy consists in spreading the mass to make it as close as uniform as
possible (hence the name of this example). Fig. 9 shows that the testing loss decays towards the true optimal value, and the
distribution evolves towards a uniform distribution as expected. Fig. 10 shows the losses with DPP: there is one curve per
time step. At time 0, the value is close to the optimal value. First, we explain how the optimal value is computed. Since the
agents move deterministically to the right, the only option to freeze some mass at a state x is to do it at time n. It can be seen
that: for every n = 0, . . . , T and for every x ∈ X , we want to have pn(x = n) = 1

T+1−n1x=n for n < T and pn(x) = 1
for n = T . Actually notice that for all x ̸= n the choice of pn is arbitrary so, at every time-step n we can apply the same pn
for every state x. This brings us to optimize over the set of synchronous stopping times.

Then we can compute the optimal value and obtain: V ∗,δ0 := T+2
2(T+1) .

Figs. 11 and 12 show the result for synchronous stopping.

19

Learning to Stop: Deep Learning for MFOS

0 2000 4000 6000 8000 10000
Iterations

0.270

0.280

0.290

0.300

0.310

0.320

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.600

0.625

0.650

0.675

0.700

0.725

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4
X

Time 1

0 1 2 3 4
X

Time 2

0 1 2 3 4
X

Time 3

0 1 2 3 4
X

Time 4

0 1 2 3 4
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 9: Example 1. DA results, asynchronous stopping.
Top: training and testing losses. Bottom: evolution of the
distribution after training.

0.280

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110
0.120
0.130

Ti
m

e
1

Lo
ss

0.660

0.680

Lo
ss

0.110
0.120
0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 1000 2000 3000 4000
Iterations

0.660

0.670

0.680

Lo
ss

Figure 10: Example 1. DPP results, asynchronous stopping.
Training and testing losses.

0 2000 4000 6000 8000 10000
Iterations

0.280

0.300

0.320

0.340

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.600

0.650

0.700

0.750

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4
X

Time 1

0 1 2 3 4
X

Time 2

0 1 2 3 4
X

Time 3

0 1 2 3 4
X

Time 4

0 1 2 3 4
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 11: Example 1. DA results, synchronous stopping.
Top: training and testing losses. Bottom: evolution of the
distribution after training.

0.290
0.300
0.310

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650

0.700

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110

0.120

0.130

Ti
m

e
1

Lo
ss

0.640

0.660

0.680

Lo
ss

0.110

0.120

0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 1000 2000 3000 4000
Iterations

0.660

0.680

Lo
ss

Figure 12: Example 1. DPP results, synchronous stopping.
Training and testing losses.

E.2. Example 2: Rolling a Die

In this example, at every time step, a fair six-sided die is rolled. This takes the role of the noise ϵ ∼ U(X) where
X = {1, 2, 3, 4, 5, 6}. The system starts in the initial distribution η = 1

4δ1 +
1
4δ2 +

1
2δ5, and evolves according to the

dynamics (5) with: µ0 = η, F (n, x, µ, ϵn+1) = ϵn+1. The social cost function associated to this scenario is Φ(x, µ) = x.
DA and DPP results are shown in Figs. 13 and 14 respectively.Again, we observe convergence to the true optimal value here.
The optimal value is computed as follows. Using the dynamic programming principle described in (11), we can compute the
optimal strategy and the optimal value:

p0(·) = (1, 0, 0, 0, 0, 0) p1(·) = (1, 1, 0, 0, 0, 0)

p2(·) = (1, 1, 0, 0, 0, 0) p3(·) = (1, 1, 0, 0, 0, 0)

p4(·) = (1, 1, 1, 0, 0, 0) p5(·) = (1, 1, 1, 1, 1, 1)

V ∗,η = 1, 6525.

For our considered initial distribution, this is one of the possible optimal strategies, since we have no mass on some states
and thus can assign any stopping probability to them. However, the solution we have presented is the only optimal solution
for all possible initial distributions. Note that if we optimize on the class of synchronous stop times, we do not reach

20

Learning to Stop: Deep Learning for MFOS

the same optimal value, but we reach a higher value, concluding that for this type of problem, it is better to optimize on
asynchronous stop times. In fact, when you narrow the decision only to the class of synchronous stop times is better to stop
everyone at the first initial state reaching a value of Ṽ ∗ = 3, 25 > 1, 6525 = V ∗. Synchronous stopping results are shown
in Fig. 15 and 16.

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 13: Example 2. DA results, asynchronous stopping.
Top: training and testing losses. Bottom: evolution of the
distribution after training.

2.000

2.500

Ti
m

e
0

Lo
ss

Training Loss

2.000

2.500

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

1.000

1.250

Ti
m

e
1

Lo
ss

2.600

2.800

3.000

Lo
ss

1.000

1.250

1.500

Ti
m

e
2

Lo
ss

3.100

3.200

3.300

Lo
ss

1.200

1.400

1.600

Ti
m

e
3

Lo
ss

3.250

3.300

3.350

Lo
ss

0 1000 2000 3000 4000
Iterations

1.400

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.350

3.400

Lo
ss

Figure 14: Example 2. DPP results, asynchronous stopping.
Training and testing losses.

0 2000 4000 6000 8000 10000
Iterations

3.200

3.300

3.400

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

Lo
ss

Testing Loss

Testing Loss
Optimal Cost

0 1 2 3 4 5
X

0.0

0.1

0.2

0.3

0.4

0.5
Time 0

0 1 2 3 4 5
X

Time 1

0 1 2 3 4 5
X

Time 2

0 1 2 3 4 5
X

Time 3

0 1 2 3 4 5
X

Time 4

0 1 2 3 4 5
X

Time 5

0 1 2 3 4 5
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing

Figure 15: Example 2. DA results, synchronous stopping.
Top: training and testing losses. Bottom: evolution of the
distribution after training.

3.200

3.400

Ti
m

e
0

Lo
ss

Training Loss

2.000

3.000

Lo
ss

Testing Loss

Testing Loss
Optimal Cost

1.600

1.800

Ti
m

e
1

Lo
ss

3.370

3.380

Lo
ss

1.600

1.800

Ti
m

e
2

Lo
ss

3.370

3.380

Lo
ss

1.600

1.800

Ti
m

e
3

Lo
ss

3.370

3.380

Lo
ss

0 1000 2000 3000 4000
Iterations

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.370

3.380

Lo
ss

Figure 16: Example 2. DPP results, synchronous stopping.
Training and testing losses.

21

Learning to Stop: Deep Learning for MFOS

E.3. Example 3: Crowd Motion with Congestion.

This example extends the previous one, adding a congestion factor. The transition probabilities are:

pn(z, x) := P (Xn+1 = z|Xn = x) =

{
1
6 (1− 1

5Ccongµ(x)), if z ̸= x,
1
6 (1 + Ccongµ(x)), if z = x.

(21)

Let us set Ccong = 0.8. However, the reasoning regarding the differences between scenarios in which the central planner
optimizes the set of asynchronous stopping times or the set of synchronous stopping times is similar. DA testing and training
losses are shown in Fig. 17. DPP testing and training losses are shown in Fig. 18.

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

2.000

2.500

3.000

Lo
ss

Testing Loss
Testing Loss

0 2000 4000 6000 8000 10000
Iterations

3.200

3.300

3.400

3.500

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

3.200

3.250

3.300

3.350

3.400
Lo

ss

Testing Loss
Testing Loss

Figure 17: Example 3. DA results. Training and testing losses. Top: asynchronous stopping. Bottom: synchronous stopping.

2.000

2.500

Ti
m

e
0

Lo
ss

Training Loss

2.000

2.500

Lo
ss

Testing Loss
Testing Loss

1.000

1.250

Ti
m

e
1

Lo
ss

2.600

2.800

3.000

Lo
ss

1.000

1.200

1.400

Ti
m

e
2

Lo
ss

3.000

3.200

Lo
ss

1.250

1.500

Ti
m

e
3

Lo
ss

3.200

3.300

Lo
ss

0 1000 2000 3000 4000
Iterations

1.400

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.300

3.400

Lo
ss

3.200

3.400

Ti
m

e
0

Lo
ss

Training Loss

3.200

3.300

3.400
Lo

ss
Testing Loss

Testing Loss

1.600

1.800

Ti
m

e
1

Lo
ss

3.370

3.380

3.390

Lo
ss

1.600

1.800

Ti
m

e
2

Lo
ss

3.380

3.390

Lo
ss

1.600

1.800

Ti
m

e
3

Lo
ss

3.375

3.380

3.385

Lo
ss

0 1000 2000 3000 4000
Iterations

1.600

1.800

Ti
m

e
4

Lo
ss

0 1000 2000 3000 4000
Iterations

3.375

3.380

3.385

Lo
ss

Figure 18: Example 3. DPP results. Training and testing losses. Left: asynchronous stopping. Right: synchronous stopping.

E.4. Example 4: Distributional Cost

DA results are shown in Fig. 19 and 20. DPP results are shown in Fig. 21.

22

Learning to Stop: Deep Learning for MFOS

0 2000 4000 6000 8000 10000
Iterations

0.200

0.250

0.300

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.000

0.100

0.200

0.300

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

Figure 19: Example 4. DA results, asynchronous stopping. Training and testing losses.

0 2000 4000 6000 8000 10000
Iterations

0.225

0.250

0.275

0.300

0.325

Lo
ss

Training Loss

0 2000 4000 6000 8000 10000
Iterations

0.000

0.050

0.100

0.150

0.200
Lo

ss

Testing Loss
Testing Loss
Optimal Cost

0 1 2 3 4 5 6
X

0.0

0.2

0.4

0.6

0.8

1.0
Time 0

0 1 2 3 4 5 6
X

Time 1

0 1 2 3 4 5 6
X

Time 2

0 1 2 3 4 5 6
X

Time 3

0 1 2 3 4 5 6
X

Final State

Pr
ob

ab
ilit

y
M

as
s

Stopped
Continuing
Target dist.

Figure 20: Example 4. DA results, synchronous stopping. Top: training and testing losses. Bottom: evolution of the
distribution after training.

0.200

0.250

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.000

0.200

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.140

Ti
m

e
1

Lo
ss

0.200

0.250

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
2

Lo
ss

0 1000 2000 3000 4000
Iterations

0.200

0.225

0.250

Lo
ss

0.250

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.000

0.100

0.200

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.130

0.140

Ti
m

e
1

Lo
ss

0.200

0.220

Lo
ss

0 1000 2000 3000 4000
Iterations

0.120

0.140

Ti
m

e
2

Lo
ss

0 1000 2000 3000 4000
Iterations

0.200

0.220

0.240

Lo
ss

Figure 21: Example 4. DPP results, asynchronous and synchronous stopping. Training and testing losses.

E.5. Example 5: Towards the Uniform in 2D

Asynchronous stopping results, including training losses, testing losses, distribution evolution, and stopping probability are
shown in Figs. 22 and 23. Synchronous stopping results are shown in Figs. 24 and 25.

23

Learning to Stop: Deep Learning for MFOS

0 1000 2000 3000 4000 5000
Iterations

0.065

0.068

0.070

0.072

0.075

0.077

Lo
ss

Training Loss

0 1000 2000 3000 4000 5000
Iterations

0.240

0.260

0.280

0.300

Lo
ss

Testing Loss
Testing Loss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.4

0.6

0.8Decision Prob

Figure 22: Example 5. DA results, asynchronous stopping. Top: training and testing losses. Bottom: evolution of the
distribution and stopping probability after training.

24

Learning to Stop: Deep Learning for MFOS

0.066

0.068

0.070
Ti

m
e

0

Lo
ss

Training Loss

0.240

0.260

0.280

Lo
ss

Testing Loss
Testing Loss

0.025

0.026

0.027

Ti
m

e
1

Lo
ss

0.255

0.260

0.265

Lo
ss

0.025

0.026

0.027

Ti
m

e
2

Lo
ss

0.258

0.260

0.263

Lo
ss

0 2000 4000 6000 8000
Iterations

0.026

0.028

Ti
m

e
3

Lo
ss

0 2000 4000 6000 8000
Iterations

0.258

0.260

0.263

Lo
ss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.25
0.50
0.75Decision Prob

Figure 23: Example 5. DPP results, asynchronous stopping. Top: training and testing losses. Bottom: evolution of the
distribution and stopping probability after training.

25

Learning to Stop: Deep Learning for MFOS

0 1000 2000 3000 4000 5000
Iterations

0.068

0.070

0.072

0.074

0.076

0.078

Lo
ss

Training Loss

0 1000 2000 3000 4000 5000
Iterations

0.240

0.260

0.280

0.300

0.320

Lo
ss

Testing Loss
Testing Loss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.2

0.4

0.6Decision Prob

Figure 24: Example 5. DA results, synchronous stopping. Top: training and testing losses. Bottom: evolution of the
distribution and stopping probability after training.

26

Learning to Stop: Deep Learning for MFOS

0.070

0.073

Ti
m

e
0

Lo
ss

Training Loss

0.250

0.275

0.300

Lo
ss

Testing Loss
Testing Loss

0.027
0.028
0.029

Ti
m

e
1

Lo
ss

0.260

0.270

Lo
ss

0.026

0.028

Ti
m

e
2

Lo
ss

0.260

0.265

Lo
ss

0 1000 2000 3000 4000 5000
Iterations

0.027
0.028
0.029

Ti
m

e
3

Lo
ss

0 1000 2000 3000 4000 5000
Iterations

0.258
0.260
0.263

Lo
ss

0
1

2
3

4
St

op
pe

d
Di

st
.

Time: 0 Time: 1 Time: 2 Time: 3 Time: 4 Final State

0 1 2 3 4

0
1

2
3

4Co
nt

in
ut

in
g

Di
st

.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

0
1

2
3

4

Time: 0

0 1 2 3 4

Time: 1

0 1 2 3 4

Time: 2

0 1 2 3 4

Time: 3

0.3

0.4Decision Prob

Figure 25: Example 5. DPP results, synchronous stopping. Top: training and testing losses. Bottom: evolution of the
distribution and stopping probability after training.

27

Learning to Stop: Deep Learning for MFOS

E.6. Example 6: Matching a Target with a Fleet of Drones.

In this example, we extend our framework by incorporating a terminal cost and common noise. This allows us to consider a
richer and more realistic class of MFOS environments. We extend the dynamics defined in (5) in the following way:





Xα
0 ∼ µ0, Aα

0 = 1

αn ∼ π(·|Xα
n) = Be(pn(X

α
n))

Aα
n+1 = Aα

n · (1− αn)

Xα
n+1 =

{
F (n,Xα

n , µ
α
n, ϵn+1, ϵ

0
n+1), if Aα

n · (1− αn) = 1

Xα
n , otherwise.

(22)

where ϵ0n is the common noise that affects the dynamics of all agents equally. Note that with the presence of a common
noise, the mean-field distribution ν is not deterministic, but instead it is a random variable that evolves conditionally with
respect to the common noise.

Furthermore the social cost defined in (9) can be extended by adding a terminal cost:

J(p) = E0




T∑

n=0

∑

(x,a)∈S

(
νpn(x, a)Φ(x, ν

p
X,n)apn(x)

)
+ g(νpX,T)


 , (23)

where g : P(X) → R is the terminal cost and E0 is the expectation with respect the common noise realization.

The results for DA for different target distributions are provided in Fig. 26. The results for DPP for different target
distributions are provided in Fig. 27.

It is evident that, unlike the DPP, the optimal strategy in the DA tends to stop with high probability at the final time steps, as
clearly illustrated for the target distributions corresponding to the letters “O” and “S”.

F. Hyperparameters sweep
In this section, we show the results of a sweep over the learning rate for Example 1 with the two methods and the two types
of stopping times. We consider learning rates 10−2, 10−3, and 10−4 in this order in the plots from top to bottom.

Direct method stopping: Figs. 28 and 29 show the losses for the asynchronous and the synchronous stopping times
respectively.

Direct method stopping: Figs. 30 and 31 show the losses for the asynchronous and the synchronous stopping times
respectively.

28

Learning to Stop: Deep Learning for MFOS
0

2
4

6
8St

op
pe

d
Di

st
.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25

0.50

0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

Figure 26: Example 6. DA results, asynchronous stopping. Match the Letter “M”, “F”, “O”, “S”, in a 10× 10 grid with
common noise.

29

Learning to Stop: Deep Learning for MFOS
0

2
4

6
8St

op
pe

d
Di

st
.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

0
2

4
6

8St
op

pe
d

Di
st

.

Time: 0 Time: 5 Time: 10 Time: 15 Time: 20 Time: 25 Time: 30 Time: 35 Time: 40 Time: 45 Final State

0 2 4 6 8

0
2

4
6

8Co
nt

in
ut

in
g

Di
st

.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Time: 0

0 1 2 3 4 5 6 7 8 9

Time: 4

0 1 2 3 4 5 6 7 8 9

Time: 9

0 1 2 3 4 5 6 7 8 9

Time: 14

0 1 2 3 4 5 6 7 8 9

Time: 19

0 1 2 3 4 5 6 7 8 9

Time: 24

0 1 2 3 4 5 6 7 8 9

Time: 29

0 1 2 3 4 5 6 7 8 9

Time: 34

0 1 2 3 4 5 6 7 8 9

Time: 39

0 1 2 3 4 5 6 7 8 9

Time: 44

0 1 2 3 4 5 6 7 8 9

Time: 49

0.25
0.50
0.75Decision Prob

Figure 27: Example 6. DPP results, asynchronous stopping. Match the Letter “M”, “F”, “O”, “S”, in a 10× 10 grid with
common noise

30

Learning to Stop: Deep Learning for MFOS

0 1000 2000 3000
Iterations

0.275

0.300

0.325

0.350

0.375

0.400

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.700

0.800

0.900

1.000

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(a) Learning rate 10−2

0 1000 2000 3000
Iterations

0.280

0.300

0.320

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.650

0.700

0.750
Lo

ss
Testing Loss

Testing Loss
Optimal Cost

(b) Learning rate 10−3

0 1000 2000 3000
Iterations

0.280

0.300

0.320

0.340

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.625

0.650

0.675

0.700

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(c) Learning rate 10−4

Figure 28: Example 1: Sweep of learning rates. DA results, asynchronous stopping.

31

Learning to Stop: Deep Learning for MFOS

0 1000 2000 3000
Iterations

0.300

0.400

0.500

0.600

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.700

0.800

0.900

1.000

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(a) Learning rate 10−2

0 1000 2000 3000
Iterations

0.300

0.320

0.340

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.650

0.700

0.750

0.800
Lo

ss
Testing Loss

Testing Loss
Optimal Cost

(b) Learning rate 10−3

0 1000 2000 3000
Iterations

0.280

0.290

0.300

0.310

0.320

0.330

Lo
ss

Training Loss

0 1000 2000 3000
Iterations

0.600

0.650

0.700

0.750

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

(c) Learning rate 10−4

Figure 29: Example 1: Sweep of learning rates. DA results, synchronous stopping.

32

Learning to Stop: Deep Learning for MFOS

0.280

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.800

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110
0.120
0.130

Ti
m

e
1

Lo
ss

0.650

0.700

Lo
ss

0.110
0.120
0.130

Ti
m

e
2

Lo
ss

0.650

0.675

0.700

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.680

0.700

Lo
ss

(a) Learning rate 10−2

0.280

0.300

0.320

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650
Lo

ss

Testing Loss
Testing Loss
Optimal Cost

0.110

0.120

0.130

Ti
m

e
1

Lo
ss

0.650

0.675

0.700

Lo
ss

0.110

0.120

0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.680

Lo
ss

(b) Learning rate 10−3

0.280

0.300

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.625

0.650

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.110
0.120
0.130

Ti
m

e
1

Lo
ss

0.640

0.660

0.680

Lo
ss

0.110
0.120
0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.680

Lo
ss

(c) Learning rate 10−4

Figure 30: Example 1: Sweep of learning rates. DPP results, asynchronous stopping.

33

Learning to Stop: Deep Learning for MFOS

0.300

0.350

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.800

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.140

Ti
m

e
1

Lo
ss

0.650

0.700

Lo
ss

0.120

0.140
Ti

m
e

2

Lo
ss

0.670

0.680

0.690

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.670

0.680

Lo
ss

(a) Learning rate 10−2

0.300

0.320

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.700
Lo

ss

Testing Loss
Testing Loss
Optimal Cost

0.110

0.120

0.130

Ti
m

e
1

Lo
ss

0.660

0.680

0.700

Lo
ss

0.120

0.130

Ti
m

e
2

Lo
ss

0.660

0.670

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.130

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.660

0.670

0.680

Lo
ss

(b) Learning rate 10−3

0.290
0.300
0.310

Ti
m

e
0

Lo
ss

Training Loss

0.600

0.650

0.700

Lo
ss

Testing Loss
Testing Loss
Optimal Cost

0.120

0.130

0.140

Ti
m

e
1

Lo
ss

0.660

0.680

0.700

Lo
ss

0.110

0.120

0.130

Ti
m

e
2

Lo
ss

0.660

0.680

Lo
ss

0 200 400 600 800 1000
Iterations

0.120

0.130

0.140

Ti
m

e
3

Lo
ss

0 200 400 600 800 1000
Iterations

0.670
0.680
0.690

Lo
ss

(c) Learning rate 10−4

Figure 31: Example 1: Sweep of learning rates. DPP results, synchronous stopping.

34

