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Abstract
Generative Flow Networks (GFlowNets) treat
sampling from distributions over compositional
discrete spaces as a sequential decision-making
problem, training a stochastic policy to construct
objects step by step. Recent studies have re-
vealed strong connections between GFlowNets
and entropy-regularized reinforcement learning.
Building on these insights, we propose to enhance
planning capabilities of GFlowNets by applying
Monte Carlo Tree Search (MCTS). Specifically,
we show how the MENTS algorithm (Xiao et al.,
2019) can be adapted for GFlowNets and used
during both training and inference. Our experi-
ments demonstrate that this approach improves
the sample efficiency of GFlowNet training and
the generation fidelity of pre-trained GFlowNet
models.

1. Introduction
Generative Flow Networks (GFlowNets, Bengio et al., 2021)
are models designed to sample compositional discrete ob-
jects, such as graphs, from distributions defined by unnor-
malized probability mass functions. They achieve this by
training a stochastic policy to generate objects through a
sequence of constructive actions to match the desired distri-
bution. GFlowNets have been successfully applied in vari-
ous areas, including biological sequence design (Jain et al.,
2022), large language model (LLM) fine-tuning (Hu et al.,
2023), combinatorial optimization (Zhang et al., 2023), neu-
ral architecture search (Chen & Mauch, 2023), and causal
discovery (Atanackovic et al., 2024).

GFlowNets incorporate many concepts and techniques from
reinforcement learning (RL). Recent works (Tiapkin et al.,
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2024; Mohammadpour et al., 2024; Deleu et al., 2024) have
shown that the GFlowNet learning problem can be reformu-
lated as an RL problem with entropy regularization (Neu
et al., 2017; Geist et al., 2019). These findings opened a
direct way to apply many existing RL algorithms (Schulman
et al., 2017; Haarnoja et al., 2017; 2018) to GFlowNets, and
our work follows this path.

Monte Carlo Tree Search (MCTS) is a well-known method
for solving planning problems (Coulom, 2006; Kocsis
& Szepesvári, 2006). Prominent examples of RL algo-
rithms utilizing MCTS include AlphaGo (Silver et al.,
2016) and AlphaZero (Silver et al., 2018), which com-
bine MCTS with deep neural networks to achieve super-
human performance in games like Go, chess, and Shogi.
MCTS algorithms typically require knowledge of the en-
vironment’s underlying dynamics or can be paired with a
neural network-based simulator, as seen in MuZero-type
approaches (Schrittwieser et al., 2020), resulting in a com-
plicated algorithm. Fortunately, GFlowNets fall into the first
category because the directed acyclic graph (DAG) environ-
ments they operate in are integral to the algorithm’s design
and, moreover, deterministic. Thus, the ability to simulate
any trajectory in a deterministic DAG environment makes
the idea of enhancing the planning abilities of GFlowNets
with MCTS very natural.

We focus on the Maximum Entropy for Tree Search
(MENTS, Xiao et al., 2019) algorithm, an MCTS algorithm
that estimates entropy-regularized Q-values. This entropy-
regularized nature of this algorithm allows it to be directly
applied to the framework of GFlowNets. We outline our
contributions as follows: i) We show how MENTS coupled
with SoftDQN (Haarnoja et al., 2017) can be applied to
GFlowNets at both training and inference stages, ii) we
experimentally demonstrate how improved planning capa-
bilities can benefit GFlowNets.

2. Background
2.1. GFlowNets

Suppose we have a finite space X and a black-box non-
negative function R : X → R≥0, which we will call the
GFlowNet reward. Our goal is to sample objects from X
with probabilities R(x)/Z, where Z =

∑
x∈X R(x) is an

unknown normalizing constant.
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Consider a finite directed acyclic graph (DAG) G = (S, E),
where S is a state space and E ⊆ S × S is a set of
edges. Non-terminal states correspond to ”incomplete”
objects, with an empty object denoted as s0, and edges
represent adding new components to these objects. Ev-
ery state can be reached from s0, which has no incoming
edges. Terminal states are ”complete” objects and coincide
with X . Let T denote the set of all complete trajectories
τ = (s0 → s1 → . . . → snτ ) in the graph, where τ is a
sequence of transitions si → si+1 ∈ E from s0 to some
terminal state snτ

∈ X .

Next, we introduce probability distributions over the chil-
dren of each state PF (st | st−1) and the parents of each
state PB(st−1 | st), called the forward policy and the back-
ward policy, respectively. The main goal is to find a pair of
policies such that the induced distributions over complete
trajectories in the forward and backward directions coincide:
nτ∏
t=1

PF (st | st−1) =
R(snτ

)

Z

nτ∏
t=1

PB(st−1 | st) ∀τ ∈ T .

(1)
This is known as the trajectory balance constraint (Malkin
et al., 2022). If this constraint is satisfied for all complete
trajectories, sampling a trajectory in the forward direction
using PF will result in a terminal state being sampled with
probability R(x)/Z.

In practice, GFlowNet is a model that parameterizes the
forward policy (and possibly other components) trained to
minimize an objective function that enforces the constraint
(1) or an equivalent one. Among existing training objectives,
Subtrajectory Balance (SubTB, Madan et al., 2023) has
been shown experimentally to have superior performance
across various tasks. Notably, the backward policy can
either be trained alongside the forward policy or fixed, for
example, to be uniform over the parents of each state. For
any fixed backward policy, there exists a unique forward
policy that satisfies (1) (Malkin et al., 2022). For further
details on GFlowNets, we refer to (Bengio et al., 2023).

2.2. GFlowNets as Soft RL

In contrast to the classical RL formulation of reward max-
imization, entropy-regularized RL (Neu et al. 2017; Geist
et al. 2019; Haarnoja et al. 2017, also known as soft RL)
augments the value function by Shannon entropy H:

V π
λ (s) ≜ Eπ

[ ∞∑
t=0

γt(r(st, at)+λH(π(st)))|s0 = s

]
, (2)

where λ is a regularization coefficient. Similarly, we can
define regularized Q-values Qπ

λ(s, a) as an expected (dis-
counted) sum of rewards augmented by Shannon entropy
given a fixed initial state s0 = s and action a0 = a. A
regularized optimal policy π⋆

λ is a policy that maximizes
V π
λ (s) for any initial state s.

Let V ⋆
λ and Q⋆

λ be the value and the Q-value of the opti-
mal policy π⋆

λ correspondingly. Then Theorem 1 and 2 by
(Haarnoja et al., 2017) imply the following system relations
for any state-action pair s, a for a deterministic environment

Q⋆
λ(s, a) = r(s, a) + γLSEλ(Q

⋆
λ(s

′, ·)) , (3)

where s′ is a next state after taking an action a in a
state s, LSEλ(Q(s′, ·)) ≜ λ log

(∑
a′ exp{Q(s′, a′)/λ}

)
.

Then the optimal policy can be computed as π⋆
λ(· | s) ≜

Softmax(Q⋆
λ(s, ·)/λ).

(Tiapkin et al., 2024) showed that the problem of GFlowNet
forward policy training given a fixed backward policy can
be equivalently formulated as an entropy-regularized RL
problem. This reduction involves adding an absorbing state
sf to the GFlowNet DAG, with edges from terminal states
to sf and a loop sf → sf . A deterministic Markov Decision
Process (MDP) is then constructed from the DAG, where
states correspond to DAG states and actions correspond to
edges (or, equivalently, to next possible states). RL rewards
are set for all edges as follows:

r(s, s′) ≜


logPB(s | s′) s ̸∈ X ∪ {sf},
logR(s) s ∈ X ,

0 s = sf .

(4)

Theorem 1 of (Tiapkin et al., 2024) states that the optimal
policy π∗

1(s
′ | s) in this MDP, with λ set to 1 and γ = 1,

coincides with the GFlowNet forward policy PF (which is
uniquely defined by PB and R).

This reduction enables the direct application of soft RL
algorithms to GFlowNet training. (Tiapkin et al., 2024)
applied the classical SoftDQN algorithm (Haarnoja et al.,
2017) and demonstrated its efficiency. Essentially, a neural
network is trained to predict optimal regularized Q-values
for all transitions using the following objective:(

Qθ(s, s
′)− logPB(s | s′)− LSE(Qθ̄(s

′, ·))
)2
, (5)

where LSE(Qθ̄(s
′, ·)) ≜ LSE1(Qθ̄(s

′, ·)) is replaced with
logR(s′) if s′ ∈ X , and θ̄ are parameters of a target net-
work that is updated with weights θ from time to time.
The corresponding policy is computed as πθ(· | s) =
Softmax(Qθ(s, ·)). The model can be either trained on-
policy by optimizing the loss over complete trajectories
sampled from πθ or utilize a replay buffer.

3. Method
In RL planning, the agent needs to determine the optimal
action to maximize future rewards in a large state space.
The simplest method is to train a Q-network to predict the
expected future rewards for each action and choose the
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one with the highest predicted Q-value. However, this ap-
proach depends heavily on the Q-network’s approximation
capabilities and may not fully leverage the problem’s struc-
ture. In contrast, MCTS algorithms look multiple steps
ahead to evaluate the future state of the environment better.
MCTS incrementally builds a look-ahead tree, balancing
the exploration-exploitation trade-off during navigation in
the tree (Kocsis & Szepesvári, 2006). Each new node added
to the tree is evaluated either through a Monte Carlo simu-
lation or neural network prediction, and this information is
backpropagated along the path to the root.

In GFlowNets, the planning problem differs because we
need to determine not just a single optimal action but the
optimal distribution over possible actions (forward policy).
This can be achieved by training a Q-network, as the opti-
mal policy is the softmax of optimal entropy-regularized Q-
values. However, using look-ahead information from MCTS
can provide better estimates of Q-values in a similar fashion
to the RL setting. Therefore, we propose a direct adaptation
of the MENTS algorithm (Xiao et al., 2019), which aims
to improve the estimation of optimal entropy-regularized
Q-values. Below, we describe how MENTS can be applied
to GFlowNet inference and training on top of SoftDQN,
following the paradigm described in Section 2.2.

3.1. MENTS for GFlowNets

Inference stage. Suppose we have a pre-trained neural
network Qθ that predicts soft Q-values. The root of the
look-ahead tree corresponds to the current DAG state sroot.
For each node of the tree, we store a visit count N(s), and
for each edge s → s′, we store an estimate Qtree(s, s

′) of
the regularized Q-value.

During each round of MCTS, we sample a path from the
root to some leaf of the tree by sequentially sampling a child
from the tree policy, that is, a softmax policy with respect
to Qtree with an additional ε-greedy exploration:

πtree(· | s) = (1−ps)Softmax(Qtree(s, ·))+ps ·U(C(s)) ,
(6)

where U(C(s)) is a uniform distribution over the children
of s denoted by C(s), and ps = ε|C(s)|/ log(N(s) + 2),
where ε is an exploration hyperparameter.

Let (s1, s2, . . . , sT ) be the sampled path, where s1 = sroot
and sT is a leaf. Then, we add new nodes and edges to the
tree corresponding to the children of sT in the GFlowNet
DAG G. For each added child s′ ∈ C(sT ), we initialize
N(s′) = 0 and Qtree(sT , s

′) = Qθ(sT , s
′). Then, for each

node in the path, we update N(si) = N(si) + 1, and for
each edge in the path from last to first, we update the Q-
value estimate, following the optimality condition (3)

Qtree(si, si+1) = logPB(si | si+1)+LSE(Qtree(si+1, ·)).
(7)

A special case arises when sT is a terminal state of G. No
nodes will be added to the tree in this case, and as for up-
dating Qtree(sT−1, sT ), there are two options. The first op-
tion is to replace LSE(Qtree(sT , ·)) with logR(sT ) (since
logR(sT ) coincides with V ⋆

1 (sT ), see Tiapkin et al., 2024).
However, in potential scenarios with no access to GFlowNet
reward R during inference or its calculation being very ex-
pensive (e.g., drug discovery, see Jain et al., 2023), this
option may not be very practical. The second option is to
skip the update of Qtree(sT−1, sT ), leaving it as it was ini-
tialized by Qθ(sT−1, sT ). Then the algorithm only requires
access to Qθ, logPB , and the structure of G, making it ap-
plicable in all practical cases. All experiments in Section 4
are carried out with this option.

After all rounds of MCTS, we have an estimate
Qtree(sroot, s

′) for each child s′ of the root, and
the resulting forward policy can be obtained as
Softmax(Qtree(sroot, ·)). The next state is sampled from
this policy, and the tree’s root is changed to the correspond-
ing child, possibly already having a non-empty subtree.
Note that the number of times Qθ is evaluated is upper
bounded by the number of MCTS rounds (assuming Qθ

takes a state as an input and outputs predictions for all pos-
sible actions). In practice, we fix the maximum visit count
of the root N(sroot) as a hyperparameter; thus, the number
of rounds can vary depending on the number of visits to the
state before it becomes the root.

An important point is that the presented algorithm does
not require G itself to be a tree and can work in arbitrary
GFlowNet environments. If a state in G is reached by a
number of different paths during MCTS, there will be mul-
tiple nodes in the tree corresponding to the same state. Ap-
pendix A presents a detailed pseudocode of the algorithm
and its connection to GFlowNet flow functions.

Training stage. Consider SoftDQN training objective (5).
It can be viewed as fitting Qθ(s, s

′) on a one-step MENTS
estimate calculated using the current target network Qθ̄.
However, one can run multiple rounds of MCTS to obtain
better targets for fitting the Q-network, which allows us
to utilize MCTS for training Qθ. The training objective
becomes

(Qθ(s, s
′)−Qtree(s, s

′))
2
, (8)

where Qtree(s, s
′) is obtained by applying MENTS with the

current target network Qθ̄ instead of a fixed pre-trained one.
Since we do not provide access to GFlowNet rewards during
MCTS, an exception is a loss for transitions into terminal
states s′ ∈ X , which we take to be

(Qθ(s, s
′)− logPB(s | s′)− logR(s′))

2
. (9)

Such a choice also allows for a more straightforward com-
parison with other methods in terms of the number of calls
to R(x) made during training.
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Figure 1. L1 distance between target and empirical sample distri-
butions over the course of training on the hypergrid environment.
Numbers next to MENTS in the legend correspond to maximum
number of MCTS rounds N(sroot).

4. Experiments
We carry out experimental evaluation on hypegrid (Bengio
et al., 2021) and bit sequence (Malkin et al., 2022) envi-
ronments following similar experimental setups to (Tiapkin
et al., 2024). Along with SoftDQN and MENTS, we pro-
vide SubTB (Madan et al., 2023) as a baseline. In all ex-
periments, PB is fixed to be uniform. Appendix B contains
additional experimental details and runtime measurements
for the compared algorithms.

4.1. Hypergrid Environment

The set of states corresponds to two copies of points (non-
terminal and terminal) with integer coordinates inside a
4-dimensional hypercube with side length H . The allowed
actions are to increase on coordinate by 1 without exiting the
grid and to move to a terminal copy of the state. Initial state
s0 is (0, 0, 0, 0). The reward has modes near the corners
of the grid, separated by wide troughs with a very small
reward. All models are parameterized by MLP with one-hot
encoded inputs.

We study 3 setups: 1) a model is trained with vanilla
SoftDQN and evaluated with MENTS; 2) a model is trained
with MENTS targets, but the trained policy is evaluated with-
out MCTS; 3) MENTS is applied for both training and eval-
uation. In contrast to (Tiapkin et al., 2024), we do not use
replay buffers for training, instead optimizing the loss across
trajectories sampled from the current model. As a metric
we use L1 distance between the true reward distribution
R(x)/Z (Z can be computed exactly since environments are
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Figure 2. Spearman correlation between R and Pθ on a test set for
varying n and k in the bit sequence generation task. MENTS is
used here only at the inference stage.

small) and an empirical distribution of 2 · 105 GFlowNet
samples.

Figure 1 presents the results. We can see that in all setups
MENTS offers a stable improvement to the speed of con-
vergence in comparison to vanilla SoftDQN in terms of
number of sampled trajectories, which coincides with the
number of calls to R(x). The best results are obtained when
MENTS is applied for both training and inference of the
model. Remarkably, using MENTS to compute targets for
the training of Qθ provides a noticeable boost even when
the model is evaluated without MCTS (setup number 2).
Increasing the number of MCTS rounds is also beneficial.

4.2. Bit Sequence Generation

The goal is to generate binary strings of some fixed length
n. Hyperparameter k | n is introduced, and the string
is split into n/k segments of length k. Each state corre-
sponds to a sequence of n/k words; each word is either
an empty word ⊘ or one of 2k possible k-bit words. s0
corresponds to a sequence of empty words. Possible ac-
tions are to take any position with an empty word and re-
place it with any k-bit word. Terminal states contain no
empty words and coincide with binary strings of length n.
R(x) = exp(−2 ·minx′∈M d(x, x′)), where M is a set of
modes and d is Hamming distance. We use this environment
to examine the performance of MCTS in a more challenging
setup with larger state and action spaces (up to ≈ 2 · 1022
states and 256 actions in our experiments).

Here we train Qθ with SoftDQN paremeterized by Trans-
former (Vaswani et al., 2017) and utilize MENTS only dur-
ing inference. Following (Tiapkin et al., 2024) we compute
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Spearman correlation on a test set of strings between R
and an estimate of sampling probability Pθ. The results
are presented in Figure 2. In all configurations, enhanc-
ing SoftDQN with MENTS improves the reward correlation
in comparison to vanilla SoftDQN, although the improve-
ment is relatively small in some cases. It also outperforms
SubTB in 3 out of 4 cases. The metric steadily rises with
the increase of the number of MCTS rounds.

5. Conclusion
In this paper, we proposed to apply MENTS (Xiao et al.,
2019) algorithm with SoftDQN (Haarnoja et al., 2017) to
GFlowNet training and inference. Our experimental results
demonstrated the benefits of incorporating MCTS planning
for amortized sampling, suggesting new research directions.
Future work could explore other MCTS-type approaches,
validate them in other domains, and apply MCTS on top
of other GFlowNet algorithms, e.g. SubTB (Madan et al.,
2023).
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Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Kostenetskiy, P., Chulkevich, R., and Kozyrev, V. Hpc
resources of the higher school of economics. In Journal
of Physics: Conference Series, volume 1740, pp. 012050.
IOP Publishing, 2021.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A. C., Bosc, T., Bengio, Y., and Malkin, N.
Learning gflownets from partial episodes for improved
convergence and stability. In International Conference
on Machine Learning, pp. 23467–23483. PMLR, 2023.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. Advances in Neural Information Processing
Systems, 35:5955–5967, 2022.

5



Improving GFlowNets with Monte Carlo Tree Search

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Mohammadpour, S., Bengio, E., Frejinger, E., and Bacon,
P.-L. Maximum entropy gflownets with soft q-learning.
In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2024.

Neu, G., Jonsson, A., and Gómez, V. A unified view of
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A. Algorithm Details
Algorithm 1 presents a detailed pseudo-code for sampling a trajectory with MENTS applied on top of a GFlowNet pre-trained
with SoftDQN.

Algorithm 1 Inference of SoftDQN + MENTS
1: Input: SoftDQN pre-trained Qθ, maximum number of MCTS rounds Nmax, exploration parameter ε, GFlowNet

backward policy PB

2: Initialize sroot = s0, N(sroot) = 0
3: repeat
4: while N(sroot) < Nmax do
5: Initialize path = {sroot}
6: while path.last is not a leaf do
7: Initialize s = path.last
8: Compute ps = ε|C(s)|/ log(N(s) + 2)
9: Compute πtree(· | s) = (1− ps) · Softmax(Qtree(s, ·)) + ps · U(C(s))

10: Sample s′ ∼ πtree(· | s)
11: Append s′ to path
12: Update N(s′) = N(s′) + 1
13: end while
14: Initialize sleaf = path.last
15: if sleaf ̸∈ X then
16: for all s′ ∈ C(sleaf) do
17: Add s′ to the tree
18: Initialize N(s′) = 0
19: Initialize Qtree(sleaf , s

′) = Qθ(sleaf , s
′)

20: end for
21: end if
22: for i = path.size− 1 to 1 do
23: if pathi+1 ̸∈ X then
24: Update Qtree(pathi,pathi+1) = logPB(pathi | pathi+1) + LSE

(
Qtree(pathi+1, ·)

)
25: end if
26: end for
27: end while
28: Compute PF (· | sroot) = Softmax(Qtree(sroot, ·))
29: Sample snext ∼ PF (· | sroot)
30: Delete everything from the tree except the subtree of snext
31: Update sroot = snext
32: until sroot corresponds to a terminal state x ∈ X
33: Output terminal state x

A.1. Connection to GFlowNet State and Edge Flows

Suppose we have forward and backward policies that satisfy trajectory balance constraints (1). Then, we have a fixed
distribution over complete trajectories

P (τ) =

nτ∏
t=1

PF (st | st−1) =
R(snτ

)

Z

nτ∏
t=1

PB(st−1 | st). (10)

GFlowNet literature often operates with flows functions (Bengio et al., 2023). Markovian flow in this case is a function
F : T → R≥0 that coincides with unnormalized probability of sampling a trajectory F (τ) = Z · P (τ). Since for any fixed
PB and R there exists a unique PF satisfying (1), any fixed PB and R also define a unique Markovian flow. State flows
and edge flows are defined as F (s) =

∑
τ∋s F (τ), F (s → s′) =

∑
τ∋(s→s′) F (τ) correspondingly, and coincide with

unnormalized probabilities that a trajectory passes through some state/edge.
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Flow matching constraint states that for any state that is not s0 or terminal

F (s) =
∑
s→s′

F (s → s′) =
∑
s′′→s

F (s′′ → s), (11)

while for s0 and terminal states, only one of the two equalities holds.

PF and PB can be computed in terms of state and edge flows

PF (s
′ | s) = F (s → s′)

F (s)
, PB(s | s′) =

F (s → s′)

F (s′)
. (12)

Let us go back to the RL interpretation. In addition to the optimal policy, Theorem 1 of (Tiapkin et al., 2024) connects state
and edge flows with optimal entropy-regularized values and Q-values, stating

V ⋆
1 (s) = logF (s), Q⋆

1(s, s
′) = logF (s → s′). (13)

In this interpretation, (3) transforms into

logF (s → s′) = logPB(s | s′) + LSE(logF (s′ → ·))

= logPB(s | s′) + log
∑

s′→s′′

F (s′ → s′′)

= logPB(s | s′) + logF (s′),

(14)

which can also be obtained from (12). The equation on the optimal policy π⋆
1(· | s) = Softmax(Q⋆

1(· | s)) transforms into

PF (s
′ | s) = exp(logF (s → s′)− LSE(logF (s → ·))) = exp(logF (s → s′)− logF (s)), (15)

which also coincides with the equation on PF from (12).

If we try to look into the algorithm described in Section 3 in terms of flow functions, one can interpret that it applies
MCTS on top of a neural network logFθ(s → s′) and tries to estimate logFtree(s → s′) for edges in the tree. The update
formula (7) actually coincides with (14):

logFtree(s → s′) = logPB(s | s′) + LSE(logFtree(s
′ → ·)). (16)

B. Experimental Details
We utilize PyTorch (Paszke et al., 2019), and our implementations are based upon the published code of (Tiapkin et al.,
2024). We implement MENTS in C++ for better performance.

B.1. Hypergrid

The reward at a terminal state s with coordinates (s1, . . . , sD) is defined as

R(s) = 10−3 + 0.5 ·
D∏
i=1

I
[
0.25 <

∣∣∣∣ si

H − 1
− 0.5

∣∣∣∣]+ 2 ·
D∏
i=1

I
[
0.3 <

∣∣∣∣ si

H − 1
− 0.5

∣∣∣∣ < 0.4

]
.

We use similar hyperparameters to previous works (Bengio et al., 2021; Malkin et al., 2022; Madan et al., 2023; Tiapkin
et al., 2024). All models are parameterized by MLP with 2 hidden layers and 256 hidden units. We use Adam optimizer
with a learning rate of 10−3 and a batch size of 16 trajectories. We take SubTB hyperparameter λ = 0.9. The difference
from (Tiapkin et al., 2024) is that for SoftDQN, we do not use a replay buffer and use MSE loss instead of Huber. We use
hard updates for the target network (Mnih et al., 2015) with a frequency of 3 iterations. For MENTS we take ε = 0.01. We
perform hypergrid experiments on CPUs.

In Table 1, we measure the runtime of the algorithms during training and inference. As expected, the speed of MENTS
decreases with the increase of the number of rounds due to additional Qθ evaluations. However, we note that training with
MENTS (4 rounds) runs faster than with SubTB and has better convergence than both SubTB and vanilla SoftDQN (see
Figure 1).
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Table 1. Training and inference speed on hypergrid environment measured on Apple M1 CPU. One iteration coincides with a batch of 16
trajectories in all cases. The lower training speed of SubTB in comparison to SoftDQN is due to the fact that the number of terms in its
loss is quadratic in the trajectory length.

Method Training Inference
SubTB 8.5 it/s 35.6 it/s
SoftDQN 20.5 it/s 35.8 it/s
SoftDQN + MENTS 4 12.3 it/s 14.0 it/s
SoftDQN + MENTS 8 8.1 it/s 9.2 it/s
SoftDQN + MENTS 16 5.3 it/s 6.3 it/s

B.2. Bit Sequences

The set of modes M is constructed as defined in (Malkin et al., 2022), and we use the same size |M | = 60. Take H =
{′00000000′,′ 11111111′,′ 11110000′, 00001111′,′ 00111100′}. Then, each sequence in M is constructed by randomly
taking n/8 elements from H with replacement and concatenating them. The test set for computing reward correlations is
constructed by taking a mode and flipping i random bits in it, which is done for each mode and each 0 ≤ i < n.

We use the same Monte Carlo estimate for Pθ as in (Tiapkin et al., 2024):

Pθ(x) = EPB(τ |x)
PF (τ | θ)
PB(τ | x)

≈ 1

N

N∑
i=1

PF (τ
i | θ)

PB(τ i | x)
, τ i ∼ PB(τ | x).

All models are parameterized by Transformer (Vaswani et al., 2017) with 2 hidden layers, 8 attention heads and 64 hidden
dimension. We use Adam optimizer with a learning rate of 10−3 and a batch size of 16. For SubTB we tune λ from
{0.9, 1.1, 1.9}. For training SoftDQN, we use hard updates for the target network with a frequency of 5 iterations and use
Huber loss following (Tiapkin et al., 2024). We also utilize a prioritized replay buffer (Schaul et al., 2016) with the same
hyperparameters as in (Tiapkin et al., 2024). For MENTS we take ε = 0.001. We use NVIDIA A100 GPUs for bit sequence
experiments.

In this case the runtime cost of tree manipulation in MCTS is dominated by the cost of Qθ forward passes, thus the inference
speed decreases proportionally to the number of MCTS rounds.
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