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Abstract

Gaussian processes (GPs) are widely used flexible nonparametric probabilistic models, and
sparse variational approximations for GPs (sparse GPs) have emerged as the go-to method
for addressing their poor computational efficiency. In many applications in which we would
like to use sparse GPs, datasets are distributed across multiple clients and data privacy
is often a concern. This motivates the use of federated learning algorithms, which enable
clients to train a model collaboratively without centralising data. Partitioned variational
inference (PVI) is an established framework for communication-efficient federated learning
of variational approximations. However, we show that PVI cannot support sparse GPs
due to the need to share and learn variational parameters (the inducing point locations)
across clients. Hence, we re-frame inducing points in sparse GPs as auxiliary variables
in a hierarchical variational model (HVM). We use this reformulation to extend PVI to
variational distributions with shared variational parameters across client-specific factors,
enabling communication-efficient federated learning of inducing points. In addition, we de-
velop a novel parameterisation of the variational distribution which, when combined with
the HVM formulation of inducing points, improves the communication efficiency and qual-
ity of learning. Our experiments show that our method significantly outperforms baseline
approaches for federated learning of sparse GPs on a number of real-world regression tasks.

1 Introduction

Gaussian processes (GPs) provide a flexible and robust nonparametric Bayesian approach to modelling
complex data patterns, and sparse variational approximations for GPs (sparse GPs) have enabled their
deployment on large datasets and arbitrary likelihood functions (Rasmussen & Williams, 2006; Titsias,
2009; Hensman et al., 2013). This makes them an attractive choice for practitioners in a host of problem
settings, including regression, classification and time-series forecasting. Yet, in many applications in which
we would like to deploy sparse GPs—such as healthcare and spatio-temporal modelling—data are distributed
across multiple clients and data privacy is often a concern. Centralising data in such settings is infeasible,
preventing the deployment of standard learning algorithms such as variational inference (VI). Instead, we
must resort to the use of federated learning algorithms, which allow multiple clients to collaboratively train
a machine learning model whilst retaining their data locally (McMahan et al., 2017; Kairouz et al., 2021).
Partitioned variational inference (PVI) (Ashman et al., 2022) has emerged as a framework for performing
VI in the federated learning setting, offering advantages over more general frameworks such as FedAVG
(McMahan et al., 2017). PVI operates by decomposing the variational approximation into factors, each of
which approximates the contribution of a single client’s data to the posterior. This natural decomposition
leads to faster convergence than applying more generic methods.

Whilst PVI has been deployed on variational approximations for a range of probabilistic models, sparse
GPs have remained elusive. At the crux of this is the incompatibility of these approximations with PVI. In
order to support federated sparse GPs, approximations that share inducing points across clients are needed.
However, whilst PVI supports federated learning of model parameters that are shared across clients, it does
not support federated learning of variational parameters that are shared across clients. This is because PVI
explicitly tracks the contributions to the posterior from each client to the posterior over model parameters—
it does not have a way representing the contributions to shared variational parameters. So, if we naïvely
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apply PVI, each client-level optimisation of the inducing points leads to them being fit to the client’s data
and forgetting contributions from all other clients. Our key insight is that if a distributional estimate was
used instead, then PVI could be used to update each client’s contributions to this distribution in an identical
manner to how it updates clients’ contributions to the approximate posterior. In this paper, we achieve this
by combining PVI with the framework of hierarchical variational models (HVMs) (Ranganath et al., 2016)
to enable its deployment on approximations with shared variational parameters. Similar to the standard
PVI approach, each client maintains a contribution to this distribution in the form of a factor, which can be
easily combined if these factors are restricted to exponential families. Another crucial step in the application
of PVI to sparse GPs is that of a novel parameterisation of the variational distribution, which decouples
the mean and covariance of the approximate posterior from the choice of inducing locations. Doing so both
improves the communication-efficiency of federated learning and the quality of the approximate posterior
when inducing locations are stochastic. Although our main motivation is federated learning of sparse GPs,
we additionally show how our framework can be used to perform federated learning of general variational
approximations that have shared variational parameters through application to variational autoencoders
(VAEs) (Kingma & Welling, 2013). We highlight the following contributions:

1. A framework for performing PVI with shared variational parameters: We extend the appli-
cability of PVI to approximations with shared variational parameters using HVMs. We show that by
using HVMs to slightly worsen the variational approximation in terms of the ELBO, we can maintain
distributional estimates over the auxiliary variables and apply PVI.

2. A novel parameterisation of sparse GPs: We develop the decoupled pseudo-observation (DPO)
variational approximation for sparse GPs, which generalises existing parameterisations in a manner
which improves both the communication-efficiency of federated learning, and quality of the approximate
posterior when inducing locations are stochastic.

3. Empirical evaluation on real-world datasets: Using multiple federated learning experiments with
real-world data, we compare the performance of our method to a several baselines including global VI.
The results demonstrate the efficacy of the proposed approach.

2 Related Work

Federated learning of GPs As it stands, we are not aware of any existing approaches that perform
federated learning of sparse GP variational approximations using PVI. Federated learning of sparse GP ap-
proximations using federated averaging (McMahan et al., 2017) is performed by Guo et al. (2022). The use
of federated averaging instead of PVI does not take advantage of the structure of the variational approxi-
mation. This results in poor communication efficiency.1 A closely related setting to federated learning is
that of distributed learning, in which the objective of scalability is achieved by distributing computation
across devices. Notably, Gal et al. (2014) perform distributed learning of sparse GPs by noting that the
optimal variational approximation—given the inducing locations and hyperparameters—can be expressed as
a summation over data points and thus can be performed in parallel. To learn the inducing locations and
hyperparameters, they iterate between performing gradient-based updates on the server side and computing
the optimal approximations given the updated values on the client side. This is similar to the hyperparame-
ter optimisation scheme proposed by Ashman et al. (2022), and suffers from poor communication efficiency.
Deisenroth & Ng (2015) also develop a method for distributed approximate inference in GPs based on the
Bayesian committee machine. Similar to Gal et al. (2014), their method is unsuitable for the federated
learning setting as it requires access to the entire dataset when making predictions. Finally, Achituve et al.
(2021) perform federated learning of a shared neural network which they use to extract features, which in
turn are used by GPs local to each client. They do not learn a global GP approximation, and thus focus on
the personalised federated learning setting.

1Throughout, we refer to communication efficiency as the number of local optimisation procedures performed until conver-
gence of the variational approximation.
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Bayesian FITC The method we use is related to the Bayesian FITC approximation of Rossi et al. (2021),
which also involves probabilistic treatment of inducing locations but is otherwise quite different. We defer
discussion to Section 5.2, after introducing our method.

3 Partitioned Variational Inference

Partitioned variational inference (PVI) (Ashman et al., 2022) extends VI to the federated learning setting, and
thus serves as an attractive foundation for federated learning of sparse GPs. Consider the task of modelling
data on K clients, y = {yk ∈ YNk}Nk

n=1
2, with a probabilistic model defined by the joint distribution

p(y, θ) = p(θ)
∏K

k=1 p(yk|θ), where θ describes the model and is the variable of inferential interest. In
general, exact Bayesian inference is intractable and we resort to seeking a member of a family of tractable
distributions Q which minimises the KL-divergence between itself and the true posterior distribution, or
equivalently which maximises the variational lower-bound to the marginal likelihood, L:

q∗(θ) = arg max
q(θ)∈Q

Eq [log p(y|θ)]−KL [q(θ)||p(θ)]︸ ︷︷ ︸
L

. (1)

Rather than considering a single, global distribution, PVI decomposes the variational approximation in a
manner that mirrors the decomposition of the true posterior: q(θ) ∝ p(θ)

∏K
k=1 tk(θ). Here each tk(θ)

factor in the variational approximation corresponds to each p(yk|θ) factor in the true posterior, and thus if
correctly specified involves only data yk. Since the factors are approximate and not correctly specified, PVI
iteratively refines them through client-level optimisation involving only local data. PVI iterates three steps
until convergence:

1 At each iteration i, a central server selects a set of factors {t(i−1)
m (θ)}m.

2 Each factor {tm(θ)}m is updated by solving q
(i)
m (θ) = arg maxq(θ)∈Q L

(i)
m where

L(i)
m = Eq [log p(ym|θ)]−KL

[
q(θ)||q(i−1)

\m (θ)
]

. (2)

q
(i−1)
\m (θ) ∝ q(i−1)(θ)

t
(i−1)
m (θ)

is termed the cavity distribution and L(i)
m is referred to as the local (negative) free-

energy for client m at iteration i. Given q
(i)
m (θ), the updated approximate likelihood is found by division,

t
(i)
m (θ) ∝ q(i)

m (θ)
q

(i−1)
\m

(θ)
. ∆(i)

m (θ) ∝ t(i)
m (θ)

t
(i−1)
m (θ)

is communicated back to the server.

3 Finally, the approximate posterior is updated as q(i)(θ) ∝ q(i−1)(θ)
∏

m∈bi
∆(i)

m (θ).

PVI enjoys several beneficial properties, most notably that if PVI converges then it does so to the global VI
solution.

4 PVI with Shared Variational Parameters

In this section we propose our new framework, which extends the application of PVI to variational approxi-
mations in which some variational parameters, ϕ, are shared across factors:

q(θ|ϕ) = p(θ)
K∏

k=1
tk(θ|ϕ). (3)

Unlike variational parameters that are factor-specific, optimisation of shared variational parameters cannot
be performed locally by each client as they are treated as free-form parameters to refine tk(θ|ϕ), rather
than the global distribution q(θ|ϕ), and so would iterate between the set of solutions {ϕ∗

k = arg maxϕ Lk}k

2We have neglected potential dependence on a set of inputs for notational simplicity.
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rather than converge to the global VI solution ϕ∗ = arg maxϕ L. One option is to perform nested federated
averaging to update ϕ in tandem with PVI updating the factors, as described in Algorithm 1. We show in
Section 6 that this method often performs poorly.

Consider, instead, treating ϕ as an auxiliary variable in the model

q(θ) = p(θ)
∫ K∏

k=1

tk(θ,ϕ)︷ ︸︸ ︷
tk(θ|ϕ)tk(ϕ) dϕ. (4)

This is an instance of a hierarchical variational model (HVM) (Ranganath et al., 2016). Rather than
involving a fixed-point estimate for ϕ, this formulation maintains a distribution q(ϕ) =

∏K
k=1 tk(ϕ) which

is then integrated out. This allows us to update and combine individual clients’ contributions to ϕ in a
communication efficient manner using PVI. The resulting variational lower-bound is given by

L̃ = Eq

[
log p(y|θ)−KL [q(θ|ϕ)||p(θ)]−KL [q(ϕ)||r(ϕ|θ)]

]
(5)

where r(ϕ|θ) is an auxiliary likelihood used to construct the variational lower-bound which can be freely
optimised such that this bound is maximised. The maximum is achieved at r(ϕ|θ) = q(ϕ|θ) which, similar to
the intractability of p(θ|y), is generally intractable itself (Ranganath et al., 2016). In the following section,
we discuss our choice of r(ϕ|θ).

4.1 Defining the Auxiliary Likelihood

For the models that we are interested in, there is no clear method for incorporating the dependency of ϕ on
θ in the auxiliary likelihood. However, as we show in Appendix A, if we construct q(ϕ) = p̃(ϕ)

∏K
k=1 tk(ϕ),

then choosing r(ϕ) = p̃(ϕ) gives

L̃ = Eq [log p(y|θ)−KL [q(θ|ϕ)||p(θ)]]−KL [q(ϕ)||p̃(ϕ)] . (6)

This is identical to the standard variational lower-bound obtained through treating ϕ as parameters of
the probabilistic model with prior p̃(ϕ). PVI can be deployed to target the variational lower-bound in
Equation (6) using the local free-energy

L̃k = Eq

[
log p(yk|θ)−KL

[
q(θ|ϕ)||q\k(θ|ϕ))

]]
−KL

[
q(ϕ)||q\k(ϕ)

]
(7)

where q\k(θ|ϕ) ∝ p(θ|ϕ)
∏

m ̸=k tm(θ|ϕ) and q\k(ϕ) ∝ p̃(ϕ)
∏

m ̸=k tm(ϕ). Pseudo-code for the implemen-
tation of sequential PVI using this local free-energy is provided in Algorithm 2. Note that the additional
KL term is used solely for ensuring that q(ϕ) remains stochastic, and so we might consider the effect of its
scaling using α ∈ [0, 1) such that L̃k,α = Eq

[
log p(yk|θ)−KL

[
q(θ|ϕ)||q\k(θ|ϕ))

]]
−αKL

[
q(ϕ)||q\k(ϕ)

]
. We

show in Appendix B that only for α = 1 are the fixed points of PVI the same as the fixed-points of global VI
applied to the variational lower-bound in Equation (6) (with an equivalent scaling of the latter KL term).
However, we find that in practice the use of α < 1 results in improved performance of the learnt variational
approximation. This resembles the performance improvements observed with posterior tempering (Wenzel
et al., 2020).
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Algorithm 1: Sequential PVI using FedAvg to
optimise the shared variational parameters.

1: Choose J .
2: Initialise q0(θ|ϕ) = p(θ)

∏K
k=1 t0

k(θ|ϕ)
3: for i = 1, 2, . . . until convergence do
4: k := index of next factor to refine.
5: q

(i)
k,0(θ)← arg maxq Lk(q(θ, ϕ)).

6: ϕ
(i)
k,0 = ϕ(i−1).

7: for j = 1, 2, . . . , J do
8: q

(i)
k,j , ϕ

(i)
k,j ← ∇Lk

(
q

(i)
k,j−1, ϕ

(i)
k,j−1

)
9: end for

10: t
(i)
k (θ) ∝ q

(i)
k,J(θ)/q

(i−1)
\k (θ)

11: q(i)(θ) ∝ q
(i−1)
\k (θ)t(i)

k (θ)
12: ϕ(i) = N−Nk

N ϕ(i−1) + Nk

N ϕ
(i)
k,J .

13: end for

Algorithm 2: Sequential PVI using a HVM to
maintain a distribution over the shared variational
parameters.

1: Choose α ∈ [0, 1] and p̃(ϕ).
2: Initialise q0(θ, ϕ) = p(θ)p̃(ϕ)

∏K
k=1 t0

k(θ, ϕ).
3: for i = 1, 2, . . . until convergence do
4: k := index of next factor to refine.
5: q

(i)
k (θ, ϕ)← arg maxq L̃k,α(q(θ, ϕ)).

6: t
(i)
k (θ, ϕ) ∝ q

(i)
k (θ, ϕ)/q

(i−1)
\k (θ, ϕ)

7: q(i)(θ, ϕ) ∝ q
(i−1)
\k (θ, ϕ)t(i)

k (θ, ϕ)
8: end for

5 PVI for Sparse Gaussian Processes

Consider a GP, f ∼ GP(mβ , kβ), where mβ and kβ denote the mean and covariance functions with hyper-
parameters β. We model K partitions of input-output observations {(X ∈ XNk , yk ∈ YNk )}K

k=1 as

p(y, f, β) = p(β)p(f |β)
K∏

k=1

Nk∏
n=1

p(ykn|f(xkn), β). (8)

Following standard variational sparse GP approximations (Titsias, 2009; Matthews et al., 2016) and PVI,
we consider an approximate posterior of the form

q(f, β|Z) ∝ q(β) p(f |β)
K∏

k=1
tk(u|Z, β)︸ ︷︷ ︸

q(f |β,Z)

(9)

where q(β) ∝ p(β)
∏K

k=1 tk(β), and Z ∈ XM denotes a shared set of inducing locations with function outputs
u = f(Z). Since each factor is defined over u, we cannot locally optimise the shared inducing locations Z
(they are equivalent to ϕ in Equation (4)). A natural alternative is to define each clients’ factor over the
function output at a different set of inducing locations, such that q(f |β) = p(f |β)

∏K
k=1 tk(uk|Zk, β) where

uk = f(Zk). Whilst this addresses the problem of inducing location optimisation, we show in the appendix
that this imposes a computational complexity of O((

∑K
k=1 Mk)3). This is cubic3 in K, and so quickly

becomes prohibitive for a moderate number of partitions.

Instead, following the framework established in Section 4, we consider the HVM

q(f |β) =
∫

p(f |β)
K∏

k=1
tk(u|Z, β)︸ ︷︷ ︸

q(f |Z,β)

K∏
k=1

tk(Z)︸ ︷︷ ︸
q(Z)

dZ. (10)

Whilst the factors tk(β) and tk(Z) can take simple forms such as mean-field Gaussian distributions, it is
important to take care when considering the dependency of Z and β in the factors tk(u|Z, β). In particular,
since Z is being treated stochastically it is important that this does not negatively impact the quality of the
approximate posterior.

3Consider Mk = M ∀k. In this case, we have
(∑K

k=1 M
)3

= K3M3.
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5.1 Decoupled Pseudo-Observation Parameterisation

A naïve approach would be to use the standard parameterisation tk(u|Z, β) ∝ N (u; mk, Sk). Whilst this
form is convenient to work with, thus widely used, it effectively assumes that for all values of Z ∼ q(Z) the
approximate likelihood is constant.4 This assumption is inappropriate if the variance of q(Z) is non-negligible,
resulting in poor predictive performance.

Instead, consider form of the Gaussian approximate likelihood which minimises the KL-divergence q∗(f |Z) =
arg minq(f |Z) KL [q(f |Z)||p(f |y)] for any inducing locations Z ∈ XM :

t∗(u|Z) ∝ N
(
KXZK−1

ZZu; m, D
)

(11)

where D is a diagonal covariance matrix.5 In the case of a Gaussian likelihood p(yn|f(xn)) =
N

(
yn; f(xn), σ2)

, we have mn = yn and Dnn = σ2. A derivation of this result is provided in Ashman et al.
(2020). The result is analogous to that of Opper & Archambeau (2009) who derive the optimal form for
non-sparse variational GP approximations, and suggests the use of tk(u|Z, β) ∝ N

(
KXkZK−1

ZZu; mk, Dk

)
.

This form has been used previously (Ashman et al., 2020; Jazbec et al., 2021; Adam et al., 2021), and can be
thought of as optimally projecting the data onto the given inducing locations Z using the hyperparameters
β.

However note that Equation (11) requires use of clients’ data, X, when evaluating the approximate posterior,
which both violates the restrictions of federated learning and prevents mini-batching being using during
optimisation. Instead, we propose the use of an approximate likelihood which minimises the KL-divergence
for any inducing locations Z ∈ XM if we pretend that Vk ∈ XMk are our true input locations, mk ∈ RMk

are our true observations, and Sk ∈ RMk×Mk is our model’s true observation covariance, such that

tk(u|Z, β) ∝ N
(
KVkZK−1

ZZu; mk, Sk

)
. (12)

We refer to the set {Vk, mk, Sk} as ‘pseudo-observations’, and this parameterisation as the decoupled
pseudo-observation (DPO) parameterisation. Unlike the naïve standard parameterisation tk(u|Z, β) ∝
N (u; mk, Sk)—which we refer to as the coupled pseudo-observation (CPO) parameterisation, as we pa-
rameterise the pseudo-observations at the inducing locations Z—in the DPO parameterisation the pseudo-
observations are decoupled from the inducing locations. Observe the close correspondence between Equa-
tion (12) and Equation (11): the DPO parameterisation has the same form as the optimal approximate
likelihood, but replaces all private data with variational parameters (the pseudo-observations). This has
three important consequences: 1. the approximate likelihood is dependent on Z; 2. stochastic optimisation
of the variational lower-bound can be performed; and 3. privacy constraints are satisfied.

5.2 Comparison to Bayesian FITC

As far as we are aware, the only other work that utilises probabilistic treatment of inducing locations Z is the
Bayesian FITC method (Rossi et al., 2021). There are important differences between the two approaches.
First, we construct a variational approximation to the exact GP posterior that decomposes in a manner
amenable to the application of PVI, enabling federated learning to be performed. In contrast, they perform
Hamiltonian Monte Carlo (HMC) (Neal et al., 2011) for inference. HMC demands the use of the entire
dataset, preventing its application in the federated learning setting. Second, their approach is based on a
Bayesian treatment of inducing locations in the fully-independent training conditional (FITC) approximation
(Snelson & Ghahramani, 2005; Quinonero-Candela & Rasmussen, 2005), which, dissimilar to our approach,
approximates the GP model rather than its posterior (Bui et al., 2017). The distribution over inducing
locations that they obtain arises due to the treatment of inducing locations as model parameters, rather
than reformulation as auxiliary variables in a HVM.

4This can be thought of as assuming the same observations for any set of inputs Z ∼ q(Z).
5Note that this can also be written in the form t∗(u|Z) ∝

∏N

n=1 N
(

kxnZK−1
ZZu; mn, Dnn

)
, which is more commonly seen

in existing literature.
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(a) PVI after 10 iterations. (b) PVI after 20 iterations.

(c) FedAvg after 10 iterations. (d) FedAvg after 20 iterations.

Figure 1: Samples from the SGP posterior predictive distribution when performing federated learning of
inducing locations using FedAvg (bottom) and our PVI approach (top). The partitions of data are shown
in different colours, and the learnt inducing locations (Eq(Z) [Z] in the case of the PVI) are shown as black
triangles along the bottom of each figure.

6 Experiments

For all experiments, we employ a squared exponential (SE) kernel with a separate lengthscale for each input
dimension. The prior distribution over hyperparameters (kernel lengthscale, kernel scale and observation
noise) are set to be log-normal distributions with zero mean and unit variance, and log-normal variational
approximations are employed. Predictive performances are evaluated using the Monte-Carlo estimate q(y∗) ≈
1
S

∑S
s=1

∫
p(y∗|f(x∗))q(f(x∗)|βs, Zs)df(x∗), where βs, Zs ∼ q(β, Z). We use S = 100 samples.

6.1 Synthetic Regression Data

In this experiment, we seek to demonstrate that using FedAvg to learn inducing locations is ineffective. We
construct a synthetic regression dataset partitioned into five smaller subsets, as illustrated in Figure 1. We
perform FedAvg optimisation of the inducing locations as described in Algorithm 1, choosing J = 1000 inner
optimisation iterations. Figures 1c and 1d compares the learnt approximate posterior distribution after 10
and 20 communications. We compare this to the the learnt approximate posterior when using PVI to learn
inducing locations (described in Section 5 and Algorithm 2), shown in Figures 1a and 1d. Both methods use
the DPO parameterisation and hyperparameters are fixed to their true values.

We see that even after 10 iterations of sequential PVI the inducing locations learnt when using FedAvg begin
to exhibit undesirable behaviour by moving away from the data, resulting in poor uncertainty estimates in-
between partitions of data. This effect is exacerbated after 20 iterations. In Figure 2, we compare the effect
the number of FedAvg iterations (J) has on the training log-likelihood during federated learning. Observe
that only for very small J does the log-likelihood converge, resulting in poor communication efficiency as
many rounds of local optimisation are needed. This contrasts with the very fast convergence when using
PVI to learn inducing locations. This undesirable behaviour of FedAvg can be attributed to the significant
difference between Z(i)

k,J and the updated Z(i) at each round of local-optimisation: 1. there is no guarantee that
the weighted average Z(i) = N−Nk

N Z(i−1) + Nk

N Z(i)
k,J models the data well; and 2. the variational parameters

of t
(i)
k (u|Z) are learnt assuming Z = Z(i)

k,J , whereas they are deployed at test time using Z = Z(i).
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Figure 2: Average train log-likelihood for the syn-
thetic regression dataset during federated learning.
The error bars show the standard error over five ran-
dom seeds.

Figure 3: Average test log-likelihood for the Eu-
ropean weather regression dataset during federated
learning. The error bars show the standard error over
the give random seeds.

6.2 Real-World Regression Data

In this section, we evaluate the effectiveness of PVI for federated learning of sparse GPs on a number of
real-world regression tasks. For each experiment, we compare the performance of the DPO parameterisation
with diagonal pseudo-noise to the coupled pseudo-observation (CPO) parameterisation, where tk(u|Z, β) =
N (u; mk, Sk), and to the performance of sparse GPs when the inducing points are fixed at their random
initialisation. For DPO and CPO we choose p̃(Z) = N (Z; 0, I) and restrict each factor tk(Z) to be a fully-
factorised Gaussian. We construct the local free-energies using α = 0.1 in all experiments. Throughout, we
provide results for sparse GPs optimised using the entire dataset to serve as a gold-standard. The number of
pseudo-observations in the DPO parameterisation, Mk, is chosen such that Mk < Nk. Although this restricts
the approximate posterior in the sense that we cannot recover the optimal sparse GP approximation given
in Equation (11), it ensures the pseudo-observations summarise the data rather than simply learning it.
Provided Mk was significantly larger than M , we did not observe noticeable performance improvements
through increasing Mk. We provide complete experimental details in Appendix D.

6.2.1 UCI Regression

Figure 4 compares the performance of PVI applied to sparse GPs on eight UCI regression datasets, each
of which are partitioned into K = 10 homogeneous splits. We use M = 100 inducing locations and Mk =
min(0.8|Dk|, 500) pseudo-observations for the DPO parameterisation. As we do not have access to the
training data, we select fixed inducing locations at random by drawing samples from a standard normal.
The predictive performance is evaluated on 10 different splits from (Hernández-Lobato & Adams, 2015; Gal
& Ghahramani, 2016) and we plot the mean and standard errors after 100 communications.

The use of the DPO parameterisation outperforms the use of the CPO parameterisation on all datasets, and
is comparable to a sparse GP learnt using standard VI in the centralised setting.6 This i) demonstrates the
effectiveness of the DPO parameterisation; and ii) indicates that worsening the variational bound does not
significantly harm the quality of the learnt approximate posterior. Fixing inducing locations performs poorly
on all datasets, owing largely to the poor choice of initialisation. However, sensible initialisations of inducing
locations often rely on access to the training data,7 which is not available in the federated learning setting
as it typically forbids datapoints to be communicated from clients to the server. Hence, this is unavoidable.

6.2.2 European Weather Regression

We construct a dataset of minimum temperature recordings on 1st January 1980 taken by 1648 weather
stations situated across Europe.8 Inhomogeneous partitions are constructed by grouping together data

6We also note that these results are comparable to those reported elsewhere (e.g. see (Salimbeni & Deisenroth, 2017; Bui
et al., 2016; Hernández-Lobato & Adams, 2015)).

7For example, k-means clustering.
8These data are freely available at www.ncei.noaa.gov.
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(a) Average test log-likelihood.

(b) Average test RMSE.

Figure 4: Performance metrics for each method on eight of the UCI regression datasets. The error bars
show the standard error over the 10 different splits.

Figure 5: Top: predictive means on the European weather station dataset. Bottom: learnt inducing
locations of each method. For methods involving a distribution, we plot

∑M
m=1 log q(zm). The data are

partitioned according to the country of each weather station.
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within each country, leading to 32 partitions in total. The dataset and partitioning is illustrated in Figure 5.
We model the data using a sparse GP with M = 100 inducing locations and Mk = min(0.8|Dk|, 100)
pseudo-observations for the DPO parameterisation. The fixed inducing locations are drawn by uniformly
sampling within the input domain and rejecting points that lie outside of country borders. In Figure 3
we plot the training dynamics of each method, showing the average test log-likelihood and standard errors
across five different seeds. Figure 5 compares the predictions and inducing locations of each method after
200 communications with the ground truth temperature values.

Similar to the UCI regression tasks, we observe that with the use of the DPO parameterisation the federated
sparse GP converges towards the performance of a sparse GP trained using global VI, whereas using the
CPO parameterisation and fixed inducing points results in significantly worse performance. Moreover, we
see that the DPO-learnt q(Z) resembles the distribution of inducing locations learnt by global VI, with the
addition of some stochasticity. The CPO-learnt q(z) does not, and is instead more densely clustered around
areas with a high density of observations resulting in poor predictive performance elsewhere.

7 Conclusion

In this work, we developed an effective federated learning method for sparse Gaussian processes (sparse
GPs) based on partitioned variational inference (PVI). Application of PVI to sparse GPs is non-trivial
since inducing locations are shared across client-specific factors. By instead viewing inducing locations
as auxiliary variables in a hierarchical variational model, a distribution over inducing locations can be
maintained to which PVI can be applied to in the standard way. We develop a novel form for the sparse GP
variational approximation which we refer to as the decoupled pseudo-observation parameterisation (DPO).
The DPO parameterisation is defined as the optimal Gaussian variational approximation given some ‘pseudo-
observations’ and inducing locations. Importantly, it incorporates the dependency between the approximate
posterior and choice of inducing locations, which improves both the communication-efficiency of federated
learning and the quality of the approximate posterior when inducing locations are stochastic. We demonstrate
the efficacy of our approach to federated learning of sparse GPs on a number of experiments involving real-
world data.
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A Defining the Auxiliary Likelihood

In the seminal work of Ranganath et al. (2016), HVMs are applied to latent variable models for which θ is
decomposed into per-datapoint latent variables which are relatively low-dimensional. Under such conditions,
we can construct r(ϕ|θ) using an inference network to parameterise the base distribution of a normalising
flow. Incorporating the dependency of θ in the auxiliary likelihood is essential for the effectiveness of
hierarchical models in VI. Without any dependency on θ, the optimum is achieved at r(ϕ) = q(ϕ) =
δ(ϕ − ϕ∗), i.e. the solution obtained with no hierarchical model. This behaviour manifests itself in PVI
through the collapse of each tk(ϕ) to a delta function, leading to degenerate behaviour when aggregated.

Unfortunately, we are interested in applying PVI for variational approximations in which there is no clear
method for incorporating the dependency of θ on ϕ in the auxiliary likelihood. However, consider the
construction q(ϕ) = p̃(ϕ)

∏K
k=1 tk(ϕ), where p̃(ϕ) is some arbitrary distribution. Using r(ϕ|θ) = p̃(ϕ) gives

L̃ = Eq [log p(y|θ)−KL [q(θ|ϕ)||p(θ)]]−KL [q(ϕ)||p̃(ϕ)] . (13)

Although we have worsened the standard variational bound, and have therefore sacrificed the accuracy of the
approximate posterior, the use of this sub-optimal solution avoids the degenerate behaviour of q(ϕ)—and
therefore each tk(ϕ)—collapsing to a delta.

B Relationship Between PVI and Global VI Fixed Points

Let ηq be the variational parameters of q(θ, ϕ) and η∗
q be the solution to the global VI optimisation problem:

η∗
q = arg max

ηq

Eq [log p(y|θ)−KL [q(θ|ϕ)||p(θ)]]− αKL [q(ϕ)||p̃(ϕ)]︸ ︷︷ ︸
L̃α

(14)

and the variational parameters of q∗(θ, ϕ). Define qα(θ, ϕ) = 1
Zqα(θ,ϕ)

q(θ|ϕ)q(ϕ)α and qα,\k(θ, ϕ) =
1

Zqα,\k(θ,ϕ)
p(θ)p̃(ϕ)α

∏
m ̸=k tm(θ|ϕ)tm(ϕ)α.
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dLk

dηq

= d

dηq

∫
q(θ, ϕ) log

Zq∗
α,\k

(θ,ϕ)q
∗(θ, ϕ)p(yk|θ)

q(θ|ϕ)q(ϕ)αt∗
k(θ|ϕ)t∗(ϕ)α

dθdϕ

= d

dηq

∫
q(θ, ϕ) log p(yk|θ)

t∗
k(θ|ϕ)t∗

k(ϕ)α
dθdϕ + d

dηq

∫
q(ϕ)

∫
q(θ, ϕ) log q∗(θ|ϕ)

q(θ|ϕ) dθdϕ

+ d

dηq

∫
q(ϕ) log q∗(ϕ)dϕ− α

d

dηq

∫
q(ϕ) log q(ϕ)dϕ +

���������:0
d

dηq

logZq∗
α,\k

(θ,ϕ)

= d

dηq

∫
q(θ, ϕ) log p(yk|θ)

t∗
k(θ|ϕ)t∗

k(ϕ)α
dθdϕ +

∫
dq(ϕ)
dηq

∫
q(θ|ϕ) log q∗(θ|ϕ)

q(θ|ϕ) dθdϕ

+
∫

q(ϕ)
∫

dq(θ|ϕ)
dηq

log q∗(θ|ϕ)
q(θ|ϕ) dθdϕ−

∫
q(ϕ)

���
����*

0∫
dq(θ|ϕ)

dηq

dθdϕ

+
∫

dq(ϕ)
dηq

log q∗(ϕ)dϕ− α

∫
dq(ϕ)
dηq

log q(ϕ)dϕ− α
���

���*
0∫

dq(ϕ)
dηq

dϕ

= d

dηq

∫
q(θ, ϕ) log p(yk|θ)

t∗
k(θ|ϕ)t∗

k(ϕ)α
dθdϕ +

∫
dq(θ, ϕ)

dηq

∫
q(θ|ϕ) log q∗(θ|ϕ)

q(θ|ϕ) dθdϕ

+
∫

dq(ϕ)
dηq

log q∗(θ)
q(ϕ)α

.

(15)

Thus, at convergence when ηq = η∗
q ,

dLk

dηq

∣∣∣∣
ηq=η∗

q

= d

dηq

∫
q(θ, ϕ) log p(yk|θ)

t∗
k(θ|ϕ)t∗

k(ϕ)α
dθdϕ

∣∣∣∣
ηq=η∗

q

+ (1− α) d

dηq

∫
q(ϕ) log q∗(ϕ)dϕ

∣∣∣∣
ηq=η∗

q

(16)

Summing both sides over k gives

K∑
k=1

dLk

dηq

∣∣∣∣
ηq=η∗

q

= d

dηq

∫
q(θ, ϕ) log

∏K
k=1 p(yk|θ)∏K

k=1 t∗
k(θ|ϕ)t∗

k(ϕ)α
dθdϕ

∣∣∣∣∣
ηq=η∗

q

+ K(1− α) d

dηq

∫
q(ϕ) log q∗(ϕ)dϕ

∣∣∣∣
ηq=η∗

q

= d

dηq

∫
q(θ, ϕ) log

p(θ)p̃(ϕ)α
∏K

k=1 p(yk|θ)
q∗

α(θ, ϕ) dθdϕ

∣∣∣∣∣
ηq=η∗

q

−
��������:0d

dηq

logZq∗
α(θ,ϕ) + K(1− α) d

dηq

∫
q(ϕ) log q∗(ϕ)dϕ

∣∣∣∣
ηq=η∗

q

(17)

where we have defined q∗
α(θ, ϕ) = 1

Zq∗
α(θ,ϕ)

p(θ)p̃(ϕ)α
∏K

k=1 tk(θ|ϕ)tk(ϕ)α.
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Now, consider the derivative of the global variational lower-bound L̃k:

dL̃
dηq

= d

dηq

∫
q(θ, ϕ) log

p(θ)p̃(ϕ)α
∏K

k=1 p(yk|θ)
qα(θ, ϕ) dθdϕ

=
∫

dq(θ, ϕ)
dηq

log
p(θ)p̃(ϕ)α

∏K
k=1 p(yk|θ)

qα(θ, ϕ) dθdϕ−
∫

q(ϕ)
���

����*
0∫

dq(θ|ϕ)
dηq

dθdϕ

− α
���

���*
0∫

dq(ϕ)
dηq

dϕ.

(18)

At ηq = η∗
q we have

dL̃
dηq

∣∣∣∣
ηq=η∗

q

=
∫

q(θ, ϕ) log
p(θ)p̃(ϕ)α

∏K
k=1 p(yk|θ)

q∗
α(θ, ϕ) dθdϕ (19)

giving
K∑

k=1

dLk

dηq

∣∣∣∣∣
ηq=η∗

q

− dL̃
dηq

∣∣∣∣
ηq=η∗

q

= K(1− α) d

dηq

∫
q(ϕ) log q∗(ϕ)dϕ

∣∣∣∣
ηq=η∗

q

. (20)

Thus, only at α = 1 does
∑K

k=1
dLk

dηq

∣∣∣
ηq=η∗

q

= dL̃
dηq

∣∣∣
ηq=η∗

q

= 0.

C Sparse GP Computational Complexity

A possible choice of approximate posterior for GPs in the federated learning setting is

q(f |Z) = p(f |Z)
K∏

k=1
tk(uk|Zk) (21)

where uk = f(Zk) and tk(uk|Zk) ∝ N (uk; mk, Sk). The computational complexity associated with learning
and inference is dominated by computation of q(u) = N

(
u; m, Λ−1)

∝ p(u|Z)
∏K

k=1 tk(uk|Zk), where
u = f(Z1, . . . , ZK). We can write each tk(uk) as a normal distribution over u with mean m̃k ∈ R

∑K

k=1
Mk

and precision Λ̃k ∈ R
∑K

k=1
Mk×

∑K

k=1
Mk , where m̃k has Mk non-zero elements corresponding to the indices

of uk and Λ̃k has Mk ×Mk non-zero elements corresponding to block of indices corresponding to uk. Thus,
the overall mean and precision of q(u) is given by

m = Λ−1
K∑

k=1
Λ̃km̃k and Λ = K−1

ZZ +
K∑

k=1
Λ̃k. (22)

This requires inverting a
∑K

k=1 Mk ×
∑K

k=1 Mk, which has an associated computational complexity of

O
((∑K

k=1 Mk

)3
)

.

Instead, consider use of the DPO parameterisation

tk(u|Z, β) ∝ N
(
KVkZK−1

ZZu; mk, Sk

)
. (23)

We can equivalently express this as

tk(u|Z, β) ∝ N
(

u; m̃k, Λ̃−1
k

)
(24)

where
m̃k = Λ̃−1

k K−1
ZZKVkZS−1

k mk and Λ̃k = K−1
ZZKZVk

S−1
k KVkZK−1

ZZ. (25)
Thus, the computational complexity of evaluating q(u) when using the DPO parameterisation is
O

(∑K
k=1

(
M3

k + MkM2)
+ M3

)
if Sk is full-rank, and O

(∑K
k=1

(
MkM2)

+ M3
)

if Sk is diagonal.
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D Experimental Details

All experiments employ sequential PVI with no damping. We perform local optimisation using the Adam
optimiser (Kingma & Ba, 2014) with a learning rate of 1e-2 and β = (0.9, 0.999) until convergence of the
local free-energy. For variational parameters, we initialise all precisions to be 100 and all means to be zero.
All datasets are standardised. We describe the datasets used in more detail below.

UCI Regression Table 1 details the properties of the UCI regression datasets.

Dataset N D

boston 506 13
concrete 1030 8

energy 768 8
kin8nm 8192 8

naval 11934 16
power 9568 4

protein 9568 4
wine red 1588 11

yacht 308 6

Table 1: Properties of the UCI regression datasets. N denotes the number of datapoints and D denotes
the number of input dimensions.

European Weather Station The input domain is 3-dimensional, consisting of longitude, latitude and
elevation. The countries included in the dataset are: Albania, Austria, Belgium, Bosnia and Herzegovina,
Belarus, Bulgaria, Denmark, Ireland, Czech Republic, Finland, France, Germany, Greece, Croatia, Hungary,
Iceland, Italy, Latvia, Lithuania, Slovakia, Luxembourg, Moldova, Malta, Netherlands, Norway, Poland,
Portugal, Serbia, Romania, Slovenia, Spain, Sweden, Switzerland, United Kingdom and Ukraine.
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