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Abstract

Motion data is a modality of clinical importance for Parkinson’s research but
modeling it typically requires careful design of the machine learning system.
Inspired by recent advances in autoregressive language modeling, we investigate
the extent to which these modeling assumptions may be relaxed. We quantize
motion capture data into discrete tokens and apply a generic autoregressive model
to learn a model of human motion. Representing both positions and joint angles
in a combined vocabulary, we model forward and inverse kinematics in addition
to autoregressive prediction in 3D and angular space. This lets us pre-train on a
1B token, 40 hour dataset of motion capture, and then finetune on one hour of
clinically relevant data in a downstream task. Despite the naivety of this approach,
the model is able to perform clinical tasks and we demonstrate high performance
classifying 5 hours of dance data.

1 Introduction

Recent advances in large language models have demonstrated methods for pre-training a model on
a large dataset and using this same model in many downstream tasks [Devlin et al., 2019]. This
includes classifying data from a few examples where the model must already understand the domain
over which one intends to train the classifier. Therefore, if human motion can be interpreted similarly
to how these models interpret language, training a language model on a dataset of generic human
motion could improve performance on downstream tasks, freeing the practitioner from designing
custom machine learning approaches in each setting.

Motion data in healthcare will always inevitably be in limited supply, if not because of the cost of
collecting it, then because of patient privacy concerns. We demonstrate that pre-training language
models on unlabeled motion-capture data may follow similar scaling principles as text datasets. This
could reduce the need for clinical data, as a model may learn dynamics of human motion prior to
solving specific problems in a clinical task setting.

Our main contribution here is an exploration of the performance of pre-trained language models on
motion data with a minimum of modality-specific assumptions, paving the way for further work in this
area translating progress from language modeling. Data is encoded generically as text using uniform
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quantization, while multi-task training—inspired by T5 [Raffel et al., 2019]—supports efficient
learning from that text. Following T5, we name the resulting model Multipurpose Motion to Motion
Multitask Model (M5) as we demonstrate it to be useful in transfer learning tasks. Performance on
clinical and non-clinical downstream tasks is investigated in Section 5.

2 Related Work

Deep learning has been explored to model motion, but many prior methods specialize the model to
the modality leading to continuous models that make explicit choices for how to model, for example,
time and space [Valle-Pérez et al., 2021, Aksan et al., 2019, 2020, Zhu et al., 2023]. The architecture
applied in this work aims to avoid significant specialization, by treating the data as a long sequence
of discrete tokens, inspired by work in offline reinforcement learning (e.g.,Janner et al. [2021]).
This uniform quantization method is generic and not learned, in contrast to vector quantisation
methods [Lucas* et al., 2022, Zhang et al., 2023]. Other methods pair motion with additional
modalities Zhang et al. [2023], Valle-Pérez et al. [2021] such as text or music to broaden the scope of
motion understanding, while our model trains on multiple kinematics tasks and representations of
pose.

PoseGPT [Lucas* et al., 2022] and MotionGPT [Zhang et al., 2023] are closest to this work, as both
involve training a generic autoregressive transformer on tokens representing motion. However:

• Both employ VQ-VAE [van den Oord et al., 2018] autoencoders to map from the continuous
space of poses to a discrete latent sequence of tokens. In this work, we apply a uniform
quantization that does not need to be learned. This work can be viewed as an ablation of the
vector quantization used by PoseGPT and MotionGPT.

• PoseGPT conditions on an action label and MotionGPT conditions on text, whereas this
work focuses only on uncontional autoregressive modeling.

• This model trains on a variety of sequence tasks, described below, but including forward
and inverse kinematics and causal modeling on both positional and angular representations
of pose.

3 Methods

We focus on GPT-based [Radford et al., 2019] causal transformers building on minGPT [Karpathy].
Transformers have demonstrated improved performance [Vaswani et al., 2017] over previous sequence
modeling architectures, especially in natural language processing. By casting the learning problem
in discrete tokens, it is possible to add reserved tokens for any downstream task required. The
mask allows each of these tasks to attend to whichever indices are required, e.g., classification tasks
typically attend to the entire context.

The pretraining phase is the process during which the model learns the motion-capture domain,
comprised of tasks including forward kinematics, inverse kinematics, and autoregressive kinematics
prediction. This phase is carried out using the AMASS dataset [Mahmood et al., 2019], comprising
40 hours of motion capture data in a coherent 24 joint format [Loper et al., 2015]. We hypothesize,
based on T5’s results [Raffel et al., 2019], that a model trained on a larger corpus of kinematics data
combinations will have a better understanding of the domain, and will better translate that information
to downstream tasks [Devlin et al., 2019].

To convert motion-capture data to a format that can be used in any language model architecture, we
use uniform quantization. This strategy creates a vocabulary of tokens that describe joint angle or
joint position as distinct sets of characters. The model can convert between the two dictionaries, and
models the relationship between tokens in each space. The process of tokenization is described in
detail in Appendix A.

3.1 Causal Model Training

Causal modeling typically refers to the practice of training a model to autoregressively predict the
next token [Gregor et al., 2013]. At test time, the final predicted token can be appended to the
original sequence to generate novel outputs. Our model learns autoregressive joint angle and position
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Figure 1: A diagram describing the causal relationships between tokens in the autoregressive trans-
former models used in this work. Tokens at the output (bottom) only depend on previous tokens on
the offset sequence at the input (top).

Figure 2: Illustration of how the transformer operates on an example of text with conditioning tokens
indicating the task prepended to the sequence. Each task is approached autoregressively, and the
model is trained to solve all tasks in parallel. Transformers here are causal as described in Figure 1.

prediction tasks with a causal mask as described above, and learns forward and inverse kinematics
tasks with the same causal mask by training autoregressively on a sequence that interleaves frames
from each modality as shown in Figure 2.

Empirical results have found language models follow scaling laws [Kaplan et al., 2020] that relate the
number of tokens in the dataset to the number of parameters required by the model. In Section 4.1,
we explore the scaling relationship with the AMASS dataset, containing < 1B tokens. Models trained
were GPT-like [Radford et al., 2019] decoder-only transformers building on minGPT [Karpathy].
Parameter counts ranged from 150,000 to 26 million. 26 million is approximately equal to the
proportion suggested by Hoffmann et al. [2022](∼20 times fewer parameters than the tokens in the
dataset at this scale).

4 Pretraining Results

In this section we detail the performance of the pretrained model on the AMASS dataset.

The model was trained on the following tasks:

• Predicting the next token:

– For 3D joint angles, here called Angular Causal Modeling

– For positions in 3D space, here called Positional Causal Modeling

• Inferring the 3D position of joints from angles, here called Forward Kinematics

• Inferring the 3D joint angles from positions, here called Inverse Kinematics

Our target downstream task on the clinical dataset was classification of positions in 3D space. Table 1
shows the pre-training results of each task combination that includes the Positional Causal Modeling
task. The model pre-trained on all tasks achieved 92.7% +/- 1.9% accuracy predicting the next
token versus 58.1% by the model trained on the Positional Causal Modeling task only. A complete
characterisation of the motion modeling results can be found in Appendix C.
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Table 1: Comparison of how the model performs on the Positional Causal Modeling task based on the
pre-training tasks. The final cross-entropy loss is computed after training on 1e9 Positional Causal
Modeling (PCM) tokens.

Pre-training Tasks PCM Cross-Entropy Loss

PCM 0.6676
PCM, IK 0.6552
PCM, IK, FK 0.6535
All tasks 0.6314
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(a) Model size scaling law. (b) FLOPs learning curve.

Figure 3: Figure 3a illustrates a linear scaling law in motion data, between the number of parameters
and the compression rate (bits per frame). Figure 3b demonstrates learning curves at different model
scales showing convergence of a trend against flops spent.

4.1 A Scaling Law for Quantized Motion Modeling

Prior work training language models on text has established that performance of the model may
be inferred from the number of tokens and the number of parameters allocated for training that
model [Hestness et al., 2017, Kaplan et al., 2020, Hoffmann et al., 2022]. The relationship depends on
the modality; we should not expect the same scaling law to apply on motion data. Experimentally, we
find that the cross-entropy loss (also measured here in bits per frame) is inversely linearly proportional
to the model size on a log scale, as expected for a scaling law with the precise relationship observed
illustrated in Figure 3 and Appendix B.

5 Fine-tuning Results

We fine-tune the model on a dataset of 2-dimensional joint positions taken from videos of Parkinson’s
patient movement Li et al. [2018a]. In order to fine-tune the model on this dataset 2D joint positions
were converted to match our 3D joint position vocabulary, and scale the range of the y and z
dimensions of the Parkinson’s dataset to the 10-90th percentile of the AMASS dataset.

Performance on the associated clinical tasks is summarised in Table 2 with complete results described
in Appendix D. We observed poor performance of M5 versus the kinematic random forest of Li
et al. [2018a]. The likely reason for this is the small movements present in some tasks, for example
the communication task involved patients sitting and talking. Quantization made discriminating
movements below approximately 1cm impossible. The drinking task involved a larger movement and
was likely easier to distinguish for this reason.

It’s also possible that the preprocessing to tokenize the 2D motion capture data may have made
performance difficult for a model pretrained on 3D data. The relative performance of the M5 from
scratch (M5-fs) model suggests that the data has left the domain of motion the model saw during
training, because the randomly initialized model is sometimes able to reach the performance of M5
pre-trained (M5-pt).
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Table 2: Performance on AIST++ and Parkinsons [Li et al., 2018a] tasks. M5-pt refers to the pre-
trained model and M5-fs refers to a model trained from scratch. In this table we recreate the methods
used by [Li et al., 2018a] on the AIST++ dataset as a point of comparison.

Task Comm. Drinking Leg Agility Multiclass UDsysRS UPDRS
Metric AUC AUC AUC Accuracy
Li et al.
[2018b]

0.93 0.63 0.77 71.4 % 2.91 7.76

M5-pt 0.76 +/- 0.16 0.72 +/- 0.14 0.54 +/- 0.10 68.3 +/- 14.1% 3.23 +/- 1.2 10.59 +/- 3.8
M5-fs 0.79 +/- 0.12 0.66 +/- 0.14 0.66 +/- 0.18 64.3 +/- 12.5% 3.44 +/- 1.3 10.61 +/- 4.0

Task Genre Situation Dancer
Metric Accuracy Accuracy Accuracy
Li et al. [2018b] 82.9 % 92.9 % 68.6 %
M5-pt 89.1 % 97.1 % 80.7 %

To investigate the performance on a dataset with a larger movement range and a larger number
of subjects, we also compared the performance of M5 and the random forest of Li et al. [2018a]
on the AIST++ [Li et al., 2021] dataset. The results support the hypothesis that the granularity of
quantization is an issue, as M5 performs better on a task involving larger movements. In addition, the
AIST++ dataset includes more hours of total motion capture allowing a more reliable estimate of the
performance.

6 Conclusion

Relaxing the assumptions present in modeling motion permits training generic autoregressive models
and adapting innovations in text modeling. M5 demonstrates good performance despite a limited
representation of the data and allows the exploration of the scaling properties of motion modeling.
However, coarse quantization likely fails the model in the clinical task examined. This suggests that
future work would benefit from improvements to tokenize fine motor signals in the motion data. As
the volume of publicly available motion capture data grows, the scaling results presented here suggest
that the performance of generic autoregressive models for transfer learning tasks in clinical settings
will become increasingly relevant.
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A Data Tokenization

Motion data is typically modeled as a sequence of frames, wherein each frame is represented using a
set of joint angles – referred to as a pose. In the notation of SMPL [Loper et al., 2015] a complete
frame of motion can be described by:

• θ⃗: pose, composed of axis-angle 3D rotation vectors ω⃗: θ⃗ = [ω⃗T
0 , ..., ω⃗

T
K ] for K angles.

• β⃗: shape parameters.

Using the shape parameters, the 3D positions in space occupied by each joint can be recovered
by forward kinematics. The sequence of motion can therefore be represented as a sequence of
joint angles or a sequence of 3D positions through time. In this paper, our model processes both
representations without modification. This is achieved by quantizing both forms of data into a discrete
set of tokens.

A.1 Tokenization

Motion data is typically a sequence of poses, each pose is a sequence of joint angles, typically the 24
canonical joints of the SMPL body model [Loper et al., 2015]. At time of writing, the largest publicly
available dataset of human motion is the AMASS [Mahmood et al., 2019] dataset.

Following the method described in Janner et al. [2021] for tokenizing, the data is uniformly binned on
each dimension of each joint axis-angle vector. In some experiments, where indicated, we trained the
model on a reduced set of joints, these are shown in Figure 4. This was done to accelerate inference
for demonstrations. The resulting integers are matched to arbitrary alphanumeric unicode characters
so they can be used in a generic text model as is. Each frame is represented by a “word” with a space
placed between frames.

Uniform Quantization Let x be a continuous variable that we want to quantize, and let q1, q2, ..., qn
be the n quantization levels or bins. We assume that the bins are uniformly spaced, so that the distance
between adjacent bins is the same and can be denoted as ∆.

Then, the quantization operation Q(x) can be defined as:

Q(x) = qk(x) if qk(x)−1 ≤ x < qk(x)

where k is the index of the bin that contains x, and is given by:

k(x) =

⌊
x− q1
∆

⌋
+ 1

Here, ⌊·⌋ denotes the floor function, which rounds down to the nearest integer.
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Figure 4: A subset of the 24 SMPL [Loper et al., 2015] joints are illustrated. These were used in
some experiments to reduce frame character length.

Figure 5: Flow chart describing the encoding process, the data is uniformly quantized and the
resulting integers are mapped to unicode characters.

Note that the quantized value Q(x) takes on one of the n possible quantization levels q1, q2, ..., qn,
depending on which bin x falls into.

After quantization we match the integer IDs of each quantized bin to a unique Unicode character so
we may manipulate the data as text and place it in workflows designed for text. An example of this
data is shown in Figure 6.

The full process for encoding is shown in Figure 5, input frames of motion pass in as sets of 3D
axis-angle vectors. These are uniformly quantized and each integer is mapped to a unique unicode
character. The position in this sequence of characters determines the frame and joint each character is
associated with, as shown in Figure 6.

B Motion-capture data scaling laws

To further illustrate the scaling law shown in Figure 3, Figure 7 explores the relationship between
compression rate and the number of tokens processed. As the number of tokens processed increases,

Figure 6: Example of motion data as encoded text. Joint and frame indexes were used in the positional
embedding. The sequence illustrated here has 11 joints to reduce figure width.
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Figure 7: The scaling law and learning curve are illustrated in terms of Tokens, in Figure 7a shows
the scaling law relating the compression rate to the number of tokens processed and Figure 7b shows
the same learning curves plotted in Figure 3 but the x-axis chosen in tokens processsed.

the compression rate achieved by the models is able to decrease further, with larger models able to
make best use of additional data.

This relationship is illustrated in Figure 8, wherein each point in the scatter plot is a model trained
with a different proportion of the dataset included. As the model size increases, spending more
flops requires supplying the models with more data in order to continue to see improvements in the
cross-entropy loss.

C Motion Modeling

All of these tasks are extracted from the AMASS dataset [Mahmood et al., 2019], which consists of
joint angles. The 3D positions are produced using the SMPL body model [Loper et al., 2015]. Both
are uniformly quantized into tokens for all tasks, as described in Section A.

Given two seconds of motion as context, this task is to predict the next 400ms of motion. This
benchmark was introduced by Aksan et al. [2019] and we compare to their results and the results
they replicated to compare against. An example of this prediction task for a single joint is illustrated
in Figure 9. The quantization noise from discretizing the continuous joint angles is visible.

Quantization noise limits the performance this model is able to achieve on this task. To investigate
this, we encoded and decoded the targets and substituted this as a prediction, to see what the best
possible performance that an oracle could achieve, picking the correct token at every step. This is
called Quantized Oracle in Table 3. This could be addressed by increasing the resolution of the
quantization. However, this can become cumbersome, as the parameter cost is quadratic in the number
of tokens the model encodes.

Transformer models for motion modeling exist in the literature but typically the data is trained on as
continuous 3D joint angles. Rotations in 3D can be represented using at least six formalisms and
errors between angles may be similarly computed in various ways. For example, geodesic error is the
size of the minimum rotation in radians to rotate from one angular orientation to another. In Table 3
this metric is called Joint Angle.

The remaining metrics in Table 3 are described by Aksan et al. [2019]. Briefly:

• Euler is the RMSE between the joint angles expressed as Euler angles

• Two are defined over positions computed from the predicted joint angles using a predefined
forward kinematics model defined by Aksan et al. [2019]:

– Positional is the MSE between positions in 3D space
– PCK (AUC) is ratio of joints within a spherical threshold around the target position in

3D space
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Figure 8: All dataset sizes are plotted overlaid as a scatter plot with model size annotated, each point
is a model trained with a different proportion of the dataset included. The performance of the model
scales with the number of FLOPs spent, as long as the model size increases and enough training data
is available. The larger models can be seen to overfit and the test loss diverges when the dataset they
are trained on is too small.
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Figure 9: Example task from the autoregressive motion modeling task described in Appendix C,
focusing only on the left and right shoulders.

10



Table 3: AMASS results comparing to the work of Aksan et al. [2020] and the results used for comparison in
their paper in the style presented in their paper. ↓ indicates metrics where lower is better and ↑ indicates metrices
where higher is better. * indicates the model was evaluated by Aksan et al. [2020] rather than the original authors,
and the results of Aksan et al. [2020] are as they reported them. Our model is referred to here as M5.

Euler ↓ Joint Angle ↓ Positional ↓ PCK (AUC) ↑
milliseconds 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
Zero-Velocity [Martinez et al.,
2017, Aksan et al., 2019]

1.91 5.93 11.36 17.78 0.37 1.22 2.44 3.94 0.14 0.48 0.96 1.54 0.86 0.83 0.84 0.82

Seq2seq [Martinez et al., 2017,
Aksan et al., 2019]

2.01 5.99 11.22 17.33 0.37 1.17 2.27 3.59 0.14 0.45 0.88 1.39 0.86 0.84 0.85 0.83

QuaterNet [Pavllo et al., 2018,
Aksan et al., 2019]

1.49 4.70 9.16 14.54 0.26 0.89 1.83 3.00 0.10 0.34 0.71 1.18 0.90 0.87 0.88 0.85

DCT-GCN (ST)* [Mao et al.,
2019]

1.23 4.00 8.05 13.04 0.24 0.77 1.60 2.66 0.09 0.31 0.63 1.06 0.92 0.89 0.89 0.87

DCT-GCN (LT)* [Mao et al.,
2019]

1.27 4.18 8.37 13.38 0.24 0.80 1.65 2.71 0.09 0.31 0.65 1.07 0.91 0.89 0.89 0.87

RNN-SPL [Aksan et al., 2019] 1.33 4.13 8.03 12.84 0.22 0.73 1.51 2.51 0.08 0.28 0.57 0.96 0.93 0.90 0.90 0.88
Transformer 1.30 4.01 7.88 12.69 0.22 0.73 1.52 2.54 0.08 0.28 0.58 0.97 0.92 0.90 0.90 0.88
ST-Transformer 1.11 3.61 7.31 12.04 0.20 0.68 1.45 2.48 0.08 0.27 0.57 0.97 0.93 0.90 0.90 0.88
Quantized Oracle 0.26 0.57 0.84 1.12 0.05 0.10 0.15 0.20 0.06 0.11 0.17 0.23 0.93 0.95 0.97 0.97
M5 (26M) 1.70 5.83 12.11 20.08 0.21 0.75 1.58 2.64 0.20 0.78 1.77 3.08 0.78 0.72 0.73 0.68

Table 4: AMASS results computing metrics to describe performance of the model in positional causal modeling,
forward kinematics and inverse kinematics.

Euler ↓ Joint Angle ↓ Positional ↓ PCK (AUC) ↑
milliseconds 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
M5 (26M) FK 0.07 0.23 0.47 0.82 0.91 0.90 0.91 0.88
M5 (26M) IK 1.38 5.16 10.70 17.36 0.21 0.71 1.46 2.35 0.19 0.69 1.46 2.43 0.79 0.75 0.76 0.72
M5 (26M) PCM 0.08 0.30 0.65 1.15 0.90 0.87 0.88 0.84

Comparing against existing methods in Table 3 we can see that our model fails mainly predicting
positions, scoring poorly on Positional and AUC. This may be expected, because this task only tests
angular causal modeling. Some metrics for the remaining pretraining tasks are shown in Table 4.
Angular performance is similar to the performance of these other published models, performing worse
on the euler angle metric. The cross-entropy loss minimized during training operates on quantized
axis-angle vectors and the geodesic error here is proportional to squared error between axis-angle
vectors.

In Table 4 the forward and inverse kinematics are performing a different task. Both are set up with
1 second of interleaved frames of angles and positions encoded as text, then the task is infer the
next missing frame of either angular or positional data. This is an easier task than inferring frames
conditioned only on prior context, and forward kinematics in particular is a simple deterministic
function. However, positional causal modeling is the same task as reported in Table 3 with the only
difference being that the next token predicted describes a position in 3D space rather than an angle.
The model is then able to match the results reported by Aksan et al. [2020] on the positional metrics
which it was underperforming in Table 3.

We believe that demonstrating competitive autoregressive modeling despite the restrictions this
language model is trained with, generically with no inductive biases about the modality, is a valuable
result. In particular, this model is restricted to use the most generic form of discretization, each
dimension of each angle is a separate token. A tokenization scheme that improves upon this in any
way could outperform the methods listed in this paper.

D Parkinson’s Severity Classification

Parkinson’s patients can experience bradykinesia, characterized by slowness of movement. Patients
treated with levodopa may develop levodopa induced dyskinesia (LID) resulting in dyskinesia
characterized by involuntary movements. Li et al. [2018b] classified movements with a binary
classification task identifying pathological movements, a regression task indicating the severity of
symptoms, and a multi-class classification task identifying whether the patient movements have
qualities of PD, LID, or normal movement. The dataset comes from Wei et al. [2016] wherein a
convolutional neural network was trained to detect 2D joint positions.

We present our results after fine-tuning on our pre-trained model, and training on the same model
architecture from scratch. Both models are trained simultaneously on all classification tasks, along
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Table 5: Performance on binary classification of communication examples.
Neck Rarm Larm Trunk Rleg Lleg Mean Sigma

Li et al. [2018b] F1 0.941 0.920 0.929 0.960 0.819 0.865 0.906
Li et al. [2018b] AUC 0.935 0.957 0.946 0.983 0.852 0.907 0.930
Pretrained
F1 0.590 0.533 0.671 0.605 0.535 0.707 0.607 0.148
AUC 0.712 0.729 0.785 0.763 0.751 0.831 0.762 0.156
From Scratch
F1 0.549 0.562 0.675 0.575 0.537 0.691 0.598 0.198
AUC 0.827 0.771 0.810 0.805 0.766 0.773 0.792 0.118

Table 6: Performance on binary classification of drinking examples.
Neck Rarm Larm Trunk Rleg Lleg Mean Sigma

Li et al. [2018b] F1 0.711 0.148 0.289 0.643 0.594 0.617 0.500
Li et al. [2018b] AUC 0.774 0.418 0.557 0.687 0.673 0.696 0.634
Pretrained
F1 0.474 0.522 0.601 0.536 0.544 0.637 0.552 0.131
AUC 0.622 0.777 0.673 0.802 0.721 0.717 0.719 0.141
From Scratch
F1 0.402 0.533 0.460 0.509 0.438 0.555 0.483 0.143
AUC 0.578 0.754 0.589 0.685 0.652 0.701 0.660 0.140

with an autoregressive modeling loss, trying to predict the next token. For all experiments we used
leave one out cross-validation over the patients.

Tables 5, 6 and 7 focus on the binary classification tasks. It is shown that the model performs better
in some cases, such as the examples from when patients are drinking, shown in Table 6 while also
performing worse, for example in the communication examples in Table 5.

This is also seen in Table 8 in which the task is to classify samples between Normal, PID or LID. The
pretrained model is able to slightly outperform the model trained from scratch, but the variance is
high and neither match the performance of Li et al. [2018b]. Table 9 is similar, with the pretrained
model slightly outperforming the model trained from scratch, where the task is to infer a physician
validated score of Parkinson’s severity. These scores, UPDRS and UDysRS, are standardised clinical
scores produced by human clinical annotation.

Table 7: Performance on binary classification of leg agility examples.
Rleg Lleg Mean Sigma

Li et al. [2018b] F1 0.538 0.735 0.631
Li et al. [2018b] AUC 0.699 0.842 0.770
Pretrained
F1 0.436 0.470 0.453 0.081
AUC 0.542 0.547 0.545 0.103
From Scratch
F1 0.422 0.415 0.419 0.066
AUC 0.700 0.616 0.658 0.187
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Table 8: Performance on multiclass classification.
Accuracy Sigma

Li et al. [2018b] 71.4%
Pretrained 68.3% 14.1%
From Scratch 64.3% 12.5%

Table 9: Performance on UPDRS and UDysRS score regression.
UDysRS Part III UPDRS Part III

Li et al. [2018b] RMS 2.906 7.765
Pretrained 3.232 +/- 1.206 10.586 +/- 3.778
From Scratch 3.447 +/- 1.284 10.609 +/- 4.036
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