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Abstract

We present LongVPO, a novel two-stage Direct Preference Optimization frame-
work that enables short-context vision-language models to robustly understand
ultra-long videos without any long-video annotations. In Stage 1, we synthesize
preference triples by anchoring questions to individual short clips, interleaving
them with distractors, and applying visual-similarity and question-specificity fil-
tering to mitigate positional bias and ensure unambiguous supervision. We also
approximate the reference model’s scoring over long contexts by evaluating only
the anchor clip, reducing computational overhead. In Stage 2, we employ a recur-
sive captioning pipeline on long videos to generate scene-level metadata, then use
a large language model to craft multi-segment reasoning queries and dispreferred
responses, aligning the model’s preferences through multi-segment reasoning tasks.
With only 16K synthetic examples and no costly human labels, LongVPO outper-
forms the state-of-the-art open-source models on multiple long-video benchmarks,
while maintaining strong short-video performance (e.g., on MVBench), offering a
scalable paradigm for efficient long-form video understanding.

1 Introduction

Recent vision-language models (VLMs)[31, 7, 57, 6, 39, 24] have demonstrated impressive capa-
bilities in both image and video understanding. However, their performance often degrades when
applied to tasks that require long-context visual reasoning, such as analyzing videos that span over
an hour [45, 13, 59]. This presents a significant challenge in scaling VLMs for long-form video
understanding.

While recent progress in long-video VLMs [41, 38, 6] has been encouraging, most approaches rely
heavily on costly, high-quality annotations for long videos, limiting their scalability in practical
applications. In contrast, existing short-context VLMs—despite being trained only on limited-frame
inputs—have shown surprisingly competitive results on long-video benchmarks, largely thanks
to their strong foundational vision-language alignment. This observation suggests a promising
direction: short-context VLMs may possess untapped potential for long-video modeling if properly
extended. This raises a natural question: How far can we push short-context VLMs into the long-video
regime—without the burden of expensive re-training or labels?

To explore this question, we start with a strong short-context VLM [7, 19] that was not trained with
long-range visual inputs and evaluate its performance on long-video understanding tasks. We identify
two key challenges that limit its effectiveness: (1) Scarcity of Long-Form Video Annotations:
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Figure 1: Context Position Bias Probing. Left: A short video segment (visualized as a 4 × 4
grid) is embedded within a much longer padded sequence and processed chronologically. Right:
Performance is plotted against each frame’s L1 distance from the question token. The middle-position
drop indicates a strong positional bias (“lost-in-the-middle”). The Upper Bound shows performance
without padding, revealing degradation under long-context settings.

High-quality video-text annotations, such as detailed captions or question-answer pairs, are typically
available only for short clips, where annotators can reasonably cover the content. For long videos
spanning tens of thousands of frames, such annotation becomes prohibitively expensive [51] and
often suffers from incomplete coverage and poor temporal alignment [44]. (2) Context-Length
Bias in Short-Context VLMs: Common practices such as YARN [34], NTK can extend positional
encodings for longer sequences, but the resulting models still suffer from position-related biases and
limited performance gains. To simulate long-context scenarios, we embed the original short video’s
1D frame sequence within a much longer sequence, padding the surrounding positions with blank
frames (visualized as a grid in Fig. 1). This setup allows us to investigate the model’s sensitivity to
spatial positions across extended contexts. Specifically, by computing the L1 distance between each
frame’s position and a fixed query point, we uncover a “lost-in-the-middle” phenomenon—analogous
to what has been observed in long-sequence language models [3]—where the model’s performance
dips for inputs located near the center of the grid. This highlights a positional bias that disfavors
centrally located content (see Fig. 1).

Recent efforts [22] attempt to address this by leveraging Direct Preference Optimization (DPO) to
enhance grounding capabilities. However, as depicted in Fig. 2, this method assumes access to a
reference model that already supports long-context reasoning. This assumption does not hold for
short-context VLMs. Moreover, this approach requires proprietary models to generate and filter
preference data, which introduces external language model biases without fully viewing the video. As
a result, the method fails to fundamentally resolve the problem and delivers suboptimal performance.

To address these challenges, we propose a two-stage training framework that extends short-context
VLMs to ultra-long video contexts, as shown in Fig. 3: Stage 1: Efficient Short-to-Long Learning
from Anchored Cues. We form mixed, interleaved sequences of short clips from the SFT dataset.
For each clip, we generate an anchor question and use the short-context VLM’s answer as the
Preferred Response, ensuring via scalable auto-filtering that each question refers to exactly one clip.
The model learns to maximize the likelihood of the Preferred Response given the anchor question
and its corresponding clip. To simulate distracting contexts, we introduce Dis-Preferred Responses
by prompting temporally misaligned clips, forcing the model to retrieve the correct answer from
many candidates. We also randomize the target clip’s position within the sequence to mitigate
positional biases during training. Stage 2: Self-Training for Long Video Preference Alignment.
Building on Stage 1’s memory and retrieval single-segment skills, we train the model to handle longer,
more complex videos, without requiring ground-truth annotations. First, we employ a recursive
captioning pipeline to generate structured, scene-level metadata to leverage the model’s short-context
capabilities. We then transfer insights from open-source LLMs’ long-text understanding: given
a sequence of scene-organized captions, we generate questions and identify the minimal set of
scenes needed to answer them. We then craft Dis-Preferred Responses by prompting the model with
partial or misleading context (e.g., omitting critical scenes), encouraging it to assemble the complete
information chain required for accurate answers in real-world, long-video scenarios.
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In summary, our contributions are threefold:

• We introduce LongVPO, a two-stage framework that extends short-context VLMs to long
video contexts without relying on any long-video annotations.

• We construct a synthetic DPO training set from short visual context transfer to long text con-
text for long videos, using only ~16k instances—significantly fewer than existing instruction-
tuning datasets —eliminating the need for long-video labels.

• Our approach outperforms existing long-video models trained on large-scale supervised
and preference-optimized data across challenging long-video understanding benchmarks,
while maintaining competitive performance on short-video tasks, offering a new superior
paradigm for efficient multimodal long video understanding.
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Figure 2: Comparison of prior methods
with our proposed two-stage method.

VLMs for Long Video Understanding. Advancements
in vision-large models (VLMs) [7, 10, 18, 20, 25, 30, 57]
have shown impressive capabilities in video understanding,
and many models demonstrated excellent performance
in short video analysis. Some recent works make fur-
ther efforts towards long video understanding by design-
ing certain strategies to compress/select visual context
[9, 12, 16, 21, 38, 40] or extend the temporal context win-
dow [6, 39, 54]. In addition to the innovation of model
architecture, it is also important to construct long-form
video instruction datasets to guide VLM to extract de-
tailed visual cues and model cross-temporal relationships.
Representative methods such as VideoChat-Flash [24],
Kangaroo [26], and Video-XL [40] build data production
pipelines and curate long video data to enhance the ability
of video VLM. However, high-quality long video anno-
tations could be expensive and time-consuming, making
it difficult to obtain and scale up [5] compared to short
videos. Therefore, how to develop an efficient strategy to
employ short video-text data to facilitate VLMs in long

video understanding remains a challenge. In this work, we propose a novel two-stage framework for
VLMs to progressively learn the ability to analyze longer videos using only short video annotations.

DPO for Video-VLMs. As a post-training strategy, DPO has been frequently adopted in the
development of VLMs [14, 27, 46, 58, 60]. Unlike the next-token prediction used in the SFT step,
DPO refines the VLM using triplets of queries, preferred and rejected responses, reducing model
hallucination and better aligning with human reasoning [15]. The simplicity and strong performance
of DPO training further encourage researchers to apply it to video-based VLMs, where devising
effective spatial and temporal perturbation tasks is a crucial part [2, 15, 17, 22, 23, 52, 55]. Recent
works propose methods such as frame cutout, spatial misalignment, clip dropping, clip rearrangement
and frame disconnection to generate query and corresponding preference responses, with the help
of proprietary or open-sourced models [15, 22, 23, 52]. The curated data are employed in the VLM
training to enhance the spatial-temporal perception and dynamic modeling capabilities for videos.
While these efforts have shown promise, many existing works focus on minute-level or short-form
videos. For long visual context, directly generating preference data remains challenging due to task
design complexity and high computation costs, a limitation even in recent explorations of DPO for
long videos [22, 23]. Therefore, our progressive DPO training that incrementally extends the model’s
capacity to capture long temporal dependencies may offer a more practical and scalable path towards
long video understanding.
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Figure 3: Overview of our two-stage training framework. Stage 1: Short clips from an SFT dataset
are interleaved into a long composite video. The ground-truth annotation of an anchor clip provides
the query (qi) and preferred response (y+i ), while dispreferred responses (y−i ) are generated using
content from distractor clips. Samples are filtered via scene-similarity (e.g., DINOv2) to ensure
unambiguous supervision. Stage 2: A recursive captioning pipeline produces scene-level metadata
for unlabeled long videos. A long-context LLM then generates the query, reasoning trace, and
preferred response, while dispreferred responses are created by prompting with partial context.

3 Method

3.1 Background

Direct Preference Optimization (DPO) [35] aligns a policy model πθ with human preferences by
directly optimizing a policy that best satisfies the preferences, using a simple classification loss. The
objective function is formulated as maximizing the log-sigmoid of the log-likelihood ratio between
preferred (y+i ) and dispreferred (y−i ) responses, relative to a frozen reference model πref :

LDPO(θ) = −
∑
i

log σ

[
β

(
log

πθ(y
+
i | xi)

πref(y
+
i | xi)

− log
πθ(y

−
i | xi)

πref(y
−
i | xi)

)]
, (1)

where σ denotes the sigmoid function, and β > 0 is a hyperparameter that controls the strength of
the preference margin, effectively determining how sharply the policy should prefer y+i over y−i .

3.2 Distribution Shift from Short to Long Video Contexts

Consequently, directly applying a model fine-tuned on short-video data to preference optimization
tasks in long videos reveals two critical challenges:

• Reference-model degradation in extended contexts: As depicted in Fig. 1, the short-
context visual model not only exhibits position bias but also shows over-specialization to
short temporal spans, limiting its generalization to extended video contexts. Therefore, in
the DPO framework, the reference model πref is typically kept frozen. As the policy model
πθ is trained to understand and leverage long-range dependencies inherent in extended
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video sequences, its output characteristics for queries over these long videos may diverge
substantially from the short-video patterns that πref was trained to evaluate. This divergence
can impair the ability of πref to serve as a consistent and meaningful baseline in the DPO
objective, potentially leading to unstable or suboptimal policy updates when adapting to
long-video tasks.

• Annotation scarcity and distribution gap: The lack of dense, high-quality annotations for
long video sequences creates a significant distributional disparity between the data available
for initial supervised fine-tuning (SFT) or reference model training (typically short clips)
and the target domain of long videos. This data gap can severely degrade model performance
when generalizing to longer contexts.

3.3 Stage 1: Efficient Short-to-Long Learning from Anchored Cues

To mitigate the distribution shift from short to long video contexts and effectively leverage abundant
short-video SFT data without compromising performance on short clips, we design an anchor-based
approach that preserves short-context fidelity while exposing the model to long-range contextual vari-
ation. This strategy encompasses three core components: the synthesis of anchor-centric preference
triples, their subsequent refinement through filtering, and a specific adaptation of the DPO objective
to robustly incorporate this data.

The synthesis of preference data forms the initial component. At its core is the generation of
preference triples (qi, y+i , y

−
i ) where the query qi is answerable only from a designated "anchor"

short clip within a longer composite video xi. This Dynamic Visual Cues Binding process involves
three key steps:

• Anchor-centric QA and Preferred Response Generation: A short video clip, potentially
with supplementary annotations (e.g., captions), is randomly selected from SFT data to serve
as the anchor xi,anchor. A question-answer (QA) pair (qi, y+i ) is then generated by the target
short VLM such that qi can only be answered comprehensively using information present
exclusively within xi,anchor. The answer y+i constitutes the preferred response.

• Composite Sequence Assembly: Multiple distinct short clips, including the designated
anchor xi,anchor, are concatenated to form the longer composite video sequence xi =
[xi,1, ..., xi,anchor, . . . , xi,k].

• Plausible Dispreferred Response Generation: For the same question qi, a dispreferred
response y−i is generated. This response is designed to be plausible yet incorrect, typically
by drawing information from non-anchor clips within xi to simulate anchor positioning
errors.

Following data synthesis, a critical step is to ensure the quality and unambiguity of the preference
signals. To guarantee that the anchor clip xi,anchor is genuinely unique in containing the necessary
information to answer qi, we introduce two complementary post-filtering mechanisms:

• Scene-Similarity Filtering: We extract per-clip visual embeddings using a robust vision
encoder (e.g., DINOv2 [32]). Any non-anchor clips within xi exhibiting an embedding
similarity to xi,anchor above a predefined threshold are replaced, or the entire sample is
discarded. This enforces greater visual dissimilarity between the anchor and distractor
segments.

• Question Specificity Filtering: A capable large language model (e.g., Qwen-2.5 32B
[47]) is prompted to verify that qi necessitates reference to at least two to three distinct
visual elements (e.g., specific objects, attributes, or events) present or occurring in xi,anchor.
Questions failing this specificity test, indicating they could potentially be answered by other
clips, are discarded.

As discussed previously, applying the short-clip reference model πref to the full input xi leads to
performance degradation due to context-length mismatch. To address this, we introduce an anchor-
only approximation, which leverages the design hypothesis that only the anchor clip xi,anchor

contains information necessary to answer qi, while non-anchor segments provide no relevant signal.
This hypothesis is supported by our filtering process, which reduces semantic similarity between
anchor and non-anchor clips, reinforcing the anchor’s informational sufficiency.
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Under this approximation, the reference model’s likelihood is evaluated solely on the anchor clip:
πref(y | xi) ≈ πref(y | xi,anchor). (2)

This avoids context-length mismatch, reduces computational and memory costs, and ensures likeli-
hoods reflect only anchor-related content. The modified DPO objective thus becomes:

Lstage1(θ) = −
∑
i

log σ

[
β

(
log

πθ(y
+
i | xi)

πref(y
+
i | xi,anchor)

− log
πθ(y

−
i | xi)

πref(y
−
i | xi,anchor)

)]
. (3)

3.4 Stage 2: Self-Training for Long Video Preference Alignment

While the Efficient Short-to-Long Video Alignment method scales input length via synthetic clip
compositions, such sequences often lack the natural coherence and narrative structure of genuine
long videos, which is crucial for preference learning that depends on temporally grounded reasoning
and causal event understanding. This becomes problematic for queries requiring temporal reasoning
(e.g., action chains or evolving events). To bridge this gap, we propose a self-training framework for
aligning long-video preferences.

Data Preparation. In this stage, we first employ a recursive captioning strategy to generate dense
textual descriptions for long videos. For each temporally segmented scene within a long video,
the target model is conditioned on both the current video segment and the captions generated for
preceding scenes. This iterative process constructs a coherent, context-aware caption sequence for
the entire video, capturing local semantics and their broader contextual dependencies.

Construction of Preference Data (qi, y
+
i , y

−
i ) for Self-Training. The generation of preference

triples for the self-training stage involves a multi-step process, leveraging both a Large Language
Model (LLM) for query and reasoning articulation, and the target Multimodal Large Model (MLLM)
itself for generating preferred responses.

1. Long Text Context Knowledge Transfer. Query and Reasoning Generation by LLM:
Given the long video content (represented by its scenes and recursive captions), the LLM is
prompted to produce a pair (qi, ri), where qi is a user-style query about the video content,
and ri is a detailed, multi-step reasoning trace that explicitly references unique scene
identifiers (e.g., “Scene #N”) as binary scene-question relevance labels.

2. Preferred Response (y+i ) Generation by the Target MLLM: Specifically, for each query
qi (obtained from the LLM in the previous step) and the corresponding full long video xi,
the MLLM πθ is prompted to generate a response. This directly generated output from
πθ(y | qi, xi) is designated as the preferred response y+i for the DPO objective. This
approach uses the MLLM’s current capabilities to articulate what it deems a good response
to the query based on the video.

3. Dispreferred Response (y−i ) Generation: Dispreferred responses y−i are generated by
introducing specific reasoning errors into the original trace ri. We employ two error patterns
to construct flawed but plausible responses: 1) Reasoning from Partial Evidence: The target
MLLM is prompted to generate a dis-preferred response based on only a subset of the scenes
detailed in ri as essential for a comprehensive answer. 2) Ignoring Critical Evidence: The
target MLLM generates a dis-preferred response that omits references to one or more critical
scenes from ri or improperly focuses on irrelevant scenes. The resulting flawed reasoning
traces serve as dispreferred responses y−i .

For Stage 2, we employ the standard DPO objective Lstage2(θ) = LDPO(θ). While the self-generated
y+i may not be perfect, the relative preference delta (y+i , y

−
i ) provides a valid training signal. The

policy model πθ is initialized from the Stage 1 checkpoint, and the reference model πref is frozen as
the Stage 1 checkpoint, which Stage 1 equipped with the basic capability to retrieve query-relevant
clips from the full long-video input.

3.5 Total Objective

In both stages i = 1, 2, we incorporate the SFT loss into the DPO framework, weighted by α
following [33]. The total objective is defined as:

L(θ) = Lstagei(θ) + α · − log πθ(y
+ | x)

|y+|
, (4)
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LVBench LongVideoBench MLVU Video-MME (wo / w sub) MVBench
Models Size Frames Overall Validation M-Avg Overall Long Overall
Average Duration 4101s 473s 651s 1,010s 2,386s 16s

Proprietary Vision-Language Models
GPT4-V [1] Undisclosed - 59.1 49.2 59.9 / 63.3 53.5 / 56.9 43.7
GPT4-o [31] Undisclosed 30.8 66.7 64.6 71.9 / 77.2 65.3 / 72.1 64.6
Gemini-1.5-Pro [37] Undisclosed 33.1 64.0 - 75.0 / 81.3 67.4 / 77.4 60.5

Open-Source Multi-Image Vision-Language Models
LLaVA-OneVision [19] 72B 32 - 61.3 66.4 66.3 / 69.6 60.0 / 62.4 59.4
InternVL2 [8] 76B 16 - 61.0 69.9 61.2 / 67.8 - 69.6

LLaVA-OneVision [19] 7B 32 - 56.5 64.7 58.2 / - - 56.7
Oryx-1.5 [28] 7B 128 - 56.3 67.5 58.8 / 64.2 - -
MiniCPM-v2.6 [49] 8B 64 - 54.9 37.3 60.9 / 63.7 51.8 / 56.3 -
mPLUG-Owl3 [50] 7B 16 - 52.1 63.7 59.3 / - 50.1 / - -
Qwen2-VL [47] 7B 2FPS - 55.6 - 63.3 / 69.0 - 67.0
NVILA [29] 7B 256 - - 70.1 64.2 / 70.0 54.8 / 63.3 -

Open-Source Video-Language Models
VideoLLaMA2 [10] 72B 16 - - 61.2 62.4 / 64.7 57.6 / 59.0 -

LLaVA-Video [57] 7B 1FPS - 58.2 70.8 63.3 / 69.7 - 58.6
Video-XL [40] 7B 2,048 - 49.5 64.9 55.5 / 61.0 49.2 / - -
VideoLLaMA2 [53] 7B 16 - - 48.5 47.9 / 50.3 - -
Video-CCAM [12] 9B 96 - - 58.5 53.2 / 57.4 46.7 / 49.9 -
Kangaroo [26] 8B 64 - 54.8 61.0 56.0 / 57.6 46.7 / 59.3 61.0
LongVU [38] 7B 1FPS - - 65.4 60.6 / 59.5 - 66.9
LongVA [54] 7B 128 - - 56.3 52.6 / 54.3 46.2 / 47.6 -
LongVILA [6] 7B 256 - 57.1 - 60.1 / 65.1 - 67.1
VideoChat-Flash [24] 7B 512 48.2 64.7 74.7 65.3 / 69.7 55.4 / 63.3 74.0

InternVL2.5 [7] 8B 64 43.2 60.0 68.9 64.2 / 66.9 - 72.0
InternVL2.5 [7] 8B 512 45.2 62.7 67.6 61.1 / 65.3 51.1 / 57.2 72.0

+LongVPO (128f)
Stage1 8B 512 49.4 (+4.2) 65.4 (+2.7) 73.5 (+5.9) 64.2 (+3.1) / 70.1 (+4.8) 53.8 (+2.7) / 62.8 (+5.6) 72.9 (+0.9)
Stage2 8B 512 50.1 (+4.9) 66.6 (+3.9) 74.1 (+6.5) 64.6 (+3.5) / 70.3 (+5.0) 55.3 (+4.2) / 64.2 (+7.0) 73.1 (+1.1)

+LongVPO (256f)
Stage1 8B 512 49.6(+4.4) 66.0(+3.3) 74.8(+7.2) 65.0(+3.9) / 71.2(+5.9) 55.8(+4.7) / 65.1(+7.9) 72.9(+0.9)

InternVideo2.5 [43] 8B 512 47.4* 63.2* 72.8 63.3* / 71.1* 52.6* / 65.1* 75.7

+LongVPO (256f)
Stage1 8B 512 50.9 (+3.5) 67.0 (+3.8) 74.0 (+1.2) 65.4 (+2.1) / 72.6 (+1.5) 54.3 (+1.7) / 67.0 (+1.9) 74.7 (-1.0)
Stage2-iter1 8B 512 51.0 (+3.6) 67.2 (+4.0) 74.4 (+1.6) 65.6 (+2.3) / 72.5 (+1.4) 54.9 (+2.3) / 67.1 (+2.0) 75.1 (-0.6)
Stage2-iter2 8B 512 51.0 (+3.6) 67.2 (+4.0) 74.7 (+1.9) 66.1 (+2.8) / 73.1 (+2.0) 56.1 (+3.5) / 67.4 (+2.3) 75.1 (-0.6)

+LongVPO (512f)
Stage1 8B 512 50.4 (+3.0) 67.8 (+4.6) 75.0 (+2.2) 65.6 (+2.3) / 73.0 (+1.9) 54.9 (+2.3) / 67.1 (+2.0) 75.1 (-0.6)

Table 1: Accuracy (%) on the short and long video understanding benchmarks. Size indicates the
number of parameters. Frames denotes the maximum number of frames sampled from each video
or the frame sampling rate (FPS). The best and second-best results among open-source models of
similar size (7∼9B) are in bold and underlined, respectively. "256f"/"512f" refer to the maximum
number of training frames. * denotes reproduced results.

where Lstagei(θ) denotes the DPO loss at stage i, πθ(y
+ | x) represents the model likelihood of the

preferred response y+.

4 Experiment

4.1 Implementation Details

Baseline. We adopt InternVL-2.5-8B [7] as the base model of our framework. It comprises InternViT-
300M as the vision encoder and InternLM-2.5-7B-32K [4] as the language backbone. According
to the official report, the model was trained on a maximum of approximately 32 video frames,
corresponding to a visual context length of around 8192 tokens. We implement DeepSpeed Ulysses
sequence parallelism to enable efficient training with 32K extended video context length.

Data Preparation. To ensure a fair and leakage-free evaluation, we rely solely on publicly available
datasets. Specifically, Stage 1 training utilizes caption annotations from LLaVA-Video-178K [56].
For stage 2, we incorporate scene-segmented but unlabeled long videos from Vript [48], both of
which are included in the InternVL-2.5 SFT dataset.

For Stage 1 data, we preprocess each source clip from LLaVA-Video-178K by uniformly sampling
up to 64 frames at 1 fps. To construct each composite training instance xi, we designate one clip as
the anchor video (xi,anchor) and randomly select several additional clips as non-anchor video. Any
non-anchor video whose DINO embedding cosine similarity with the anchor exceeds 0.6 is discarded.

Video Understanding Benchmarks. To comprehensively evaluate our model’s long-context under-
standing capabilities, we adopt three existing long-video benchmarks [42, 45, 59] along with the
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comprehensive benchmark VideoMME [13]. Additionally, we verify performance on MVBench [20].
The evaluated video durations from all these benchmarks span from a few seconds to 2 hours.

4.2 Main Results

Our main results are shown in Tab. 1. LongVPO exhibits strong competitiveness among models of
comparable scale on long-context video understanding benchmarks. Notably, most competing
long-video models are trained on datasets with manual curation [11, 36] or rely on proprietary
MLLMs [31, 37] to annotate. In contrast, our approach leverages only around 16K synthetic samples,
without any reliance on expensive human annotations or closed-source tools, underscoring the
effectiveness of our training strategy and data construction methodology.

LongVPO maintains strong performance in short-video analysis. Although our primary goal is
to improve long-video understanding, our model also achieves competitive results on the general-
purpose short-video benchmark MVBench, even surpassing prior results with a +1.1 improvement.
This further illustrates the effectiveness of LongVPO in accommodating videos of varying durations
in real-world scenarios.

Effectiveness of Stage 1. In Stage 1, the model is trained on synthetic long-video data, resembling a
form of structureless memory training. The primary goal is to mitigate context bias and activate the
model’s localization ability. As shown in Tab. 1, the model generalizes well to real-world scenarios
and the objectives are largely fulfilled.

Effectiveness of Stage 2. Instead of Stage 1 focusing on localizing a single segment to answer
questions, Stage 2 focuses on aggregating information across multiple segments from real long videos,
thereby enhancing the model’s capacity to extract complex, question-relevant content. We observe
consistent improvements in most settings, indicating that training on real video domains results in
better alignment with realistic scenarios.

Long Video Context Evaluation. Following the NIAH setup from LongVA [54], we densely sample
multiple frames from a long video and insert a selected image at different positions within the sampled
frames. We evaluate InternVL2.5 on a maximum of approximately 3k frames. The results in Fig. 4
show that the Baseline Model begins to exhibit significant performance degradation at around 800
frames, with complete failure to follow instruction output formats when reaching approximately 1k
frames, while LongVPO demonstrates superior long-context modeling capabilities.

4.3 Extending to Dedicated Long-Context Models

While the primary results are based on short-video models, we further validate the generalizability of
our approach by applying it to InternVideo2.5 [43], a representative long-video model. InternVideo2.5
incorporates two key designs for long-context understanding: (1) pre-training on high-quality long-
video datasets, supporting up to 256 frames during training; (2) a specialized redundancy compression
mechanism in its vision-language connector for efficient long-context processing.

Generality beyond Short-Context Models Although initially designed under short-video assump-
tions, our method demonstrates strong generalization. When applied to InternVideo2.5 for continued
training, LongVPO consistently surpasses its counterparts trained on InternVL2.5. This indicates
that InternVideo2.5 has not yet saturated in long-context understanding, and our approach provides
further enhancement, underscoring its adaptability even for models pre-trained on long videos.

Context Length Scalability We evaluate the scalability of our approach under varying context
lengths. For Stage 1, we extend the length of the synthesized video by simply selecting more clips.
Our approach consistently improves performance as the maximum number of input frames increases
(e.g., from LongVPO-256f to LongVPO-512f), demonstrating strong scalability and an enhanced
ability to exploit longer temporal contexts.

4.4 Ablation Study

4.4.1 Data Preparation.

Scene Filtering in Stage 1. As shown in Tab. 2, we conduct ablations on scene filtering and
response selection. In Stage 1, removing the scene filter—particularly when relying on simple Top-K
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(a) Baseline Model with 0% acc in around 1k Frames. (b) LongVPO(Ours)

Figure 4: The V-NIAH results of our baseline InternVL2.5-8B and LongVPO. “Frame Depth”
indicates the position where the needle image is located, ranging from 0% to 100% (from the
beginning to the end of the video).

selection—results in performance degradation. This underscores the importance of semantic filtering
for robust long video understanding.

Chosen Response in Stage 2. In Stage 2, we compare three approaches for generating the chosen
response: the target VLM directly processing the original video to produce responses (self-generated),
responses generated by Qwen2.5-32B as used in our long-text context transfer method (Qwen-32B
selected), and the target VLM receiving a combination of video frames and synthetic captions as
input (interleaved). Surprisingly, the latter two methods yield suboptimal performance, highlighting
the efficiency of our training process with only scene-question relevance labels.

LLM Backbone in stage2. LongVPO maintains strong performance even when using the 7B
parameter InternLM2.5 as its backbone instead of Qwen2.5-32B, with only a slight drop observed.
This demonstrates that its effectiveness is not dependent on a larger LLM.

4.4.2 Baseline Comparison

SFT w/ Caption SFT w/ Stage1 Data DPO
(Training: 7.1h)

Ours
(Training: 4.9h)
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Figure 5: Comparison of Stage 1 training
using SFT and DPO. Additional results
are provided in the appendix.
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Figure 6: LongVPO consistently outperforms
the baseline (InternVL2.5-8B), with performance
gains increasing as more input frames are used,
while the baseline plateaus.

Scaling with Input Frames. As the number of input frames increases, LongVPO exhibits pro-
gressively larger performance gains, whereas the baseline model (InternVL-2.5-8B) shows signs of
saturation. As shown in Fig. 6, LongVPO achieves superior performance across benchmarks, in con-
trast to the baseline, which stagnates with longer contexts. These results confirm that LongVPO can
more effectively extract and utilize temporal information from extended video sequences, highlighting
its advantage in long-video understanding.

Stage 1: SFT vs. DPO. As illustrated in Fig. 5, fine-tuning with single-video caption data leads to a
noticeable performance drop. We attribute this to overfitting, since these captions were already part
of the SFT dataset. Applying DPO to the same captions yields significant improvements, suggesting
that the DPO framework enables more data-efficient learning and mitigates overfitting.

Stage 1: DPO with Long Videos. Consistent with the observation in Fig. 1, using complete long
videos as input to the reference model leads to suboptimal outcomes. Our ablation study confirms that
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Table 2: Ablation study on scene filtering and response selection methods across all long-video
benchmarks. MLVU, LongVideoBench, and LVBench use a 32K context window during inference.

Stage Setting MLVU LongVideoBench LVBench

Stage 1
w/ Scene Filter 72.9 66.1 45.3
w/o Scene Filter (adding a similar one) 69.8 64.2 43.4
w/o Scene Filter (TopK) 69.9 58.4 –

Stage 2

Chosen response Choice
Self-generated response 72.9 66.1 45.3
LLM-generated (Qwen2.5-32B) response 73.1 65.6 44.4
Self-generated w/ scene-interleaved caption 73.0 66.1 44.7

Long Context Knowledge Transfer Backbone
InternLM2.5-7B instead of Qwen2.5-32B 72.5 65.8 44.9

this approach is less effective than our proposed method on both general and long-video benchmarks,
while our method requires only approximately 70% of its training time.

4.4.3 Qualitative Comparison

Fig. 7 evaluates long video understanding through a pumpkin-carving action counting task. This
challenging benchmark requires both action recognition and temporal instance tracking across
extended durations. Current strong multimodal models (Qwen2.5-VL, Qwen2-VL, LLaVA-Video)
failed to provide correct counts, while our LongVPO accurately identified all 5 instances. This
demonstrates LongVPO’s superior temporal understanding and counting capability in long videos,
outperforming otherwise powerful baselines in complex comprehension tasks.

In this video, how many instances are there of the 'carving pumpkin' action scene in total?

There are 5 instances of the 'carving pumpkin' action scene in total.

𝑼𝒔𝒆𝒓

𝑳𝒐𝒏𝒈𝑽𝑷𝑶

𝑰n𝒕𝒆𝒓𝒏𝑽𝑳𝟐. 𝟓 There are 2 instances of the 'carving pumpkin' action scene in the video.

Time

𝑸𝒘𝒆𝒏𝟐. 𝟓 − 𝑽𝑳 There are 21 instances of the 'carving pumpkin' action scene in total.

𝑸𝒘𝒆𝒏𝟐 − 𝑽𝑳 The answer is 1.

𝑳𝑳𝒂𝑽𝑨 − 𝑽𝒊𝒅𝒆𝒐 There are two instances of the 'carving pumpkin' action scene in total.

Figure 7: Qualitative comparison on long video understanding. More details are in the appendix.

5 Conclusion

We propose LongVPO, a novel two-stage DPO training framework tailored for long video under-
standing. By leveraging only 16k synthetic DPO instances constructed from short visual contexts, our
method incrementally extends the capabilities of short-context VLMs to long-context comprehension,
without relying on any annotated long-video data. Compared with specialized long-video models,
LongVPO achieves the state-of-the-art on both long and short video understanding benchmarks.
These advances highlight its potential as a general-purpose solution for long video understanding.

Limitations. Our work prioritizes performance improvement over inference computational efficiency.
We will explore the integration with existing context compression approaches in future research.
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Appendix Overview

This appendix provides additional details of our approach and further experimental results, organized
as follows:

• Section A describes the core experimental design behind our context-bias analysis.

• Section B showcases qualitative results across various scenarios.

• Section C outlines implementation details of our method.

Model LVBench LongVideoBench MLVU Video-MME

Qwen2.5-VL 45.3 56.0 70.2 65.1 / 71.6
InternVL2.5 45.2 62.7 67.6 61.1 / 65.3

+ LongVPO 50.1 ↑4.9 66.6 ↑3.9 74.1 ↑6.5 64.6 / 70.3 ↑3.5/↑5.0
InternVideo2.5 47.4 63.2 72.8 63.3 / 71.1

+ LongVPO 51.0 ↑3.6 67.2 ↑4.0 74.7 ↑1.9 66.1 / 73.1 ↑2.8/↑2.0
Video-LLaMA3 45.3 59.8 73.0 66.2 / 70.3

+ LongVPO 49.8 ↑4.5 63.4 ↑3.6 74.6 ↑1.6 67.2 / 71.4 ↑1.0/↑1.3
Table 3: Performance comparison on long video benchmarks. Improvements over base models are
shown in red with ↑ symbols.

A Core Experimental Design for Context Position Bias Probing (Main Fig. 1)

Evaluation Setup. We directly selected tasks from MVBench [20] for evaluation. Only unambiguous
tasks were included to ensure the validity of the labels.

To evaluate models designed primarily for short-context input, we introduce a simplified evaluation
framework: (1) Padding Strategy: We simulate long-context scenarios by embedding the original
video frame sequence into a larger grid (akin to high-resolution image tiling), surrounded by meaning-
less padding frames. (2) Random Placement: The original frames are randomly placed within this
padded grid to test whether a model’s performance is sensitive to the spatial location of meaningful
content relative to the padding.

This experiment aims to validate two key constraints for an ideal long-video context model: (1) Con-
sistency across Context Lengths: A well-designed model should maintain consistent performance
across both short and long contexts without altering the task semantics. (2) Position Invariance:
Since padding frames carry no meaningful information, the spatial location of valid video frames
within the padded grid should not affect task performance.

As shown in Main Fig. 1, existing long-context models fall short of these expectations: (a) Shifted
Long-Context Consistency: Performance varies with the distance between query and relevant frames,
showing an undesirable sensitivity to position. An ideal long-video model should attend equally
to relevant frames regardless of their location in the input. (b) Short-Long Context Discrepancy:
Compared to our LongVPO, existing models exhibit a significant performance drop when transitioning
from short to long context inputs. This suggests unreliable long-video understanding. When used
directly as the reference model in DPO-style fine-tuning with long-context inputs, these models may
lead to suboptimal performance. In contrast, LongVPO maintains nearly identical performance across
short and long contexts, validating its robust design.

B Qualitative Results

We present additional qualitative comparisons with state-of-the-art models on long-video tasks across
diverse scenarios. Despite being trained on synthetic data, our model demonstrates competitive
open-ended QA performance, maintaining robustness across various domains.
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Ideal Long Context 

Video-Language Model

Same Query

shift

Ideal Long Context 

Video-Language Model

Query:
What direction is the cyan sphere 
moving in within the video?

Ideal Long Context 

Video-Language Model

Same Query
Expected Same Answer 

(b) Short-Long Context Consistency

Expected Same Answer 

(a) Shifted-Long Context Consistency

Blank Frame
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Sequence Order

Shifted L1 Distance

Video Frame
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Figure 8: Core experimental design underpinning the context-bias analysis in Fig. 1.

Figure 9: Compared to the main Fig. 1, we shorten the input video context length (by padding blank
frames to a 10× 10 grid rather than 12× 12), yet the same "lost in the middle" phenomenon persists.
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What color is the computer used by the man during the meeting?

The computer used by the man during the meeting is silver.

𝑼𝒔𝒆𝒓

𝑳𝒐𝒏𝒈𝑽𝑷𝑶

𝑰n𝒕𝒆𝒓𝒏𝑽𝑳𝟐. 𝟓 The computer used by the man during the meeting is black.

Time

𝑸𝒘𝒆𝒏𝟐. 𝟓 − 𝑽𝑳
The color of the computer used by the man during the meeting is not specified in the given 

information. 

𝑸𝒘𝒆𝒏𝟐 − 𝑽𝑳 The color of the computer used by the man during the meeting is not specified in the given video. 

𝑳𝑳𝒂𝑽𝑨 − 𝑽𝒊𝒅𝒆𝒐 The computer is black.

Figure 10: Long Video Understanding: Visual Semantic Understanding

What is the purpose of the two signing a contract? 

The purpose of the two signing a contract is to formalize the agreement for the blood transfusion.

𝑼𝒔𝒆𝒓

𝑳𝒐𝒏𝒈𝑽𝑷𝑶

𝑰n𝒕𝒆𝒓𝒏𝑽𝑳𝟐. 𝟓 The two are signing a contract to buy a yacht.

Time

𝑸𝒘𝒆𝒏𝟐. 𝟓 − 𝑽𝑳 The purpose of the two signing a contract is to establish a business agreement or partnership.

𝑸𝒘𝒆𝒏𝟐 − 𝑽𝑳
The purpose of the two signing a contract is to formalize their agreement and ensure that both parties 

are on the same page.

𝑳𝑳𝒂𝑽𝑨 − 𝑽𝒊𝒅𝒆𝒐 The purpose of the two signing a contract is to transfer ownership of the land.

Figure 11: Long Video Understanding: Cross-temporal Scene Association

At the beginning of the video, how do the person in light-colored clothes and the person in dark-
colored clothes enter the scene?

The person in light-colored clothes and the person in dark-colored clothes enter the scene by climbing 
over a chain-link fence.

𝑼𝒔𝒆𝒓

𝑳𝒐𝒏𝒈𝑽𝑷𝑶

𝑰n𝒕𝒆𝒓𝒏𝑽𝑳𝟐. 𝟓 They run into the scene.

Time

𝑸𝒘𝒆𝒏𝟐. 𝟓 − 𝑽𝑳
The person in light-colored clothes and the person in dark-colored clothes enter the scene at the same 

time.

𝑸𝒘𝒆𝒏𝟐 − 𝑽𝑳
The person in light-colored clothes and the person in dark-colored clothes enter the scene by walking 

towards the camera. 

𝑳𝑳𝒂𝑽𝑨 − 𝑽𝒊𝒅𝒆𝒐
The person in light-colored clothes runs towards the camera, while the person in dark-colored clothes 

enters from the right.

Figure 12: Long Video Understanding: Temporal Order Analysis
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What falls when the woman is eavesdropping?

The recorder.

𝑼𝒔𝒆𝒓

𝑳𝒐𝒏𝒈𝑽𝑷𝑶

𝑰n𝒕𝒆𝒓𝒏𝑽𝑳𝟐. 𝟓 A phone.

Time

𝑸𝒘𝒆𝒏𝟐. 𝟓 − 𝑽𝑳
The video clip does not provide enough information to determine what falls when the woman is 

eavesdropping.

𝑸𝒘𝒆𝒏𝟐 − 𝑽𝑳 The woman is eavesdropping on a conversation about a game.

𝑳𝑳𝒂𝑽𝑨 − 𝑽𝒊𝒅𝒆𝒐 A red balloon falls.

Figure 13: Long Video Understanding: Detail Comprehension

C Implementation Details

Hardware Setup. All experiments were conducted on a server equipped with 4× 8 NVIDIA H100
GPUs, each with 80GB of memory. We implement DeepSpeed Ulysses sequence parallelism to
enable memory-efficient training.

Training Strategy. We adopt the proposed LongVPO method for training, which involves a two-stage
fine-tuning process on a curated dataset of 16k samples—10k samples for stage 1 and 6k for stage
2. Each model variant is trained for 1 epoch, balancing training efficiency with the need for robust
adaptation.

Full-Model Fine-Tuning. We fine-tune the entire model end-to-end. This includes the vision encoder,
the vision-language connector, and the LLM backbone.

Optimization Settings. We use a composite loss that balances KL-divergence and supervised fine-
tuning (SFT) objectives, with both weights set to 1.0 (β=0.01, α=1.0). The learning rate is set to
5e-7, with batch size 8, a cosine learning rate scheduler, and a warm-up ratio of 0.01 to stabilize early
training dynamics.

Training Duration. Each model variant requires approximately 10 hours of training with DeepSpeed
Ulysses sequence parallelism enabled; otherwise, training completes in about 1 hour under the
aforementioned configuration.

Evaluation Settings. For consistency and comparability, we follow the evaluation protocols estab-
lished by InternVL2.5 and InternVideo2.5. The maximum number of frames per input is set to 512 to
test the model’s scalability in long-context understanding.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction sections, we have outlined the contributions of
our work and provided a summary at the end of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section, we discuss the limitations of our work and suggest
directions for future improvements.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the methods section, we provide a detailed description of the training
methods. Additionally, the implementation details are discussed in the experiments and
appendix sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Data and code will be available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: At the beginning of the experiments section and in the appendix, we detail the
implementation specifics for each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to limited computational resources, our paper does not include error bars
or extensive statistical significance analysis for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the appendix, we provide detailed information regarding the computational
resources utilized for each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have thoroughly reviewed and adhered to the NeurIPS Code of Ethics
throughout our research process.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our work focuses on advancing long video understanding with multimodal
large models. It provides technical improvements in training method and training efficiency
without introducing new capabilities or applications that would create additional societal
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have properly credited the creators or original owners of assets used
in our paper, and we have explicitly mentioned and respected the license and terms of use
associated with them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Corresponding assets will be available upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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