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Abstract
Math word problems used in testing are usually001
piloted with human subjects to establish the002
item difficulty and detect differential item func-003
tion. However these pilots are costly, thus for004
a need for a less costly approach that evaluates005
these questions. We show that large-language006
models to an extent can serve as a valuable first007
check, to help test developers effectively mea-008
sure students’ skills on a given subject matter.009
We do this by prompting Large Language Mod-010
els(LLMs) to role-play Below Basic, Basic,011
Proficient, and Advanced 4th- and 8th-grade012
students. We also add first names to simulate a013
more realistic classroom whose aggregate cor-014
rect/wrong rate serves as a proxy for estimating015
question difficulty. We observe the simulated016
student scores align to an extent closely with017
real student success. We also observe that the018
individual models contribute different strengths019
and combining them could improve the corre-020
lation compared to using the individual models021
in some cases.022

1 Introduction023

Math word problems (MWPs) are a common instru-024

ment of student evaluation as well as instruction.025

Because word problems test a student’s ability to026

connect mathematical concepts to real-world sce-027

narios, these items can interact in non-trivial ways028

with a student’s knowledge and understanding of029

real-world concepts, independent of mathematical030

facility (Chipman et al., 1991). For students of dif-031

fering cultural backgrounds, math word problems032

that require access to culturally specific knowledge033

may threaten the validity of these items as an as-034

sessment tool, and introduce barriers to learning for035

students who may already face other disadvantages.036

Thus the need for rigorous evaluation of test items037

which includes the careful, subjective cognitive038

analysis or modeling of question items by experts039

(Lei, 2007; Wu et al., 2025). Other evaluation meth-040

ods involve the test taker either in generating these041

question items (Singh et al., 2021) or relying on 042

their retrospective student performance data after 043

analyzing student performance using psychomet- 044

ric methods of evaluations(Harris, 1989; Bond and 045

Fox, 2013). 046

Recent works, shows LLMs can act as reliable 047

‘silicon’ subjects, reproducing human heuristics 048

and behavioral patterns across trust tasks and other 049

domains. (Xie et al., 2024; Argyle et al., 2023; Dil- 050

lion et al., 2023; Manning et al., 2024; Yang et al., 051

2024). Prior studies have already sketched this 052

direction in item difficulty estimation: Generative- 053

Student profiles built from knowledge components 054

detect hard items without real data (Lu and Wang, 055

2024), the Classroom Simulacra framework which 056

models full classroom dynamics (Xu et al., 2025), 057

and GPT-based open-ended knowledge tracing pro- 058

duces realistic student answers that reveal mastery 059

gaps (Liu et al., 2023). 060

We present different prompt styles for simulat- 061

ing diverse student profiles: with varying skill lev- 062

els of (Below Basic, Basic, Proficient, Advanced) 063

and demographic name attributes. Our approach 064

grounds these simulations against real student per- 065

formance data using standardized psychometric 066

techniques (e.g., Rasch modeling), validating their 067

predictive power in estimating item difficulty accu- 068

rately . This provides test developers with insights 069

for improving assessments proactively. Specifi- 070

cally, we address the following research questions: 071

1. Can open source LLMS reproduce real-world 072

student performance and associated difficulty 073

across varying skill levels? 074

2. How do different prompting strategies affect 075

the alignment between simulated and actual 076

student performance? 077

3. Can item difficulty estimates obtained from 078

Rasch modeling of LLM-simulated answers 079

mirror those provided by test developers? 080
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Figure 1: Our simulation pipeline. We estimate real-world math word problem difficulty, R using LLM-simulated
students. We implement: (1) Direct percentage estimation of correct answers; (2) Student role-play across skill
levels; (3) Teacher-based predictions for students at different skill levels; (4) First name + student simulation; and
(5) Skill-mapped ensemble with different LLMs representing distinct skill levels. Correlation with actual student
performance evaluates each method’s accuracy in predicting item difficulty.

2 Preliminaries081

2.1 Data082

We collect 79 Multiple Choice Math Word Prob-083

lems(MWP) from the National Report Card web-084

site (National Center for Education Statistics085

(NCES)) for grades 4 and 8. NAEP is a congress086

authorized project of the National Center for Edu-087

cation Statistics (NCES) with the Institute of Ed-088

ucation Sciences of the U.S. Department of Edu-089

cation. We use these as it provides actual student090

performance statistics across the nation, provid-091

ing a good benchmark against which our LLM-092

simulations can be evaluated. This data also serves,093

as the only nationally representative and continuing094

assessment of student achievement in the United095

States. These questions from the NAEP has also096

gone through a rigorous development and valida-097

tion processes. Each problem includes a question,098

answer choices, correct answer and meta-data (dif-099

ficulty, content area, grade level, and student per-100

formance statistics across demographic groups in-101

cluding gender). Table 6 summarizes the distri-102

bution of problems by grade level and difficulty.103

Despite the relatively small size of the data, the104

selected MWPs cover a diverse range of mathe-105

matical concepts. Table 7 presents the distribution 106

of problems across content areas. We limited our 107

scope to grades 4 and 8 word problems, filtering 108

out visual or diagram-based problems that would 109

require different LLM capabilities beyond our cur- 110

rent research scope. These math word problems 111

are used for evaluation, not training, thus reduc- 112

ing concerns about model overfitting to the test set. 113

Given that we are not conducting combinatorial 114

experiments across multiple variables but rather 115

performing a straightforward evaluation of LLM 116

capabilities against human benchmarks, this sam- 117

ple size provides sufficient coverage of key mathe- 118

matical concepts while remaining manageable. 119

2.2 Task 120

We present our task of using LLMs to predict the 121

target individual responses for N students, which 122

is graded against the correct answer key for a given 123

math problem as shown in Figure 1. We formal- 124

ize this as a problem of predicting student perfor- 125

mance given word problem p with multiple choices 126

a1, a2..am. We compute the performance as an es- 127

timated proportion ŷp ∈ [0, 1] representing the pre- 128

dicted percentage of students who would correctly 129

answer problem p. Our goal is that given a set 130

of math problems P = p1, p2, ..., pm with known 131
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student performance statistics Y = y1, y2, ..., ym132

where each yi ∈ [0, 1] represents the actual pro-133

portion of students answering correctly, we aim to134

predict the relative difficulty of the word problems.135

We measure the quality of our predictions using136

correlation coefficient r(Ŷ , Y ) between the pre-137

dicted and actual performance distributions across138

all problems, with higher correlation indicating139

better alignment between LLM-simulated and real140

student performance.141

3 Experiment142

We extend the idea from Benedetto et al. (2024)143

and Lu and Wang (2024), to generate simulated144

students with varying skill competencies. We map145

each student to one of the four National Assessment146

of Educational Progress (NAEP) levels: Below Ba-147

sic, Basic, Proficient, or Advanced. These NAEP148

levels provide the concrete descriptors for the skills149

and performance we attribute to each simulated stu-150

dent. 1 We also generate simulated students based151

on diverse demographics and grade levels by using152

a prompt template that includes “[NAME]” and153

“[GRADE]” placeholders. By substituting these154

placeholders with first names statistically associ-155

ated with specific racial/ethnic and gender identi-156

ties and the grade level, we derive demographic157

information directly from the assigned name. For158

each question, we assume a non-uniform skill distri-159

bution across a simulated class size N . We allocate160

25% Below Basic, 35% Basic, 25% Proficient, and161

15% Advanced reflecting NAEP’s typical pattern162

of a large Basic cohort, roughly equal Below-Basic163

and Proficient groups, and a small Advanced group.164

Names To enrich the simulation process, we hy-165

pothesize simulating more diverse students could166

lead to better population-level difficulty estimates.167

To this end, we extend the idea from different168

NLP studies that have used first names as prox-169

ies for different demographics attributes (Caliskan170

et al., 2017; Acquaye et al., 2024; Sancheti et al.,171

2024; Zhang et al., 2024). We use first names172

as a proxy for this demographic information to173

simulate diverse students. We select 48 names174

that are most representative of four races/ethnic-175

ities (Asian, Black, Hispanic and White), dis-176

tributed evenly across two genders (female and177

male). These names were selected based on their178

usage in (Sancheti et al., 2024; An et al., 2024).179

1The NAEP definitions for the performance levels are de-
scribed here.

Each intersectional demographic group has six 180

names, totaling 48 names. A comprehensive list of 181

these names can be found in appendix A.3. 182

Models We experiment with open-source LLMs 183

of varying sizes, including Llama-3.1-70B (Dubey 184

et al., 2024), Phi-3.5-mini (Abdin et al., 2024) and 185

Mixtral-8x7B (Jiang et al., 2024), based on math 186

benchmark performance. We evaluate these mod- 187

els in zero shot prompting strategy to answer the 188

79 questions to get the models accuracy as the 189

models knowledge can constraint its ability to cor- 190

rectly simulate certain skill levels for the simula- 191

tion. Aside from Phi in Table 2 (whose Grade-8 192

accuracy is 0.61), all other models achieved good 193

baseline performance (> 0.77–1.00), indicating 194

they have enough subject knowledge to answer the 195

math word problems correctly before being adapted 196

to student-level simulation. 197

3.1 Methods 198

Direct Percentage Correct Estimation We es- 199

tablish baseline performance by directly prompt- 200

ing LLMs to estimate the percentage of students, 201

at a specified grade level, who would solve the 202

given math word problem correctly with prompt 203

A.2. This way, we get the measure of the model’s 204

understanding of the question’s difficulty from a 205

predicted percentage of students who would an- 206

swer correctly. The idea is that questions answered 207

correctly by most students are estimated as eas- 208

ier while those answered incorrectly by most stu- 209

dents are estimated as harder. We also include 210

the description of the class size with the number 211

of students in the different skill levels, in addi- 212

tion to the grade level in another experiment. We 213

run this baseline experiments by first setting our 214

temperature to 0, and generating a single predic- 215

tion for the percentage of student who would an- 216

swer correctly. This uses greedy decoding to gen- 217

erate a single deterministic output by selecting the 218

highest-probability token at each step. The second 219

approach uses stochastic sampling (temperature 220

T = 0.3) to generate three responses, then aggre- 221

gates their predictions by averaging the resulting 222

probabilities. We anticipate that simulating mul- 223

tiple students will be a more reliable way to get 224

information about question difficulty from LLMs 225

rather than asking them directly, however the latter 226

is computationally cheaper and an easier method, 227

thus we include it as a baseline. Consequently, we 228

anticipate potential differences in the results as they 229

are fundamentally different ways of obtaining the 230
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Table 1: Direct Prompting Correlation Values by Grade and Model

Grade Gemma-2-9b-it Phi-3.5-mini Mixtral-8x7B Llama-3.1-70B

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

4 Only Grade 0.204 0.250 -0.072 -0.172 0.059 0.079 0.025 0.032
Only Grade (Averaged) 0.227 0.194 -0.139 -0.030 0.161 0.244 0.230 0.209
Grade + Class Information 0.170 0.294 0.118 0.067 -0.067 -0.073 0.163 0.191
Grade + Class Information (Averaged) 0.361 0.308 0.033 -0.040 -0.106 0.034 0.085 0.076

8 Only Grade 0.548 0.488 0.111 0.175 0.352 0.342 0.223 0.158
Only Grade (Averaged) 0.483 0.348 0.308 0.344 0.410 0.313 0.408 0.479
Grade + Class Information 0.137 0.117 0.308 0.266 0.284 0.342 0.269 0.258
Grade + Class Information (Averaged) 0.061 0.087 0.279 0.277 0.328 0.250 0.026 0.327

Table 2: LLM accuracy on NAEP math word problems
by grade level

Model Grade 4 Grade 8 Total

Gemma-2-9b-it 0.86 0.83 0.85
Phi-3.5-mini 0.72 0.61 0.67
Mixtral-8x7B 0.77 0.69 0.73
Llama-3.1-70B 1.00 0.81 0.91

difficulty estimates.231

Simulated Classroom Performance Estimation232

We prompt the LLMs in three role-play prompts233

variants, each of which generates N simulated stu-234

dent responses per question. The student prompt235

asks the LLM to answer the question as a student236

of a given skill profile with prompt A.3, while the237

teacher prompt asks the LLM to role play a teacher238

who can predict a given student of a skill profile re-239

sponse with prompt A.4. We also prompt the model240

as a student with a first name and a skill profile with241

A.5. For a given question, we first compute, the242

proportion of simulated students who answered243

correctly at each NAEP skill level (Below-Basic,244

Basic, Proficient, Advanced); we then averaged245

those four accuracies across all 79 items to get the246

success rate of the classroom.247

Model Ensembling Classroom Performance Es-248

timation We explore model diversity as a dimen-249

sion to simulate diverse student classroom, by ag-250

gregating the outputs of all LLMs. With this, we251

can get more accurate and robust estimates than re-252

lying on one single model’s prediction (Mehri and253

Eskénazi, 2019; Page et al., 2023; Mangalvedhekar254

et al., 2023). We ensemble these LLMs outputs in255

an averaging and a skill mapping strategy. In the256

averaged ensemble approach, for each of the four257

LLMs, we sample N student responses and calcu-258

late each model’s simulated percentage correct and259

then average these values across the models to get260

a final averaged percentage correct. In the skill- 261

mapped ensemble approach, we assign exactly one 262

model to each skill bucket and generate responses 263

for students of that particular skill level. For ex- 264

ample, we can have LLM 1 simulating students 265

who are Below Basic, LLM 2 simulating students 266

who are Basic, LLM 3 simulating students who 267

are Proficient, and LLM 3 simulating students who 268

are Advanced. We aggregate these responses and 269

estimate the percentage correct value for the class 270

of N size. 271

Rasch IRT Difficulty Estimation We estimate 272

item difficulties using a Rasch IRT model (Rasch, 273

1980) fitted to binary response data simulated from 274

our best model, with relatively higher correlations 275

with the real world students, gemma-2-9b. 276

P (Xni = 1 | θn, bi) =
exp(θn − bi)

1 + exp(θn − bi)
277

where: 278

θn = Ability of student n; bi = Difficulty of item i 279

This model provides the difficulty estimates for 280

each item on a latent scale. We simulated student 281

responses from large language models for Grade 282

4 and Grade 8 math items across four skill buck- 283

ets (Below Basic, Basic, Proficient, Advanced). 284

Each simulated student generated responses was 285

graded on a binary (1=correct, 0=incorrect) an- 286

swers. We fit these responses to a Rasch model, 287

which simultaneously estimated each item’s diffi- 288

culty and each student’s ability. To test whether 289

these difficulties align with difficulty categories, 290

we employed k-means clustering (with k=3) on the 291

Rasch-estimated difficulties. The resulting clusters 292

were grouped based on these numeric difficulties 293

into categories—Low, Medium, High. 294

3.2 Evaluation 295

For each math problem, we compute an accuracy, 296

representing the percentage of students in a simula- 297

tion that got the question right, which we compare 298
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Figure 2: Average Simulated Accuracy by Skill Level
Across LLMs for Grade 4

to real-world accuracy rates from NAEP student299

testing meta-data. To compare the simulated (or300

otherwise predicted) accuracies with real-world ac-301

curacies across a set of problems, we use Pearson302

(Pearson) and Spearman’s (Spearman, 1904) corre-303

lations. The Pearson correlation helps us measure304

how strong of a linear relationship exists between305

the predicted and real-world accuracies. A perfect306

Pearson correlation of 1.0 would mean that real-307

world accuracies could be perfectly predicted as an308

increasing linear function of the LLM-estimated309

accuracies. If we are more concerned about pre-310

dicting the relative ordering of difficulties, then311

the Spearman correlation provides a measure of312

how well the predicted difficulties place the prob-313

lems in order of their real-world difficulties. Either314

objective (linear fit or relative ordering) could be315

important under different use-cases, so we report316

both. We vary the class size to establish an optimal317

efficiency-performance trade-off. While increased318

simulation sizes potentially reduces sampling vari-319

ance, they also incur higher computational costs.320

By testing multiple classroom sizes (40, 100, and321

300 students), we aim to identify the point at which322

additional simulated responses no longer yield sub-323

stantial improvements in correlation with actual324

performance data to have a balanced trade off.325

4 Results and Discussion326

4.1 Simulated Students’ Accuracy are327

Aligned with the Student Skill Profiles328

As expected in the real world, the simulated stu-329

dents accuracy progressively improves as the skill330

levels increase from Below Basic to Advanced as331

shown in Figures 2 and 3, yet the sharpness of332

that gradient varies by LLM. Llama-3 70B shows333

the highest performance, in Grade 8 its Advanced334
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Figure 3: Average Simulated Accuracy by Skill Level
Across LLMs for Grade 8

group outscores its Below Basic group on average. 335

Gemma-2 9B also tracks the four skill buckets re- 336

liably but with a slightly compressed gap, while 337

Mixtral-8×7B collapses Basic and Proficient into al- 338

most identical curves, and Phi-3.5-mini often over- 339

estimates low-skill performance, which produces 340

an almost constant gradient. In short, the simulated 341

students’ answers do align with their scripted skill 342

levels, but the fidelity of that varies by LLM. 343

4.2 Simulated Students Performance 344

Correlates with Real-World Student 345

Performance with Varying Fidelity 346

Direct Estimation For Grade 4, in the baseline 347

results in Table 1, the correlations are generally 348

moderate(often around 0.2 or lower), which sug- 349

gests that LLMs struggle to capture the difficulty 350

faced by younger students. For Grade 8, although 351

some models like gemma-2-9b-it show relatively 352

higher correlations, the overall inconsistency across 353

models and conditions remains evident. Particu- 354

larly, the ‘Only Grade’ baseline outperforms the 355

‘Grade + Class Information’ baseline, suggesting 356

that adding more information in this prompting ap- 357

proach, does not necessarily improve the predicted 358

percentage. Also, comparing a single greedy decod- 359

ing response with an averaged result from multiple 360

responses shows variability; while averaging may 361

smooth out individual anomalies, it obscures the 362

fundamental instability of the model’s predictions 363

indicating that simply relying on direct prompting 364

is insufficient for accurately predicting student per- 365

formance. 366

Simulated Estimation Using our defined sampling 367

proportions, the simulated student responses show 368

some correlation with real-world performance as 369

seen in Table 3, although the strength varies across 370

models and grades. Specifically, Gemma-2 9B 371
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Table 3: Correlation between 100 simulated students
and real world student performance

Model Grade Student First Name + Student

Pearson Spearman Pearson Spearman

Gemma-2-9b-it 4 0.76 0.79 0.74 0.77
8 0.74 0.77 0.72 0.73

Phi-3.5-mini 4 0.45 0.50 0.57 0.61
8 0.53 0.55 0.61 0.64

Mixtral-8x7B 4 0.39 0.42 0.54 0.54
8 0.63 0.64 0.52 0.57

Llama-3.1-70B 4 0.57 0.60 0.71 0.72
8 0.54 0.58 0.57 0.60

consistently achieves higher correlations for both372

grades , reflecting its ability to simulate perfor-373

mance differences effectively across skill levels,374

as observed in the clear skill gradients reported375

earlier. In contrast, Phi-3.5-mini and mixtral ex-376

hibits weaker correlations likely due to its struggles377

in accurately distinguishing between skill levels,378

particularly overstating lower skill performances.379

Notably, adding first names slightly improves cor-380

relations, in the Phi-3.5-mini model and Llama381

model, indicating how demographic contextualiza-382

tion could be a tool to boost simulation. Thus,383

explicitly modeling student diversity via names can384

boost the correlation with actual student outcomes.385

386

We also see in Table 4 the correlations between sim-387

ulated and real-world student performance under388

the student and teacher approach, using different389

simulated class sizes. Notably, sampling classes390

with larger class sizes, achieving a correlation of391

0.791 at Grade 4 and 0.77 at Grade 8 for the largest392

class size of 100. This further increased for a class393

size of 1000 to a correlation of 0.82 for grade 4394

and 0.79 for grade 8. Considering the correlations395

do not improve significantly, we continue our sim-396

ulations with 100 students. Also, prompting the397

model as a student got better correlations compared398

to asking the LLM to role a student. This differ-399

ence suggests that role playing a student may better400

align with the Gemma, as student prompts more401

naturally simulate varied response patterns.402

Ensembling Estimation We use the mapping en-403

semble: Gemma-2-9b-it answers as Below Basic404

students, Mixtral-8x7B as Basic, Phi-3.5-mini as405

Proficient, and Llama-3.1-70B as Advanced. We406

derive this mapping by noting that each model’s407

accuracy peaks at a different skill levels in the plots408

in Figures 2 and 3—Gemma lowest, Mixtral next,409

Phi mid, Llama highest—so we assign them to410

those matching skill groups. The mapping ensem-411

Table 4: Correlation Values for Gemma-2-9b-it by
Grade, Class Size, and Prompt Approach

Grade Student Teacher

Pearson Spearman Pearson Spearman

4 40 0.75 0.78 0.684 0.740
100 0.76 0.79 0.70 0.75
300 0.78 0.81 0.70 0.75

8 40 0.73 0.76 0.65 0.65
100 0.74 0.77 0.65 0.65
300 0.76 0.78 0.65 0.66

Table 5: Correlation between ensembled models simu-
lated students and real world student performance

Grade Averaged Mapping
Pearson Spearman Pearson Spearman

4 0.72 0.75 0.78 0.80
8 0.62 0.58 0.71 0.72

ble achieves a slightly higher Grade 4 correlation 412

(around 0.80 Spearman), slightly outperforming 413

the averaged ensemble approach. Grade 8 sees 414

a similar pattern: the skill-mapped ensemble still 415

outpaces any individual model, with a modest cor- 416

relation gain over the averaged ensemble. 417

418

4.3 Simulated Student Performance is a good 419

indicator of the difficulty of a question 420

By overlaying expert-assigned difficulty labels 421

from the meta data from NAEP, we visually con- 422

firmed that most items aligned closely with expec- 423

tations for Grades 4 in Figure 4: Easy items pre- 424

dominantly clustered in the Low difficulty group, 425

Medium items in the Medium group, and Hard 426

items in the High group. While a few items were 427

misaligned, this overall consistency provides ev- 428

idence that our LLM simulations simulates real 429

student responses and, thus, can serve as a tool for 430

approximating item difficulty. We however observe 431

for Grade 8 in Figure 4, a slightly less perfect align- 432

ment which signals that additional calibration is 433

needed to improve item-level fidelity at the Grade 434

8 level. 435

5 Related Work 436

LLMs as Simulated Students for Item-Difficulty 437

Estimation Recent work has begun exploring the 438

use of LLMs as simulated students in educa- 439

tional assessment.Lu and Wang (2024) introduce 440

a Generative Students framework where GPT-4 is 441
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Figure 4: Grade 4 IRT predicted difficulties clustered
and visualized with actual difficulty from real world
data
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Figure 5: Grade 8 IRT predicted difficulties clustered
and visualized with actual difficulty from real world
data

prompted with student knowledge profiles (mas-442

tery/confusion of concepts) to answer MCQs, find-443

ing that the LLM responses align well with the444

intended profiles and that the set of “hard” ques-445

tions for these simulated students overlaps strongly446

with those from real students . Similarly, Benedetto447

et al. (2024) develop prompts for GPT-3.5 and GPT-448

4 to mimic students of different skill levels on exam449

questions; they show this approach works across450

multiple domains (science and reading comprehen-451

sion) and note that prompts must often be tuned per452

model to generalize well . Liu et al. (2024) use mul-453

tiple LLMs (GPT-3.5, GPT-4, Llama 2/3, Gemini-454

Pro, etc.) to pretest College Algebra items. Other455

works consider incorporating student learning be-456

haviors, knowledge states, and memory limitations457

into LLM-based simulations, to provide potential458

alternatives to conventional knowledge tracing sys-459

tems(Wang et al., 2023; Hu et al., 2025).Our work460

extends these by examining demographic consid-461

erations in simulated student responses, with first462

names as demographic proxies in our prompting463

techniques and leveraging ensembling techniques464

across different models to investigate how LLMs465

perform across diverse student populations.466

6 Conclusion467

We present different prompt styles for simulating468

diverse student profiles (skill levels: Below Basic,469

Basic, Proficient, Advanced; grades; demograph-470

ics) to provide test developers a lower cost first471

pass assessment that flags question difficulty is-472

sues early before more real world trials. We show473

that while direct percentage estimation is faster,474

simulating multiple N students, more accurately475

mirrors real-world performance especially when 476

conditioned with skill-level and demographic cues. 477

The correlation further improves when model di- 478

versity is exploited—ensembling LLMs based on 479

their relative strengths across skill levels produces 480

richer, more consistent performance estimations. 481

This informs directions for future work, explor- 482

ing multiple model variants and ensemble methods 483

to capture more diverse students through multi- 484

ple prompting dimensions—skill, name, socioe- 485

conomic background to ensure more stable pre- 486

dictions. With this, we can run formal fairness 487

analyses (such as differential item functioning) to 488

systematically verify that difficulty flags affect all 489

student groups equitably. 490

Limitations 491

LLM Limitations Our experiments relied on 492

four open-source language models, which may not 493

reflect the upper bounds of performance achievable 494

with larger, proprietary models such as GPT-4. It 495

is possible that such models, although more expen- 496

sive would provide more accurate simulations of 497

student behavior, potentially narrowing the perfor- 498

mance gap between direct and generative prompt- 499

ing strategies. Expanding the model pool can also 500

provide more robust conclusions. Additional evalu- 501

ations would enhance generalization. 502

Limited Data size We evaluated model- 503

generated responses on 79 multiple-choice 504

questions for Grade 4 and Grade 8. While these 505

cover a range of difficulty levels and content 506

areas, the size and scope of the questions remain 507

constrained. 508

Limited diversity in demographics grade and 509

class size experiments We simulated student 510

personas using 48 distinct first names distributed 511

across four racial/ethnic groups (Black, Asian, His- 512

panic, and White) and two genders. While this 513

offers a starting point for exploring demographic 514

variation, it does not capture the full richness and 515

intersectionality of real classrooms. Broader name 516

sets, additional identity dimensions (e.g., socioe- 517

conomic status, multilingual background), and in- 518

tersectional profiles could allow for a more fine- 519

grained analysis of item performance and fairness. 520

Our simulations were also constrained to Grade 4 521

and Grade 8 students, however, student behavior 522

and response patterns may differ in early primary or 523

upper high school levels. Extending the approach 524

7



to other grades could uncover new insights or limi-525

tations. For each test item, we simulated responses526

from between 100-300 students. Although we ob-527

served improved correlation with real-world data as528

sample size increased, we limited our simulations529

to manage resource costs. Larger sample sizes may530

offer more stable performance estimates and more531

realistic modeling of population-level variance, but532

at a greater computational cost.533

Ethics Statement534

In this study, we simulate student responses using535

a large language model (LLM) and vary the first536

names of hypothetical students—selecting names537

statistically associated with different genders and538

racial/ethnic groups. We acknowledge that infer-539

ring or assigning demographic identities based on540

first names is an inherently imperfect and sensi-541

tive approach, one that carries the risk of over-542

generalization or reinforcement of stereotypes. A543

first name is at best a loose proxy for a demo-544

graphic group, and relying on names can inad-545

vertently evoke stereotypical assumptions if not546

handled carefully. To mitigate these concerns, we547

employ first-name variations purely as a controlled548

variable in a bias audit context, ensuring that any549

observed performance differences are attributed to550

the model’s behavior or potential biases in the con-551

tent rather than presumed traits of any real group.552

We further recognize the broader risk that large553

language models may reproduce or amplify societal554

biases present in their training data. In our simula-555

tions, the model’s outputs could reflect such histor-556

ical biases or stereotypes—for example, it might557

yield systematically different responses or difficulty558

assessments for different name conditions, echoing559

real-world disparities. Our intent, however, is to560

leverage these controlled simulations to identify561

and understand potential inequities, not to perpetu-562

ate them.563
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Difficulty Level Total # Grade 4 # Grade 8 #

Easy 33 15 18
Medium 21 13 8
Hard 25 15 10

Total 79 43 36

Table 6: Breakdown of question difficulty by grade.

Content Area Count

Number properties and operations 39
Measurement 16
Algebra 10
Data analysis, Statistics, and Probability 8
Geometry 6

Table 7: Distribution of content areas being tested in the
dataset.
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A Appendix886

A.1 Data Details887

We present two examples of question texts from888

our collected data.889

890
Example 1:
Sebastian is making lemonade. His recipe requires 750 grams of sugar to make
20 liters of lemonade. Sebastian wants to make 12 liters of lemonade. How
many grams of sugar does Sebastian need to maintain the same ratio of sugar to
lemonade as in his recipe?

Example 2: Ms. Thierry and 3 friends ate dinner at a restaurant.
The bill was $67. In addition, they left a $13 tip. Approximately what percent
of the total bill did they leave as a tip?

891

A.2 Prompts892

Prompt A.1: Baseline-Knowledge Prompt

**Task**:
You are an expert problem solver. Solve step by step the following math
word problems. Only respond with the letter of the correct answer. Prefix
your final answer with Answer Key: [letter]".

893

Prompt A.2: Baseline-Direct Simulation Prompt

**Task**:
You are an expert in predicting student performance. Given this math word
problem written for {grade}th-grade students, estimate the percentage of
students at this grade level who will answer the question correctly. Your pre-
diction should be based on factors such as problem difficulty and cognitive
load at this grade level. Prefix your final answer with "Percentage Correct:
[percentage]".

894

Prompt A.3: Student Simulation Prompt

**Task**:
You are a {skill level} student in the {grade}th grade, given the task to answer
a math word problem question on {content area of problem}, taking into
account the difficulty of this question. {Definition of skill level continues}.
In all your responses, you have to completely forget that you are an AI
model, but rather this {skill level} student, and completely simulate yourself
as one.

895

Prompt A.4: Teacher Simulation Prompt

**Task**:
You are an expert, experienced math instructor that can reliably predict how
a Below Basic student in the {grade}th grade will answer a math word
problem question on {content area of problem} taking into account the
difficulty of this question. {Definition of skill level continues}.
In all your responses, you have to completely forget that you are an AI
model, but rather but rather this expert, experienced math instructor that
can predict how a {skill level} student will answer the math problem, and
completely simulate yourself as one.

896

Prompt A.5: Demographic Student Simulation Prompt

**Task**:
You are a [NAME], a student in the {grade}th grade, given the task to answer
a math word problem question on {content area of problem}, taking into
account the difficulty of this question. {Definition of skill level continues}.
In all your responses, you have to completely forget that you are an AI
model, but rather this student named [NAME], and completely simulate
yourself as one.

897

A.3 Names 898

The names used in our experiments are listed be- 899

low. 900

Asian female names Syeda, Thuy, Eun, Ngoc, 901

Inaaya, Priya 902

Asian male names Aryan, Vihaan, Armaan, 903

Quang, Trung, Chang 904

Black female names Latoya, Lashelle, Imani, 905

Shante, Tameka, Nichelle 906

Black male names Malik, Leroy, Darius, Tyrone, 907

Rashaun, Cedric 908

Hispanic female names Alejandra, Xiomara, 909

Mariela, Migdalia, Marisol, Julissa 910

Hispanic male names Lazaro, Osvaldo, Alejan- 911

dro, Jairo, Heriberto, Guillermo 912

White female names Susan, Courtney, Kimberly, 913

Heather, Barbara, Molly 914

White male names Charles, Roger, Wilbur, 915

Hank, Chip, Hunter 916

917
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B Additional Experimental Setup Details918

Terms of use for each model We carefully fol-919

low the guidelines per the terms of usage described920

by the model authors or company921

• Phi: https://ai.meta.com/llama/922

license/923

• Llama3: https://llama.meta.com/924

llama3/license/925

• Mistral: https://mistral.ai/926

terms-of-service/927

• Gemma: https://github.com/928

google-deepmind/gemma/blob/main/929

LICENSE930

Licenses The NAEP data is used under the MIT2931

and CC-BY3 licenses.932

2https://opensource.org/license/MIT
3https://creativecommons.org/licenses/by/4.0/
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