
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GUARANTEED NEURAL PDE BOUNDARY CONTROL
WITH NEURAL BARRIER FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The physical world dynamics are generally governed by underlying partial deriva-
tive equations (PDEs) with unknown analytical forms in science and engineering
problems. Neural network based data-driven approaches have been heavily stud-
ied in simulating and solving PDE problems in recent years, but it is still chal-
lenging to move forward from understanding to controlling the unknown PDE
dynamics. PDE boundary control instantiates a simplified but important problem
by only focusing on PDE boundary conditions as the control input and output.
However, current model-free PDE controllers cannot ensure the boundary output
satisfies some given user-specified safety constraint. To this end, we propose a
safety filtering framework to guarantee the boundary output stays within the safe
set for current model-free controllers. Specifically, we first introduce a general
neural boundary control barrier function (BCBF) to ensure the feasibility of the
trajectory-wise constraint satisfaction of boundary output. Based on a neural op-
erator modeling the transfer function from boundary control input to output tra-
jectories, we show that the change in the BCBF depends linearly on the change
in input boundary, so quadratic programming-based safety filtering can be done
for pre-trained model-free controllers. Extensive experiments under challenging
hyperbolic, parabolic and Navier-Stokes PDE dynamics environments validate the
effectiveness of the proposed method in achieving better general performance and
boundary constraint satisfaction compared to the model-free controller baselines.

1 INTRODUCTION

Partial derivative equations (PDEs) characterize the most fundamental laws of the continuous dy-
namical systems in the physical world Evans (1998); Perko (1996). Non-analytical PDE dynamics
are often involved in complicated science and engineering problems of computational fluid dynam-
ics Kochkov et al. (2021), computational mechanics Samaniego et al. (2020), robotics Heiden et al.
(2021), etc. Recently, neural networks have largely boosted the study of numerical PDE solvers
using data-driven methods, simulating and characterizing the dynamics Raissi et al. (2019); Brunton
& Kutz (2024); Kovachki et al. (2023). However, the PDE control problem still remains challeng-
ing without any prior about underlying PDE equations, serving as a huge gap from understanding
science to solving engineering problems Yu & Wang (2024).

Recent pioneer works Bhan et al. (2024); Zhang et al. (2024a) provide various formulations of PDE
control problems and multiple benchmark settings, either in-domain control Zhang et al. (2024b) or
boundary control Bhan et al. (2023). Since it is easier to control the PDE boundary in the real world,
following Bhan et al. (2024), we focus on the PDE boundary control setting where the control signal
essentially serves as the boundary condition and the unknown PDE dynamics itself remains un-
changed. Model-based PDE boundary control has been studied for years, and backstepping-based
methods have been applied to different PDE dynamics Krstic & Smyshlyaev (2008b). Neverthe-
less, the model-based methods cannot work well under the unknown PDE dynamics, suffering from
significant model mismatch. Model-free reinforcement learning (RL) controllers Schulman et al.
(2017); Haarnoja et al. (2018) have shown impressive results in the benchmark Bhan et al. (2024)
compared to the model-based control methods Pyta et al. (2015).

Besides, constraint satisfaction is of great importance for the PDE boundary control problems, but
current safe PDE control methods are typically backstepping-based and require knowledge about the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

�̇�!"#$ 𝑡 = argmin%̇ |�̇� 	− �̇�'()*'"+|
𝑠. 𝑡. �̇� + 𝛼𝜙 + 𝐶𝜙, ≤ 0

𝜙 𝑡, 𝑌 = 0

+
−

�̇� = 𝜕-𝜙 ⋅ �̇� + 𝜕.𝜙

�̇� = Λ/�̇� + 𝜇0
Neural

 Operator
𝑌 = 𝐺(𝑈)

𝑈!"#$ 𝑡 = > �̇�!"#$ 𝜏 𝑑𝜏
.

,
+ 𝑈,

𝑌!"#$(𝑡)
Safety Filtering with Neural
Boundary Control Barrier

Function (BCBF)

Neural BCBF 𝜙(𝑡, 𝑌)

Unknown PDE dynamics Model
training

Figure 1: Overview of our safety filtering method for PDE boundary control with neural BCBF.
Solid line arrows denote the safety filtering, while dashed ones denote the model training.

PDE dynamics (Krstic & Bement, 2006; Li & Krstic, 2020; Koga & Krstic, 2023; Wang & Krstic,
2023). The constraint considered in this paper is called boundary feasibility, which characterizes
whether the boundary output falls into and stays within the safe set at the end of the finite-time tra-
jectory, and can be understood as the constraint of finite-time convergence. Under ordinary differ-
ential equations (ODEs) setting, neural network parameterized control Lyapunov/barrier functions
(CLF/CBFs) have been adopted to ensure the convergence and safety of learning-based controllers
Boffi et al. (2021); Dawson et al. (2023); Chang et al. (2019); Mazouz et al. (2022), based on the
Markov property of the dynamics at each step , i.e., the change of state only depends on the current
state and control input. However, the Markov assumption does not generally hold for PDE boundary
control due to infinite-dimensional unobserved states along the spatial axis. Hence, it is challenging
to adopt ODE CBFs and find the boundary control input at each step for trajectory-wise convergence
over boundary constraint satisfaction in the PDE setting.

To this end, we introduce a new framework to achieve boundary feasibility within a given safe set
for the PDE boundary control problem, as shown in Figure 1. More specifically, we propose neural
boundary control barrier functions (BCBFs) over the boundary output to enable the incorporation
of the time variable with a finite-time convergence guarantee. Then, we adopt a neural operator
to directly learn the mapping from boundary input to output as a transfer function. Combining
well-trained neural BCBF and neural operator, we show a linear dependence between boundary
feasibility condition and the derivative of boundary control input, making the safety filtering possible
by projecting the actions from the nominal RL controller to the safe boundary control input set using
quadratic programming (QP). We conduct experiments on multiple PDE benchmarks and show our
superiority over RL controllers in terms of general performance and constraint satisfaction. To
the best of our knowledge, we are the first to study the safe boundary control with unknown PDE
dynamics. We summarize our contributions below.

• We propose a novel PDE safe control framework with a neural boundary control barrier function
to guarantee the boundary feasibility of boundary output within a given safe set.

• We model the control input and output mapping through a neural operator as a transfer function
and prove that it can be used for safety filtering by solving quadratic programming.

• We show that the performance after safety filtering performs better compared to the original RL
controllers in reward and boundary feasibility rate and time steps on multiple PDE environments.

2 PROBLEM FORMULATION

Following the PDE boundary control setting (Bhan et al., 2024), we consider the state u(x, t) : X ×
T → S ⊂ R from the continuous function space C(X ×T ;R) governed by underlying closed-loop
partial differential equation (PDE) dynamics defined on normalized n-dimensional spatial domain

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

X = [0,1] := [0, 1]n ⊂ Rn and temporal domain T = [0, T] ⊂ R+ as follows,

∂u

∂t
= D(u, ∂u

∂x
,
∂2u

∂x2
, . . . , U(t)), x ∈ X , t ∈ T , u ∈ S, (1)

where D is the PDE system dynamics and U(t) is the control signal as the boundary condition.
Without loss of generality, we focus on the Dirichlet boundary control input as U(t) := u(1, t)
with constant initial condition u(x, 0) ≡ U(0) ∈ S. Instead of optimizing boundary input U(t) to
track or stabilize full-state observation trajectory u(x, t) (Bhan et al., 2024), we aim to find U(t)
that guarantees the boundary feasibility of boundary output Y (t) := u(0, t) within the given user-
specified safe set S0 ⊂ S over T , i.e., ∃t0 ∈ T ,∀t ≥ t0, Y (t) ∈ S0. More formally, we give the
definition of boundary feasibility in PDE dynamics.

Definition 2.1 (Boundary Feasibility for Trajectory-wise Finite-time Constraint Satisfaction). With
state u(x, t) subjected to closed-loop PDE dynamics in Equation (1) with the boundary control
input U(t), the boundary control output Y (t) is defined to be feasible over T within the given
user-specified safe set S0 ∈ S if the following holds,

∃t0 ∈ T ,∀t0 ≤ t ≤ T, Y (t) := u(0, t) ∈ S0, where u(1, t) = U(t), u(x, 0) ≡ U(0). (2)

Besides, we adopt the supervised learning scheme with a collected dataset of boundary input and
output trajectory pairs {[Uk(t), Yk(t)], k = 1, 2, . . . ,K} with sampled discretization from the un-
known PDE dynamics. Therefore, we formulate the problem for this paper as follows.

Problem 2.1. Given K collected boundary input and output trajectory pairs {[Uk,m, Yk,m], k =
1, 2, . . . ,K,m = 1, 2, . . . ,M} with M -point temporal discretization, under consistent initial con-
dition uk(x, 0) ≡ Uk(0) from unknown but time-invariant PDE dynamics in Equation (1), we aim
to find boundary control input U(x) that guarantees boundary feasibility of boundary output Y (t)
with user-specified safe set S0 in Definition 2.1.

3 METHODOLOGY

3.1 NEURAL BARRIER FUNCTION FOR PDE BOUNDARY CONTROL

Control barrier functions (CBFs) are shown to be successful for safe control (Liu & Tomizuka, 2014;
Ames et al., 2014) and neural networks have been heavily investigated to effectively parameterize
CBFs (Robey et al., 2020; Liu et al., 2022; Zhang et al., 2023) for ODE dynamics. Since the Markov
assumption does not hold for PDE boundary control problem, it is challenging to leverage conven-
tional CBF to directly find control input U at time t for the constraint satisfaction of the marginalized
output boundary Y (t) := u(0, t) from the underlying PDE dynamics with spatially-continuous un-
observed state u(x, t). To mitigate this issue, inspired by Garg & Panagou (2021b), we propose a
more general neural boundary control barrier function (neural BCBF), explicitly incorporating time
t into neural network parameterized function ϕ(t, Y) : T × S → R for the time-dependent zero-
sublevel set Sϕ,t := {Y (t) | ϕ(t, Y (t)) ≤ 0}. Note that the conventional CBF ϕ(Y) can be viewed
as a specially case of BCBF ϕ(t, Y) where t remains constant, so we also regard ϕ(Y) as BCBF.
Another challenge is that the boundary feasibility in Equation (2) for PDE boundary control is de-
fined on finite time domain T = [0, T], which requires higher convergence rate to the safe set than
the original asymptotic CBF Ames et al. (2014) like fixed-time stability in Polyakov (2011); Garg
& Panagou (2021a). We show the following theorem for the feasibility of boundary control output
Y (t) within user-specified safe set S0 under boundary control signal U(t).

Theorem 3.1 (Boundary Feasibility with Boundary Control Barrier Function). For the state u(x, t)
from the closed-loop PDE dynamics with boundary control input U(t) = u(1, t), u(x, 0) ≡ U0, the
boundary feasibility of boundary output Y (t) = u(0, t) over T = [0, T] within user-specified safe
set S0 is guaranteed with neural BCBF ϕ(t, Y) if the following holds ∀t ∈ T

(Sϕ,t := {Y | ϕ(t, Y) ≤ 0} ⊆ S0)
∧(

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y) + Cα,Tϕ(0, U0) ≤ 0

)
, (3)

where Cα,T := α
eαT−1

> 0 is a constant for finite-time convergence. Similarly, the boundary
feasibility with neural BCBF ϕ(Y) holds if Equation (3) holds under ∂Y ϕ = ∇Y ϕ, ∂tϕ = 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The proof can be found in the Appendix A.2. With the M -point temporal discretization of collected
boundary input and output trajectory {[Uk,m, Yk,m], k = 1, 2, . . . ,K,m = 1, 2, . . . ,M}, Sϕ,t ⊆ S0
in Equation (3) induces the loss function below following Dawson et al. (2022)

LS =

K∑
k=1

∑
Yk,m∈S0

[ϕ(tm, Yk,m)]+ +

K∑
k=1

∑
Yk,m /∈S0

[−ϕ(tm, Yk,m)]+, with [·]+ := max{0, ·}. (4)

However, it is challenging to find dY (t)/dt involved in Equation (3) over the discrete time samples
since the boundary output Y (t) = u(0, t) is governed by the unknown closed-loop PDE dynamics
with the boundary condition U(t) = u(1, t). Besides, it is also non-trivial to find the boundary
feasibility condition over boundary control input U(t) for safety filtering due to non-Markov prop-
erty. Therefore, we adopt the neural operator to learn the boundary input-output mapping as a neural
transfer function.

3.2 LEARNING NEURAL OPERATOR FOR INPUT-OUTPUT BOUNDARY MAPPING

Different from current applications of neural operators in learning PDE solutions by temporal map-
ping Li et al. (2020a;b; 2022), we propose to adopt neural operator Gθ : {U : T → S} 7→ {Y :
T → S} to model the spatial boundary mapping from input to output of the unknown closed-
loop PDE dynamics in Equation (1), i.e., Y (t) = u(1, t) = Gθ(U)(t) = Gθ(u(0, t))(t). Fol-
lowing Kovachki et al. (2023) under the setting of same Lebesgue-measurable domain T for hid-
den layers, the neural operator is defined as Gθ = Q ◦ IL−1 ◦ · · · ◦ I0 ◦ P , including pointwise
lifting mapping P : {U : T → S} 7→ {v0 : T → Rdv0 }, iterative kernel integration layers
Il : {vl : T → Rdvl } 7→ {vl+1 : T → Rdvl+1}, l = 0, . . . , L − 1, and the pointwise projection
mapping Q : {vL : T → RdvL } 7→ {Y : T → S}. Specifically, the l-th kernel integration layer
follows the following form with commonly-used integral kernel operator Li et al. (2020a;b; 2022),

vl+1(t) = Il(vl)(t) = σl+1

(
Wlvl(t) +

∫
T
κ(l)(t, s)vl(s)ds+ bl(t)

)
, l = 0, 1, . . . , L− 1, (5)

where σl+1 : Rdvl+1 → Rdvl+1 is the activation function, Wl ∈ Rdvl+1
×dvl is the local linear opera-

tor, κ(l) ∈ C(T ×T ;Rdvl+1
×dvl) is the kernel function for integration, and bl ∈ C(T ;Rdvl+1) is the

bias function. Besides, since lifting and projection operators P,Q are pointwise local maps as spe-
cial Nemitskiy operators (Dudley et al., 2011; Kovachki et al., 2023), i.e. there exist equivalent func-
tions P : S → Rdv0 , Q : RdvL → S such that P(U)(t) = P (U(t)),Q(vL)(t) = Q(vL(t)),∀t ∈ T .
Therefore, combining Equation (5), we explicitly show the boundary mapping from control input
U(t) to output Y (t) below, making them possible to be directly connected as Y (t) = Gθ(U)(t),

Y (t) = Gθ(U)(t) = Q(vL(t)), vl+1(t) = Il(vl)(t) in Equation (5), v0(t) = P (U(t)), (6)

where P,Q,Wl, κ
(l), bl, l = 0, 1, . . . , L− 1 parameterized with neural networks θ and compose the

neural operator Y (t) = Gθ(U)(t). Given boundary input and output M -step temporally discretized
K trajectory pairs {[Uk,m, Yk,m], k = 1, 2, . . . ,K,m = 1, 2, . . . ,M}, Gθ and neural BCBF ϕ can
be optimized together based on empirical-risk minimization using the following loss function,

min
θ,ϕ

λGLG + λSLS + λBFLBF , where LG =

K∑
k=1

M∑
m=1

∥Yk,m − Gθ(Uk)(tm)∥2,LS in eq. (4),

LBF =

K∑
k=1

M∑
m=1

[∂Yk,m
ϕ · dGθ(Uk)(t)

dt
|t=tm +∂tmϕ+ αϕ(tm, Yk,m) + Cα,Tϕ(0, Uk,0), (7)

and [·]+ := max{0, ·}, , λG , λS , λBF are weight hyperparameters for LG ,LS ,LBF , respectively.
The loss for neural operator learning LG is based on Equation (6), and the boundary feasibility (BF)
loss of LBF is based on Equation (3) with the replacement of dY (t)/dt with dGθ(U)(t)/dt, which will
be detailed in the next section.

3.3 SAFETY FILTERING WITH QUADRATIC PROGRAMMING

Once the boundary input-output mapping is modeled by neural operator Gθ, the boundary output
Y (t) is directly related to boundary input U(t) from trajectory to trajectory, bypassing the non-
Markov property and the unknown closed-loop dynamics in Equation (1). We first find the derivative

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of boundary output Y (t) w.r.t t based on neural operator Y (t) = Gθ(U)(t). Applying chain rule to
Equation (6), the following derivatives hold,
dY (t)

dt
= ∇Q⊤ dvL(t)

dt
,
dvl+1(t)

dt
= Jl(

dvl
dt

)(t), for l = L− 1, . . . , 0,
v0(t)

dt
= ∇P⊤ dU(t)

dt
, (8)

where the derivative of kernel integration layer Jl : { vldt : T → Rdvl } 7→ {vl+1

dt : T → Rdvl+1}, l =
0, 1, . . . , L− 1 can be found through the derivative of Equation (5) in a recursive form below,

dvl+1(t)

dt
= Jl(

dvl
dt

)(t) = Diag(σ′
l+1)

(
Wl

dvl(t)

dt
+

∫
T

∂κ(l)(t, s)

∂t
vl(s)ds+

dbl(t)

dt

)
. (9)

By combining Equation (8) and Equation (9), we have the following theorem to show how the
boundary control input U(t) can be chosen to guarantee the boundary feasibility of boundary output
Y (t) modeled by neural operator Gθ.
Theorem 3.2 (Boundary Feasibility with Neural Operator). Assuming the neural operator Gθ as
an exact map from boundary input U(t) to output Y (t) for an unknown closed-loop PDE dynam-
ics without model mismatch, the boundary control input U(t) is guaranteed to induce boundary
feasibility of output Y (t) over T = [0, T] within the sublevel set of neural BCBF ϕ if U(t) satisfies

∂Y ϕ(t,Gθ(U))
dGθ(U)(t)

dt
+ ∂tϕ(t,Gθ(U)) + αϕ(t,Gθ(U)) + Cα,Tϕ(0, U(0)) ≤ 0,∀t ∈ T (10)

where Cα,T = α
eαT−1

, and dGθ(U)(t)
dt can be found below with

∏0
1(·) := 1,

dGθ(U)(t)

dt
= ∇Q⊤

L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤ dU(t)

dt
+∇Q⊤Diag(σ′

L)

L−1∑
i=0

[i∏
j=1

WL−j

Diag(σ′
L−j)

](∫
T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

))
= Λθ(t)U̇(t) + µθ(t). (11)

Remark. We remark that if the sublevel set of neural BCBF ϕ is a subset of user-specified safe
set S0, and there is no model mismatch between neural operator Y (t) = Gθ(U)(t) and unknown
closed-loop PDE dynamics, Theorem 3.2 is equivalent to Theorem 3.1. Then the boundary control
input U(t) satisfying Equation (10) is guaranteed to induce the boundary feasibility of boundary
output Y (t) within user-specified safe set S0. Similarly, Theorem 3.2 with neural BCBF ϕ(Y) holds
if Equation (10) holds by letting ∂Y ϕ(t,Gθ(U)) = ∇Y ϕ(Gθ(U)), ∂tϕ(t,Gθ(U)) = 0.

The proof can be found in the Appendix A.3. Based on the affine property of U̇(t) in Equation (11),
we formulate the following quadratic programming (QP) problem with neural BCBF ϕ and neural
operator Gθ as a safety filter for U̇nominal(t),∀t ∈ T ,
U̇safe(t) = argmin

U̇∈R
∥U̇ − U̇nominal(t)∥ (12)

s.t. ∂Y ϕ(t, Y)
(
Λθ(t)U̇ + µθ(t)

)
+ ∂tϕ(t, Y) + αϕ(t, Y) + Cα,Tϕ(0, Unominal(0)) ≤ 0, (13)

where Cα,T = α
eαT−1

and Λθ(t), µθ(t) can be found in Equation (11). Based on U̇safe(t) at each
step t, we find the boundary control input Usafe(t) based on Equation (14) below so that the predicted
boundary output Ypredict(t) can be found by the neural operator. Therefore, the next QP update can be
solved for U̇safe at the next time by Equation (12). Note that we let U̇safe = U̇nominal for the unfiltered
time steps during the QP iteration. The discrete-time implementation of the safety filtering procedure
is shown in Algorithm 1.

Usafe(t) =

∫ t

0

U̇(τ)dτ + Unominal(0), U̇(τ) =

{
U̇safe(τ), if ∥U̇safe(τ)− U̇nominal(τ)∥ ≤ η,
U̇nominal(τ), otherwise.

(14)

We remark that iterative filtering with the prediction of Y (t) at each step aims to avoid large ap-
proximation errors in Equation (11) in the discrete-time setting compared to one-time filtering for
the whole trajectory. Besides, as the computation of QP is not yet real-time, it is not yet ready to in-
teract with the real PDE dynamics. we adopt the predicted Y (t) from the neural operator after each
filtering step instead of real PDE dynamics. To handle the model mismatch issue between neural
operator modeling and real underlying PDE dynamics, filtering threshold η > 0 is introduced as a
workaround and we leave the study of model mismatch of PDE dynamics as future work. Specifi-
cally, the safety filter is disabled when η = 0. The larger η is, the more boundary feasibility within
the safe set will be achieved, showing a trade-off between stabilization and constraint satisfaction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Safety Filtering Procedure for Discrete-time Implementation
1: Input: Nominal control input U nominal

1:M , neural operator G, neural BCBF ϕ, filter threshold η
2: Output: Filtered safe control input U safe

1:M

3: Initialize ∆U safe
1:M = ∆U nominal

1:M ← U nominal
1:M − U nominal

0:M−1, Y
predict
1:M ← G(U nominal

1:M)
4: for m = 1 :M do
5: Find ∆U safe

m through QP in Equation (12) based on ∆U nominal
m , Y predict

1:M ,G, ϕ, U nominal
0

6: Find U safe
1:M based on Equation (14) with ∆U safe

1:M and filter threshold η
7: Update Y predict

1:M ← G(U safe
1:M)

8: end for
9: return U safe

1:M

4 EXPERIMENT

In this section, we aim to answer the following two questions: How does the proposed safety fil-
tering perform compared to the vanilla model-free controllers in unknown PDE dynamics? How do
filtering thresholds, different convergence types and neural operator modeling influence the perfor-
mance of the proposed safety filtering? We answer the first question in Section 4.2 and the second
one in Section 4.3, following the experimental setup of PDE dynamics, controllers, and evaluation
metrics.

4.1 EXPERIMENTAL SETUP

Environments and model-free controllers. We adopt the challenging PDE boundary control en-
vironments as well as the model-free reinforcement learning (RL) controllers from Bhan et al. (2024)
to conduct our experiment. More specifically, the three environments include the unstable 1D hy-
perbolic (transport) equation, 1D parabolic (reaction-diffusion) equation and 2D nonlinear Navier-
Stokes equation, where the last one is for tracking task and others are for stabilization task. Since our
setting in Problem 2.1 does not have prior to the PDE equations, we choose the model-free RL con-
trollers, PPO Schulman et al. (2017) and SAC Haarnoja et al. (2018), from Bhan et al. (2024) as the
baselines in each environment for fair comparisons. The boundary control inputs are consistent with
Bhan et al. (2024). For 1D environments, the boundary input is U(t) = u(1, t) while the boundary
output for the hyperbolic PDE is Y (t) = u(0, t) and the boundary output for the parabolic PDE
Y (t) = u(0.5, t) since u(0, t) ≡ 0. For the 2D environment, the boundary input is the x-axis con-
sistent boundary condition, i.e., u(x, 1, t) ≡ U(x), v(x, 1, t) ≡ 0,∀x ∈ [0, 1]. The boundary output
is Y (t) = u(0.5, 0.95, t), v(x, 0.95, t) ≡ 0,∀x ∈ [0, 1], which has the maximum speed except for
control input and can be viewed as an indicator for tracking performance. Note that we focus on the
boundary output that only depends on time in high-dimensional cases. We specify one-sided safe
sets S0 = {Y : AY < b} for stabilization tasks and two-sided safe sets S0 = {Y : |Y − Ygt| < b}
for tracking tasks. With the pre-trained RL models, we collect 50k pairs of boundary input U(t)
and output Y (t) trajectory with label annotations based on user-specified safe sets S0. The temporal
resolution of collected trajectories is consistent with the control frequency of each environment in
Bhan et al. (2024), i.e. 50 steps in 5s for hyperbolic PDE, 1000 steps in 1s for parabolic PDE and
200 steps in 0.2s for Navier-Stokes PDE. More details can be found in the Appendix B.

Model training and evaluation metrics. With the collected dataset from RL models, we train the
neural operators and neural BCBFs according to Equation (7) through empirical risk minimization.
We adopt the Fourier neural operator (FNO) Li et al. (2020a) as the default neural operator model
and train it with Markov neural operator (MNO) Li et al. (2022) using the default hyper-parameters.
For the neural BCBF training, following Zhang et al. (2023); Hu et al. (2024), we use a 4-layer
feedforward neural network with ReLU activations to parameterize BCBFs and incorporate Equa-
tion (4) and Equation (7) with default α = 10−5 into the regular model training pipeline Zhao et al.
(2020); Dawson et al. (2022) to train both time-independent BCBF ϕ(Y) and time-dependent BCBF
ϕ(t, Y). More details can be found in Appendix B. With the well-trained neural operator and neu-
ral BCBF, we solve the QP of Equation (12) though CPLEX IBM and the final control trajectory is
found through Equation (14) with threshold η = 2 as default, mitigating the discrepancy between the
PDE environment and the neural operator. For the evaluation of safety filtering for RL controllers,
we keep the original RL rewards from Bhan et al. (2024) as a metric to show if the performance

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results comparison under 1D hyperbolic transport equation among 100 episodes. The
boundary feasibility constraint is Y < 1 for PPO and Y < 0 for SAC models.

Models w/o and w. filtering Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
(50 control steps)

PPO Bhan et al. (2024) 157.9±37.5 0.63 7.6
PPO with filtering of ϕ(Y) 162.3±44.5 0.63 8.3

PPO with filtering of ϕ(t, Y) 165.0±43.7 0.71 9.8
SAC Bhan et al. (2024) 106.2±98.7 0.78 12.4

SAC with filtering of ϕ(Y) 103.3±98.4 0.57 15.7
SAC with filtering of ϕ(t, Y) 103.4±96.4 0.85 13.9

Table 2: Results comparison under 1D parabolic reaction-diffusion equation among 100 episodes.
The boundary feasibility constraint is Y < 0.6 for PPO and Y > −0.26 for SAC models.

Models w/o and w. filtering Reward (mean±std)
(starting at ∼0)

Feasible Rate
(100 episodes)

Average Feasible Steps
(1000 control steps)

PPO Bhan et al. (2024) 164.5±20.7 0.60 155.0
PPO with filtering of ϕ(Y) 162.9±19.6 0.46 519.4

PPO with filtering of ϕ(t, Y) 168.2±23.5 0.81 507.0

SAC Bhan et al. (2024) 156.5±6.2 0.72 118.4
SAC with filtering of ϕ(Y) 157.9±6.9 0.92 543.2

SAC with filtering of ϕ(t, Y) 157.5±6.8 0.87 449.8

is compromised by the enhancement of safety constraints. Besides, we introduce two new metrics
regarding boundary feasibility, Feasible Rate and Average Feasible Steps. Feasible Rate is the ratio
of trajectories that boundary feasibility in Definition 2.1 is achieved, i.e., the boundary output falls
into the safe set and will not go out of it by the end of a single trajectory with finite steps. Aver-
age Feasible Steps is the mean steps among boundary feasible trajectories in which the boundary
output is consistently kept in the safe set until the end of the trajectory, characterizing how long the
boundary feasibility is achieved and maintained.

4.2 RESULTS COMPARISON

1D Hyperbolic (transport) PDE. Table 1 shows the results from different model-free RL con-
trollers without and with safety filtering under time-independent BCBF ϕ(Y) and time-dependent
BCBF ϕ(t, Y). Both PPO and SAC with filtering outperform the vanilla PPO and SAC in feasible
rate and average feasible steps, validating the effectiveness of the proposed safety filtering method.
Specifically, PPO with filtering of ϕ(t, Y) presents the highest feasible rate and largest average fea-
sible steps, showing that time-dependent BCBF can distinguish the feasibility of the PDE boundary
state more effectively by explicitly taking time as an input compared to the time-independent one.
Regarding the reward comparison, the safety filtering of the PPO model with ϕ(Y) and ϕ(t, Y) re-
sults in a higher reward than the PPO baseline. This is because the safety constraint Y < 1 can be
aligned with the task of stabilization Y → 0, i.e., a safer trajectory can come with a higher reward.
However, safety filtering for SAC models compromises the stabilization performance with lower
reward, due to the conflicted constraint satisfaction Y < 0 and stabilization goal to 0.

1D Parabolic (reaction-diffusion) PDE. As shown in Table 2, since the boundary feasibility
constraint Y < 0.6 or Y > −0.26 is not conflict with the stabilization goal Y → 0, the safety
filtering can also boost the reward metric compared to the vanilla PPO and SAC. Feasible rate for
PPO with ϕ(t, Y) filtering is the highest but its average feasible step is lower than ϕ(Y) filtering,
because time-independent BCBF ϕ(Y) tends to have divergent performance with more non-feasible
trajectories and more feasible steps for feasible trajectories. However, with SAC models, time-
independent BCBF ϕ(Y) works the best in all metrics because of the lower variance of the baseline
SAC model and consistent trajectory pattern, making boundary feasibility less related to time and
easier to learn without explicitly incorporating t into BCBF. In this case, it is more challenging to
learn ϕ(t, Y) with larger data complexity, resulting in sightly worse performance than ϕ(Y).

2D Navier-Stokes PDE. From Table 3, we can see that compared to the vanilla PPO and SAC,
the results of safety filtering with time-dependent BCBF ϕ(t, Y) are better in the metrics of feasible

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Results comparison under nonlinear 2D Navier–Stokes equation among 100 episodes. The
boundary feasibility constraint is |Y − Ygt| < 0.145 for PPO and SAC models.

Models w/o and w. filtering Reward (mean±std)
(starting at ∼-100)

Feasible Rate
(100 episodes)

Average Feasible Steps
(200 control steps)

PPO Bhan et al. (2024) -5.37±0.01 0.86 2.0
PPO with filtering of ϕ(Y) -5.37±0.01 0.86 2.2

PPO with filtering of ϕ(t, Y) -5.72±0.17 0.99 32.0
SAC Bhan et al. (2024) -18.05±1.13 0.80 17.5

SAC with filtering of ϕ(Y) -18.05±1.14 0.79 17.8
SAC with filtering of ϕ(t, Y) -18.36±1.25 0.85 21.3

0 0.5 2 5 10
Filtering Threshold

100

0

100

200

300

Re
wa

rd

Reward and Feasible Steps with BCBF (Y)

0

5

10

15

20

Av
er

ag
e

Fe
as

ib
le

 S
te

ps

Reward
Average Feasible Steps

0 0.5 2 5 10
Filtering Threshold

100

0

100

200

300

Re
wa

rd

Reward and Feasible Steps with BCBF (t, Y)

0

5

10

15

20

Av
er

ag
e

Fe
as

ib
le

 S
te

ps

Reward
Average Feasible Steps

Figure 2: The reward and feasible rate under different filtering threshold η in Equation (14) with
BCBF ϕ(Y) (left) and ϕ(t, Y) (right) for PPO model in hyperbolic equation. Note that η = 0
indicates the vanilla PPO model without safety filtering.

rate and average feasible steps, while the rewards after filtering get compromised. The reason lies
in that the relaxed safe set |Y − Ygt| < 0.145 only enforces constraint over a specific high-speed
boundary instead of the whole 2D plane, which is used to calculate the reward. Regarding the
filtering with different types of BCBFs, ϕ(Y) has limited improvement over the baseline models but
time-dependent one ϕ(t, Y) shows significant superiority over feasible rate and steps, especially for
the PPO model. This implies that BCBF ϕ(t, Y) does better in capturing complicated feasibility
over the marginally observed PDE state that only depends on time in high-dimensional cases.

4.3 ABLATION STUDY AND DISCUSSION

Influence of filtering threshold. In this section, we investigate the influence of filtering thresh-
old η in Equation (14) to show the trade-off between general performance and boundary feasibility.
From Figure 2, it can be seen that as the threshold goes up, the reward first slightly increases and
then drops significantly, showing that the strong safety filtering may hurt the stability of the PPO
controller due to the model mismatch between direct boundary mapping with the neural operator
and underlying PDE dynamics. Besides, with a larger filtering threshold η, the average feasible
steps become larger as the safety filtering becomes stronger, especially for time-dependent BCBF
ϕ(t, Y), guaranteeing constraint satisfaction over boundary output. With small η, the average fea-
sible steps may be less than the one without filtering because of more feasible trajectories with
last-step feasibility. More details can be found in Appendix B.2.

Comparison of asymptotic and finite-time boundary feasibility. In Table 4, we show the com-
parison of safety filtering with BCBF ϕ(t, Y) for 1D hyperbolic equation for asymptotic and finite-
time boundary feasibility. Asymptotic boundary feasibility is with the neural BCBF trained and
tested with Cα,T = limT→∞

α
eαT−1

= 0 while finite-time boundary feasibility is with Cα,T = 0.02
using T = 50. It can be seen that BCBF with finite-time feasibility has a better feasible rate, es-
pecially the SAC model, as asymptotic feasibility is weaker than finite-time feasibility and takes
longer steps to converge. However, for general performance of reward, since asymptotic feasibility
causes weaker filtering effects, the reward tends to be closer to the vanilla reward without filtering
in Table 1 compared to finite-time feasibility, which is validated in Table 4.

Boundary mapping with different neural operators. Here we compare two neural operators,
FNO Li et al. (2020a) and MNO Li et al. (2022), for learning the boundary mapping from control
input U(t) to output Y (t) for 1D hyperbolic equation in Table 5. With the same time-dependent

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Results of filtering with BCBF ϕ(t, Y) for 1D hyperbolic equation for asymptotic Cα,T =
limT→∞

α
eαT−1

= 0 and finite-time Cα,T = α
eαT−1

= 0.02 at T = 50, α = 10−5.

Different neural operators Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
(50 control steps)

PPO for asymptotic feasibility 163.8±40.6 0.70 8.1
PPO for finite-time feasibility 165.0±43.7 0.71 9.8
SAC for asymptotic feasibility 104.6±98.6 0.56 14.7
SAC for finite-time feasibility 103.4±96.4 0.85 13.9

Table 5: Filtering with BCBF ϕ(t, Y) under different neural operators for 1D hyperbolic equation.

Different neural operators Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
(50 control steps)

PPO w. MNO Li et al. (2022) 163.8±47.2 0.78 9.0
PPO w. FNO Li et al. (2020a) 165.0±43.7 0.71 9.8
SAC w. MNO Li et al. (2022) 103.3±96.4 0.84 14.7
SAC w. FNO Li et al. (2020a) 103.4±96.4 0.85 13.9

BCBF ϕ(t, Y), the safety filtering with FNO presents higher rewards under both PPO and SAC base
models, showing that FNO is more suitable for learning low-resolution trajectories with 50 sampled
points. Besides, MNO shows better feasible rate and average feasible steps performance, especially
with SAC as the base model, since the MNO model has a larger model complexity.

Qualitative visualization. In this section, we visualize and compare multiple trajectories under
1D hyperbolic equation using PPO controller without and with safety filtering of ϕ(t, Y), as shown
in Figure 3. We can see that for each trajectory, the state value u(x, t) after filtering is lower than
that before filtering. More specifically, as time goes by, the filtered control input U(t)safe in blue
dashed lines deviates more away from nominal control input U(t)nominal in red dashed lines, causing
the filtered boundary output Y (t)safe in blue solid lines to satisfy the constraint Y (t) < 1 compared
to the nominal boundary output Y (t)nominal in red solid lines.

5 RELATED WORK

Control for PDE Dynamics. PDE control problems can be in-domain control Botteghi & Fasel
(2024); Zhang et al. (2024b) or boundary control Krstic & Smyshlyaev (2008b); Smyshlyaev &
Krstic (2010), where the latter is more commonly-seen setting in the real world. As it has been
studied for over a decade, backstepping has become a dominant approach for boundary control
with known PDE dynamics Krstic & Smyshlyaev (2008a); Smyshlyaev & Krstic (2004). Recently,
learning-based controllers have gotten rid of the requirement of analytical form of unstable PDE
dynamics and become a promising solution to the PDE control problems Botteghi & Fasel (2024);
Zhang et al. (2024b); Krstic et al. (2024); Qi et al. (2023); Mowlavi & Nabi (2023). However,
regarding the safety of constraint satisfaction in the PDE dynamics, current backstepping-based safe
PDE control methods (Krstic & Bement, 2006; Li & Krstic, 2020; Koga & Krstic, 2023; Wang &
Krstic, 2023) still assume the non-stable PDE dynamics is known. Therefore, we focus on data-
driven methods for PDE safe control without any prior knowledge of PDE dynamics.

Safe Control with Neural Certificate For the control of the ODE dynamical system, there is
rich literature regarding learning-based controllers with safety guarantees or certificates Boffi et al.
(2021); Dawson et al. (2023); Xiao et al. (2023); Lindemann et al. (2021); Chang et al. (2019);
Mazouz et al. (2022). Neural networks have been used to parameterize the CBFs under complex
dynamics with bounded control inputs Liu et al. (2022); So et al. (2023); Zinage et al. (2023);
Dawson et al. (2022); Dai et al. (2022), which result in forward invariance of the user-specified safe
set to guarantee the safety with neural certificate for learning-based controllers Choi et al. (2021);
Wei et al. (2022); Agrawal & Panagou (2021); Xiao et al. (2022); Hsu et al. (2023), i.e. once the
states enter the safe set, they will never go out. However, forward invariance may not hold in the
PDE boundary control setting with commonly-seen highly oscillating trajectories. For example,
highly-oscillating trajectories may go out of the safe set during the early oscillation and break the
forward invariance defined by conventional ODE CBFs Liu & Tomizuka (2014); Ames et al. (2014),

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Visualization of three state trajectories u(x, t) (left, mid, right) for hyperbolic equation
under PPO controller with and without safety filtering. Boundary control inputs U(t) are in dashed
lines and boundary output Y (t) are in solid lines. The boundary constraint Y (t) < 1 is in green.

but they could still converge to the constraint satisfaction by the end of time. Therefore, we focus on
boundary feasibility, a new notion introduced in this paper. Approach-wise, the CBF-QP for ODE
dynamics Liu & Tomizuka (2014); Lindemann & Dimarogonas (2018); Xiao et al. (2021); Garg
& Panagou (2021b) does not apply. That is because PDE boundary control does not have Markov
property at each control step, due to the infinite-dimensional unobserved non-boundary states. We
adopt a neural operator to model the trajectory-to-trajectory mapping and control the change of input
boundary through a novel QP formulation.

Neural Operator Learning for PDEs. Neural operator learning has become as a powerful tool for
solving PDEs by learning mappings between function spaces rather than pointwise approximations
Kovachki et al. (2023); Brunton & Kutz (2024). Recent research has demonstrated the utility of
neural operators in multiple science and engineering fields like fluid dynamics, weather forecasting,
and robotics Kochkov et al. (2021); Pathak et al. (2022); Heiden et al. (2021); Raissi et al. (2019).
There exist multiple architectures for neural operators based on different mathematical properties
of data. Lu et al. (2021) introduces DeepONet with a branch and a trunk network, and NOMAD
Seidman et al. (2022) adopts nonlinear decoder map to learn submanifolds in function spaces, while
Green’s function-inspired neural operators Li et al. (2020a;b;c; 2022; 2024) adopt linear integral
kernel representation with various kernel implementations. However, for the PDE boundary control
problem, current works Bhan et al. (2023); Krstic et al. (2024) only adopt neural operators to learn
the integral kernel in backstepping, which does not release the full potential of neural operator for
characterizing and controlling unknown dynamics. The proposed work is the first to leverage neural
operators to learn the direct mapping from control input to boundary output as a transfer function.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce a novel safe PDE boundary control framework using safety filtering with
neural certification. First, BCBF and neural operator are learned from collected PDE boundary input
and output trajectories within a given safe set. Then boundary feasibility is guaranteed by filtering
the unsafe boundary conditions using the BCBF. we show that the change in the BCBF depends
linearly on the change in input boundary, hence the filtering can be done by solving a quadratic
programming problem. Experiments on three challenging PDE control environments validate the
effectiveness of the proposed method in terms of both general performance and constraint satisfac-
tion. One limitation of the work is that our work does not consider complicated boundary constraint
settings and safe sets. Model mismatch between underlying PDE and neural operator is also an
important but unexplored topic, which is marked as future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Devansh R Agrawal and Dimitra Panagou. Safe control synthesis via input constrained control
barrier functions. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 6113–
6118. IEEE, 2021.

Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based quadratic
programs with application to adaptive cruise control. In 53rd IEEE conference on decision and
control, pp. 6271–6278. IEEE, 2014.

Luke Bhan, Yuanyuan Shi, and Miroslav Krstic. Neural operators for bypassing gain and control
computations in pde backstepping. IEEE Transactions on Automatic Control, 2023.

Luke Bhan, Yuexin Bian, Miroslav Krstic, and Yuanyuan Shi. Pde control gym: A benchmark
for data-driven boundary control of partial differential equations. In 6th Annual Learning for
Dynamics & Control Conference. PMLR, 2024.

Nicholas Boffi, Stephen Tu, Nikolai Matni, Jean-Jacques Slotine, and Vikas Sindhwani. Learning
stability certificates from data. In Conference on Robot Learning, pp. 1341–1350. PMLR, 2021.

Nicolò Botteghi and Urban Fasel. Parametric pde control with deep reinforcement learning and
differentiable l0-sparse polynomial policies. arXiv preprint arXiv:2403.15267, 2024.

Steven L Brunton and J Nathan Kutz. Promising directions of machine learning for partial differen-
tial equations. Nature Computational Science, 4(7):483–494, 2024.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural infor-
mation processing systems, 32, 2019.

Jason J Choi, Donggun Lee, Koushil Sreenath, Claire J Tomlin, and Sylvia L Herbert. Robust control
barrier–value functions for safety-critical control. In 2021 60th IEEE Conference on Decision and
Control (CDC), pp. 6814–6821. IEEE, 2021.

Bolun Dai, Prashanth Krishnamurthy, and Farshad Khorrami. Learning a better control barrier
function. In 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 945–950. IEEE,
2022.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In Conference on Robot Learning, pp. 1724–1735. PMLR,
2022.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of
neural lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on
Robotics, 2023.

Richard M Dudley, Rimas Norvaiša, and Rimas Norvaiša. Concrete functional calculus. Springer,
2011.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
1998.

Kunal Garg and Dimitra Panagou. Characterization of domain of fixed-time stability under control
input constraints. In 2021 American Control Conference (ACC), pp. 2272–2277. IEEE, 2021a.

Kunal Garg and Dimitra Panagou. Robust control barrier and control lyapunov functions with fixed-
time convergence guarantees. In 2021 American Control Conference (ACC), pp. 2292–2297.
IEEE, 2021b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S Sukhatme. Neuralsim:
Augmenting differentiable simulators with neural networks. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 9474–9481. IEEE, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kai-Chieh Hsu, Haimin Hu, and Jaime F Fisac. The safety filter: A unified view of safety-critical
control in autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems,
7, 2023.

Hanjiang Hu, Yujie Yang, Tianhao Wei, and Changliu Liu. Verification of neural control barrier
functions with symbolic derivative bounds propagation. In 8th Annual Conference on Robot
Learning, 2024.

IBM. Ibm ilog cplex optimization studio. URL https://www.ibm.com/products/
ilog-cplex-optimization-studio.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Shumon Koga and Miroslav Krstic. Safe pde backstepping qp control with high relative degree
cbfs: Stefan model with actuator dynamics. IEEE Transactions on Automatic Control, 68(12):
7195–7208, 2023.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Miroslav Krstic and Matt Bement. Nonovershooting control of strict-feedback nonlinear systems.
IEEE Transactions on Automatic Control, 51(12):1938–1943, 2006.

Miroslav Krstic and Andrey Smyshlyaev. Backstepping boundary control for first-order hyperbolic
pdes and application to systems with actuator and sensor delays. Systems & Control Letters, 57
(9):750–758, 2008a.

Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs: A course on backstepping
designs. SIAM, 2008b.

Miroslav Krstic, Luke Bhan, and Yuanyuan Shi. Neural operators of backstepping controller and
observer gain functions for reaction–diffusion pdes. Automatica, 164:111649, 2024.

Wuquan Li and Miroslav Krstic. Mean-nonovershooting control of stochastic nonlinear systems.
IEEE Transactions on Automatic Control, 66(12):5756–5771, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020c.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics
in chaotic systems. In Proceedings of the 36th International Conference on Neural Information
Processing Systems, pp. 16768–16781, 2022.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

Lars Lindemann and Dimos V Dimarogonas. Control barrier functions for signal temporal logic
tasks. IEEE control systems letters, 3(1):96–101, 2018.

12

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lars Lindemann, Haimin Hu, Alexander Robey, Hanwen Zhang, Dimos Dimarogonas, Stephen Tu,
and Nikolai Matni. Learning hybrid control barrier functions from data. In Conference on Robot
Learning, pp. 1351–1370. PMLR, 2021.

Changliu Liu and Masayoshi Tomizuka. Control in a safe set: Addressing safety in human-robot
interactions. In Dynamic Systems and Control Conference, volume 46209, pp. V003T42A003.
American Society of Mechanical Engineers, 2014.

Simin Liu, Changliu Liu, and John Dolan. Safe control under input limits with neural control barrier
functions. In Conference on Robot Learning, pp. 1970–1980. PMLR, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Rayan Mazouz, Karan Muvvala, Akash Ratheesh Babu, Luca Laurenti, and Morteza Lahijanian.
Safety guarantees for neural network dynamic systems via stochastic barrier functions. Advances
in Neural Information Processing Systems, 35:9672–9686, 2022.

Saviz Mowlavi and Saleh Nabi. Optimal control of pdes using physics-informed neural networks.
Journal of Computational Physics, 473:111731, 2023.

NeuralOperators.jl. Neuraloperators. URL https://github.com/SciML/
NeuralOperators.jl.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Lawrence Perko. Differential equations and dynamical systems, volume 7. Springer Science &
Business Media, 1996.

Andrey Polyakov. Nonlinear feedback design for fixed-time stabilization of linear control systems.
IEEE transactions on Automatic Control, 57(8):2106–2110, 2011.

Lorenz Pyta, Michael Herty, and Dirk Abel. Optimal feedback control of the incompressible navier-
stokes-equations using reduced order models. In 2015 54th IEEE Conference on Decision and
Control (CDC), pp. 2519–2524. IEEE, 2015.

Jie Qi, Jing Zhang, and Miroslav Krstic. Neural operators for delay-compensating control of hyper-
bolic pides. Available at SSRN 4543896, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning control barrier functions from expert demonstrations. In 2020
59th IEEE Conference on Decision and Control (CDC), pp. 3717–3724. IEEE, 2020.

Esteban Samaniego, Cosmin Anitescu, Somdatta Goswami, Vien Minh Nguyen-Thanh, Hongwei
Guo, Khader Hamdia, Xiaoying Zhuang, and Timon Rabczuk. An energy approach to the solu-
tion of partial differential equations in computational mechanics via machine learning: Concepts,
implementation and applications. Computer Methods in Applied Mechanics and Engineering,
362:112790, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jacob Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. Nomad: Nonlinear man-
ifold decoders for operator learning. Advances in Neural Information Processing Systems, 35:
5601–5613, 2022.

13

https://github.com/SciML/NeuralOperators.jl
https://github.com/SciML/NeuralOperators.jl

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andrey Smyshlyaev and Miroslav Krstic. Closed-form boundary state feedbacks for a class of
1-d partial integro-differential equations. IEEE Transactions on Automatic control, 49(12):2185–
2202, 2004.

Andrey Smyshlyaev and Miroslav Krstic. Adaptive control of parabolic PDEs. Princeton University
Press, 2010.

Oswin So, Zachary Serlin, Makai Mann, Jake Gonzales, Kwesi Rutledge, Nicholas Roy, and Chuchu
Fan. How to train your neural control barrier function: Learning safety filters for complex input-
constrained systems. arXiv preprint arXiv:2310.15478, 2023.

Ji Wang and Miroslav Krstic. Safe adaptive control of hyperbolic pde-ode cascades. arXiv preprint
arXiv:2309.05596, 2023.

Tianhao Wei, Shucheng Kang, Weiye Zhao, and Changliu Liu. Persistently feasible robust safe
control by safety index synthesis and convex semi-infinite programming. IEEE Control Systems
Letters, 7:1213–1218, 2022.

Wei Xiao, Calin A Belta, and Christos G Cassandras. High order control lyapunov-barrier functions
for temporal logic specifications. In 2021 American Control Conference (ACC), pp. 4886–4891.
IEEE, 2021.

Wei Xiao, Calin A Belta, and Christos G Cassandras. Sufficient conditions for feasibility of optimal
control problems using control barrier functions. Automatica, 135:109960, 2022.

Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Makram Chahine, Alexander Amini, Xiao Li, and
Daniela Rus. Barriernet: Differentiable control barrier functions for learning of safe robot control.
IEEE Transactions on Robotics, 2023.

Rose Yu and Rui Wang. Learning dynamical systems from data: An introduction to physics-guided
deep learning. Proceedings of the National Academy of Sciences, 121(27):e2311808121, 2024.

Hongchao Zhang, Wu Junlin, Vorobeychik Yevgeniy, and Andrew Clark. Exact verification of reLU
neural control barrier functions. In Advances in neural information processing systems, 2023.

Xiangyuan Zhang, Weichao Mao, Saviz Mowlavi, Mouhacine Benosman, and Tamer Başar. Con-
trolgym: Large-scale control environments for benchmarking reinforcement learning algorithms.
In 6th Annual Learning for Dynamics & Control Conference, pp. 181–196. PMLR, 2024a.

Xiangyuan Zhang, Saviz Mowlavi, Mouhacine Benosman, and Tamer Başar. Policy optimization
for pde control with a warm start. arXiv preprint arXiv:2403.01005, 2024b.

Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu. Synthesizing barrier certificates using
neural networks. In Proceedings of the 23rd international conference on hybrid systems: Com-
putation and control, pp. 1–11, 2020.

Vrushabh Zinage, Rohan Chandra, and Efstathios Bakolas. Neural differentiable integral con-
trol barrier functions for unknown nonlinear systems with input constraints. arXiv preprint
arXiv:2312.07345, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PRELIMINARY

Definition A.1 (Boundary Feasibility for Trajectory-wise Finite-time Constraint Satisfaction). With
state u(x, t) subjected to closed-loop PDE dynamics in Equation (1) with the boundary control
input U(t), the boundary control output Y (t) is defined to be feasible over T within the given
user-specified safe set S0 ∈ S if the following holds,

∃t0 ∈ T ,∀t0 ≤ t ≤ T, Y (t) := u(0, t) ∈ S0, where u(1, t) = U(t), u(x, 0) ≡ U(0). (15)

Definition A.2 (Neural operator for input-output boundary mapping, reformulated from Sec-
tion 3.2). Neural operator Gθ : {U : T → S} 7→ {Y : T → S} can be formalized as

Y (t) = Gθ(U)(t) = Q(vL(t)), v0(t) = P (U(t)), where each layer vl(t) is (16)

vl+1(t) = Il(vl)(t) = σl+1

(
Wlvl(t) +

∫
T
κ(l)(t, s)vl(s)ds+ bl(t)

)
, l = 0, 1, . . . , L− 1 (17)

where σl+1 : Rdvl+1 → Rdvl+1 is the activation function, Wl ∈ Rdvl+1
×dvl is the local linear

operator, P ∈ Rv0×dim(S) and Q ∈ Rdim(S)×vL are lifting and projection matrix, κ(l) ∈ C(T ×
T ;Rdvl+1

×dvl) is the kernel function for integration, and bl ∈ C(T ;Rdvl+1) is the bias function.
And P,Q,Wl, κ

(l), bl, l = 0, 1, . . . , L− 1 are parameterized with neural networks θ.

A.2 PROOF OF THEOREM 3.1

Theorem A.1 (Boundary Feasibility with Boundary Control Barrier Function). For the state u(x, t)
from the closed-loop PDE dynamics with boundary control input U(t) = u(1, t), u(x, 0) ≡ U0, the
boundary feasibility of boundary output Y (t) = u(0, t) over T = [0, T] within user-specified safe
set S0 is guaranteed with neural BCBF ϕ(t, Y) if the following holds ∀t ∈ T

(Sϕ,t := {Y | ϕ(t, Y) ≤ 0} ⊆ S0)
∧(

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y) + Cα,Tϕ(0, U0) ≤ 0

)
(18)

where Cα,T := α
eαT−1

> 0 is a constant for finite-time convergence. Similarly, the boundary
feasibility with neural BCBF ϕ(Y) holds if Equation (3) holds by letting ∂Y ϕ = ∇Y ϕ, ∂tϕ = 0.

Proof. To show the boundary feasibility of the boundary output of Y (t) within user-specified safe
set S0, by Definition A.1, we need to show

∃t0 ∈ [0, T], s.t.∀t ∈ [t0, T], Y (t) ∈ S0. (19)

With the sublevel set Sϕ,t being the subset of S0, i.e., Sϕ,t := {Y | ϕ(t, Y) ≤ 0} ⊆ S0, it is
sufficient to prove

∃t0 ∈ [0, T], s.t.∀t ∈ [t0, T], ϕ(t, Y (t)) ≤ 0. (20)

Now denote ψ(t) := ϕ(t, Y (t)), by initial constant boundary condition Y (0) = u(0, 0) = u(1, 0) =
U0, we have the following equivalent inequalities hold,

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y) + Cα,Tϕ(0, Y (0)) ≤ 0 (21)

⇐⇒ dϕ(t, Y (t))

dt
+ αϕ(t, Y) + Cα,Tϕ(0, Y (0)) ≤ 0 (22)

⇐⇒ dψ(t)

dt
+ αψ(t) + Cα,Tψ(0) ≤ 0 (23)

⇐⇒ eαt
dψ(t)

dt
+ eαtαψ(t) + eαtCα,Tψ(0) ≤ 0,∀t ∈ [0, T] (24)

⇐⇒
d(eαtψ(t) +

Cα,Tψ(0)
α eαt)

dt
≤ 0 (25)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

So we have the function eαtψ(t) + Cα,Tψ(0)
α eαt be non-increasing over t ∈ [0, T]. By T > 0, we

have

[eαtψ(t) +
Cα,Tψ(0)

α
eαt]|t=T < [eαtψ(t) +

Cα,Tψ(0)

α
eαt]|t=0 (26)

⇐⇒ eαTψ(T) +
eαT

eαT − 1
ψ(0) < ψ(0) +

1

eαT − 1
ψ(0) (27)

⇐⇒ eαTψ(T) < 0 (28)
⇐⇒ ψ(T) < 0 (29)

⇐⇒ ϕ(T, Y (T)) < 0 (30)
So at least at t0 = T , ϕ(t0, Y (t0)) < 0, which proves Equation (20) holds and the origi-
nal theorem has been proved. Furthermore, let us look at the boundary feasible steps. Since
eαtψ(t) +

Cα,Tψ(0)
α eαt = eαt(ψ(t) +

Cα,Tψ(0)
α) is non-increasing, with the strictly increasing and

positive eαt, it is easy to find function ψ(t) + Cα,Tψ(0)
α being non-increasing, i.e. ψ(t) is non-

increasing. Therefore, if U0 ≤ 0, ϕ(t, Y (t)) < ϕ(0, Y (0)) = U0 < 0,∀t ∈ [0, T]. If U0 > 0, since
MLP-ReLU parameterized neural BCBF ϕ and boundary control output Y are continuous, by mean
value theorem, we have

ϕ(0, Y (0)) > 0, ϕ(T, Y (T)) < 0⇒ ∃t0 ∈ [0, T], ϕ(t0, Y (t0)) = 0. (31)
Since ψ(t) = ϕ(t, Y (t)) is non-increasing, we have

∃t0 ∈ [0, T], s.t.∀t ∈ [t0, T], ϕ(t, Y (t)) ≤ 0, (32)
which concludes the proof.

A.3 PROOF OF THEOREM 3.2

Theorem A.2 (Boundary Feasibility with Neural Operator). Assuming the neural operator Gθ as
an exact map from boundary input U(t) to output Y (t) for an unknown closed-loop PDE dynam-
ics without model mismatch, the boundary control input U(t) is guaranteed to induce boundary
feasibility of output Y (t) over T = [0, T] within the sublevel set of neural BCBF ϕ if U(t) satisfies

∂Y ϕ(t,Gθ(U))
dGθ(U)(t)

dt
+ ∂tϕ(t,Gθ(U)) + αϕ(t,Gθ(U)) + Cα,Tϕ(0, U(0)) ≤ 0,∀t ∈ T (33)

where Cα,T = α
eαT−1

, and dGθ(U)(t)
dt can be found below with

∏0
1(·) := 1,

dGθ(U)(t)

dt
= ∇Q⊤

L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤ dU(t)

dt
+∇Q⊤Diag(σ′

L)

L−1∑
i=0

[i∏
j=1

WL−j

Diag(σ′
L−j)

](∫
T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

))
= Λθ(t)U̇(t) + µθ(t) (34)

Proof. To show the boundary feasibility over sublevel set of ϕ hold, we first want to show Equa-
tion (34) holds. According to Definition A.2, we first rewrite the neural operator as
Y (t) = Gθ(U)(t) = Q(vL(t)), v0(t) = P (U(t)), where each layer vl(t) is

vl+1(t) = Il(vl)(t) = σl+1

(
Wlvl(t) +

∫
T
κ(l)(t, s)vl(s)ds+ bl(t)

)
, l = 0, 1, . . . , L− 1 (35)

where P,Q,Wl, κ
(l), bl, l = 0, 1, . . . , L − 1 are neural networks, kernel function κ(l), activation

function σl and bias function bl are first-order differential. Since the operator shares the same input
function domain and output function domain over t ∈ R+, applying chain rule to Equation (35), we
can find the derivative with respect to t for each layer as,
dY (t)

dt
= ∇Q⊤ dvL(t)

dt
,
v0(t)

dt
= ∇P⊤ dU(t)

dt
, for each derivative

dvl+1(t)

dt
l = L− 1, . . . , 0,

(36)

dvl+1(t)

dt
= Jl(

dvl
dt

)(t) = Diag(σ′
l+1)

(
Wl

dvl(t)

dt
+

∫
T

∂κ(l)(t, s)

∂t
vl(s)ds+

dbl(t)

dt

)
(37)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Now put Equation (37) into Equation (36) recursively, we have

dG(U)(t)

dt
= ∇Q⊤ dvL(t)

dt
(38)

=∇Q⊤Diag(σ′
L)WL−1

dvL−1(t)

dt
+∇Q⊤Diag(σ′

L)

(∫
T

∂κ(L−1)(t, s)

∂t
vL−1(s)ds+

dbL−1(t)

dt

)
(39)

=∇Q⊤Diag(σ′
L)WL−1Diag(σ′

L−1)WL−2
dvL−2(t)

dt
+∇Q⊤Diag(σ′

L)WL−1 · Diag(σ′
L−1)·(∫

T

∂κ(L−2)(t, s)

∂t
vL−2(s)ds+

dbL−2(t)

dt

)
+∇Q⊤Diag(σ′

L)(

∫
T

∂κ(L−1)(t, s)

∂t
vL−1(s)ds

+
dbL−1(t)

dt
) (40)

= . . . (recursively apply Equation (37))

=∇Q⊤Diag(σ′
L)WL−1 . . .Diag(σ′

1)W0
dv0(t)

dt
+∇Q⊤Diag(σ′

L)WL−1Diag(σ′
L−1) · · ·W1

Diag(σ′
1)

(∫
T

∂κ(0)(t, s)

∂t
v0(s)ds+

db0(t)

dt

)
+ · · ·+∇Q⊤Diag(σ′

L)WL−1 · Diag(σ′
L−1)·(∫

T

∂κ(L−2)(t, s)

∂t
vL−2(s)ds+

dbL−2(t)

dt

)
+∇Q⊤Diag(σ′

L)(

∫
T

∂κ(L−1)(t, s)

∂t
vL−1(s)ds

dbL−1(t)

dt
) (41)

=∇Q⊤
L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤ dU(t)

dt
+∇Q⊤Diag(σ′

L)

L−1∑
i=0

[i∏
j=1

WL−jDiag(σ′
L−j)

]
·

(∫
T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

))
(42)

Note that the final expression in Equation (42) is actually linear with respect to U̇(t) and the weight
and bias terms only depend on the parameters of the neural operator θ and the values at time t.
Denote the linear weight and bias as Λθ(t), µθ(t)

Λθ(t) := ∇Q⊤
L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤, µθ(t) := ∇Q⊤Diag(σ′

L)· (43)

L−1∑
i=0

[i∏
j=1

WL−jDiag(σ′
L−j)

]
·
(∫

T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

) , (44)

then we have
dY (t)

dt
=
dG(U)(t)

dt
= Λθ(t)U̇(t) + µθ(t).

Since Y (t) = G(U)(t), Equation (33) is equivalent to

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y) + Cα,Tϕ(0, U(0)) ≤ 0.

Similar to the proof of Theorem A.1, we have

∃t0 ∈ [0, T], s.t.∀t ∈ [t0, T], ϕ(t, Y (t)) ≤ 0, (45)

which concludes the proof of boundary feasibility over the sublevel set of ϕ.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Comparison of before QP and after QP filtering with different thresholds using ϕ(Y) and
ϕ(t, Y) for PPO model under hyperbolic equation.

Filtering with ϕ(Y) Reward (mean±std) Feasible Rate Average Feasible Steps

Before QP (baseline) 157.90±37.46 0.63 7.56

After QP with threshold 0.5 158.45±37.82 0.65 7.49

After QP with threshold 2 162.26±44.53 0.63 8.49

After QP with threshold 5 114.40±83.25 0.67 11.01

After QP with threshold 10 27.28±57.62 0.57 11.30

Filtering with ϕ(t, Y) Reward (mean±std) Feasible Rate Average Feasible Steps

Before QP (baseline) 157.90±37.46 0.63 7.56

After QP with threshold 0.5 158.60±37.76 0.68 7.19

After QP with threshold 2 165.04±43.73 0.71 9.80

After QP with threshold 5 127.18±82.67 0.73 12.60

After QP with threshold 10 28.61±64.03 0.57 13.74

B EXPERIMENT DETAILS

B.1 EXPERIMENT SETTING

Data preparation. We train the RL models PPO and SAC following the default hyper-parameters
and unstable PDE settings Bhan et al. (2024) for hyperbolic and parabolic equations, while directly
adopting the pre-trained models under default Navier-Stokes equation Bhan et al. (2024). For the
data collection in the 1D hyperbolic equation, we evaluate the backstepping-based model Krstic
& Smyshlyaev (2008a), PPO and SAC models with random initial conditions U0 ∈ [1, 10] and
collect 50k pairs of input and output u(1, t), u(0, t) trajectories for each model. Similarly, for the
1D parabolic equation, we evaluate the backstepping-based model Smyshlyaev & Krstic (2004),
PPO and SAC models with random initial conditions U0 ∈ [1, 10] and collect 50k pairs of input and
output u(1, t), u(0.5, t) trajectories for each model. For the Navier-Stokes equation, we evaluate
the model-based optimization method Pyta et al. (2015), PPO and SAC models with random initial
conditions u0 ∈ [−0.1, 0.1] and default tracking ground truth and collect 10k pairs of input and
output u(0.05, 1, t), u(0.5, 0.95, t) trajectories for each model. After the data pairs are collected, we
annotate the safety label with pre-defined safe constraints based on the original performance of each
policy: for the hyperbolic equation, Y < 1 for PPO and Y < 0 for SAC; for the parabolic equation,
Y < 0.6 for PPO and Y > −0.26 for SAC; for the Navier-Stokes equation, |Y − Ygt| < 0.145 for
PPO and SAC models. Then we randomly split 90% as a training dataset and leave others as a test
set.

Model training. To train the neural operator models, we adopt the public package NeuralOpera-
tors.jl, using the default gelu-activation model of FNO with channels of (2, 64, 64, 64, 64, 64, 128, 1)
and 16 modes, MNO with channels of (2, 64, 64, 64, 64, 64, 1) and 16 modes. All the models are
trained for 100 epochs with learning rate 10−3, ℓ-2 regularization weight is 10−4, ADAM optimizer
and ℓ-2 loss. The resolutions and scales of hyperbolic, parabolic, and Navier-Stokes trajectories are
50, 1000, and 200 for 5s, 1s, and 0.2s, respectively. We keep the same setting for different envi-
ronments and remark that we do not fully exploit the potential for the best performance of neural
operators since it is not the main focus of this work. For the neural BCBF training, we directly use
the finite difference of Y (t) collected from real PDE dynamics instead of the gradient of the neural
operator to avoid noise. Following the implementation of Dawson et al. (2022); Zhang et al. (2023);
Hu et al. (2024), we adopt 4-layer MLPs with ReLU with layer dimensions of (16,64,16,1) to model
neural BCBFs. The time t is concatenated with Y (t) as input for time-dependent neural BCBF
ϕ(t, Y) while only Y (t) is input for time-independent neural BCBF ϕ(t, Y). To construct the safe

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Results of filtering with BCBF ϕ(Y) under different neural operator modeling for first-
order transport equation. The boundary feasibility constraint is Y < 1 for PPO and Y < 0 for SAC
models.

Filtering with different BCBFs Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
(50 control steps)

PPO w. MNO 162.9±45.2 0.68 8.7
PPO w. FNO 162.3±44.5 0.63 8.3

SAC w. MNO 103.2±98.3 0.59 15.4
SAC w. FNO 103.3±98.4 0.57 15.7

set loss in Equation (4), we adopt all the sampled steps along trajectories with unsafe labels while
only choosing the ”latest” safe sampled steps where boundary feasibility is satisfied in Definition
2.1, i.e. once Y (t) is with safe label, it will never become unsafe in finite time T . For the boundary
feasibility loss in Equation (7), due to too much data close to 0, we adopt randomly drop close-0
data to balance the output boundary data distribution. Specifically, for the hyperbolic equation, we
keep 20% data within [-0.1,0.1] while keeping 20% data within [-0.01,0.01] for the parabolic equa-
tion. Following Liu et al. (2022), we adopt regularization loss to avoid the shrinking of the sublevel
set during training with a default weight of 1. We train all models with ADAM for 20 epochs with
an initial learning rate of 0.01. The learning rate decay rate is 0.2 after each 4 epoch. The code is
zipped as the supplementary material.

B.2 ADDITIONAL RESULTS

Quantitative results under different filtering thresholds. As shown in Table 6, we can find the
reward and feasibility performance with filtering ϕ(Y) and ϕ(t, Y). The trend of reward changing
is similar to Figure 2, where with larger thresholds, the performance will first increase and then go
down. Safety filtering aligns with the stabilization to increase the reward, but the noise from the
model mismatch between the neural operator and real dynamics will make the performance collapse
if the safety filtering is too strong. For the boundary feasibility, we can see that the average feasible
steps keep going up as the threshold increases, showing that the finite-time convergence is more
enhanced for the feasible trajectories. However, when the threshold becomes too large, e.g. η = 10,
the feasible rate also decreases significantly because the system is no longer stable, as the reward
indicates.

More comparison with different operators. In this section, we show the comparison of two neu-
ral operators, FNO Li et al. (2020a) and MNO Li et al. (2022) for the safety filter performance with
ϕ(Y) in learning the boundary mapping from control input U(t) to output Y (t) for 1D hyperbolic
equation. Note that MNO models have larger model complexity than FNO models. Different from
Table 5, in Table 7, we can see that with weaker BCBF ϕ(Y), MNO performs no worse than FNO
in feasible rate and reward, showing that larger model complexity will compensate the performance
of BCBF in the safety filter framework.

More visualization of hyperbolic and Navier-Stokes equations. Here we visualize the trajecto-
ries under 1D hyperbolic equation using SAC controller without and with safety filtering of ϕ(t, Y),
as shown in Figure 4. Similar to 3, for each trajectory, the state value u(x, t) after filtering is lower
than that before filtering, i.e., the blue area is lower than the red area. For the output boundary, the
filtered one Y (t)safe in blue solid lines goes towards the constraint Y (t) < 0 compared to the nom-
inal boundary output Y (t)nominal in red solid lines, because of the output boundary. The difference
is not very large in the last two figures because the threshold is relatively small to keep the stability
of the output. As the visualization shows in Figure 5, it can be seen that the mid-upper high-speed
tracking performance is improved compared to the baseline without filtering due to the constraint
satisfaction. However, since the output boundary is just one point in the high-speed part, the general
performance after filtering is not improved significantly, which is consistent with the findings in
Table 3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of state u(x, t) of hyperbolic equation under SAC controller with (in blue)
and without (in red) filtering. Boundary control inputs U(t) are in dashed lines and boundary output
Y (t) are in solid lines. The boundary constraint Y (t) < 0 is in green.

Figure 5: Visualization of tracking performance with PPO and SAC models before and after filtering
with ϕ(t, Y) at the end time step of the trajectory for Navier-Stokes equation.

C LIMITATION AND DISCUSSION

Since the proposed method is based on neural operator modeling instead of real PDE dynamics, it
does not directly solve the problem of model mismatch which may hurt the safety filtering perfor-
mance in the implementation. We mark this important point as future work. Also, for PDE dynamics
with higher-dimensional states, it is future work to investigate how BCBF can deal with spatially-
dependent boundaries. Another limitation lies in that we do not adopt online safety filtering under
the real PDE dynamics due to the delay of QP, and it is promising to improve it by filtering-induce
policy which is found offline. It is also interesting to omit the iterative filtering by prediction using
the one-time filtering for the whole trajectory based on Equation (10), which owns challenges of the
nonlinear dependence of neural operator derivative at initial time.

20

	Introduction
	Problem Formulation
	Methodology
	Neural Barrier Function for PDE Boundary Control
	Learning Neural Operator for Input-output Boundary Mapping
	Safety Filtering with Quadratic Programming

	Experiment
	Experimental Setup
	Results Comparison
	Ablation Study and Discussion

	Related Work
	Conclusion and Future Work
	Proofs
	Preliminary
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Experiment Details
	Experiment Setting
	Additional Results

	Limitation and Discussion

