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ABSTRACT

The physical world dynamics are generally governed by underlying partial deriva-
tive equations (PDEs) with unknown analytical forms in science and engineering
problems. Neural network based data-driven approaches have been heavily stud-
ied in simulating and solving PDE problems in recent years, but it is still chal-
lenging to move forward from understanding to controlling the unknown PDE
dynamics. PDE boundary control instantiates a simplified but important problem
by only focusing on PDE boundary conditions as the control input and output.
However, current model-free PDE controllers cannot ensure the boundary output
satisfies some given user-specified safety constraint. To this end, we propose a
safety filtering framework to guarantee the boundary output stays within the safe
set for current model-free controllers. Specifically, we first introduce a general
neural boundary control barrier function (BCBF) to ensure the feasibility of the
trajectory-wise constraint satisfaction of boundary output. Based on a neural op-
erator modeling the transfer function from boundary control input to output tra-
jectories, we show that the change in the BCBF depends linearly on the change
in input boundary, so quadratic programming-based safety filtering can be done
for pre-trained model-free controllers. Extensive experiments under challenging
hyperbolic, parabolic and Navier-Stokes PDE dynamics environments validate the
effectiveness of the proposed method in achieving better general performance and
boundary constraint satisfaction compared to the model-free controller baselines.

1 INTRODUCTION

Partial derivative equations (PDEs) characterize the most fundamental laws of the continuous dy-
namical systems in the physical world Evans (1998); Perko (1996). Non-analytical PDE dynamics
are often involved in complicated science and engineering problems of computational fluid dynam-
ics Kochkov et al. (2021), computational mechanics Samaniego et al. (2020), robotics Heiden et al.
(2021), etc. Recently, neural networks have largely boosted the study of numerical PDE solvers
using data-driven methods, simulating and characterizing the dynamics Raissi et al. (2019); Brunton
& Kutz (2024); Kovachki et al. (2023). However, the PDE control problem still remains challeng-
ing without any prior about underlying PDE equations, serving as a huge gap from understanding
science to solving engineering problems Yu & Wang (2024).

Recent pioneer works Bhan et al. (2024); Zhang et al. (2024a) provide various formulations of PDE
control problems and multiple benchmark settings, either in-domain control Zhang et al. (2024b) or
boundary control Bhan et al. (2023). Since it is easier to control the PDE boundary in the real world,
following Bhan et al. (2024), we focus on the PDE boundary control setting where the control signal
essentially serves as the boundary condition and the unknown PDE dynamics itself remains un-
changed. Model-based PDE boundary control has been studied for years, and backstepping-based
methods have been applied to different PDE dynamics Krstic & Smyshlyaev (2008b). Neverthe-
less, the model-based methods cannot work well under the unknown PDE dynamics, suffering from
significant model mismatch. Model-free reinforcement learning (RL) controllers Schulman et al.
(2017); Haarnoja et al. (2018) have shown impressive results in the benchmark Bhan et al. (2024)
compared to the model-based control methods Pyta et al. (2015).

Besides, constraint satisfaction is of great importance for the PDE boundary control problems, but
current safe PDE control methods are typically backstepping-based and require knowledge about the
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Figure 1: Overview of our safety filtering method for PDE boundary control with neural BCBF.
Solid line arrows denote the safety filtering, while dashed ones denote the model training.

PDE dynamics (Krstic & Bement, 2006; Li & Krstic, 2020; Koga & Krstic, 2023; Wang & Krstic,
2023). The constraint considered in this paper is called boundary feasibility, which characterizes
whether the boundary output falls into and stays within the safe set at the end of the finite-time tra-
jectory, and can be understood as the constraint of finite-time convergence. Under ordinary differ-
ential equations (ODEs) setting, neural network parameterized control Lyapunov/barrier functions
(CLF/CBFs) have been adopted to ensure the convergence and safety of learning-based controllers
Boffi et al. (2021); Dawson et al. (2023); Chang et al. (2019); Mazouz et al. (2022), based on the
Markov property of the dynamics at each step , i.e., the change of state only depends on the current
state and control input. However, the Markov assumption does not generally hold for PDE boundary
control due to infinite-dimensional unobserved states along the spatial axis. Hence, it is challenging
to adopt ODE CBFs and find the boundary control input at each step for trajectory-wise convergence
over boundary constraint satisfaction in the PDE setting.

To this end, we introduce a new framework to achieve boundary feasibility within a given safe set
for the PDE boundary control problem, as shown in Figure 1. More specifically, we propose neural
boundary control barrier functions (BCBFs) over the boundary output to enable the incorporation
of the time variable with a finite-time convergence guarantee. Then, we adopt a neural operator
to directly learn the mapping from boundary input to output as a transfer function. Combining
well-trained neural BCBF and neural operator, we show a linear dependence between boundary
feasibility condition and the derivative of boundary control input, making the safety filtering possible
by projecting the actions from the nominal RL controller to the safe boundary control input set using
quadratic programming (QP). We conduct experiments on multiple PDE benchmarks and show our
superiority over RL controllers in terms of general performance and constraint satisfaction. To
the best of our knowledge, we are the first to study the safe boundary control with unknown PDE
dynamics. We summarize our contributions below.

• We propose a novel PDE safe control framework with a neural boundary control barrier function
to guarantee the boundary feasibility of boundary output within a given safe set.

• We model the control input and output mapping through a neural operator as a transfer function
and prove that it can be used for safety filtering by solving quadratic programming.

• We show that the performance after safety filtering performs better compared to the original RL
controllers in reward and boundary feasibility rate and time steps on multiple PDE environments.

2 PROBLEM FORMULATION

Following the PDE boundary control setting (Bhan et al., 2024), we consider the state u(x, t) : X ×
T → S ⊂ R from the continuous function space C(X ×T ;R) governed by underlying closed-loop
partial differential equation (PDE) dynamics defined on normalized n-dimensional spatial domain
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X = [0,1] := [0, 1]n ⊂ Rn and temporal domain T = [0, T ] ⊂ R+ as follows,

∂u

∂t
= D(u, ∂u

∂x
,
∂2u

∂x2
, . . . , U(t)), x ∈ X , t ∈ T , u ∈ S, (1)

where D is the PDE system dynamics and U(t) is the control signal as the boundary condition.
Without loss of generality, we focus on the Dirichlet boundary control input as U(t) := u(1, t)
with constant initial condition u(x, 0) ≡ U(0) ∈ S. Instead of optimizing boundary input U(t) to
track or stabilize full-state observation trajectory u(x, t) (Bhan et al., 2024), we aim to find U(t)
that guarantees the boundary feasibility of boundary output Y (t) := u(0, t) within the given user-
specified safe set S0 ⊂ S over T , i.e., ∃t0 ∈ T ,∀t ≥ t0, Y (t) ∈ S0. More formally, we give the
definition of boundary feasibility in PDE dynamics.

Definition 2.1 (Boundary Feasibility for Trajectory-wise Finite-time Constraint Satisfaction). With
state u(x, t) subjected to closed-loop PDE dynamics in Equation (1) with the boundary control
input U(t), the boundary control output Y (t) is defined to be feasible over T within the given
user-specified safe set S0 ∈ S if the following holds,

∃t0 ∈ T ,∀t0 ≤ t ≤ T, Y (t) := u(0, t) ∈ S0, where u(1, t) = U(t), u(x, 0) ≡ U(0). (2)

Besides, we adopt the supervised learning scheme with a collected dataset of boundary input and
output trajectory pairs {[Uk(t), Yk(t)], k = 1, 2, . . . ,K} with sampled discretization from the un-
known PDE dynamics. Therefore, we formulate the problem for this paper as follows.

Problem 2.1. Given K collected boundary input and output trajectory pairs {[Uk,m, Yk,m], k =
1, 2, . . . ,K,m = 1, 2, . . . ,M} with M -point temporal discretization, under consistent initial con-
dition uk(x, 0) ≡ Uk(0) from unknown but time-invariant PDE dynamics in Equation (1), we aim
to find boundary control input U(x) that guarantees boundary feasibility of boundary output Y (t)
with user-specified safe set S0 in Definition 2.1.

3 METHODOLOGY

3.1 NEURAL BARRIER FUNCTION FOR PDE BOUNDARY CONTROL

Control barrier functions (CBFs) are shown to be successful for safe control (Liu & Tomizuka, 2014;
Ames et al., 2014) and neural networks have been heavily investigated to effectively parameterize
CBFs (Robey et al., 2020; Liu et al., 2022; Zhang et al., 2023) for ODE dynamics. Since the Markov
assumption does not hold for PDE boundary control problem, it is challenging to leverage conven-
tional CBF to directly find control input U at time t for the constraint satisfaction of the marginalized
output boundary Y (t) := u(0, t) from the underlying PDE dynamics with spatially-continuous un-
observed state u(x, t). To mitigate this issue, inspired by Garg & Panagou (2021b), we propose a
more general neural boundary control barrier function (neural BCBF), explicitly incorporating time
t into neural network parameterized function ϕ(t, Y ) : T × S → R for the time-dependent zero-
sublevel set Sϕ,t := {Y (t) | ϕ(t, Y (t)) ≤ 0}. Note that the conventional CBF ϕ(Y ) can be viewed
as a specially case of BCBF ϕ(t, Y ) where t remains constant, so we also regard ϕ(Y ) as BCBF.
Another challenge is that the boundary feasibility in Equation (2) for PDE boundary control is de-
fined on finite time domain T = [0, T ], which requires higher convergence rate to the safe set than
the original asymptotic CBF Ames et al. (2014) like fixed-time stability in Polyakov (2011); Garg
& Panagou (2021a). We show the following theorem for the feasibility of boundary control output
Y (t) within user-specified safe set S0 under boundary control signal U(t).

Theorem 3.1 (Boundary Feasibility with Boundary Control Barrier Function). For the state u(x, t)
from the closed-loop PDE dynamics with boundary control input U(t) = u(1, t), u(x, 0) ≡ U0, the
boundary feasibility of boundary output Y (t) = u(0, t) over T = [0, T ] within user-specified safe
set S0 is guaranteed with neural BCBF ϕ(t, Y ) if the following holds ∀t ∈ T

(Sϕ,t := {Y | ϕ(t, Y ) ≤ 0} ⊆ S0)
∧(

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y ) + Cα,Tϕ(0, U0) ≤ 0

)
, (3)

where Cα,T := α
eαT−1

> 0 is a constant for finite-time convergence. Similarly, the boundary
feasibility with neural BCBF ϕ(Y ) holds if Equation (3) holds under ∂Y ϕ = ∇Y ϕ, ∂tϕ = 0.
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The proof can be found in the Appendix A.2. With the M -point temporal discretization of collected
boundary input and output trajectory {[Uk,m, Yk,m], k = 1, 2, . . . ,K,m = 1, 2, . . . ,M}, Sϕ,t ⊆ S0
in Equation (3) induces the loss function below following Dawson et al. (2022)

LS =

K∑
k=1

∑
Yk,m∈S0

[ϕ(tm, Yk,m)]+ +

K∑
k=1

∑
Yk,m /∈S0

[−ϕ(tm, Yk,m)]+, with [·]+ := max{0, ·}. (4)

However, it is challenging to find dY (t)/dt involved in Equation (3) over the discrete time samples
since the boundary output Y (t) = u(0, t) is governed by the unknown closed-loop PDE dynamics
with the boundary condition U(t) = u(1, t). Besides, it is also non-trivial to find the boundary
feasibility condition over boundary control input U(t) for safety filtering due to non-Markov prop-
erty. Therefore, we adopt the neural operator to learn the boundary input-output mapping as a neural
transfer function.

3.2 LEARNING NEURAL OPERATOR FOR INPUT-OUTPUT BOUNDARY MAPPING

Different from current applications of neural operators in learning PDE solutions by temporal map-
ping Li et al. (2020a;b; 2022), we propose to adopt neural operator Gθ : {U : T → S} 7→ {Y :
T → S} to model the spatial boundary mapping from input to output of the unknown closed-
loop PDE dynamics in Equation (1), i.e., Y (t) = u(1, t) = Gθ(U)(t) = Gθ(u(0, t))(t). Fol-
lowing Kovachki et al. (2023) under the setting of same Lebesgue-measurable domain T for hid-
den layers, the neural operator is defined as Gθ = Q ◦ IL−1 ◦ · · · ◦ I0 ◦ P , including pointwise
lifting mapping P : {U : T → S} 7→ {v0 : T → Rdv0 }, iterative kernel integration layers
Il : {vl : T → Rdvl } 7→ {vl+1 : T → Rdvl+1}, l = 0, . . . , L − 1, and the pointwise projection
mapping Q : {vL : T → RdvL } 7→ {Y : T → S}. Specifically, the l-th kernel integration layer
follows the following form with commonly-used integral kernel operator Li et al. (2020a;b; 2022),

vl+1(t) = Il(vl)(t) = σl+1

(
Wlvl(t) +

∫
T
κ(l)(t, s)vl(s)ds+ bl(t)

)
, l = 0, 1, . . . , L− 1, (5)

where σl+1 : Rdvl+1 → Rdvl+1 is the activation function, Wl ∈ Rdvl+1
×dvl is the local linear opera-

tor, κ(l) ∈ C(T ×T ;Rdvl+1
×dvl ) is the kernel function for integration, and bl ∈ C(T ;Rdvl+1 ) is the

bias function. Besides, since lifting and projection operators P,Q are pointwise local maps as spe-
cial Nemitskiy operators (Dudley et al., 2011; Kovachki et al., 2023), i.e. there exist equivalent func-
tions P : S → Rdv0 , Q : RdvL → S such that P(U)(t) = P (U(t)),Q(vL)(t) = Q(vL(t)),∀t ∈ T .
Therefore, combining Equation (5), we explicitly show the boundary mapping from control input
U(t) to output Y (t) below, making them possible to be directly connected as Y (t) = Gθ(U)(t),

Y (t) = Gθ(U)(t) = Q(vL(t)), vl+1(t) = Il(vl)(t) in Equation (5), v0(t) = P (U(t)), (6)

where P,Q,Wl, κ
(l), bl, l = 0, 1, . . . , L− 1 parameterized with neural networks θ and compose the

neural operator Y (t) = Gθ(U)(t). Given boundary input and output M -step temporally discretized
K trajectory pairs {[Uk,m, Yk,m], k = 1, 2, . . . ,K,m = 1, 2, . . . ,M}, Gθ and neural BCBF ϕ can
be optimized together based on empirical-risk minimization using the following loss function,

min
θ,ϕ

λGLG + λSLS + λBFLBF , where LG =

K∑
k=1

M∑
m=1

∥Yk,m − Gθ(Uk)(tm)∥2,LS in eq. (4),

LBF =

K∑
k=1

M∑
m=1

[∂Yk,m
ϕ · dGθ(Uk)(t)

dt
|t=tm +∂tmϕ+ αϕ(tm, Yk,m) + Cα,Tϕ(0, Uk,0), (7)

and [·]+ := max{0, ·}, , λG , λS , λBF are weight hyperparameters for LG ,LS ,LBF , respectively.
The loss for neural operator learning LG is based on Equation (6), and the boundary feasibility (BF)
loss of LBF is based on Equation (3) with the replacement of dY (t)/dt with dGθ(U)(t)/dt, which will
be detailed in the next section.

3.3 SAFETY FILTERING WITH QUADRATIC PROGRAMMING

Once the boundary input-output mapping is modeled by neural operator Gθ, the boundary output
Y (t) is directly related to boundary input U(t) from trajectory to trajectory, bypassing the non-
Markov property and the unknown closed-loop dynamics in Equation (1). We first find the derivative
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of boundary output Y (t) w.r.t t based on neural operator Y (t) = Gθ(U)(t). Applying chain rule to
Equation (6), the following derivatives hold,
dY (t)

dt
= ∇Q⊤ dvL(t)

dt
,
dvl+1(t)

dt
= Jl(

dvl
dt

)(t), for l = L− 1, . . . , 0,
v0(t)

dt
= ∇P⊤ dU(t)

dt
, (8)

where the derivative of kernel integration layer Jl : { vldt : T → Rdvl } 7→ {vl+1

dt : T → Rdvl+1}, l =
0, 1, . . . , L− 1 can be found through the derivative of Equation (5) in a recursive form below,

dvl+1(t)

dt
= Jl(

dvl
dt

)(t) = Diag(σ′
l+1)

(
Wl

dvl(t)

dt
+

∫
T

∂κ(l)(t, s)

∂t
vl(s)ds+

dbl(t)

dt

)
. (9)

By combining Equation (8) and Equation (9), we have the following theorem to show how the
boundary control input U(t) can be chosen to guarantee the boundary feasibility of boundary output
Y (t) modeled by neural operator Gθ.
Theorem 3.2 (Boundary Feasibility with Neural Operator). Assuming the neural operator Gθ as
an exact map from boundary input U(t) to output Y (t) for an unknown closed-loop PDE dynam-
ics without model mismatch, the boundary control input U(t) is guaranteed to induce boundary
feasibility of output Y (t) over T = [0, T ] within the sublevel set of neural BCBF ϕ if U(t) satisfies

∂Y ϕ(t,Gθ(U))
dGθ(U)(t)

dt
+ ∂tϕ(t,Gθ(U)) + αϕ(t,Gθ(U)) + Cα,Tϕ(0, U(0)) ≤ 0,∀t ∈ T (10)

where Cα,T = α
eαT−1

, and dGθ(U)(t)
dt can be found below with

∏0
1(·) := 1,

dGθ(U)(t)

dt
= ∇Q⊤

L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤ dU(t)

dt
+∇Q⊤Diag(σ′

L)

L−1∑
i=0

[ i∏
j=1

WL−j

Diag(σ′
L−j)

](∫
T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

))
= Λθ(t)U̇(t) + µθ(t). (11)

Remark. We remark that if the sublevel set of neural BCBF ϕ is a subset of user-specified safe
set S0, and there is no model mismatch between neural operator Y (t) = Gθ(U)(t) and unknown
closed-loop PDE dynamics, Theorem 3.2 is equivalent to Theorem 3.1. Then the boundary control
input U(t) satisfying Equation (10) is guaranteed to induce the boundary feasibility of boundary
output Y (t) within user-specified safe set S0. Similarly, Theorem 3.2 with neural BCBF ϕ(Y ) holds
if Equation (10) holds by letting ∂Y ϕ(t,Gθ(U)) = ∇Y ϕ(Gθ(U)), ∂tϕ(t,Gθ(U)) = 0.

The proof can be found in the Appendix A.3. Based on the affine property of U̇(t) in Equation (11),
we formulate the following quadratic programming (QP) problem with neural BCBF ϕ and neural
operator Gθ as a safety filter for U̇nominal(t),∀t ∈ T ,
U̇safe(t) = argmin

U̇∈R
∥U̇ − U̇nominal(t)∥ (12)

s.t. ∂Y ϕ(t, Y )
(
Λθ(t)U̇ + µθ(t)

)
+ ∂tϕ(t, Y ) + αϕ(t, Y ) + Cα,Tϕ(0, Unominal(0)) ≤ 0, (13)

where Cα,T = α
eαT−1

and Λθ(t), µθ(t) can be found in Equation (11). Based on U̇safe(t) at each
step t, we find the boundary control input Usafe(t) based on Equation (14) below so that the predicted
boundary output Ypredict(t) can be found by the neural operator. Therefore, the next QP update can be
solved for U̇safe at the next time by Equation (12). Note that we let U̇safe = U̇nominal for the unfiltered
time steps during the QP iteration. The discrete-time implementation of the safety filtering procedure
is shown in Algorithm 1.

Usafe(t) =

∫ t

0

U̇(τ)dτ + Unominal(0), U̇(τ) =

{
U̇safe(τ), if ∥U̇safe(τ)− U̇nominal(τ)∥ ≤ η,
U̇nominal(τ), otherwise.

(14)

We remark that iterative filtering with the prediction of Y (t) at each step aims to avoid large ap-
proximation errors in Equation (11) in the discrete-time setting compared to one-time filtering for
the whole trajectory. Besides, as the computation of QP is not yet real-time, it is not yet ready to in-
teract with the real PDE dynamics. we adopt the predicted Y (t) from the neural operator after each
filtering step instead of real PDE dynamics. To handle the model mismatch issue between neural
operator modeling and real underlying PDE dynamics, filtering threshold η > 0 is introduced as a
workaround and we leave the study of model mismatch of PDE dynamics as future work. Specifi-
cally, the safety filter is disabled when η = 0. The larger η is, the more boundary feasibility within
the safe set will be achieved, showing a trade-off between stabilization and constraint satisfaction.
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Algorithm 1 Safety Filtering Procedure for Discrete-time Implementation
1: Input: Nominal control input U nominal

1:M , neural operator G, neural BCBF ϕ, filter threshold η
2: Output: Filtered safe control input U safe

1:M

3: Initialize ∆U safe
1:M = ∆U nominal

1:M ← U nominal
1:M − U nominal

0:M−1, Y
predict
1:M ← G(U nominal

1:M )
4: for m = 1 :M do
5: Find ∆U safe

m through QP in Equation (12) based on ∆U nominal
m , Y predict

1:M ,G, ϕ, U nominal
0

6: Find U safe
1:M based on Equation (14) with ∆U safe

1:M and filter threshold η
7: Update Y predict

1:M ← G(U safe
1:M )

8: end for
9: return U safe

1:M

4 EXPERIMENT

In this section, we aim to answer the following two questions: How does the proposed safety fil-
tering perform compared to the vanilla model-free controllers in unknown PDE dynamics? How do
filtering thresholds, different convergence types and neural operator modeling influence the perfor-
mance of the proposed safety filtering? We answer the first question in Section 4.2 and the second
one in Section 4.3, following the experimental setup of PDE dynamics, controllers, and evaluation
metrics.

4.1 EXPERIMENTAL SETUP

Environments and model-free controllers. We adopt the challenging PDE boundary control en-
vironments as well as the model-free reinforcement learning (RL) controllers from Bhan et al. (2024)
to conduct our experiment. More specifically, the three environments include the unstable 1D hy-
perbolic (transport) equation, 1D parabolic (reaction-diffusion) equation and 2D nonlinear Navier-
Stokes equation, where the last one is for tracking task and others are for stabilization task. Since our
setting in Problem 2.1 does not have prior to the PDE equations, we choose the model-free RL con-
trollers, PPO Schulman et al. (2017) and SAC Haarnoja et al. (2018), from Bhan et al. (2024) as the
baselines in each environment for fair comparisons. The boundary control inputs are consistent with
Bhan et al. (2024). For 1D environments, the boundary input is U(t) = u(1, t) while the boundary
output for the hyperbolic PDE is Y (t) = u(0, t) and the boundary output for the parabolic PDE
Y (t) = u(0.5, t) since u(0, t) ≡ 0. For the 2D environment, the boundary input is the x-axis con-
sistent boundary condition, i.e., u(x, 1, t) ≡ U(x), v(x, 1, t) ≡ 0,∀x ∈ [0, 1]. The boundary output
is Y (t) = u(0.5, 0.95, t), v(x, 0.95, t) ≡ 0,∀x ∈ [0, 1], which has the maximum speed except for
control input and can be viewed as an indicator for tracking performance. Note that we focus on the
boundary output that only depends on time in high-dimensional cases. We specify one-sided safe
sets S0 = {Y : AY < b} for stabilization tasks and two-sided safe sets S0 = {Y : |Y − Ygt| < b}
for tracking tasks. With the pre-trained RL models, we collect 50k pairs of boundary input U(t)
and output Y (t) trajectory with label annotations based on user-specified safe sets S0. The temporal
resolution of collected trajectories is consistent with the control frequency of each environment in
Bhan et al. (2024), i.e. 50 steps in 5s for hyperbolic PDE, 1000 steps in 1s for parabolic PDE and
200 steps in 0.2s for Navier-Stokes PDE. More details can be found in the Appendix B.

Model training and evaluation metrics. With the collected dataset from RL models, we train the
neural operators and neural BCBFs according to Equation (7) through empirical risk minimization.
We adopt the Fourier neural operator (FNO) Li et al. (2020a) as the default neural operator model
and train it with Markov neural operator (MNO) Li et al. (2022) using the default hyper-parameters.
For the neural BCBF training, following Zhang et al. (2023); Hu et al. (2024), we use a 4-layer
feedforward neural network with ReLU activations to parameterize BCBFs and incorporate Equa-
tion (4) and Equation (7) with default α = 10−5 into the regular model training pipeline Zhao et al.
(2020); Dawson et al. (2022) to train both time-independent BCBF ϕ(Y ) and time-dependent BCBF
ϕ(t, Y ). More details can be found in Appendix B. With the well-trained neural operator and neu-
ral BCBF, we solve the QP of Equation (12) though CPLEX IBM and the final control trajectory is
found through Equation (14) with threshold η = 2 as default, mitigating the discrepancy between the
PDE environment and the neural operator. For the evaluation of safety filtering for RL controllers,
we keep the original RL rewards from Bhan et al. (2024) as a metric to show if the performance
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Table 1: Results comparison under 1D hyperbolic transport equation among 100 episodes. The
boundary feasibility constraint is Y < 1 for PPO and Y < 0 for SAC models.

Models w/o and w. filtering Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
( 50 control steps)

PPO Bhan et al. (2024) 157.9±37.5 0.63 7.6
PPO with filtering of ϕ(Y ) 162.3±44.5 0.63 8.3

PPO with filtering of ϕ(t, Y ) 165.0±43.7 0.71 9.8
SAC Bhan et al. (2024) 106.2±98.7 0.78 12.4

SAC with filtering of ϕ(Y ) 103.3±98.4 0.57 15.7
SAC with filtering of ϕ(t, Y ) 103.4±96.4 0.85 13.9

Table 2: Results comparison under 1D parabolic reaction-diffusion equation among 100 episodes.
The boundary feasibility constraint is Y < 0.6 for PPO and Y > −0.26 for SAC models.

Models w/o and w. filtering Reward (mean±std)
(starting at ∼0)

Feasible Rate
(100 episodes)

Average Feasible Steps
( 1000 control steps)

PPO Bhan et al. (2024) 164.5±20.7 0.60 155.0
PPO with filtering of ϕ(Y ) 162.9±19.6 0.46 519.4

PPO with filtering of ϕ(t, Y ) 168.2±23.5 0.81 507.0

SAC Bhan et al. (2024) 156.5±6.2 0.72 118.4
SAC with filtering of ϕ(Y ) 157.9±6.9 0.92 543.2

SAC with filtering of ϕ(t, Y ) 157.5±6.8 0.87 449.8

is compromised by the enhancement of safety constraints. Besides, we introduce two new metrics
regarding boundary feasibility, Feasible Rate and Average Feasible Steps. Feasible Rate is the ratio
of trajectories that boundary feasibility in Definition 2.1 is achieved, i.e., the boundary output falls
into the safe set and will not go out of it by the end of a single trajectory with finite steps. Aver-
age Feasible Steps is the mean steps among boundary feasible trajectories in which the boundary
output is consistently kept in the safe set until the end of the trajectory, characterizing how long the
boundary feasibility is achieved and maintained.

4.2 RESULTS COMPARISON

1D Hyperbolic (transport) PDE. Table 1 shows the results from different model-free RL con-
trollers without and with safety filtering under time-independent BCBF ϕ(Y ) and time-dependent
BCBF ϕ(t, Y ). Both PPO and SAC with filtering outperform the vanilla PPO and SAC in feasible
rate and average feasible steps, validating the effectiveness of the proposed safety filtering method.
Specifically, PPO with filtering of ϕ(t, Y ) presents the highest feasible rate and largest average fea-
sible steps, showing that time-dependent BCBF can distinguish the feasibility of the PDE boundary
state more effectively by explicitly taking time as an input compared to the time-independent one.
Regarding the reward comparison, the safety filtering of the PPO model with ϕ(Y ) and ϕ(t, Y ) re-
sults in a higher reward than the PPO baseline. This is because the safety constraint Y < 1 can be
aligned with the task of stabilization Y → 0, i.e., a safer trajectory can come with a higher reward.
However, safety filtering for SAC models compromises the stabilization performance with lower
reward, due to the conflicted constraint satisfaction Y < 0 and stabilization goal to 0.

1D Parabolic (reaction-diffusion) PDE. As shown in Table 2, since the boundary feasibility
constraint Y < 0.6 or Y > −0.26 is not conflict with the stabilization goal Y → 0, the safety
filtering can also boost the reward metric compared to the vanilla PPO and SAC. Feasible rate for
PPO with ϕ(t, Y ) filtering is the highest but its average feasible step is lower than ϕ(Y ) filtering,
because time-independent BCBF ϕ(Y ) tends to have divergent performance with more non-feasible
trajectories and more feasible steps for feasible trajectories. However, with SAC models, time-
independent BCBF ϕ(Y ) works the best in all metrics because of the lower variance of the baseline
SAC model and consistent trajectory pattern, making boundary feasibility less related to time and
easier to learn without explicitly incorporating t into BCBF. In this case, it is more challenging to
learn ϕ(t, Y ) with larger data complexity, resulting in sightly worse performance than ϕ(Y ).

2D Navier-Stokes PDE. From Table 3, we can see that compared to the vanilla PPO and SAC,
the results of safety filtering with time-dependent BCBF ϕ(t, Y ) are better in the metrics of feasible
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Table 3: Results comparison under nonlinear 2D Navier–Stokes equation among 100 episodes. The
boundary feasibility constraint is |Y − Ygt| < 0.145 for PPO and SAC models.

Models w/o and w. filtering Reward (mean±std)
(starting at ∼-100)

Feasible Rate
(100 episodes)

Average Feasible Steps
( 200 control steps)

PPO Bhan et al. (2024) -5.37±0.01 0.86 2.0
PPO with filtering of ϕ(Y ) -5.37±0.01 0.86 2.2

PPO with filtering of ϕ(t, Y ) -5.72±0.17 0.99 32.0
SAC Bhan et al. (2024) -18.05±1.13 0.80 17.5

SAC with filtering of ϕ(Y ) -18.05±1.14 0.79 17.8
SAC with filtering of ϕ(t, Y ) -18.36±1.25 0.85 21.3
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Figure 2: The reward and feasible rate under different filtering threshold η in Equation (14) with
BCBF ϕ(Y ) (left) and ϕ(t, Y ) (right) for PPO model in hyperbolic equation. Note that η = 0
indicates the vanilla PPO model without safety filtering.

rate and average feasible steps, while the rewards after filtering get compromised. The reason lies
in that the relaxed safe set |Y − Ygt| < 0.145 only enforces constraint over a specific high-speed
boundary instead of the whole 2D plane, which is used to calculate the reward. Regarding the
filtering with different types of BCBFs, ϕ(Y ) has limited improvement over the baseline models but
time-dependent one ϕ(t, Y ) shows significant superiority over feasible rate and steps, especially for
the PPO model. This implies that BCBF ϕ(t, Y ) does better in capturing complicated feasibility
over the marginally observed PDE state that only depends on time in high-dimensional cases.

4.3 ABLATION STUDY AND DISCUSSION

Influence of filtering threshold. In this section, we investigate the influence of filtering thresh-
old η in Equation (14) to show the trade-off between general performance and boundary feasibility.
From Figure 2, it can be seen that as the threshold goes up, the reward first slightly increases and
then drops significantly, showing that the strong safety filtering may hurt the stability of the PPO
controller due to the model mismatch between direct boundary mapping with the neural operator
and underlying PDE dynamics. Besides, with a larger filtering threshold η, the average feasible
steps become larger as the safety filtering becomes stronger, especially for time-dependent BCBF
ϕ(t, Y ), guaranteeing constraint satisfaction over boundary output. With small η, the average fea-
sible steps may be less than the one without filtering because of more feasible trajectories with
last-step feasibility. More details can be found in Appendix B.2.

Comparison of asymptotic and finite-time boundary feasibility. In Table 4, we show the com-
parison of safety filtering with BCBF ϕ(t, Y ) for 1D hyperbolic equation for asymptotic and finite-
time boundary feasibility. Asymptotic boundary feasibility is with the neural BCBF trained and
tested with Cα,T = limT→∞

α
eαT−1

= 0 while finite-time boundary feasibility is with Cα,T = 0.02
using T = 50. It can be seen that BCBF with finite-time feasibility has a better feasible rate, es-
pecially the SAC model, as asymptotic feasibility is weaker than finite-time feasibility and takes
longer steps to converge. However, for general performance of reward, since asymptotic feasibility
causes weaker filtering effects, the reward tends to be closer to the vanilla reward without filtering
in Table 1 compared to finite-time feasibility, which is validated in Table 4.

Boundary mapping with different neural operators. Here we compare two neural operators,
FNO Li et al. (2020a) and MNO Li et al. (2022), for learning the boundary mapping from control
input U(t) to output Y (t) for 1D hyperbolic equation in Table 5. With the same time-dependent
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Table 4: Results of filtering with BCBF ϕ(t, Y ) for 1D hyperbolic equation for asymptotic Cα,T =
limT→∞

α
eαT−1

= 0 and finite-time Cα,T = α
eαT−1

= 0.02 at T = 50, α = 10−5.

Different neural operators Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
( 50 control steps)

PPO for asymptotic feasibility 163.8±40.6 0.70 8.1
PPO for finite-time feasibility 165.0±43.7 0.71 9.8
SAC for asymptotic feasibility 104.6±98.6 0.56 14.7
SAC for finite-time feasibility 103.4±96.4 0.85 13.9

Table 5: Filtering with BCBF ϕ(t, Y ) under different neural operators for 1D hyperbolic equation.

Different neural operators Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
( 50 control steps)

PPO w. MNO Li et al. (2022) 163.8±47.2 0.78 9.0
PPO w. FNO Li et al. (2020a) 165.0±43.7 0.71 9.8
SAC w. MNO Li et al. (2022) 103.3±96.4 0.84 14.7
SAC w. FNO Li et al. (2020a) 103.4±96.4 0.85 13.9

BCBF ϕ(t, Y ), the safety filtering with FNO presents higher rewards under both PPO and SAC base
models, showing that FNO is more suitable for learning low-resolution trajectories with 50 sampled
points. Besides, MNO shows better feasible rate and average feasible steps performance, especially
with SAC as the base model, since the MNO model has a larger model complexity.

Qualitative visualization. In this section, we visualize and compare multiple trajectories under
1D hyperbolic equation using PPO controller without and with safety filtering of ϕ(t, Y ), as shown
in Figure 3. We can see that for each trajectory, the state value u(x, t) after filtering is lower than
that before filtering. More specifically, as time goes by, the filtered control input U(t)safe in blue
dashed lines deviates more away from nominal control input U(t)nominal in red dashed lines, causing
the filtered boundary output Y (t)safe in blue solid lines to satisfy the constraint Y (t) < 1 compared
to the nominal boundary output Y (t)nominal in red solid lines.

5 RELATED WORK

Control for PDE Dynamics. PDE control problems can be in-domain control Botteghi & Fasel
(2024); Zhang et al. (2024b) or boundary control Krstic & Smyshlyaev (2008b); Smyshlyaev &
Krstic (2010), where the latter is more commonly-seen setting in the real world. As it has been
studied for over a decade, backstepping has become a dominant approach for boundary control
with known PDE dynamics Krstic & Smyshlyaev (2008a); Smyshlyaev & Krstic (2004). Recently,
learning-based controllers have gotten rid of the requirement of analytical form of unstable PDE
dynamics and become a promising solution to the PDE control problems Botteghi & Fasel (2024);
Zhang et al. (2024b); Krstic et al. (2024); Qi et al. (2023); Mowlavi & Nabi (2023). However,
regarding the safety of constraint satisfaction in the PDE dynamics, current backstepping-based safe
PDE control methods (Krstic & Bement, 2006; Li & Krstic, 2020; Koga & Krstic, 2023; Wang &
Krstic, 2023) still assume the non-stable PDE dynamics is known. Therefore, we focus on data-
driven methods for PDE safe control without any prior knowledge of PDE dynamics.

Safe Control with Neural Certificate For the control of the ODE dynamical system, there is
rich literature regarding learning-based controllers with safety guarantees or certificates Boffi et al.
(2021); Dawson et al. (2023); Xiao et al. (2023); Lindemann et al. (2021); Chang et al. (2019);
Mazouz et al. (2022). Neural networks have been used to parameterize the CBFs under complex
dynamics with bounded control inputs Liu et al. (2022); So et al. (2023); Zinage et al. (2023);
Dawson et al. (2022); Dai et al. (2022), which result in forward invariance of the user-specified safe
set to guarantee the safety with neural certificate for learning-based controllers Choi et al. (2021);
Wei et al. (2022); Agrawal & Panagou (2021); Xiao et al. (2022); Hsu et al. (2023), i.e. once the
states enter the safe set, they will never go out. However, forward invariance may not hold in the
PDE boundary control setting with commonly-seen highly oscillating trajectories. For example,
highly-oscillating trajectories may go out of the safe set during the early oscillation and break the
forward invariance defined by conventional ODE CBFs Liu & Tomizuka (2014); Ames et al. (2014),

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Visualization of three state trajectories u(x, t) (left, mid, right) for hyperbolic equation
under PPO controller with and without safety filtering. Boundary control inputs U(t) are in dashed
lines and boundary output Y (t) are in solid lines. The boundary constraint Y (t) < 1 is in green.

but they could still converge to the constraint satisfaction by the end of time. Therefore, we focus on
boundary feasibility, a new notion introduced in this paper. Approach-wise, the CBF-QP for ODE
dynamics Liu & Tomizuka (2014); Lindemann & Dimarogonas (2018); Xiao et al. (2021); Garg
& Panagou (2021b) does not apply. That is because PDE boundary control does not have Markov
property at each control step, due to the infinite-dimensional unobserved non-boundary states. We
adopt a neural operator to model the trajectory-to-trajectory mapping and control the change of input
boundary through a novel QP formulation.

Neural Operator Learning for PDEs. Neural operator learning has become as a powerful tool for
solving PDEs by learning mappings between function spaces rather than pointwise approximations
Kovachki et al. (2023); Brunton & Kutz (2024). Recent research has demonstrated the utility of
neural operators in multiple science and engineering fields like fluid dynamics, weather forecasting,
and robotics Kochkov et al. (2021); Pathak et al. (2022); Heiden et al. (2021); Raissi et al. (2019).
There exist multiple architectures for neural operators based on different mathematical properties
of data. Lu et al. (2021) introduces DeepONet with a branch and a trunk network, and NOMAD
Seidman et al. (2022) adopts nonlinear decoder map to learn submanifolds in function spaces, while
Green’s function-inspired neural operators Li et al. (2020a;b;c; 2022; 2024) adopt linear integral
kernel representation with various kernel implementations. However, for the PDE boundary control
problem, current works Bhan et al. (2023); Krstic et al. (2024) only adopt neural operators to learn
the integral kernel in backstepping, which does not release the full potential of neural operator for
characterizing and controlling unknown dynamics. The proposed work is the first to leverage neural
operators to learn the direct mapping from control input to boundary output as a transfer function.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce a novel safe PDE boundary control framework using safety filtering with
neural certification. First, BCBF and neural operator are learned from collected PDE boundary input
and output trajectories within a given safe set. Then boundary feasibility is guaranteed by filtering
the unsafe boundary conditions using the BCBF. we show that the change in the BCBF depends
linearly on the change in input boundary, hence the filtering can be done by solving a quadratic
programming problem. Experiments on three challenging PDE control environments validate the
effectiveness of the proposed method in terms of both general performance and constraint satisfac-
tion. One limitation of the work is that our work does not consider complicated boundary constraint
settings and safe sets. Model mismatch between underlying PDE and neural operator is also an
important but unexplored topic, which is marked as future work.
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A PROOFS

A.1 PRELIMINARY

Definition A.1 (Boundary Feasibility for Trajectory-wise Finite-time Constraint Satisfaction). With
state u(x, t) subjected to closed-loop PDE dynamics in Equation (1) with the boundary control
input U(t), the boundary control output Y (t) is defined to be feasible over T within the given
user-specified safe set S0 ∈ S if the following holds,

∃t0 ∈ T ,∀t0 ≤ t ≤ T, Y (t) := u(0, t) ∈ S0, where u(1, t) = U(t), u(x, 0) ≡ U(0). (15)

Definition A.2 (Neural operator for input-output boundary mapping, reformulated from Sec-
tion 3.2). Neural operator Gθ : {U : T → S} 7→ {Y : T → S} can be formalized as

Y (t) = Gθ(U)(t) = Q(vL(t)), v0(t) = P (U(t)), where each layer vl(t) is (16)

vl+1(t) = Il(vl)(t) = σl+1

(
Wlvl(t) +

∫
T
κ(l)(t, s)vl(s)ds+ bl(t)

)
, l = 0, 1, . . . , L− 1 (17)

where σl+1 : Rdvl+1 → Rdvl+1 is the activation function, Wl ∈ Rdvl+1
×dvl is the local linear

operator, P ∈ Rv0×dim(S) and Q ∈ Rdim(S)×vL are lifting and projection matrix, κ(l) ∈ C(T ×
T ;Rdvl+1

×dvl ) is the kernel function for integration, and bl ∈ C(T ;Rdvl+1 ) is the bias function.
And P,Q,Wl, κ

(l), bl, l = 0, 1, . . . , L− 1 are parameterized with neural networks θ.

A.2 PROOF OF THEOREM 3.1

Theorem A.1 (Boundary Feasibility with Boundary Control Barrier Function). For the state u(x, t)
from the closed-loop PDE dynamics with boundary control input U(t) = u(1, t), u(x, 0) ≡ U0, the
boundary feasibility of boundary output Y (t) = u(0, t) over T = [0, T ] within user-specified safe
set S0 is guaranteed with neural BCBF ϕ(t, Y ) if the following holds ∀t ∈ T

(Sϕ,t := {Y | ϕ(t, Y ) ≤ 0} ⊆ S0)
∧(

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y ) + Cα,Tϕ(0, U0) ≤ 0

)
(18)

where Cα,T := α
eαT−1

> 0 is a constant for finite-time convergence. Similarly, the boundary
feasibility with neural BCBF ϕ(Y ) holds if Equation (3) holds by letting ∂Y ϕ = ∇Y ϕ, ∂tϕ = 0.

Proof. To show the boundary feasibility of the boundary output of Y (t) within user-specified safe
set S0, by Definition A.1, we need to show

∃t0 ∈ [0, T ], s.t.∀t ∈ [t0, T ], Y (t) ∈ S0. (19)

With the sublevel set Sϕ,t being the subset of S0, i.e., Sϕ,t := {Y | ϕ(t, Y ) ≤ 0} ⊆ S0, it is
sufficient to prove

∃t0 ∈ [0, T ], s.t.∀t ∈ [t0, T ], ϕ(t, Y (t)) ≤ 0. (20)

Now denote ψ(t) := ϕ(t, Y (t)), by initial constant boundary condition Y (0) = u(0, 0) = u(1, 0) =
U0, we have the following equivalent inequalities hold,

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y ) + Cα,Tϕ(0, Y (0)) ≤ 0 (21)

⇐⇒ dϕ(t, Y (t))

dt
+ αϕ(t, Y ) + Cα,Tϕ(0, Y (0)) ≤ 0 (22)

⇐⇒ dψ(t)

dt
+ αψ(t) + Cα,Tψ(0) ≤ 0 (23)

⇐⇒ eαt
dψ(t)

dt
+ eαtαψ(t) + eαtCα,Tψ(0) ≤ 0,∀t ∈ [0, T ] (24)

⇐⇒
d(eαtψ(t) +

Cα,Tψ(0)
α eαt)

dt
≤ 0 (25)
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So we have the function eαtψ(t) + Cα,Tψ(0)
α eαt be non-increasing over t ∈ [0, T ]. By T > 0, we

have

[eαtψ(t) +
Cα,Tψ(0)

α
eαt]|t=T < [eαtψ(t) +

Cα,Tψ(0)

α
eαt]|t=0 (26)

⇐⇒ eαTψ(T ) +
eαT

eαT − 1
ψ(0) < ψ(0) +

1

eαT − 1
ψ(0) (27)

⇐⇒ eαTψ(T ) < 0 (28)
⇐⇒ ψ(T ) < 0 (29)

⇐⇒ ϕ(T, Y (T )) < 0 (30)
So at least at t0 = T , ϕ(t0, Y (t0)) < 0, which proves Equation (20) holds and the origi-
nal theorem has been proved. Furthermore, let us look at the boundary feasible steps. Since
eαtψ(t) +

Cα,Tψ(0)
α eαt = eαt(ψ(t) +

Cα,Tψ(0)
α ) is non-increasing, with the strictly increasing and

positive eαt, it is easy to find function ψ(t) + Cα,Tψ(0)
α being non-increasing, i.e. ψ(t) is non-

increasing. Therefore, if U0 ≤ 0, ϕ(t, Y (t)) < ϕ(0, Y (0)) = U0 < 0,∀t ∈ [0, T ]. If U0 > 0, since
MLP-ReLU parameterized neural BCBF ϕ and boundary control output Y are continuous, by mean
value theorem, we have

ϕ(0, Y (0)) > 0, ϕ(T, Y (T )) < 0⇒ ∃t0 ∈ [0, T ], ϕ(t0, Y (t0)) = 0. (31)
Since ψ(t) = ϕ(t, Y (t)) is non-increasing, we have

∃t0 ∈ [0, T ], s.t.∀t ∈ [t0, T ], ϕ(t, Y (t)) ≤ 0, (32)
which concludes the proof.

A.3 PROOF OF THEOREM 3.2

Theorem A.2 (Boundary Feasibility with Neural Operator). Assuming the neural operator Gθ as
an exact map from boundary input U(t) to output Y (t) for an unknown closed-loop PDE dynam-
ics without model mismatch, the boundary control input U(t) is guaranteed to induce boundary
feasibility of output Y (t) over T = [0, T ] within the sublevel set of neural BCBF ϕ if U(t) satisfies

∂Y ϕ(t,Gθ(U))
dGθ(U)(t)

dt
+ ∂tϕ(t,Gθ(U)) + αϕ(t,Gθ(U)) + Cα,Tϕ(0, U(0)) ≤ 0,∀t ∈ T (33)

where Cα,T = α
eαT−1

, and dGθ(U)(t)
dt can be found below with

∏0
1(·) := 1,

dGθ(U)(t)

dt
= ∇Q⊤

L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤ dU(t)

dt
+∇Q⊤Diag(σ′

L)

L−1∑
i=0

[ i∏
j=1

WL−j

Diag(σ′
L−j)

](∫
T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

))
= Λθ(t)U̇(t) + µθ(t) (34)

Proof. To show the boundary feasibility over sublevel set of ϕ hold, we first want to show Equa-
tion (34) holds. According to Definition A.2, we first rewrite the neural operator as
Y (t) = Gθ(U)(t) = Q(vL(t)), v0(t) = P (U(t)), where each layer vl(t) is

vl+1(t) = Il(vl)(t) = σl+1

(
Wlvl(t) +

∫
T
κ(l)(t, s)vl(s)ds+ bl(t)

)
, l = 0, 1, . . . , L− 1 (35)

where P,Q,Wl, κ
(l), bl, l = 0, 1, . . . , L − 1 are neural networks, kernel function κ(l), activation

function σl and bias function bl are first-order differential. Since the operator shares the same input
function domain and output function domain over t ∈ R+, applying chain rule to Equation (35), we
can find the derivative with respect to t for each layer as,
dY (t)

dt
= ∇Q⊤ dvL(t)

dt
,
v0(t)

dt
= ∇P⊤ dU(t)

dt
, for each derivative

dvl+1(t)

dt
l = L− 1, . . . , 0,

(36)

dvl+1(t)

dt
= Jl(

dvl
dt

)(t) = Diag(σ′
l+1)

(
Wl

dvl(t)

dt
+

∫
T

∂κ(l)(t, s)

∂t
vl(s)ds+

dbl(t)

dt

)
(37)
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Now put Equation (37) into Equation (36) recursively, we have

dG(U)(t)

dt
= ∇Q⊤ dvL(t)

dt
(38)

=∇Q⊤Diag(σ′
L)WL−1

dvL−1(t)

dt
+∇Q⊤Diag(σ′

L)

(∫
T

∂κ(L−1)(t, s)

∂t
vL−1(s)ds+

dbL−1(t)

dt

)
(39)

=∇Q⊤Diag(σ′
L)WL−1Diag(σ′

L−1)WL−2
dvL−2(t)

dt
+∇Q⊤Diag(σ′

L)WL−1 · Diag(σ′
L−1)·(∫

T

∂κ(L−2)(t, s)

∂t
vL−2(s)ds+

dbL−2(t)

dt

)
+∇Q⊤Diag(σ′

L)(

∫
T

∂κ(L−1)(t, s)

∂t
vL−1(s)ds

+
dbL−1(t)

dt
) (40)

= . . . (recursively apply Equation (37))

=∇Q⊤Diag(σ′
L)WL−1 . . .Diag(σ′

1)W0
dv0(t)

dt
+∇Q⊤Diag(σ′

L)WL−1Diag(σ′
L−1) · · ·W1

Diag(σ′
1)

(∫
T

∂κ(0)(t, s)

∂t
v0(s)ds+

db0(t)

dt

)
+ · · ·+∇Q⊤Diag(σ′

L)WL−1 · Diag(σ′
L−1)·(∫

T

∂κ(L−2)(t, s)

∂t
vL−2(s)ds+

dbL−2(t)

dt

)
+∇Q⊤Diag(σ′

L)(

∫
T

∂κ(L−1)(t, s)

∂t
vL−1(s)ds

dbL−1(t)

dt
) (41)

=∇Q⊤
L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤ dU(t)

dt
+∇Q⊤Diag(σ′

L)

L−1∑
i=0

[ i∏
j=1

WL−jDiag(σ′
L−j)

]
·

(∫
T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

))
(42)

Note that the final expression in Equation (42) is actually linear with respect to U̇(t) and the weight
and bias terms only depend on the parameters of the neural operator θ and the values at time t.
Denote the linear weight and bias as Λθ(t), µθ(t)

Λθ(t) := ∇Q⊤
L−1∏
l=0

(
Diag(σ′

L−l)WL−1−l
)
∇P⊤, µθ(t) := ∇Q⊤Diag(σ′

L)· (43)

L−1∑
i=0

[ i∏
j=1

WL−jDiag(σ′
L−j)

]
·
(∫

T

∂κ(L−1−i)(t, s)

∂t
vL−1−i(s)ds+

dbL−1−i(t)

dt

) , (44)

then we have
dY (t)

dt
=
dG(U)(t)

dt
= Λθ(t)U̇(t) + µθ(t).

Since Y (t) = G(U)(t), Equation (33) is equivalent to

∂Y ϕ ·
dY

dt
+ ∂tϕ+ αϕ(t, Y ) + Cα,Tϕ(0, U(0)) ≤ 0.

Similar to the proof of Theorem A.1, we have

∃t0 ∈ [0, T ], s.t.∀t ∈ [t0, T ], ϕ(t, Y (t)) ≤ 0, (45)

which concludes the proof of boundary feasibility over the sublevel set of ϕ.
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Table 6: Comparison of before QP and after QP filtering with different thresholds using ϕ(Y ) and
ϕ(t, Y ) for PPO model under hyperbolic equation.

Filtering with ϕ(Y ) Reward (mean±std) Feasible Rate Average Feasible Steps

Before QP (baseline) 157.90±37.46 0.63 7.56

After QP with threshold 0.5 158.45±37.82 0.65 7.49

After QP with threshold 2 162.26±44.53 0.63 8.49

After QP with threshold 5 114.40±83.25 0.67 11.01

After QP with threshold 10 27.28±57.62 0.57 11.30

Filtering with ϕ(t, Y ) Reward (mean±std) Feasible Rate Average Feasible Steps

Before QP (baseline) 157.90±37.46 0.63 7.56

After QP with threshold 0.5 158.60±37.76 0.68 7.19

After QP with threshold 2 165.04±43.73 0.71 9.80

After QP with threshold 5 127.18±82.67 0.73 12.60

After QP with threshold 10 28.61±64.03 0.57 13.74

B EXPERIMENT DETAILS

B.1 EXPERIMENT SETTING

Data preparation. We train the RL models PPO and SAC following the default hyper-parameters
and unstable PDE settings Bhan et al. (2024) for hyperbolic and parabolic equations, while directly
adopting the pre-trained models under default Navier-Stokes equation Bhan et al. (2024). For the
data collection in the 1D hyperbolic equation, we evaluate the backstepping-based model Krstic
& Smyshlyaev (2008a), PPO and SAC models with random initial conditions U0 ∈ [1, 10] and
collect 50k pairs of input and output u(1, t), u(0, t) trajectories for each model. Similarly, for the
1D parabolic equation, we evaluate the backstepping-based model Smyshlyaev & Krstic (2004),
PPO and SAC models with random initial conditions U0 ∈ [1, 10] and collect 50k pairs of input and
output u(1, t), u(0.5, t) trajectories for each model. For the Navier-Stokes equation, we evaluate
the model-based optimization method Pyta et al. (2015), PPO and SAC models with random initial
conditions u0 ∈ [−0.1, 0.1] and default tracking ground truth and collect 10k pairs of input and
output u(0.05, 1, t), u(0.5, 0.95, t) trajectories for each model. After the data pairs are collected, we
annotate the safety label with pre-defined safe constraints based on the original performance of each
policy: for the hyperbolic equation, Y < 1 for PPO and Y < 0 for SAC; for the parabolic equation,
Y < 0.6 for PPO and Y > −0.26 for SAC; for the Navier-Stokes equation, |Y − Ygt| < 0.145 for
PPO and SAC models. Then we randomly split 90% as a training dataset and leave others as a test
set.

Model training. To train the neural operator models, we adopt the public package NeuralOpera-
tors.jl, using the default gelu-activation model of FNO with channels of (2, 64, 64, 64, 64, 64, 128, 1)
and 16 modes, MNO with channels of (2, 64, 64, 64, 64, 64, 1) and 16 modes. All the models are
trained for 100 epochs with learning rate 10−3, ℓ-2 regularization weight is 10−4, ADAM optimizer
and ℓ-2 loss. The resolutions and scales of hyperbolic, parabolic, and Navier-Stokes trajectories are
50, 1000, and 200 for 5s, 1s, and 0.2s, respectively. We keep the same setting for different envi-
ronments and remark that we do not fully exploit the potential for the best performance of neural
operators since it is not the main focus of this work. For the neural BCBF training, we directly use
the finite difference of Y (t) collected from real PDE dynamics instead of the gradient of the neural
operator to avoid noise. Following the implementation of Dawson et al. (2022); Zhang et al. (2023);
Hu et al. (2024), we adopt 4-layer MLPs with ReLU with layer dimensions of (16,64,16,1) to model
neural BCBFs. The time t is concatenated with Y (t) as input for time-dependent neural BCBF
ϕ(t, Y ) while only Y (t) is input for time-independent neural BCBF ϕ(t, Y ). To construct the safe
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Table 7: Results of filtering with BCBF ϕ(Y ) under different neural operator modeling for first-
order transport equation. The boundary feasibility constraint is Y < 1 for PPO and Y < 0 for SAC
models.

Filtering with different BCBFs Reward (mean±std)
(starting at ∼-300)

Feasible Rate
(100 episodes)

Average Feasible Steps
( 50 control steps)

PPO w. MNO 162.9±45.2 0.68 8.7
PPO w. FNO 162.3±44.5 0.63 8.3

SAC w. MNO 103.2±98.3 0.59 15.4
SAC w. FNO 103.3±98.4 0.57 15.7

set loss in Equation (4), we adopt all the sampled steps along trajectories with unsafe labels while
only choosing the ”latest” safe sampled steps where boundary feasibility is satisfied in Definition
2.1, i.e. once Y (t) is with safe label, it will never become unsafe in finite time T . For the boundary
feasibility loss in Equation (7), due to too much data close to 0, we adopt randomly drop close-0
data to balance the output boundary data distribution. Specifically, for the hyperbolic equation, we
keep 20% data within [-0.1,0.1] while keeping 20% data within [-0.01,0.01] for the parabolic equa-
tion. Following Liu et al. (2022), we adopt regularization loss to avoid the shrinking of the sublevel
set during training with a default weight of 1. We train all models with ADAM for 20 epochs with
an initial learning rate of 0.01. The learning rate decay rate is 0.2 after each 4 epoch. The code is
zipped as the supplementary material.

B.2 ADDITIONAL RESULTS

Quantitative results under different filtering thresholds. As shown in Table 6, we can find the
reward and feasibility performance with filtering ϕ(Y ) and ϕ(t, Y ). The trend of reward changing
is similar to Figure 2, where with larger thresholds, the performance will first increase and then go
down. Safety filtering aligns with the stabilization to increase the reward, but the noise from the
model mismatch between the neural operator and real dynamics will make the performance collapse
if the safety filtering is too strong. For the boundary feasibility, we can see that the average feasible
steps keep going up as the threshold increases, showing that the finite-time convergence is more
enhanced for the feasible trajectories. However, when the threshold becomes too large, e.g. η = 10,
the feasible rate also decreases significantly because the system is no longer stable, as the reward
indicates.

More comparison with different operators. In this section, we show the comparison of two neu-
ral operators, FNO Li et al. (2020a) and MNO Li et al. (2022) for the safety filter performance with
ϕ(Y ) in learning the boundary mapping from control input U(t) to output Y (t) for 1D hyperbolic
equation. Note that MNO models have larger model complexity than FNO models. Different from
Table 5, in Table 7, we can see that with weaker BCBF ϕ(Y ), MNO performs no worse than FNO
in feasible rate and reward, showing that larger model complexity will compensate the performance
of BCBF in the safety filter framework.

More visualization of hyperbolic and Navier-Stokes equations. Here we visualize the trajecto-
ries under 1D hyperbolic equation using SAC controller without and with safety filtering of ϕ(t, Y ),
as shown in Figure 4. Similar to 3, for each trajectory, the state value u(x, t) after filtering is lower
than that before filtering, i.e., the blue area is lower than the red area. For the output boundary, the
filtered one Y (t)safe in blue solid lines goes towards the constraint Y (t) < 0 compared to the nom-
inal boundary output Y (t)nominal in red solid lines, because of the output boundary. The difference
is not very large in the last two figures because the threshold is relatively small to keep the stability
of the output. As the visualization shows in Figure 5, it can be seen that the mid-upper high-speed
tracking performance is improved compared to the baseline without filtering due to the constraint
satisfaction. However, since the output boundary is just one point in the high-speed part, the general
performance after filtering is not improved significantly, which is consistent with the findings in
Table 3.
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Figure 4: Visualization of state u(x, t) of hyperbolic equation under SAC controller with (in blue)
and without (in red) filtering. Boundary control inputs U(t) are in dashed lines and boundary output
Y (t) are in solid lines. The boundary constraint Y (t) < 0 is in green.

Figure 5: Visualization of tracking performance with PPO and SAC models before and after filtering
with ϕ(t, Y ) at the end time step of the trajectory for Navier-Stokes equation.

C LIMITATION AND DISCUSSION

Since the proposed method is based on neural operator modeling instead of real PDE dynamics, it
does not directly solve the problem of model mismatch which may hurt the safety filtering perfor-
mance in the implementation. We mark this important point as future work. Also, for PDE dynamics
with higher-dimensional states, it is future work to investigate how BCBF can deal with spatially-
dependent boundaries. Another limitation lies in that we do not adopt online safety filtering under
the real PDE dynamics due to the delay of QP, and it is promising to improve it by filtering-induce
policy which is found offline. It is also interesting to omit the iterative filtering by prediction using
the one-time filtering for the whole trajectory based on Equation (10), which owns challenges of the
nonlinear dependence of neural operator derivative at initial time.
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