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ABSTRACT

We identify that cross-entropy (CE) loss does not guarantee robust boundary for
neural networks. The reason is that CE loss has only one asymptotic stationary
point. It stops pushing the boundary forward as long as the sample is correctly
classified, which left the boundary right next to the samples. A robust boundary
should be kept in the middle of samples from different classes, thus maximiz-
ing the margins from the boundary to the samples. In this paper, we propose a
family of new losses, called multi-stationary point (MS) loss, which introduce ad-
ditional stationary points beyond the asymptotic stationary point. We prove that
robust boundary can be guaranteed by MS loss without losing much accuracy.
With MS loss, bigger perturbations are required to generate adversarial exam-
ples. We demonstrate that robustness is improved under a variety of adversarial
attacks by applying MS loss. Moreover, robust boundary learned by MS loss also
performs well on imbalanced datasets. Finally, we modified other losses into two-
stationary-point forms, and improved model robustness is observed.

1 INTRODUCTION

Cross-entropy(CE) is the loss function which commonly used in image classification tasks, while
generalized CE loss was also used in noisy labels, sound event classifications, and econometric
models(Zhang & Sabuncu (2018), Deng et al. (2021), Heckelei et al. (2008), Kazemdehdashti et al.
(2018), Kurian et al. (2021)), etc. However, both (Jacobsen et al. (2018)) and (Nar et al. (2019)) draw
the same conclusion that CE loss can cause excessive invariance to predict features, i.e., classifiers
make decisions relying on only a few highly predictive features. Specifically, CE loss will not
continue to optimize the boundary once a data point has been classified correctly based on a few
features. We further empirically show that CE loss will only sharpen the inference function to
achieve a lower loss rather than moving the decision boundary to a ’better’ position once samples are
classified correctly. For ’better’ boundaries, we mean that the boundaries can lead robust predictions
or considering more features into the account, etc.

Neural networks(NNs) are applying to various fields with security requirements, robustness has be-
come an important property (Szegedy et al. (2013)) and (Kurakin et al. (2018b)), however, suggests
that the deep neural network is vulnerable to adversarial examples. Adversarial examples are images
that added subtle changes artificially on which the neural network makes mistakes but human eyes
cannot detect the changes. Specifically, adversarial examples are obtained in the neighborhood of
data points in training set, generally L∞ norm neighborhood. It is clearly that the neighborhood of
the training sample crosses the classification boundary and confuses the model. That is to say the
reason why neural network is vulnerable to adversarial examples is that decision boundary is too
closed to data points, resulting in low robustness. We call the decision boundary which is too closed
to data points near-boundary. While, models with robust boundary maintains the prediction for an
open set in the neighborhood of each training sample.

One of the directions to obtain robust boundary is designing a new loss to enforce a large margin
between training instances and decision (Elsayed et al. (2018), Matyasko & Chau (2017)). (Sun
et al. (2016)) introduced margin-based penalties to the objective of training DNNs, motivated by
theoretical analyses from the perspective of the margin bound.

Given the excessive invariance property of CE loss, we consider near-boundary is caused by CE
loss. Specially, we think the reason why CE loss dose not optimize to robust boundary is because
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CE loss has only one asymptotic stationary point, which result in small optimization range and thus
CE loss cannot learn a robust boundary. Thus, we propose a family of new losses with multiple
stationary points to overcome the drawback.

Our contributions:

• We propose a family of new losses, called multi-stationary point(MS) loss, which has two
stationary points and we provide experimental evidence that MS loss learn a more robust
boundary.

• We theoretically show that if a neural network model is trained by minimizing CE loss via
gradient decent algorithm, the model dose not always convergence to robust boundary, but
MS loss will.

• Several experiments of multi structures on multi datasets with popular white box attack
methods has been performed. The result shows that MS loss can greatly enhance the net-
work robustness without losing much precision. At the same time, MS loss also works well
in imbalanced datasets.

• We also modified other losses into multi-stationary-point form, and improved model ro-
bustness

2 RELATED WORK

Stationary point is an very important nature of function, and it has practical significance in many
applications. For example, The optimization of transition-state structures (TSs) is key to the un-
derstanding of mechanisms and kinetics of chemical reactions on a computational basis. Transition
states are defined as first-order saddle-point structures located on the minimum (reaction) energy
path between reactants and products (Bergeler et al. (2015), Van de Vijver & Zádor (2020)). In
radar detection, (Park et al. (2019)) proposed SPC technique to make the phase noise of the leakage
concentrated on the stationary point of the cosine function, mitigating the Heterodyne FMCW Radar
for small drone detection leakage.

Neural network adversarial attacks has become one of the most important test for the robustness
of network, notably the white box attacks the most compelling. Considering adversarial attack
methods, white box attacks require full access of the model, including the structure and parame-
ters of each layer. Advanced white box attacks are Fast Gradient Sign Method (FGSM) (Goodfel-
low et al. (2014)), Projected Gradient Descent(PGD)(Madry et al. (2017)), the Carlini and Wagner
(C&W)(Carlini & Wagner (2017)), etc. (Schmidt et al. (2018)) thinks that commonly used datasets
can provide good accuracy, but not enough to provide a good robustness. Considering the difficulties
in practice of training robust classifiers, they further assume that, the difficulties may be the lack of
training samples (Krizhevsky (2009)).

In order to improve the robustness of the network, researchers have proposed many defensive meth-
ods. A popular method is adversarial training. Adversarial training (Madry et al. (2017), Zhang
et al. (2019), Goodfellow et al. (2014), Tramèr et al. (2017)) is a training method, which gener-
ates adversarial samples by attacking methods as a way of data augmentation. However, the cost
is very expensive, and this method would reduce the performance of neural networks comparing to
be trained with the original dataset. There are also many other defense methods, such as attention-
based method (Taghanaki et al. (2019), Zoran et al. (2020), Vaishnavi et al. (2020)) and regular-
ization methods (Sokolić et al. (2017), Cisse et al. (2017)), (Kurakin et al. (2018a), Pang et al.
(2019b)). The defense methods make changes to the neural network, but does not guarantee univer-
sality. Meanwhile, with extra defensive components introduced, the training cost will increase as
well.

One of the more effective and universal methods is to design a new loss function to improve the ro-
bustness. Several kinds of loss or regularization based robust training method have been put forward.
By applying potential characteristics regularization, convolutional neural networks(CNNs) are en-
couraged to study features between class separability and compactness within the class list(Pang
et al. (2019a), Mustafa et al. (2019)). (Pang et al. (2019a)) proposed Max-Mahalanobis cen-
ter(MMC) loss, which studies identification features and looking for high density feature area. They
first calculate each class Max-Mahalanobis center(Pang et al. (2018)), then use the center loss to
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Figure 1: Decision boundary learned by CE loss, focal loss and MS loss, respectively. The classifi-
cation confidence of the network are divided and visualized by contour lines. The lighter the area,
the lower the confidence.

encourage features crowded around the center. But to avoid degradation, the preset center u∗
y for

MMC is untrainable. The choice of u∗
y is crucial, which determined features crowded ways, but

there is no guidelines for better choice.

3 TWO-STATIONARY-POINT LOSS

3.1 A TOY EXAMPLE OF CLOSED BOUNDARIES

We demonstrate the near-boundaries of CE loss and even focal loss in a toy dataset. We create a
two-classes datasets(samples in blue and red) distributed as line segments. The samples are lin-
early separable with margin equals to 1.8 vertically. A two-layers fully-connected neural network is
trained to classify the samples. As shown in the left most subplot of Figure 1, if we use the CE loss,
the decision boundary can separate the samples well. However, the decision boundary doesn’t max-
imize the margins between the boundary and samples. Moreover, the area of the lower classification
confidence is narrow, since the CE loss keeps pushing the prediction probabilities of the sample to 1
to reduce the loss. From another perspective of the view, narrow lower confidence means the infer-
ence function is very sharp at the decision boundary. The toy experiment demonstrates a property of
the CE loss, i.e., CE loss stops optimizing the boundary once all the samples are classified correctly,
but sharpen the decision boundary to reduce the loss. This indicates that other forces are needed to
push CE loss to continue to optimize the boundary.

Compared with CE loss, focal loss(Lin et al. (2017)) is designed for foreground and background
imbalance during training process, namely the positive and negative samples imbalance. It reduced
the penalty once the sample is correctly classified. As shown in the second subplot in Figure 1,
since correctly classified samples has less penalty, the lower confidence area is much larger than the
neural network trained under CE loss. However, the decision boundary is still a near-boundary.

A more robust decision boundary should maximize the margins from the boundary to samples from
both classes. In the third subplot of Figure 1, the decision boundary trained under proposed MS loss
is parallel to the line segments which are the samples distributed.

3.2 CE LOSS DOES NOT GUARANTEE TO CONVERGENCE TO A ROBUST
BOUNDARY

Why dosen’t CE loss convergence to the robust boundary? Different from other works, we analyze
the drawbacks of CE loss from optimization. We found that even the model has learned a near-
boundary, just like the Figure 1, CE loss will not lead the model to find better parameters since there
are more than one optimal boundaries for the CE loss.

Notation: Consider the classification problem, let (X, y) ∈ D be the training set, X =
[x1, x2, ..., xN ] ∈ RN×d is training sample, N is the size of training set D, y ∈ {1, 2, ...,K}
are corresponding targets. Let f(θ, x) represent a neural network model with θ being the parame-
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ters. Denote ok(k = 1, ...,K) the output of the neural network before Softmax, ŷ is the predict of
the network after Softmax. Given a sample x, the output of the network after Softmax is

ξ = p(ŷ = s|x) = eos∑K
k=1 e

ok
, s = 1, ...,K (1)

Theorem 1 (CE loss convergence) If a neural network f(θ, x) is trained to minimize CE loss

L(θ, x, y) = −ylog(ξ)− (1− y)log(1− ξ) (2)

and optimized by gradient-based algorithm

xk+1 = xk + α▽θ L(θ, x, y) (3)

Then for any boundary CE loss has learned, there is always another boundary whose loss value less
than the former, where α is learning rate.

In Theorem 1, we demonstrate that CE loss makes the network continue to optimize even the net-
work has arrived at the robust boundary. At last, the NNs trained by CE loss deviate the robust
boundary, if the training epoches is not appropriate, and that is usually true. That is to say NNs’
robust boundary can not be guaranteed by CE loss.

3.3 MS LOSS

As the drawbacks of CE loss portrayed in previous subsection, we think that the reason is CE loss
has only one asymptotic stationary point, the optimization range makes it impossible to optimize
the network to the best position. CE loss will not continue to optimize boundary location once a
data point has classified correctly. When there comes a new data point, CE loss will make a higher
score(i.e sharpen the decision boundary), like the Figure 1 dark area, rather than move the decision
boundary, if the point is classified correctly. Focal loss is designed for positive and negative feature
imbalance, but as the Figure 1 shows, focal loss can also not lead to an optimal boundary. And from
Figure 2, focal loss has only one asymptotic stationary point.

Considering one asymptotic stationary point, we propose a family of new losses which has two
stationary points, called multi-stationary point(MS) loss. Take the focal loss as an example, the MS
loss is

FL(ok) = −α(1− y)γ log(ξ) + η(||ξ||2 + (||1− ξ||)2) (4)

ok is network output before Softmax, ξ is the network output after Softmax, η is stationary-point
coefficient. From Figure 1, we can see that MS loss learned a better boundary than CE loss and focal
loss, which is parallel to the datasets in almost everywhere. Intuitively, in line segments datasets
paralleled boundary is the boundary human desire, which is similar to the dataset distribution.

The gradient of focal loss about element before Softmax is

FL
′
(ok) = −α(1− ξ)γ(γξlog(ξ)− 1 + ξ) + η(2ξ(1− ξ) +−2(1− ξ)2) (5)

As Figure2, from the left side image, we can see that once a data point was classified correctly, CE
loss will assign a high score to the point, even though the point is closed to the decision boundary.
The right figure shows that MS loss has two stationary points, and others have only one asymptotic
stationary point. Then we states that MS loss is conducive to NNs’ convergence.

Theorem 2 (MS loss convergence) With same assumption of Theorem 1 except training loss, MS
loss always makes the model f(θ, x) convergence to robust boundary.

With above theorem, we prove that MS loss can lead model to convergence to an robust bound-
ary, while CE loss cannot. We show the validity of MS loss theoretically, and from Figure 1, MS
loss network has larger margin, which may lead to more stronger robustness to adversarial attacks.
Following the advantages of MS are illustrated by experiments.

Proof of Theorem 1, Theorem 2 can be found in appendix.
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Figure 2: Loss curve of different losses. Left subimage is loss function image, right subimage is
corresponding gradient funciont image.

Figure 3: Diagram illustrate the loss performance in linear unseparable classification task. These
are the decision boundary learned by CE Loss, focal loss, MS loss, respectively.

4 EXPERIMENT

In this section, we empirically demonstrate several attractive merits of applying MS loss. We firstly
validate superior performance of MS loss on linear separable and unseparable datasets. Next, we
perform experiments on MNIST, CIFAR10 datasets under white box attacks to state robustness
improvement. Finally, we perform a experiment on imbalanced datasets. The result shows that MS
loss makes up for the defects of imbalanced datasets to some extent.

4.1 PERFORMANCE ON LINEAR UNSEPARABLE DATA SETS

In Figure 1, we show that MS loss do a great work on linear separable datasets. In this subsection,
we perform an classification task in linear unseparable datasets. As Figure 3 shows, we find that
decision boundary learned by MS loss is closer to the middle location (robust boundary) than CE
loss and focal loss.

With robust boundary, it needs bigger perturbation radius to get adversarial examples. Intuitively,
MS loss may be more robust against adversarial attacks. We conduct several adversarial attack
experiments in the following.

4.2 ROBUSTNESS AGAINST ATTACKS

(Schmidt et al. (2018)) and others works guess the current datasets in CNNs model can’t learn
robustness of the model. We think that it is CE loss learned a near-boundary, which is closed to
training data points, making the model low robustness.

We consider several classic network structures, ResNet-18, ResNet-34, GoogleNet, DenseNet-121
in pytorch on MNIST, CIFAR-10 under the white-attack FGSM, BIM, PGD and UPGD. We apply
Adam optimizer with initial learning rate is 0.001 and training for 50 epoches for MNIST and 200
epoches for CIFAR-10. We save the most accurate model. For FGSM, the max perturbation is
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Table 1: Classification accuracy(%) for different networks and different losses under several adver-
sarial attack methods.

model
ResNet-18 ResNet-34 GoogleNet DenseNet-121

CE loss MS loss CE loss MS loss CE loss MS loss CE loss MS loss

FGSM 72.60 90.84 21.0 86.17 63.50 72.77 52.98 81.19

BIM 13.70 69.8 2.0 66.34 11.75 34.46 4.57 61.52

PGD 0.14 37.24 0.02 40.84 3.30 3.89 0.81 27.1

UPGD 0.15 41.80 0.01 43.88 3.40 4.4 0.85 35.3

Table 2: Adversarial accuracy(%) comparison with other losses.

Perturbation Attack MS loss MMC SCE Centerloss L-DM

eps=8/255
PGD10 47.8 36.0 3.7 4.4 19.8

PGD50 39.7 24.8 3.6 4.3 4.9

eps=16/255
PGD10 46.7 25.2 2.9 3.1 11.0

PGD50 26.7 17.5 2.6 2.9 2.8

ϵ = 0.007. For BIM ϵ = 8/255. For PGD, ϵ = 8/255, and steps = 40. For UPGD, ϵ = 8/255,
α = 2/255 and steps = 40. For MNIST dataset, MS loss get an higher accurate than other losses, but
the current methods have nearly arrived at perfect accurate. So we omit the MNIST dataset result.
The result on CIFAR-10 was shown in Table 1. We can see that MS loss has improved the accurate
of all structures and attack methods for at least 20% even more than 65%.

We compared our loss with other baseline MMC(Pang et al. (2019a)), SCE(He et al. (2016)), Center
loss(Wen et al. (2016)), L-DM(Wan et al. (2018)) under PGD attack with ϵ = 8/255, 16/255 and
steps=10, 50 and untarget. Since the untrainable parameter µ∗

y is preset, and the code is unpub-
lished, the data about baseline is following the original papers. In Table 2, MS loss get the highest
adversarial accurate.

4.3 DATA ROBUSTNESS

Imbalanced data is a classic problem in classification tasks, which requires new understandings,
principles, algorithms, and tools to transform vast amounts of raw data efficiently into information
and knowledge representation (He & Garcia (2009)). In short, imbalanced data problem is the

Figure 4: Decision boundary learned by CE loss, focal loss and MS loss, respectively on imbalanced
dataset which is lacking 97% data points.
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Figure 5: Two stationary point CE performance, stationary-point coefficient is 1.5.

number of samples under each category varies greatly in datasets. Imbalanced data results in high
training accuracy but low testing accuracy of NNs model. In this case, it is obvious that the classifier
is invalid. So it is very important to improve imbalanced data problem.

Due to epistemic uncertainty, we may never collect a complete data sets, and the work of collecting
data could be costly. It would be a cost effective way to improve the robustness problem through
the loss function. We conduct a experiment on a two layers of full-connection neural network, to
compare the boundary when the network trained from the data in lacking 10%, 30%, 50% and 90%
respectively. The experiment results lacking 97% are exhibited in Figure 4, other result can be found
in appendix.

From the Figure 4, we can see that decision boundary CE loss learned is far away from the larger
volume data, which means the large classification probability of the outer data, and small classifica-
tion probability the inner data. Compared with CE loss, classification boundary learned by MS loss
is closer to the medium location. This reduces the effect of category imbalance on the classification
probability.

5 OTHER TWO-STATIONARY-POINT LOSS

In this section, we modify other loss to two-stationary-point form to illustrate the generality of
multi-stationary point losses family.

We consider CE loss

pt =

{
p, if y = 1
1− p, otherwise

(6)

After Softmax, adding stationary-point term to CE loss is

L = −log(ξ) + η(||ξ||2 + (||1− ξ||)2) (7)

Similarly, the gradient of CE loss is

CE
′
(ξ) = ξ − 1 + η(2ξ(1− ξ) +−2(1− ξ)2 (8)

η is stationary-point coefficient. One can prove that MS loss we proposed is equivalent to (Pezeshki
et al. (2021)). But it is not always convergence for any stationary-point coefficient. Following
theorem claims the coefficient selection rule.

Theorem 3 (Stationary-Point Coefficient) Two-stationary-point CE loss learn a robust model, if the
stationary-point coefficient η > 0.5.

Proof of theorem 3 can be found in appendix.

From the theorem 3, we can know that two-stationary-point CE loss convergence only when
stationary-point coefficient η > 0.5. From Figure 2 we can see that two-stationary-point CE has
other stationary point apart from one asymptotic stationary point. As Figure 5 shows, two-stationary-
point CE loss learns a robust boundary.
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6 CONCLUSION

In this paper, we proposed a family of new losses, called multi-stationary point (MS) loss, which
introduce additional stationary points beyond the asymptotic stationary point. Firstly, we states
that neural network trained by CE loss cannot guarantee robust decision boundary theoretically.
Next, we prove that robust boundary can be guaranteed by MS loss without losing much accuracy.
And an experiment of two-layers neural network on toy dataset validated MS loss’s effectiveness.
Then we conduct several experiments to show that proposed losses improve the model robustness
by adversarial attack under several different attack methods and perform well on imbalanced data.
Finally, we illustrate that CE loss with effective coefficient can be modified to two stationary points
form, at the same time two-stationary-point CE loss can learn a robust boundary. In the future,
multi-stationary-point losses’s application and its intrinsic nature in high dimension, the training
mechanism leading from MS loss deserves further study.
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Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel R. D. Rodrigues. Robust large margin
deep neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017. doi:
10.1109/TSP.2017.2708039.

Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and Tie-Yan Liu. On the depth of deep neural
networks: A theoretical view. Proceedings of the AAAI Conference on Artificial Intelligence, 30
(1), mar 2016. doi: 10.1609/aaai.v30i1.10243.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2013.

Saeid Asgari Taghanaki, Kumar Abhishek, Shekoofeh Azizi, and Ghassan Hamarneh. A kernel-
ized manifold mapping to diminish the effect of adversarial perturbations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
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A APPENDIX

A.1 PROOF OF THEOREMS

Theorem 1 (CE loss convergence) If a neural network f(θ, x) is trained to minimize CE loss

L(θ, x, y) = −ylog(ξ)− (1− y)log(1− ξ) (9)

and optimized by gradient-based algorithm

xk+1 = xk + α▽θ L(θ, x, y) (10)

Then for any boundary CE loss has learned, there is always another boundary whose loss value less
than the former, where α is learning rate.

Proof: We prove theorem 1 in 1 dimension, it is same in multi dimension. Assuming we have two
data points, -1, 1, then we know that the decision boundary is x=0. Now we assume network trained
by CE loss got the decision boundary in x=0 in some weights wη in the network training process, in
which CE loss value is η. CE loss is

L(p) = −log(p)

the derivation is
L

′
(p) = −1

p

and
L

′
(p) < 0

is always true. So we assert that there must be another decision boundary got by current state.
Assume another decision boundary corresponding weights is wξ, the CE loss value is ξ. Then we
have

wξ = wη +
α

p
(11)

in which α is learning rate. Assume x > 0 is positive sample, negative sample is also true.

η = −log
1

1 + e1−2(wηx+b)
(12)

ξ = −log
1

1 + e1−2(wηx+b)−2αx
p

(13)

Due to

exp1−2(wηx+b) > e1−2(wηx+b)−2αx
p (14)

therefore

−log
1

1 + e1−2(wηx+b)
> −log

1

1 + e1−2(wηx+b)−2αx
p

(15)

so

η > ξ (16)

Theorem 2 (MS loss convergence) With same assumption of Theorem 1 except training loss, MS
loss makes the model f(θ, x) convergence to optimal boundary.

Proof: Consider one-dimension case, insert 1,1, -1,-1 into MS loss. Let

ξ =
1

1 + e1−2(w+b)
(17)
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γ =
1

1 + e1−2(b−w)
(18)

η is two-stationary coefficient.

MS loss is

−logξ + ηξ2 + η(1− ξ)2 − log(1− γ) + ηγ2 + η(1− γ)2 = L (19)

As follow, we separate L to two parts,

L1 := −logξ + ηξ2 + η(1− ξ)2

L2 := −log(1− γ) + ηγ2 + η(1− γ) ∗ 2
(20)

differentiate them separately,

L1
′

w = −1

ξ
ξ
′

w + 2ηξξ
′

w + 2η(1− ξ)(−1)ξ
′

w (21)

= (−2)(1− ξ)[−1 + 2ηξ2 − 2ηξ(1− ξ)]

L2
′

w = − 1

1− γ
(−1)γ

′

w + 2ηγγ
′

w + 2η(1− γ) ∗ (−1)γ
′

w (22)

= 2γ(1 + 2ηγ(1− γ)− 2η(1− γ)2)

L1
′

b = −1

p
ξ
′

b + 2ηξξ
′

b + 2η(1− ξ)(−1)ξ
′

b (23)

= (−2)(1− ξ)[−1 + 2ηξ2 − 2ηξ(1− ξ)]

L2
′

b = − 1

1− γ
(−1)γ

′

b + 2ηγγ
′

b + 2η(1− γ) ∗ (−1)γ
′

b (24)

= −2γ(1 + 2ηγ(1− γ)− 2η(1− γ)2)

From formula (21), (22), differentiate w we have

(−2)(1− ξ)[−1 + 2ηξ2 − 2ηξ(1− ξ)] + 2γ(1 + 2ηγ(1− γ)− 2η(1− γ)2) = 0 (25)

Similarly, differentiate b we have

(−2)(1− ξ)[−1 + 2ηξ2 − 2ηξ(1− ξ)]− 2γ(1 + 2ηγ(1− γ)− 2η(1− γ)2) = 0 (26)

incorporate formulas (equation 25), (equation 26), we get

ξ1 =

√
η(4 + η) + η

4η
(27)

ξ2 = η −
√

η(4 + η)

4η
, (del) (28)

γ1 = 3η −
√
η(4 + η)

4η
(29)

γ2 =

√
η(4 + η) + 3η

4η
(30)
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Figure 6: Imbalanced dataset in lacking 10% data points.

then incorporate formula equation 27, equation 28we get b = 0.5, so the decision boundary con-
tains point x = 0, so is the center of the dataset.

Theorem 3 (Stationary-Point Coefficient) Improved CE loss learn a robust model, if the stationary-
point coefficient η > 0.5.

Proof: We consider the regularized CE loss, its formula is

L = −log(ξ) + η||ξ − 0.5||2 (31)

the derivation of weight is

L
′
= −(1− ξ) ∗ 2x⊤ + 2η ∗ 2x⊤ ∗ (1− ξ) + 2η(1− ξ)2 ∗ 2x⊤ (32)

it is

L
′
= −(1− ξ) + 2η ∗ (1− ξ)− 2η(1− ξ)2 = 0. (33)

The we get

(1− ξ)[−1 + 2ηξ] = 0 (34)

because ξ = 1

1+e1+2(w⊤x+b)
< 1 is always true, we get

ξ =
1

2η
(35)

so

e1+2(w⊤x+b) = 2η − 1 > 0 (36)

then we get
η > 0.5

A.2 IMBALANCED DATA EXPERIMENT
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Figure 7: Imbalanced dataset in lacking 30% data points.

Figure 8: Imbalanced dataset in lacking 50% data points.

Figure 9: Imbalanced dataset in lacking 90% data points.
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