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Abstract

Point Cloud Interpolation confronts challenges from point sparsity, complex spa-
tiotemporal dynamics, and the difficulty of deriving complete 3D point clouds
from sparse temporal information. This paper presents NeuroGauss4D-PCI, which
excels at modeling complex non-rigid deformations across varied dynamic scenes.
The method begins with an iterative Gaussian cloud soft clustering module, offering
structured temporal point cloud representations. The proposed temporal radial basis
function Gaussian residual utilizes Gaussian parameter interpolation over time, en-
abling smooth parameter transitions and capturing temporal residuals of Gaussian
distributions. Additionally, a 4D Gaussian deformation field tracks the evolution
of these parameters, creating continuous spatiotemporal deformation fields. A
4D neural field transforms low-dimensional spatiotemporal coordinates (x, y, z, t)
into a high-dimensional latent space. Finally, we adaptively and efficiently fuse
the latent features from neural fields and the geometric features from Gaussian
deformation fields. NeuroGauss4D-PCI outperforms existing methods in point
cloud frame interpolation, delivering leading performance on both object-level
(DHB) and large-scale autonomous driving datasets (NL-Drive), with scalability to
auto-labeling and point cloud densification tasks. The source code is released at
github.com/jiangchaokang/NeuroGauss4D-PCI.

1 Introduction

Point cloud frame interpolation (PCI) [1; 2] aims to estimate intermediate frames given two or more
point cloud frames. This task enables the generation of temporally smooth and continuous point
cloud sequences at arbitrary timestamps, which is crucial for applications such as autonomous driving
[3; 4] and virtual reality [5; 6; 7]. PCI can be expressed with the following formula:

FΘ({P ∈ RNi×3}t=0,4,8···, Tt=0,4,8···︸ ︷︷ ︸
Training Data

), FΘ(Pt=i, Tt=i, Tt=j︸ ︷︷ ︸
Inference Input

) →
{
PPred

t=j ∈ RN×3
}
. (1)

PCI faces several challenges due to the unique characteristics of point cloud data and the complexity
of modeling spatiotemporal dynamics: 1) Point clouds are inherently sparse and unordered, lacking
the regular structure of images. For instance, NeuralPCI [3] simply concatenates spatial and temporal
coordinates as inputs to an MLP, struggling to adequately represent the motion and correlation of
multiple unordered point clouds over time. 2) PCI involves modeling the spatiotemporal dynamics
of point clouds, requiring the interpolation model FΘ to capture the spatial structure and temporal
evolution of the scene from 4D training data ({P ∈ RNi×3}t=0,4,8···, Tt=0,4,8···), and model the
non-rigid deformations and non-linear trajectories of discrete 3D points. This leads to the linear
motion assumption of PointINet [8], which uses bidirectional scene flow to warp input frames for
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Figure 1: NeuroGauss4D-PCI robustly outperforms existing methods [3; 9] across multiple
datasets, frame intervals, and point cloud densities, consistently achieving lower interpolation errors.
NeuroGauss4D-PCI robustly handles minute non-rigid deformations, large-scale unstructured scenes,
dynamic environments with non-uniform data, and extensive motions. The proposed method consis-
tently achieves precise local and global point cloud predictions.

estimating intermediate frames, failing to capture complex non-linear motion. Moreover, 3D scene
flow estimation methods, such as 3DSFLabelling [9], PV-RAFT [10], and NSFP [11], can only
express the motion field between two frames but cannot robustly represent higher-order dynamic
scenes over longer time spans. 3) The inference process in PCI faces the challenge of generalizing
from sparse temporal samples. The model FΘ generates an accurate point cloud PPred

t=j ∈ RN×3 for
time t = j based on Pt=i and time frame at Tt=i and the time frame at Tt=j . This demands strong
interpretability and 4D modeling capabilities from the model to accurately predict the interpolated
point cloud from minimal information. IDEA-Net [2] addresses the correlation between two input
frames by learning a one-to-one alignment matrix and refining the linear interpolation results using a
trajectory compensation module. However, for large-scale, occluded autonomous driving point cloud
scenes, IDEA-Net’s one-to-one correspondence assumption struggles to accurately predict the point
cloud at interpolated timestamps from sparse temporal samples.

For the challenges of point cloud frame interpolation, we propose a novel 4D spatio-temporal
modeling method based on Gaussian representations, NeuroGauss4D-PCI. It first captures the
geometric structure of point clouds through iterative Gaussian soft clustering, providing structured
representations for unordered data. Then, the temporal radial basis function Gaussian residual module
interpolates over discrete time steps, learning the continuous dynamics of Gaussian parameters to
capture the spatio-temporal evolution of point clouds. The 4D Gaussian Deformation Field further
models the spatio-temporal variation trends of Gaussian parameters, effectively overcoming the
limitations of linear interpolation. Finally, the attention fusion module adaptive fusion of latent
neural representations and explicit geometric representations, enhancing the modeling capability of
spatio-temporal correlations. As shown in Fig. 1, this compact and efficient method demonstrates
superior point cloud sequence generation performance on multiple datasets.

Contributions: • We propose NeuroGauss4D-PCI, a novel 4D spatio-temporal modeling method
for point cloud frame interpolation. It captures geometric structures through iterative Gaussian soft
clustering, providing structured representations for unordered point clouds, while adaptively fusing
the latent neural field features. • A Temporal Radial Basis Function Gaussian Residual module is
designed to interpolate over discrete time steps, learning continuous Gaussian parameter dynamics
to effectively model the spatio-temporal evolution of point clouds. • An innovative 4D Gaussian
deformation field is introduced to model the spatio-temporal variations of Gaussian parameters,
achieving smooth and realistic point cloud deformations through 4D Gaussian graph convolutions and
Gaussian representation pooling. • Our method outperforms others on multiple datasets, generating
accurate point cloud sequences with minimal errors. It can be easily extended to tasks like lidar-
camera temporal synchronization and point cloud densification.

2 Related Work

Neural Field In computational geometry, latent neural fields [12; 11; 13] encode complex 3D
scenes with the principle fΘ(ϕ(χ)) = o. χ denotes the input parameters, such as coordinates in a 3D
space. The function ϕ is a feature transformation applied to χ, which enhances the neural network’s
ability to model complex patterns by providing a high-dimensional representation of the input space.
The neural network fΘ, parameterized by Θ, then maps these transformed features to the output o.
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This output can represent various aspects of the 3D scene, such as color [14], density [15], or surface
normals [16], depending on the task. GPNF [17] presents a method using neural fields for efficient
and topology-flexible geometry processing, outperforming traditional mesh methods in shape editing
tasks. NSFP [11] introduces a novel implicit regularizer based on neural scene flow priors, utilizing
coordinate-based MLPs for robust scene flow optimization. Implicit neural representations [18]
ensure differentiable interpolation for 3D point clouds, facilitating end-to-end learning [19], yet their
performance is limited by a dependency on high-quality training data [9] and computational demands
[20], with inherent trade-offs in interpretability.

3D Gaussian Splatting Recent studies have demonstrated that 3D Gaussian Splatting (3D GS)
[21; 22; 23] leverages an explicit radiance field for efficient:

I(p) =

N∑
i=1

wi ·G(p;µi,Σi) =

N∑
i=1

wi · exp((−
1

2
(p− µi)

TΣ−1
i (p− µi)), (2)

where I(p) represents the rendered intensity or color at pixel location p, N is the total number of 3D
Gaussian models in the scene, wi is the weight of the i-th Gaussian model affecting its contribution to
the final image, G(p;µi,Σi) is the 3D Gaussian function defined as exp

(
− 1

2 (p− µi)
TΣ−1

i (p− µi)
)
,

µi is the center of the Gaussian representing the position in 3D space, and Σi is the covariance matrix
that determines the shape and scale of the Gaussian distribution. 3DGS [21] innovatively employs
3D Gaussians to represent scenes, optimizing volumetric radiance fields with minimal computational
waste, enabling high-quality real-time novel-view synthesis. Recent works [24; 25; 26] focused
on creating 4D scene representations using Gaussian splatting from video to model geometry and
appearance changes across frames. Few explored modeling temporal 3D motion changes from raw,
sparse 3D point clouds, requiring tracking spatial coordinates over time and dynamically adjusting
Gaussian parameters to accurately reflect temporal deformations.

Point Cloud Interpolation (PCI) Existing PCI models are categorized into three types: based
on 3D scene flow [10; 20; 27; 8; 28], neural fields[11; 3], and feature alignment [29] or trajectory
regression [2]. 3D scene flow methods estimate correspondences between frames and use linear
interpolation for intermediate frames. PointINet [8] calculates bidirectional 3D scene flow to warp
point clouds and insert new frames. IDEA-Net [2] applies aligned feature embeddings to manage
trajectory nonlinearities, enhancing interpolation. NeuralPCI [3] implicitly learns the nonlinear
temporal motion characteristics of multi-frame point clouds through a neural field. However, these
methods struggle with modeling 4D geometric deformations in point cloud sequences, impacting
robustness. Our method combines 4D neural fields and Gaussian deformation fields to effectively
model and predict dynamic point cloud changes, capturing nonlinear motion and deformation
accurately.

3 The Algorithm

3.1 Overview of 4D Neural Field And Gaussian Deformation Field

As depicted in Figure 2, temporal point cloud coordinates are encoded using Fourier basis functions
to encapsulate periodic information as follows:

Posenc(P|(x,y, z, t)) = [Ψ(x),Ψ(y),Ψ(z),Ψ(t)]; Ψ(x) = [x, sin(x), cos(x)]. (3)

To enhance the modeling capability for periodic features, the original coordinate features are aug-
mented by incorporating their sine and cosine values. Features from Posenc(P|(x,y, z, t)) are
further encoded using a 4D neural field. The iterative Gaussian cloud soft clustering module employs
Gaussian statistics to extract characteristics such as mean, covariance and geometric features from
the point cloud, offering a statistical description of internal dynamic changes. Furthermore, the
proposed temporal radial basis function Gaussian residual (RBF-GR) module employs radial basis
functions to interpolate these Gaussian parameters across different time steps. The designed 4D
Gaussian deformation field module learns the temporal evolution of point cloud Gaussian parameters,
generating a continuous spatiotemporal deformation field. Finally, an fast latent-geometric fusion
module adaptively fusion features, enabling the generation of point clouds through a prediction head.
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Figure 2: Three key steps of NeuroGauss4D-PCI: 1) Latent feature learning and point cloud Gaussian
representation: Fourier feature mappings and 4D neural fields map low-dimensional temporal
coordinates (x, y, z, t) to high-dimensional latent features, while representing the original temporal
point clouds as robust multi-Gaussian ellipsoids (µ,Σ,Φ). 2) The temporal radial basis function
Gaussian residual (RBF-GR) module captures residuals among temporal Gaussian distributions,
fusing smooth temporal Gaussian distributions with latent features to construct a 4D Gaussian
deformation field that learns and smoothens point cloud deformations. 3) An efficient transformer
architecture aggregates features from the 4D deformation field and latent features, enabling point
cloud interpolations at any given timestamp through a point cloud prediction head.

3.2 Iterative Gaussian Soft Clustering and 4D Neural Field

Algorithm 1 Iterable Gaussian Soft Clustering
Require: P ∈ RN×3: point coordinates, M : num-

ber of Gaussians, κ: number of iterations
Ensure: µ ∈ RM×3: Gaussian Means, Σ ∈

RM×3×3: Gaussian Covariances Matrix, ΦG
feat:

Gaussian features, A ∈ RN : Point-to-Gaussian
Index Matrix

1: Initial centers matrix C ∈ RM×3 by randomly
selecting M points from P

2: for τ = 1 to κ do
3: Dij = ∥Pi −Cj∥2, D ∈ RN×M

4: Sij =
exp(−D2

ij)∑M
m=1 exp(−D2

im)
, S ∈ RN×M

5: Update C = (S⊤P)⊘ (S⊤1+ ϵ)
6: end for
7: µ = C
8: Ai = argmaxj Sij ,∀i ∈ {1, . . . , N}
9: for m = 1 to M do

10: Pm = P[A == m]− µm

11: Σm = 1
|Pm|

∑
p∈Pm

pp⊤ + ϵI3
12: end for
13: for i = 1 to M do
14: FG = Dgcnn(P[A == i]) ▷ Eq. 4.
15: FG

att = SelfAttention(FG) ▷ Eq. 5.
16: ΦG

feat.append(FG
att)

17: end for

The iterative Gaussian cloud soft-clustering
representation, given input point coordinates
P, number of Gaussians M , consists of three
steps: 1) Soft-clustering of point clouds to
Gaussian distributions is achieved by intro-
ducing soft assignment weights Sij , where
Sij represents the probability of the i-th point
belonging to the j-th Gaussian, calculated
based on the Euclidean distances Dij be-
tween points and Gaussian centers C, over-
coming the limitations of traditional hard-
clustering methods. 2) The Gaussian means
µ and covariance matrices Σ are iteratively
optimized over κ iterations, with µ updated
by minimizing the distances Dij and Σ calcu-
lated based on the distribution of points Pm

relative to the Gaussian means, adaptively fit-
ting the spatial distribution of point clouds.
3) Multi-scale Gaussian features ΦG

feat are
extracted by applying DGCNN [30] and self-
attention mechanisms to points assigned to
each Gaussian, learning rich local and global
features. Finally, the point cloud is assigned
to the corresponding Gaussians through the
index matrix A.

The raw point cloud coordinates lack topological structure and contain noise and redundancy. We
propose an iterative Gaussian soft-clustering point cloud representation module (Algorithm 1) that
converts point clouds into structured Gaussian representations. The module introduces DGCNN [30]
(Eq. 4) to extract local geometric features, where xi is the i-th point, xj is its k-nearest neighbor,
Γgraph is the graph convolution operation. θg is the convolution parameter. ⊎ represents tensor
concatenation; Self-Attention (Eq. 5) to capture global contextual information, where WQ, WK ,
WV are the weight parameters of the query, key, and value matrices, respectively, and dk is the
dimension of the key matrix.

FG =

{
x′
i = max

j∈KNN(i,k)
σRelu (Γgraph (((xi − xj) ⊎ xi); θg)) ∀i ∈ P

}
, (4)
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Figure 3: Temporal radial basis function Gaussian residual (RBF-GR) and 4D Gaussian Deformation
Field. The normalized RBF weights ζ̃rbfi (t2) are used to compute the residuals of Gaussian means
∆µ

(θ)
t1→t2 , rotations ∆R

(θ)
t1→t2 , and features ∆Φfeat

t1→t2 between time t1 and t2. The covariance matrix
Σt2 is then updated using the learned rotation residual. Wrbf = σsoftmax(MLP (Φfeat

t1 )), where
Wrbf denotes the attention weights for RBF activations, adaptively adjusted based on Gaussian
features. The Temporal-RBF-GR employs radial basis functions (RBFs) with learnable centers ci and
scales si to capture the temporal evolution of Gaussian parameters.

FG
att =

(
FGWV

)
σSoftmax

(
(FGWQ)(F

GWK)⊤√
dk

)⊤

. (5)

Except for Gaussian cloud representation, we introduce 4D neural fields, parameterizing a continuous,
latent spatio-temporal field function using multi-layer perceptron (MLP) networks, as shown in Fig.
2. This maps low-dimensional spatio-temporal coordinates (x, y, z, t) to a high-dimensional latent
feature space, representing the motion and changes of point clouds in the spatio-temporal domain.
Compared to Gaussian point cloud representations, deep networks can fit more complex non-linear
spatio-temporal correlations.

Point cloud data from LiDAR includes noise, which, while not affecting subsequent perception
tasks, impedes the learning of temporal consistency. We apply statistical outlier removal [31] during
preprocessing to eliminate noise by calculating each point’s average distance to its neighbors and
identifying outliers using global mean and standard deviation. Experiments show (Table 2) this
method markedly decreases interference during network training.

3.3 Temporal Radial Basis Function Gaussian Residual (RBF-GR) Module

This module accomplishes the interpolation and updating of Gaussian distribution parameters in the
continuous time domain, which can be primarily divided into three parts (Fig. 3): RBF Activator:
The RBF Activator converts discrete time steps into continuous time representation by mapping scalar
time t to radial basis function activation values ζ̃rbfi (t). RBF networks encode time locally, with
each kernel function centered at a specific time ci and exponentially decaying activations. The RBF
activation values ζ̃rbfi (t) reflect the similarity between time t and center times ci, enabling smooth
interpolation of Gaussian parameters. Gaussian Interpolator: The Gaussian Interpolator interpolates
the mean µt and rotation matrix Rt of the Gaussian distribution using RBF activation values. Gaussian
parameters estimated at discrete time steps are interpolated to obtain parameter residuals ∆µ

(θ)
t1→t2

and ∆R
(θ)
t1→t2 from time t1 to t2. The interpolation process exploits the linearity and closure property

of Gaussian distributions. Feature Interpolator: The Feature Interpolator interpolates Gaussian
features using RBF activation values to obtain a continuous feature representation in time. The
module enables smooth updating of Gaussian distribution parameters in continuous time, allowing
effective fitting and generation of time-varying 3D point cloud sequences.

3.4 4D Gaussian Deformation Field

The temporal Gaussian graph convolutional (TG-GCN) deformation field plays a key role in capturing
the spatiotemporal features from Gaussian point cloud representations (Fig. 4). It takes as input

5



Pt=1

t1

Implicit 
Features

Motion 
Flow Head

Feature
Field Head Pooling FlowField

Aggregation&Upsampling of 4D Motion and Features

MLP

𝝁𝒕𝟏 𝜱𝒕𝟏
𝒇𝒆𝒂𝒕

𝒕𝟏 𝝁𝒕𝟐 𝜱𝒕𝟐
𝒇𝒆𝒂𝒕

𝒕𝟐

Gaussian Deformation Field

t2
ReLU

4D Gaussian Graph Convolutional Deformable

Gaussian Representation Pooling
Gaussian 
Features

Figure 4: 4D Gaussian Deformation Field. Utilizing Gaussian means µ, covariances Σ, and features
Φfeat, and time (t1, t2, · · · ) as inputs, the spatio-temporal graph convolutional network captures
spatio-temporal patterns to learn continuous 4D deformation fields. The Gaussian Representation
pooling module projects the point cloud onto the Gaussian ellipsoids and upsamples, using max-
pooling to extract salient features while capturing complex point dynamics and temporal evolution.

the Gaussian means µ, covariances Σ, and features Φfeat extracted from the time-series radial
basis function Gaussian residual module, extracts the geometric topological features of local and
global Gaussian clouds through the TG-GCN structure, effectively capturing geometric and temporal
patterns. The information on Gaussian means µ aids in encoding the average positions (x, y, z) of
points at different time steps, modeling overall motion and deformation trends; The information on
Gaussian covariances Σ describe the deformation degree and direction of each point over time,
facilitating the modeling of complex dynamics; The Gaussian features Φfeat extract the geometric
and temporal patterns in the point cloud, enhancing the model’s expressive power and providing
geometric features. Furthermore, the incorporation of temporal information aids in establishing the
temporal consistency relationships within the 4D spatiotemporal point cloud.

Based on the features extracted from the deformation field, the motion field head and deformation
field feature head respectively predict the motion flow and feature field (Fig. 4), with the core
principle being the learning of a continuous deformation field, utilizing the time information in the
Gaussian point cloud representation and the spatial dependencies captured by graph convolution, to
achieve smooth and realistic deformation of the point cloud, enabling accurate modeling of 4D point
cloud sequences and interpolation between time steps.

The Gaussian representation pooling module first projects the original point cloud coordinates and
latent features onto Gaussian ellipsoids centered at each point, leveraging the previously established
index mapping between the points and the Gaussian ellipsoids (Sec. 3.2). It then applies max-
pooling to extract the most prominent features within each Gaussian ellipsoid, enhancing the model’s
perception of deformation flow and features. However, this Gaussian ellipsoid projection and max-
pooling operation inevitably leads to a certain degree of information loss. To compensate for the
potential information loss in the feature extraction process of the Gaussian representation pooling
module, we further introduce a neural field module to learn and refine the point cloud deformation
flow and feature expressions.

3.5 Fast Latent-Geometric Feature Fusion (Fast-LG-Fusion) Module

The proposed module fuses the complementary advantages of the latent features FL from point
cloud latent representations and the geometric features FG from 4D Gaussian deformation fields
via an attention-based mechanism. FL serves as the query, while FG serves as the key and value.
Through linear projections (Wq, Wk, Wv), the features are mapped into a shared latent space.
An attention score is computed between the projected query and key, which is then normalized via
softmax to obtain attention weights. These weights adaptively assign importance to different feature
components, enabling effective fusion. The weighted sum of the projected value features is then
computed, integrating multi-modal information. Finally, a residual connection with the original query
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FL yields the fused representation ˜FL&G , preserving temporal information:

˜FL&G = FL + σSoftmax

(
WqFL · (WkFG)

⊤
√
dh

)
(WvFG). (6)

The module’s efficiency stems from its simple linear operations and avoidance of iterative or recurrent
mechanisms, enabling fast computation. Furthermore, the global attention mechanism provides
a comprehensive receptive field, enhancing representational capacity compared to naive concate-
nation. By adaptively fusing geometric and temporal features, the module improves the model’s
expressiveness for capturing complex spatio-temporal patterns in large-scale dynamic LiDAR scenes.

3.6 3D Point Cloud Prediction Head

The 3D Point Cloud Prediction head accurately predicts the point cloud at the target time step by
fusing multi-source spatio-temporal information, including features ˜FL&G from the 4D neural field
and Gaussian deformation field, time encoding Posenc(T ) representing the target time step, and the
initial prediction flow +P. This fusion provides rich spatio-temporal priors, enabling the model to
reason about the target point cloud’s structure and motion patterns. Through a lightweight MLP, the
fused features are directly mapped to the residual flow ∆f∗, avoiding prediction from scratch and
leveraging the initial interpolated flow field based on the Gaussian deformation field:

∆f∗ = MLP ( ˜FL&G ⊕ Posenc(T )⊕ (flow + P )). (7)

Adding ∆f∗ to the current frame accurately predicts the point cloud at the target time step.

3.7 Objective Function

The proposed NeuroGauss4D-PCI optimizes the weights of 4D neural fields and Gaussian deforma-
tion fields using three self-supervised losses, eliminating the need for labeled data. We employ a
cumulative temporal loss to refine network parameters, facilitating efficient spatiotemporal modeling
of 4D point clouds while ensuring smoothness and distribution consistency.

Chamfer Distance Loss: Measures the bidirectional distance between the predicted point cloud P ∗
1

and the ground truth P2, promoting proximity between the predicted and ground truth points.

ℓCD(P ∗
1 , P2) =

∑
p∗
1∈P∗

1

min
p2∈P2

∥p∗1 − p2∥22 +
∑

p2∈P2

min
p∗
1∈P∗

1

∥p2 − p∗1∥
2
2 . (8)

Smoothness Constraint Loss: Enhances the smoothness of the predicted inter-frame flow field
∆f∗, where N(∆f∗

i ) denotes the neighbors of ∆f∗
i . It encourages similarity in flow vectors among

neighboring points, ensuring smoother transformations in large-scale scenes. This loss is not required
when modeling Dynamic Human Bodies.

ℓSmooth(∆f∗) =
∑

δf∗
i ∈∆f∗

1

|N(δf∗
i )|

∑
δf∗

j ∈N(δf∗
i )

∥∥∆f∗(δf∗
j )−∆f∗(δf∗

i )
∥∥2
2
. (9)

Earth Mover’s Distance: Calculates the minimum cost to move points from P ∗
1 to match the

distribution of P2, where TP1→P2
is the optimal transport map. It promotes a distribution in the

predicted point cloud that resembles the ground truth.

ℓEMD(P ∗
1 , P2) = min

TP∗
1 →P2

1

N

∑
p∗
1∈P∗

1

∥p∗1 − TP∗
1 →P2 (p

∗
1) ∥22. (10)

The overall loss integrates these functions across all time steps ti, tj and temporal frames bi, bj ,
weighted by λ1, λ2, λ3. It jointly optimizes the geometric precision, smoothness, and distribution
similarity of the predicted point clouds across multiple time steps and temporal frames.

L =
∑

ti,tj∈T

∑
bi,bj∈B

(
λ1ℓCD(P ti

bi
, P

tj
bj
) + λ2ℓSmooth(∆f

ti→tj
i ) + λ3ℓEMD(P ti

bi
, P

tj
bj
)
)
. (11)
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Table 1: Quantitative comparison with open-source methods on DHB-Dataset [2]. Errors are scaled
by ×10−3 to emphasize small-scale differences in human body metrics. “↓” means lower is better.
“↑” means higher is better. Red and blue denote the first and second best metrics, respectively.

Methods Longdress Loot Red&Black Soldier Squat Swing Overall Param. ↓
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD ↓ EMD ↓

IDEA-Net [2] 0.89 6.01 0.86 8.62 0.94 10.34 1.63 30.07 0.62 6.68 1.24 6.93 1.02 12.03 –
PointINet [8] 0.98 10.87 0.85 12.10 0.87 10.68 0.97 12.39 0.90 13.99 1.45 14.81 0.96 12.25 1.30M
NSFP [11] 1.04 7.45 0.81 7.13 0.97 8.14 0.68 5.25 1.14 7.97 3.09 11.39 1.22 7.81 0.12M

PV-RAFT [10] 1.03 6.88 0.82 5.99 0.94 7.03 0.91 5.31 0.57 2.81 1.42 10.54 0.92 6.14 0.11 M
NeuralPCI [3] 0.70 4.36 0.61 4.76 0.67 4.79 0.59 4.63 0.03 0.02 0.53 2.22 0.54 3.68 1.85 M

Ours 0.68 3.69 0.59 4.12 0.65 4.20 0.57 4.14 0.00 0.00 0.00 0.00 0.42 2.69 0.10 M

Table 2: Quantitative comparison with other advanced methods on the NL Drive dataset. Frame-1,
Frame-2, and Frame-3 denote three interpolated frames evenly spaced between two middle input
frames. The symbol † signifies outlier removal during preprocessing (Sec. 3.2).

Methods Type Frame-1 Frame-2 Frame-3 Average
CD EMD CD EMD CD EMD CD ↓ EMD ↓

NSFP [11] Forward Flow 0.94 95.18 1.75 132.30 2.55 168.91 1.75 132.13
Backward Flow 2.53 168.75 1.74 132.19 0.95 95.23 1.74 132.05

PV-RAFT [10] Forward Flow 1.36 104.57 1.92 146.87 1.63 169.82 1.64 140.42
Backward Flow 1.58 173.18 1.85 145.48 1.30 102.71 1.58 140.46

PointINet [8] Bi-directional Flow 0.93 97.48 1.24 110.22 1.01 95.65 1.06 101.12
NeuralPCI [3] Neural Field 0.72 89.03 0.94 113.45 0.74 88.61 0.80 97.03

Ours 4D Gaussian Deformation 0.70 86.90 0.93 112.1 0.72 88.85 0.78 95.95
Ours† 4D Gaussian Deformation 0.64 71.92 0.88 91.9 0.65 72.16 0.72 78.66

4 Experiments

4.1 Implementation Details

Datasets: Dynamic Human Bodies (DHB) dataset [2] contains 14 sequences of non-rigid human
motions. The NL-Drive [3] dataset captures large-scale motion scenes from KITTI [32], Argoverse
2 [33], and Nuscenes [34] for autonomous driving. KITTIs [35; 32] and KITTIo [36; 32] are two
versions of the KITTI Scene Flow dataset with and without occlusion masks, respectively.

Metrics: Like existing methods [3; 2; 8], we use Chamfer Distance (CD) and Earth Mover’s Distance
(EMD) to measure the consistency between predicted and ground truth point clouds. For the 3D scene
flow task, we employ two error metrics EPE3D and Outliers and two accuracy metrics, ACCS

and ACCR, to quantify performance.

Experimental Setup: We sample the input points to 1024 for object-level scenes and 8192 for
autonomous driving scenes. NeuroGauss4D-PCI consists of 5 components, as shown in Table
4. Refer to the supplementary materials for the parameter settings of each component and more
experimental details.

4.2 Result Comparison on Point Cloud Interpolation

Table 1 demonstrates the superior performance of the proposed method, consistently outperforming
others on CD and EMD metrics, achieving near-zero errors for sequences like Squat and Swing.
The dynamic soft Gaussian representation effectively models non-rigid deformations in human
motions by transforming raw point clouds into multiple Gaussian distributions, with radial basis
functions learning their temporal residuals. Fusing 4D neural field features preserves per-point detail.
The extremely low errors on the DHB dataset validate the model’s excellence in non-rigid motion
modeling and point cloud interpolation. Notably, the proposed method achieves the best performance
with significantly fewer parameters (0.09M) compared to methods like PointINet [8] (1.30M) and
NeuralPCI [3] (1.85M). This is attributed to the efficient Gaussian representation and deformation
field design, enabling superior performance through a more compact model.

On large-scale autonomous driving LiDAR datasets [3], NeuroGauss4D-PCI demonstrates exceptional
temporal point cloud prediction/interpolation performance, significantly outperforming uni-directional
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Table 3: Comparison of our method with the best-performing methods on multiple datasets and
metrics. ‘Self’, and ‘Full’ represent self-supervised, and supervised methods, respectively. Unlike
other methods inputs that use adjacent point clouds (P1, P2), NeuroGauss4D-PC utilizes (P1, t2).

Method Sup. Inference
Input

KITTIs [35; 32] KITTIo [36; 32]
EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓ EPE3D ↓ ACCS ↑ ACCR ↑ Outliers ↓

FlowNet3D [36] Full. (P1, P2) 0.1767 37.38 66.77 52.71 0.183 9.8 39.4 79.9
PointPWC [37] Full. (P1, P2) 0.0694 72.81 88.84 26.48 0.118 40.3 75.7 49.6

Bi-PointFlow [38] Full. (P1, P2) 0.0300 92.00 96.00 14.10 0.065 76.9 90.6 26.4
PT-FlowNet[39] Full. (P1, P2) 0.0224 95.51 98.38 11.86 – – – –

GMSF [40] Full. (P1, P2) 0.0215 96.22 98.50 9.84 0.033 91.6 95.9 13.7
SCOOP+ [42] Self. (P1, P2) 0.0390 93.60 96.50 15.20 0.047 91.3 95.0 18.6

SPFlowNet [41] Self. (P1, P2) 0.0362 87.24 95.79 17.71 0.086 61.1 82.4 39.1
Ours Self. (P1, t2) 0.0190 97.72 99.48 9.43 0.035 94.8 97.5 11.1

Figure 5: Compared to advanced point cloud interpolation algorithms [3; 9], our method aligns better
with the ground truth in predicting point cloud positions and geometry on the NL Drive autonomous
driving dataset [33; 34; 32; 3].

3D flow [11; 10] and neural field method [3], as shown in Table 2. It effectively handles challenges
in temporal LiDAR scenes, such as large-scale non-linear motions, occlusions, and non-uniform
data distributions (Fig. 1, and Fig. 5). NeuroGauss4D-PCI models the 4D temporal point cloud as a
Gaussian deformation field with continuous and differentiable Gaussian representations, ensuring
smooth interpolation and robust predictions. Temporal Gaussian graph convolutions capture local
and global spatio-temporal correlations, enabling fine-grained motion prediction. Notably, Gaussian
representations offer parameter efficiency, expressing complex geometric shapes and non-linear
motions smoothly with fewer parameters compared to neural field methods.

4.3 Result Comparison on Point Cloud Scene Flow

To demonstrate the effectiveness of the proposed point cloud interpolation model in capturing complex
deformations and transient motion patterns between two frames, we evaluated its performance on
3D scene flow estimation using the Scene Flow KITTI dataset (both non-occluded [35; 32] and
occluded [36; 32]), using error and accuracy metrics. As shown in Table 3, our method outperformed
approaches based on feature pyramids (PointPWC [37], Bi-PointFlow [38]), complex 3D point
cloud transformers (PT-FlowNet [39], GMSF [40]), and self-supervised learning (SPFlowNet [41],
SCOOP+ [42]) across multiple metrics. Unlike other methods that require learning inter-frame
correspondences, NeuroGauss4D-PCI only needs a single point cloud and target timestamp to predict
the corresponding point cloud during inference. In the learning phase, NeuroGauss4D-PCI accurately
models complex non-rigid deformations and details in temporal point clouds by integrating latent
neural fields, iterative Gaussian representations, and 4D deformation fields. Its compact iterative
Gaussian representations significantly reduce parameters while effectively capturing continuous point
cloud changes by learning temporal residuals of Gaussian distribution parameters through radial basis
functions, exhibiting superior capability in inter-frame point cloud matching.
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Table 4: Ablation study of the proposed components on DHB [2] and NL-Drive [3]. The components
include: Neural Field for learning spatio-temporal features and iterative Gaussian representation of
3D point plouds ( Gauss.PC )(Sec.3.2); T-RBF-GR represents Temporary Radial Basis Function
Gaussian Residual Module (Sec.3.3); 4D Deformation for modeling 4D deformation fields (Sec.3.4);
LG-Cat and Fast-LG-Fusion are different latent geometric feature fusion methods (Sec.3.5).

Components DHB (×10−3) NL-Drive Param.Neural Field Gauss.PC T-RBF-GR 4D Deformation LG-Cat Fast-LG-Fusion CD ↓ EMD ↓ CD ↓ EMD ↓
! 0.58 3.70 1.06 105.43 0.027M
! ! 0.57 3.62 1.03 103.58 0.028M

! ! 0.59 3.81 1.04 107.86 0.029M
! ! 0.50 3.04 0.80 98.57 0.092M
! ! ! 0.49 2.99 0.80 98.03 0.093M

! ! ! ! ! 0.42 2.69 0.79 97.36 0.099M
! ! ! ! ! 0.44 2.48 0.78 95.95 0.103M

4.4 Ablation Study

Table 4 shows the effect of each component on model performance. Using just the neural field,
the Chamfer Distance (CD) measures 0.58×10−3 on the DHB dataset and 1.06 on the NL-Drive
dataset, showcasing its capacity to capture spatio-temporal features. Adding the Gaussian point
cloud representation slightly lowers the CD by 0.01 and 0.03 on DHB and NL-Drive, respectively,
indicating limited benefits from this integration. Removing the neural field and relying solely on the
Gaussian point cloud and T-RBF-GR module significantly worsens performance, emphasizing the
neural field’s critical role in modeling 4D spatio-temporal point clouds. However, integrating the 4D
Gaussian Deformation Field with the Gaussian representation markedly enhances performance, with
a 14% and 19% decrease in CD and a 17% and 6.5% reduction in Earth Mover’s Distance (EMD)
on the two datasets, respectively. This highlights the deformation field’s effectiveness in accurately
representing dynamic variations. Adding the T-RBF-GR module further improves performance,
showcasing its utility in addressing dynamics and temporal correlations. By fusing the latent features
and the explicit 4D deformation field features, we effectively reduce errors in point cloud prediction.
The Fast-LG-Fusion module, in particular, achieves the best performance, attaining the lowest CD
and EMD across datasets, except for a slight 0.02 increase in CD on the DHB dataset compared to
direct concatenation.

5 Conclusion

NeuroGauss4D-PCI is proposed for accurate 4D temporal point cloud modeling and interpolation.
4D neural fields encode latent spatio-temporal features, and an iterative Gaussian cloud representation
structures point clouds. A temporal RBF Gaussian residual module smoothly updates Gaussian
distribution parameters. 4D Gaussian deformation fields leverage temporal graph convolutions for
robust dynamic point cloud modeling. Efficient fusion of latent spatio-temporal and robust Gaussian
deformation features enables 3D point cloud prediction. Evaluated on multiple datasets, the method
demonstrates significant superiority over existing approaches, particularly in complex dynamics
scenarios. Ablation studies validate the contribution of each module to overall performance.

Broad Implications: Our work is the first to successfully combine radial basis functions for predicting
3D Gaussian distribution residuals and introduce 4D Gaussian deformation fields into the temporal
point cloud prediction task. As the supplementary materials indicate, this is a widely applied yet
underexplored issue. Finally, we hope that the proposed NeuroGauss4D-PCI can provide valuable
assistance to the community in exploring temporal point cloud understanding and modeling.

Limitations: 1) Interpretability: The integration of various features and the opacity of deep neu-
ral networks pose challenges in understanding the decision-making process and the fundamental
principles behind model predictions. 2) Efficiency: Similar to NeRF [43], nearly 90% of the time is
consumed by runtime scene optimization, with inference accounting for only about 10% of the time.
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Supplemental Material

A Datasets

Dynamic Human Bodies (DHB) [2] dataset consists of point cloud sequences of 14 non-rigid
deformable human motions. Six sequences—Longdress, Loot, Redandblack, Soldier, Squat 2, Swing
are designated for testing, and the remaining eight for training. The NL-Drive dataset [3], integrating
data from KITTI odometry [32], Argoverse 2 sensors [33], and Nuscenes [34], focuses on capturing
large-scale motion scenes and is divided into training, validation, and test sets in a 14:3:3 ratio. It
specifically targets hard samples with significant inter-frame motion and large self-motion, employing
detailed 6-DOF pose transformations and a filtering mechanism to support the training and testing of
advanced autonomous driving algorithms. KITTIs [35; 32] and KITTIo [36; 32], two versions of the
KITTI Scene Flow dataset processed for 3D point cloud scene flow evaluation, exclude occluded
points in the former, containing 142 training scenes, while the latter includes all points with occlusion
masks, featuring 150 training scenes.

B Method Details

Table 5: Model Input and Hyperparameter Settings

Component Setting
Model Input 4 frames of point clouds sampled at regular 3-frame intervals:

- DHB dataset: 1024 points per frame
- NL-Drive dataset: 8192 points per frame
Time step 0 to 1, spatial and temporal dimensions: 3 and 1

Iterative Gaussian Cloud - Number of Gaussian components M : 16 (LiDAR), 8 (DHB)
Soft Clustering - Number of iterations κ for fitting Gaussian ellipsoids: 200

- DGCNN for local geometric feature learning:
5 convolutional blocks with kernel size 1, batch normalization,
ReLU activation, and dropout (0.3 probability)
Input channels: 16× 2, 16× 2, 16× 2, 16× 2, 16× 4
Output channels: 16, 16, 16, 16, 64
Dynamic k-NN with k ranging from 8 to 32

4D Neural Field - Input MLP: width 1280, depth 1
- Hidden MLPs: 2 with width 32, depth 5
- Decoder MLP: width 32, depth 1
- Leaky ReLU activation

Temporal RBF - 4 RBF centers (for 4 time steps)
Gaussian Residual - Input feature dimension: 32

- RBF centers evenly spaced between 0 and 1
- Learnable standard deviations for RBFs
- Learnable translation, rotation, scale parameters for Gaussian ellipsoids
- Learnable transformation parameters for input features

4D Gaussian - Temporal encoding dimension: 8
Deformation Field - Intermediate and output dimensions for TGCN: 32

Optimization - AdamW optimizer, learning rate 0.001, weight decay 0
- 5000 iterations, early stopping on optimal solution

Weighted loss - chamfer distance (1.0), earth mover’s distance (50.0),
smoothness regularization (1.0)
- Poly learning rate scheduler

Input Setting: For dynamic point cloud sequence evaluation, the input comprises 4 point cloud
frames sampled at regular 3-frame intervals. Each frame contains 1024 points for the DHB dataset
and 8192 points for the NL-Drive dataset. The temporal resolution is 1, with the initial frame at
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time step 0 and the final frame at time step 1. The spatial and temporal dimensions are 3 and 1,
respectively.

Iterative Gaussian Cloud Soft Clustering: A key hyperparameter is the number of Gaussian
components M , set to 16 for LiDAR and 8 for DHB. The iteration count κ for Gaussian ellipsoid
parameter fitting is 200. A 5-block DGCNN learns local geometric features from the input Gaussian
cloud data. Each block employs a 2D convolution (kernel size 1), batch normalization, ReLU
activation, and dropout (0.3 probability). The input channels for blocks 1-4 are 16 ∗ 2, with 16
output channels each. The final block has 16 ∗ 4 input channels and 32 output channels. For graph
representation, DGCNN uses k-NN with k ranging from 8 to 32 based on input size.

4D Neural Field: The core comprises an input MLP (width 1280, depth 1), two hidden MLPs (width
32, depth 5), and a decoder MLP (width 32, depth 1), utilizing Leaky ReLU activation.

Temporal Radial Basis Function Gaussian Residual: Hyperparameters include 4 RBF centers
(corresponding to time steps) and 32-dimensional input features. RBF centers are evenly distributed
between 0 and 1, with learnable standard deviations. Translation, rotation, scale parameters of
Gaussian ellipsoid distributions, and input feature transformation parameters are learnable.

4D Gaussian Deformation Field: Temporal information is encoded as an 8-dimensional vector.
Intermediate and output dimensions for temporal Gaussian graph convolutional network are 32.

Optimization: AdamW optimizer (learning rate 0.001, weight decay 0), 5000 iterations, minimizing a
weighted loss (chamfer distance loss weight 1.0, earth mover’s distance loss weight 50.0, smoothness
regularization loss weight 1.0), with early stopping. Poly learning rate scheduler is employed.

Computational Performance: The average training time is ∼ 1.31 seconds per iteration, and the
average evaluation time is ∼ 0.23 seconds per frame. The GPU memory consumption is 7436
MiB. The model is evaluated on an NVIDIA GeForce RTX 3090 GPU with 24GB of VRAM. The
implementation is based on the PyTorch deep learning framework, utilizing CUDA acceleration for
efficient parallel computation on the GPU.

C Applications

Heterogeneous sensors like LiDAR and cameras often suffer from asynchronous data acquisition
[44; 45], posing challenges in fusing their complementary data streams. As illustrated in Fig. 6,
NeuroGauss4D-PCI offers a powerful solution by enabling the interpolation of arbitrary point cloud
frames from continuous point clouds, facilitating precise multi-sensor time synchronization. This
capability unlocks seamless integration of data from multiple sensors, enhancing the robustness and
accuracy of perception systems in dynamic environments.

Moreover, NeuroGauss4D-PCI can be effectively applied to 4D automatic annotation tasks, assigning
point-wise labels to unlabeled intermediate frames based on sparse 3D labels. This automated labeling
process significantly reduces the time and effort required for manual annotation, a critical bottleneck
in many computer vision applications. Consequently, it accelerates the development and deployment
of systems relying on labeled point cloud data.

Furthermore, NeuroGauss4D-PCI demonstrates remarkable accuracy in LiDAR point cloud densi-
fication, generating high-resolution, dense point clouds from sparse inputs. Accurate dense point
clouds serve as invaluable data sources for a wide range of autonomous driving perception tasks
[46; 47; 48; 49], including depth estimation [50; 51], occupancy prediction [52], and 4D scene
reconstruction [53; 54; 55]. The ability to obtain high-fidelity representations of the environment
from limited sensor data highlights the immense potential of NeuroGauss4D-PCI in enabling robust
and reliable perception systems.

D Supplementary Visualization

In the qualitative comparison (Fig. 7) on the DHB dataset [2], NeuroGauss4D-PCI demonstrates
superior performance compared to state-of-the-art open-source models, including PointINet [8],
IDEA-Net [2], and NeuralPCI [3], in the task of temporal point cloud interpolation. The proposed
method excels in capturing and modeling non-rigid human motions with high fidelity, as evident from
the visual results. NeuroGauss4D-PCI represents the input point cloud as a set of Gaussian ellipsoids
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Figure 6: Visualization of NeuroGauss4D-PCI for multi-sensor time synchronization and point cloud
densification applications. In point cloud densification, sparse ground truth points are shown in green,
while the predicted dense point cloud is shown in red, exhibiting good overlap with the sparse ground
truth.
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Figure 7: Qualitative visualizations on the DHB dataset demonstrate the evident superiority of the
proposed method in reconstructing fine details when compared to existing state-of-the-art open-source
models [37; 2; 3].

through the Iterative Gaussian Cloud Soft Clustering module, effectively encoding local geometric
structures and establishing meaningful correspondences across temporal frames. Furthermore, the
Temporal Radial Basis Function Gaussian Residual module enables effective learning of temporal
dynamics and residual deformations by incorporating radial basis functions (RBFs) centered at
different time steps, allowing for accurate interpolations, especially in scenarios involving complex
non-rigid motions. The 4D Neural Field module, the core of NeuroGauss4D-PCI, leverages the
expressive power of neural fields to model the continuous 4D space of point cloud sequences, encoding
both spatial and temporal information in a unified neural field to generate high-quality interpolated
frames that maintain spatial and temporal coherence. Additionally, the Feature Interpolator module
employs an attention-based mechanism to aggregate and interpolate features from neighboring
time steps, enabling cross-temporal propagation and integration of relevant information, further
enhancing the capability to handle non-rigid deformations. Overall, NeuroGauss4D-PCI’s innovative
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Figure 8: Quantitative comparison with pure neural field method [3] on the NL-Drvie dataset.
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Figure 9: Point cloud interpolation in challenging autonomous driving scenarios. Blue/yellow: input
clouds at T0,4/T8,12. Green: ground truth at T6,7. Pink: predictions at T6,7. The scenes feature local
occlusions, sparse point clouds, repeating structures, and large displacements simulated by extended
frame intervals. The overlap between green and pink points demonstrates our algorithm’s accuracy in
these complex scenarios, showcasing its robustness to data sparsity, occlusions, ambiguous temporal
features from repeating structures, and large environmental displacements.

architecture, combining Gaussian ellipsoid representations, temporal RBF residuals, 4D neural fields,
and attention-based feature interpolation, endows it with a unique ability to accurately model and
interpolate non-rigid point cloud sequences. The qualitative results on the DHB dataset demonstrate
the method’s superiority in handling complex human motions.

The qualitative visualization (Fig. 8) on the NL-Drive dataset showcases NeuroGauss4D-PCI’s
exceptional performance in point cloud interpolation and prediction for autonomous driving scenarios.
Compared to NeuralPCI, our method exhibits superior temporal consistency and local coherence,
benefiting from the robust mathematical constraints imposed by the Gaussian parameterization. For
unstructured and sparse point clouds, the 4D modeling approach enables more accurate predictions
in sparse and unstructured regions. Additionally, NeuroGauss4D-PCI demonstrates robustness in
handling occluded areas, as evident in the second row of the visualization.
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Figure 10: Robustness analysis of our point cloud interpolation method under varying noise conditions.
Top row: Input point clouds PCt=0 (blue) and PCt=8 (yellow) with different noise ratios (0.4, 0.8)
and standard deviations (0.4, 0.8). Bottom row: Comparison between ground truth PCgt

t=6 (green)
and predicted PCpred

t=6 (pink) point clouds at t = 6. Noise is added to input point clouds using
a Gaussian distribution, where noise ratio determines the proportion of points affected, and noise
STD defines the standard deviation of the noise. The alignment between green and pink points
indicates prediction accuracy. Results demonstrate our method’s resilience to increasing noise levels,
maintaining reasonable performance even under severe noise conditions (noise ratio 0.8, STD 0.8).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the main contributions and
scope of the paper. The paper proposes a novel point cloud interpolation method called
NeuroGauss4D-PCI, which effectively represents point cloud data using iterative Gaussian
clouds. The experimental section demonstrates and discusses the effectiveness of the
proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed in detail the limitations of this work in the conclusion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code has been open-sourced in the supplementary material, providing
the necessary information to reproduce our experiments. Furthermore, all experimental
details, including datasets, model architectures, training and evaluation procedures, have
been meticulously described in the paper, ensuring the reproducibility of the reported results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please refer to the supplementary materials, we have provided detailed open-
source code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We detail the experimental details of our method in the main experimental
section and in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars or provide information about the statistical
significance of the experiments. However, we provide statistical error results on the test
set, such as Chamfer Distance error, Earth Mover’s Distance error, and average endpoint
error, which are widely accepted evaluation metrics in the community. Notably, many of the
compared methods in the paper also do not report such information. The lack of error bars
or statistical significance measures is a common practice in this field.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We illustrate type of compute workers, memory, time of execution of our
model in detail in the experimental details in the main text and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the requirements of the NeuroIPS Code of Ethics
and confirmed that our paper complies with the NeuroIPS Code of Ethics in all aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We discussed the broad positive impact of our work at the end of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use some of the code from NeuralPCI [3], and all the code in this repository
uses Apache License 2.0. And we have correctly cited this work in the main paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide detailed documentation on the model architecture, training proce-
dures, and evaluation protocols in the main paper and supplementary material. In addition,
we also release the code and pre-trained models in the supplementary material, enabling
reproducibility and promoting future research in this area. We carefully anonymize as-
sets during the submission process and will provide a publicly accessible zip file upon
publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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