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Abstract001

We introduce VoiceCraft-X, an autoregressive002
neural codec language model which unifies003
multilingual speech editing and zero-shot Text-004
to-Speech (TTS) synthesis across 11 languages:005
English, Mandarin, Korean, Japanese, Spanish,006
French, German, Dutch, Italian, Portuguese,007
and Polish. VoiceCraft-X utilizes the Qwen3008
large language model for phoneme-free cross-009
lingual text processing and a novel token re-010
ordering mechanism with time-aligned text011
and speech tokens to handle both tasks as012
a single sequence generation problem. The013
model generates high-quality, natural-sounding014
speech, seamlessly creating new audio or edit-015
ing existing recordings within one framework.016
VoiceCraft-X shows robust performance in di-017
verse linguistic settings, even with limited per-018
language data, underscoring the power of uni-019
fied autoregressive approaches for advancing020
complex, real-world multilingual speech ap-021
plications. Audio samples are available at022
https://voicecraft-x.github.io/.023

1 Introduction024

Highly realistic speech generation is an indis-025

pensable technology for voice assistants, content026

dubbing, accessibility tools, and creative media.027

Speech generation can be broken down into sev-028

eral sub-problems: creating new audio via Text-To-029

Speech synthesis (TTS) or editing part of an ex-030

isting recording while ensuring voice consistency031

with the remainder of the original speech. Despite032

their shared goal of producing natural speech, TTS033

and speech editing are typically treated as separate034

problems, especially in multilingual settings, which035

leaves practitioners without a single model that can036

both edit and synthesize speech across languages.037

Over the past several years, the quality of TTS038

models has improved significantly, particularly in039

the zero-shot setting in which a model generates040

speech in a new speaker’s voice given a short (e.g.041

3 second) audio prompt. Transformer-based neural042

networks have been central to this progress, leading 043

to three broad paradigms: (i) autoregressive (AR), 044

(ii) non-autoregressive (Non-AR), and (iii) hybrid 045

models. AR models, such as VALL-E (Wang et al., 046

2023) and its successors (Zhang et al., 2023b; Han 047

et al., 2024; Xin et al., 2024; Chen et al., 2024a; 048

Song et al., 2025; Yang et al., 2025), generate 049

frame-level speech tokens sequentially, where the 050

tokens are typically derived from a neural audio 051

codec (Défossez et al., 2022; Zeghidour et al., 2021; 052

Zhang et al., 2023a). These models are able to per- 053

form voice-cloning TTS via Transformer language 054

models’ in-context learning ability, demonstrating 055

high-quality speech synthesis. Non-AR models in- 056

clude flow-matching models such as F5-TTS (Chen 057

et al., 2024b), as well as diffusion models such 058

as NaturalSpeech 2/3 (Shen et al., 2023; Ju et al., 059

2024). These models predict all tokens represent- 060

ing an utterance in parallel via iterative refinement. 061

Hybrid approaches such as Seed-TTS (Anastassiou 062

et al., 2024), CosyVoice (Du et al., 2024b,c) and 063

MaskGCT (Wang et al., 2024) aim to combine the 064

strengths of both paradigms. While these models 065

deliver impressive zero-shot quality, most of the 066

models are either monolingual or focus on a hand- 067

ful of high-resource languages such as English and 068

Chinese. This is likely due to the fact that these 069

models are data-hungry, often requiring 10K-100K 070

hours of training speech for SOTA performance. 071

The quest for broader linguistic inclusivity 072

across the world’s 7,000 spoken languages (Eber- 073

hard et al., 2024) has driven research in multi- 074

lingual speech generation. Efforts include curat- 075

ing large corpora (e.g., VoxPopuliTTS (Liu et al., 076

2025), Fish-Speech (Liao et al., 2024)) and training 077

multilingual TTS architectures like VoiceBox (Le 078

et al., 2023), CLAM-TTS (Kim et al., 2024) and 079

XTTS (Casanova et al., 2024). Yet even the most 080

capable multilingual systems treat speech editing 081

as a separate task—or ignore it altogether—leaving 082

users without a unified solution. 083
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In this paper we address this gap, by introduc-084

ing VoiceCraft-X, a unified autoregressive neural085

codec language model that performs both speech086

editing and zero-shot TTS in 11 languages: En-087

glish (en), Mandarin (zh), Korean (ko), Japanese088

(ja), Spanish (es), French (fr), German (de), Dutch089

(nl), Italian (it), Portuguese (pt) and Polish (pl).090

Our contributions are threefold:091

1. We introduce VoiceCraft-X, a single au-092

toregressive model that unifies multilingual093

speech editing and zero-shot Text-to-Speech094

(TTS) across 11 languages.095

2. Our approach leverages the Qwen3 large lan-096

guage model for cross-lingual text processing,097

without the need for phonetic pronunciation098

lexicons. We also propose a novel token re-099

ordering mechanism that time-aligns text and100

speech, enabling a unified sequence genera-101

tion approach for both editing and synthesis.102

3. We demonstrate VoiceCraft-X’s robust gener-103

ation of high-quality, natural-sounding speech104

across diverse languages, even with limited105

per-language data, and will release our code106

and model to the community.107

2 Related Work108

2.1 Speech Editing109

Speech editing aims to correct mispronunciations,110

stutters, or recording artifacts while producing111

speech that is indistinguishable from natural au-112

dio. Recent approaches leverage Transformer and113

diffusion architectures. Borsos et al. (2022) per-114

form audio infilling with a Transformer that main-115

tains speaker identity and prosody, generalizing to116

unseen speakers. Le et al. (2023) use flow match-117

ing for versatile speech infilling, and Peng et al.118

(2024) show that a neural-codec language model119

with token infilling can concurrently handle edit-120

ing and synthesis. F5-TTS (Chen et al., 2024b)121

and MaskGCT (Wang et al., 2024) extend this idea122

with flow-matching or diffusion, respectively. De-123

spite these advances, most works are monolingual,124

motivating a unified multilingual solution.125

2.2 Zero-Shot Speech Synthesis126

The zero-shot Text-to-Speech (TTS) synthesis task127

entails generating speech in a new speaker’s voice128

from a short audio prompt, without assuming that129

the new speaker was seen during training. Recent130

progress is largely driven by Transformer-based131

neural networks, falling into autoregressive (AR), 132

non-autoregressive (non-AR), and hybrid. 133

Autoregressive (AR) models generate speech to- 134

kens sequentially. VALL-E (Wang et al., 2023) 135

pioneered neural codec language models for high- 136

quality zero-shot TTS via in-context learning, with 137

subsequent works (Zhang et al., 2023b; Han et al., 138

2024; Chen et al., 2024a; Xin et al., 2024; Song 139

et al., 2025; Kharitonov et al., 2023; Łajszczak 140

et al., 2024; Peng et al., 2024; Guo et al., 2024) 141

further refining this paradigm. Non-Autoregressive 142

(Non-AR) models aim for faster generation by pre- 143

dicting tokens in parallel or using iterative refine- 144

ment. Examples include flow-matching models 145

like VoiceBox (Le et al., 2023) and diffusion-based 146

models such as NaturalSpeech 2 (Shen et al., 2023), 147

NaturalSpeech 3 (Ju et al., 2024), and DiTTo- 148

TTS (Lee et al., 2024). Other notable non-AR 149

approaches include Unicats (Du et al., 2024a), Sim- 150

pleSpeech (Yang et al., 2024b,a), E2-TTS (Eskimez 151

et al., 2024), F5-TTS (Chen et al., 2024b) and 152

Mega-TTS 3 (Jiang et al., 2025). Hybrid systems 153

combine aspects of both AR and non-AR meth- 154

ods. Seed-TTS (Anastassiou et al., 2024) uses a 155

two-stage architecture, while CosyVoice (Du et al., 156

2024b,c) and MaskGCT (Wang et al., 2024) also 157

represent efforts to balance quality, speed, and con- 158

trollability. In this work, VoiceCraft-X follows 159

the codec language modeling method of Voice- 160

Craft (Peng et al., 2024) and enables high-quality, 161

zero-shot multilingual speech synthesis within its 162

unified editing and generation framework. 163

2.3 Multilingual Speech Generation 164

Prior work on multilingual speech synthesis largely 165

pursues two complementary goals: (i) expanding 166

language coverage and (ii) achieving zero-shot ro- 167

bustness to unseen speakers and languages. 168

On the data side, Saeki et al. (2024) show that 169

pairing self-supervised speech representations with 170

unsupervised text alignment scales TTS to 100 + 171

languages, even when only scant transcriptions ex- 172

ist. Large curated corpora amplify these gains: 173

VoxPopuliTTS (Liu et al., 2025) refines 30,000 174

hours of English, French and Spanish speech; Fish- 175

Speech (Liao et al., 2024) goes further, training 176

on 720,000 hours while using an LLM to sidestep 177

language-specific G2P rules. Model architectures 178

have evolved in parallel. VoiceBox (Le et al., 2023) 179

adopts non-autoregressive flow matching, deliver- 180

ing cross-lingual zero-shot TTS in six languages 181

via in-context learning. XTTS (Casanova et al., 182
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Figure 1: Architecture Overview. This diagram illustrates the training process for the VoiceCraft-X model. The
model takes text and a speaker embedding as input and is trained to predict sequences of speech tokens. The labels
CB1-CB4 represent codec tokens from different codebooks.

2024), extending Tortoise (Betker, 2023), combines183

a Perceiver Resampler with a speaker-consistency184

loss to reach 16 languages with speaker cloning.185

CLAM-TTS (Kim et al., 2024) improves codec186

language model compression with probabilistic187

residual vector quantization, enabling single-step188

multi-token generation. However, these models of-189

ten treat synthesis as a distinct task from speech190

editing. The challenge of unifying high-quality,191

multilingual speech editing with robust multilin-192

gual speech synthesis within a single, open-source,193

and fully autoregressive model architecture remains194

largely unaddressed.195

3 Method196

3.1 Overview197

VoiceCraft-X evolves VoiceCraft (Peng et al., 2024)198

into a truly multilingual speech-editing and synthe-199

sis system, treating both tasks as a single sequence-200

generation problem over neural codec tokens. The201

core of this system, as illustrated in Figure 1, is the202

Qwen3 (Qwen-Team, 2025) large language model.203

Qwen3 natively supports text input in 119 lan-204

guages and dialects, which we leverage as the cross-205

lingual input text tokenizer for VoiceCraft-X. This206

eliminates the cumbersome phoneme-conversion207

step that was integral to the original VoiceCraft,208

resulting in a simplified pipeline with a shared tok-209

enizer across languages, without the need to curate210

pronunciation lexicons for each language.211

A further key innovation in VoiceCraft-X is its212

enhanced data layout: it interleaves text tokens213

and speech tokens in a single, time-ordered stream,214

whereas VoiceCraft reordered only the speech to-215

kens. Enforcing this alignment between linguistic216

content and its acoustic realization yields more con- 217

sistent and natural-sounding speech. 218

3.2 Speaker Embedding 219

In addition to the speech tokens representing the 220

prompt speech, VoiceCraft-X also takes as in- 221

put a speaker embedding vector extracted from 222

this prompt speech. We follow the approach of 223

CosyVoice (Du et al., 2024b) by using a pre-trained 224

voiceprint model1 to extract the speaker embedding. 225

The resulting vector is then passed through a linear 226

projection layer. This projection maps the speaker 227

embedding to match Qwen3’s input dimension. 228

3.3 Speech Tokenization 229

We utilize the EnCodec (Défossez et al., 2022) neu- 230

ral audio codec model to tokenize the input utter- 231

ance. Specifically, we train a modified version of 232

the tokenizer which outputs a sequence of four 233

parallel token streams at a 50Hz framerate. The 234

tokens are discretized with residual vector quan- 235

tization (RVQ) with a vocabulary size of 2048 at 236

each quantization layer. 237

3.4 Token Reordering 238

VoiceCraft-X employs several token reordering 239

steps, illustrated in Figure 2, to unify speech edit- 240

ing and synthesis. We assume that our training 241

examples consist of utterance waveforms accompa- 242

nied by time-aligned word transcriptions (we use 243

the Montreal Forced Aligner (MFA) (McAuliffe 244

et al., 2017) in our work). During training, a text 245

transcription is randomly segmented into prefix, 246

1https://www.modelscope.cn/models/iic/
CosyVoice-300M/file/view/master/campplus.onnx
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middle, and suffix portions. These are then re-247

arranged into a "prefix-suffix-middle" sequence,248

where the "middle" segment serves as the predic-249

tion target. Finally, the corresponding speech to-250

kens for each segment are reordered identically251

based on the alignment timings. This ensures a252

monotonic alignment between the text and speech253

tokens, even when performing speech edits which254

require infilling tokens in the middle of the speech255

sequence. This rearrangement serves to mirror the256

use case in which a user wishes to modify some,257

but not all of the words in an utterance - by us-258

ing this rearrangement, the model can be trained259

to predict the speech tokens within the middle of260

an utterance, conditioned on the preceding (prefix)261

and following (suffix) speech tokens in addition to262

the desired text transcription.263

3.5 Causal Masking and Delay Pattern264

Following the token reordering, a learnable265

<MASK> token is inserted at two locations within266

the text-speech input sequence: one <MASK> to-267

ken is inserted at the boundary between the prefix268

and suffix speech tokens, and a second <MASK>269

token is placed between the suffix audio tokens270

and the middle (target) audio tokens. These to-271

kens serve to inform the model of the boundaries272

between the segments.273

During training, the model is tasked with au-274

toregressively predicting all audio tokens: encom-275

passing those in the prefix, suffix, and the middle276

(target) segments. This prediction is optimized us-277

ing a standard language modeling objective, where278

the cross-entropy loss function is applied to every279

token in the sequence. By training the model to pre-280

dict not only the target segment but also the known281

prefix and suffix segments, it receives gradients for282

every timestep, resulting in faster training.283

To model the K parallel token sequences out-284

put by the EnCodec tokenizer autoregressively, we285

incorporate the “Delay Pattern” proposed by Mu-286

sicGen (Copet et al., 2023). Instead of predicting287

all K codebooks for a given audio timestep t si-288

multaneously or flattening all codebooks across all289

timesteps into one long sequence, delay patterning290

inserts a cumulative time delay of one timestep per291

RVQ layer to the EnCodec token sequences. As a292

result, the prediction for the speech token at code-293

book level k at timestep t can be conditioned on the294

model’s predictions for codebook levels 1 through295

k − 1 associated with the same timestep t.296

3.6 Inference 297

Figure 2 shows how, at inference time, VoiceCraft- 298

X performs speech editing and zero-shot text-to- 299

speech by preparing an input sequence based on 300

the "prefix-suffix-middle" reordering of text and 301

speech tokens. The system then autoregressively 302

generates the neural codec tokens for the target 303

audio segment. 304

Speech editing Let TP , AP be the prefix 305

text/audio, TS , AS the suffix, and T new
M the user- 306

supplied replacement text for the middle segment. 307

The model input is the concatenation 308

TP , TS , T
new
M , <SPK>, AP , <M>, AS , <M>, 309

where <SPK> is a speaker embedding token 310

and <M> is the (learnable) mask token. The de- 311

coder predicts the middle-segment audio tokens 312

ÂM , which we splice between AP and AS before 313

decoding the entire sequence with the EnCodec 314

decoder network to create a seamless edit. 315

Zero-shot TTS If a prompt text (Tprompt) and its 316

corresponding prompt speech are provided, we con- 317

catenate the prompt text and the target text (Ttarget) 318

to form the middle text segment, and a speaker em- 319

bedding is extracted from the prompt speech. If 320

no such prompt is provided, we set the prompt 321

text (Tprompt) to empty and randomly generate a 322

speaker embedding. The final input is as follows: 323

TP , TS , Tprompt, Ttarget,

<SPK>, AP , <M>, AS , <M>, Aprompt,
324

where TP = TS = ∅, AP = AS = ∅, and 325

Tprompt = Aprompt = ∅ if no prompt is provided. 326

4 Experiments 327

4.1 Setup 328

Training Dataset. We combined speech data 329

across public datasets over 11 languages, amount- 330

ing to a total of approximately 32K hours (detailed 331

statistics provided in Appendix §A.1). The sam- 332

pling rate for all audio is 16 kHz. Audio segments 333

longer than 25 seconds were discarded. For MLS 334

dataset (Pratap et al., 2020), misalignment issues 335

were particularly prominent, with approximately 336

20% of samples having extra or missing words in 337

the transcript at the beginning or end. We found 338

that this negatively impacted model performance 339

for English, and subsequently removed utterances 340

whose transcriptions differed significantly from 341
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Figure 2: Illustration of Token Reordering

those produced by the Whisper (Radford et al.,342

2023) model. While we found similar problems343

with the non-English European language data in344

MLS, we anecdotally observed better performance345

on those languages without performing this filter-346

ing. We speculate that this is due to the fact that347

the amount of available training data for those lan-348

guages is already relatively low, and the perfor-349

mance improvements brought by the additional350

training data outweigh the detriments brought by351

transcription noise.352

Evaluation Dataset. For evaluating Text-to-353

Speech (TTS) performance, we curated an eval-354

uation dataset from several established bench-355

marks. For English, we utilized the Seed-TTS356

test-en set (Anastassiou et al., 2024) (1088 sam-357

ples sourced from Common Voice (Ardila et al.,358

2019)). For Mandarin, we employed the Seed-TTS359

test-zh set (2020 samples from DiDiSpeech (Guo360

et al., 2021)). Korean and Japanese evaluations361

were conducted using 200 randomly selected sam-362

ples from KsponSpeech (Bang et al., 2020) and363

KokoroSpeech (Iida, 2021), respectively. For the364

remaining seven languages supported by our model365

(Spanish, French, German, Dutch, Italian, Por-366

tuguese, and Polish), we randomly selected 100367

samples for each language from their correspond-368

ing Multilingual LibriSpeech (MLS) (Pratap et al.,369

2020) test sets. To evaluate speech editing, we370

randomly selected 100-300 samples per language371

from these TTS test datasets and then utilized Gem-372

ini (Team et al., 2023) to perform insertion, dele-373

tion, or substitution operations on the textual por-374

tions of these samples, with specific details avail-375

able in the appendix §A.2. We conducted subjec-376

tive evaluation over a subset of languages (English, 377

Chinese, French, Italian, Portuguese, and Spanish) 378

using a random subset of the evaluation set: 40 379

English samples, 50 Chinese, and 20 for others. 380

Training. Our model utilizes Encodec (Défos- 381

sez et al., 2022) as the speech tokenizer. We re- 382

train the model with some modifications, namely 383

using 4 Residual Vector Quantization (RVQ) code- 384

books, each containing 2048 entries, and a fram- 385

erate of 50Hz on audio recorded at 16 kHz. We 386

retrain the model with our multilingual speech data. 387

Other than those, the training process adheres to 388

the methodology outlined in the work by (Défossez 389

et al., 2022). Additional configuration specifics can 390

be found in Section §B.1. To combine the paral- 391

lel speech tokens when using them as input to the 392

Transformer LM, at each timestep we sum the em- 393

beddings of the tokens across the four codebooks. 394

We use Qwen3-0.6B-Base as both the text tok- 395

enizer and the Transformer LM backbone (details 396

are provided in Appendix B.2). The outputs from 397

the final Transformer layer are then projected into 398

four distinct linear layers, each producing the logits 399

for one of the codec tokens. The model comprises 400

613 million total parameters (457 million excluding 401

embeddings). The codebook weights α are set to 402

(1.0, 0.8, 0.6, 0.4), influencing the contribution of 403

each codebook during training (as further detailed 404

in our loss formulation §B.3). For model train- 405

ing, we employ the AdamW optimizer (Loshchilov 406

and Hutter, 2017) with a learning rate of 4× 10−3, 407

β1 = 0.9, β2 = 0.999, an epsilon of 1× 10−6, and 408

a weight decay of 0.01. A learning rate sched- 409

uler is utilized, featuring a linear warm-up for 410

the initial 50K steps, followed by a linear decay 411
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for the remainder of the 5, 000K total training412

steps. Gradient accumulation is performed over413

8 micro-batches. The training of the multilingual414

VoiceCraft-X model took approximately one week415

on 16 NVIDIA A100 40GB GPUs.416

Inference Figure 2 shows how, at inference time,417

VoiceCraft-X performs speech editing and zero-418

shot text-to-speech by preparing an input sequence419

based on the "prefix-suffix-middle" reordering of420

text and speech tokens; the model then autoregres-421

sively predicts the corresponding neural codec to-422

kens for the target audio segment. Notably, the to-423

ken reordering mechanism significantly enhances424

inference stability. This largely prevents repeat-425

ing token loops, an issue in the original Voice-426

Craft which could cause artifacts (e.g., excessive427

silences) and required multi-sample filtering. Con-428

sequently, VoiceCraft-X reliably generates high-429

quality speech in a single pass without needing430

this filtering step. In all experiments, we employ431

nucleus sampling (Holtzman et al., 2019) with432

TopK = 20, T opP = 1.0, and a temperature of 1.433

Baselines. For the English and Chinese Zero-434

shot TTS tasks, we compared our model with Fir-435

eRedTTS (Guo et al., 2024), MaskGCT (Wang436

et al., 2024), F5-TTS (Chen et al., 2024b),437

CosyVoice (Du et al., 2024b), and CosyVoice 2 (Du438

et al., 2024c). For English, we also included Voice-439

Craft (Peng et al., 2024) in our comparison. For the440

remaining languages, we benchmarked our model441

against the multilingual XTTS (Casanova et al.,442

2024) model, considering both its v1 and v2 ver-443

sions. For speech editing, we compared VoiceCraft-444

X with the original VoiceCraft (Peng et al., 2024)445

model on English.446

Metrics. We used a combination of subjective447

and objective measures. Objectively, we use Word448

Error Rate (WER) as an automatic proxy for the449

intelligibility of the synthesized speech; this is450

calculated using Paraformer-zh (Gao et al., 2023)451

for Chinese and Whisper-large-v3 (Radford et al.,452

2023) for other languages. Additionally, speaker453

similarity (SIM-o) is objectively measured by com-454

puting the cosine similarity of speaker embed-455

dings, which are extracted from both the generated456

and original target speech using a WavLM-based457

speaker verification model (Chen et al., 2022). Sub-458

jective evaluations involved human annotators (see459

Appendix C for details) who provide Compara-460

tive Mean Opinion Scores (CMOS) and Similar-461

ity Mean Opinion Scores (SMOS) for TTS, and 462

Naturalness Mean Opinion Scores (NMOS) and 463

Intelligibility Mean Opinion Scores (IMOS) for 464

speech editing. For CMOS, evaluators assess the 465

naturalness of the synthesized speech in compar- 466

ison to the ground truth, while for SMOS, they 467

directly score the similarity between the synthe- 468

sized speech and the initial speech prompt. For 469

NMOS and IMOS, evaluators respectively assess 470

the naturalness and intelligibility of the synthesized 471

and original speech. 472

4.2 Zero-Shot TTS 473

We evaluated VoiceCraft-X’s zero-shot TTS per- 474

formance across 11 languages, and the results are 475

shown in Table 1. For Chinese, VoiceCraft-X was 476

trained on a modest 5K hours of data, a frac- 477

tion of that used by leading models (often exceed- 478

ing 50K hours). Consequently, while its CER 479

of 3.29 was higher than these specialized mod- 480

els, this was achieved with substantially less data, 481

and its speaker similarity and subjective scores re- 482

flected this data disparity. In English, VoiceCraft-X, 483

trained on 14K hours, showed marked improve- 484

ments over its predecessor, VoiceCraft, reducing 485

its WER from 5.28 to 4.37 and enhancing SIM-o 486

from 0.51 to 0.54. Critically, its CMOS score of 487

0.632 was the highest among compared models, 488

indicating superior perceived naturalness. While 489

some models trained on significantly larger datasets 490

achieved lower WERs, VoiceCraft-X’s subjective 491

quality in English was highly competitive. 492

For the remaining nine languages, VoiceCraft-X, 493

compared to XTTS (versions v1 and v2), showed 494

strong overall performance with varying focuses. 495

VoiceCraft-X particularly excelled in European lan- 496

guages like German (WER significantly better than 497

XTTS-v2 by over 50%), Spanish (WER over 40% 498

better than XTTS-v2 and below the ground truth), 499

and Italian (higher data efficiency), as well as in 500

Korean (CER reduced by over 20%). However, in 501

languages such as Japanese and Dutch, or for those 502

where VoiceCraft-X had considerably less training 503

data like Portuguese and Polish, XTTS-v2 achieved 504

lower error rates. Nevertheless, VoiceCraft-X was 505

often favored by evaluators for its better speaker 506

similarity, naturalness, and intelligibility. (Further 507

results are in the appendix §C). 508

2The generally higher English CMOS scores likely re-
sulted from using Seed-TTS test set as prompts with atypical,
exaggerated intonation (not standard read speech).
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Table 1: Zero-Shot TTS performance across different models and languages. ‡Training Hours for XTTS-v2 may be
an underestimation as the model is continuously updated and specific training data has not been fully disclosed. "-"
indicates data not available or not applicable. *For Chinese, Korean and Japanese, figures in the WER columns
represent Character Error Rate (CER). †Scores reported in baseline papers.

Chinese* English

Train (hrs) WER SIM-o CMOS SMOS Train (hrs) WER SIM-o CMOS SMOS

Ground Truth - 1.25 0.75 0.0 3.38 - 2.14 0.73 0.0 3.36

MaskGCT (Wang et al., 2024) 49.9K 2.27† 0.77† - - 46.8K 2.62† 0.72† - -
F5-TTS (Chen et al., 2024b) 49.9K 1.56† 0.76† - - 46.8K 1.83† 0.67† - -

FireRedTTS (Guo et al., 2024) 110K 1.21 0.65 -0.28 2.82 40K 9.08 0.45 0.27 2.97
CosyVoice (Du et al., 2024b) 130K 3.49 0.75 0.18 3.64 30K 3.89 0.64 0.50 3.48

CosyVoice 2 (Du et al., 2024c) 130K 1.35 0.75 -0.01 3.86 30K 2.69 0.65 0.59 3.69

VoiceCraft (Peng et al., 2024) - - - - - 9K 5.28 0.51 0.44 3.27
VoiceCraft-X 5K 3.29 0.68 -0.39 2.94 14.5K 4.37 0.54 0.63 3.43

Korean* Japanese* Dutch

Train (hrs) WER SIM-o Train (hrs) WER SIM-o Train (hrs) WER SIM-o

Ground Truth - 8.89 - - 9.72 0.79 - 9.54 0.65

XTTS-v1 - - - - - - - 78.17 0.41
XTTS-v2 539‡ 40.89 0.62 57‡ 11.61 0.64 74‡ 12.62 0.59

VoiceCraft-X 832 31.11 0.56 3489 15.09 0.66 2147 16.28 0.61

Italian Portuguese Polish

Train (hrs) WER SIM-o Train (hrs) WER SIM-o Train (hrs) WER SIM-o

Ground Truth - 9.48 0.68 - 8.75 0.69 - 8.81 0.72

XTTS-v1 - 73.12 0.32 - 48.93 0.33 - 96.15 0.41
XTTS-v2 1297‡ 15.52 0.56 2387‡ 13.48 0.58 199‡ 9.47 0.62

VoiceCraft-X 294 15.46 0.54 223 22.57 0.56 139 24.80 0.61

French German Spanish

Train (hrs) WER SIM-o Train (hrs) WER SIM-o Train (hrs) WER SIM-o

Ground Truth - 6.09 0.68 - 6.64 0.69 - 4.87 0.73

XTTS-v1 - 38.34 0.35 - 11.37 0.35 - 20.84 0.37
XTTS-v2 2216‡ 5.45 0.58 3584‡ 16.50 0.59 1514‡ 8.11 0.58

VoiceCraft-X 1338 13.22 0.59 3405 8.19 0.60 1191 4.67 0.63

4.3 Transfer Learning for Multilingual TTS509

To explore the benefits of multilingual training,510

especially for lower-resource languages, we fine-511

tuned monolingual models on individual languages512

starting from different pre-trained checkpoints,513

comparing these against training from scratch and514

the multilingual model (detailed in Table 2).515

The universal advantage of pre-training over516

“from Scratch” models is paramount, especially for517

languages with limited data. For instance, Italian518

(294 hours) and Polish (139 hours) saw their WERs519

plummet from over 140 and 160 to under 14 and 20520

respectively, demonstrating pre-training’s crucial521

role in transferring foundational knowledge and522

overcoming data scarcity. Even higher-resource523

languages like Spanish, French and German ben-524

efited significantly. Fine-tuning from an English525

model initialization proved highly effective for Eu-526

ropean languages (Germanic, Romance, Slavic), 527

leveraging linguistic similarities and robust acous- 528

tic modeling, with gains particularly vital for low- 529

data scenarios (Italian, Portuguese, Polish). Ko- 530

rean showed better CER with a Japanese check- 531

point (42.08) than Chinese (49.11), aligning with 532

typological closeness. Conversely, Japanese expe- 533

rienced negative transfer from Chinese (CER 36.18 534

vs. 22.36 from scratch). 535

Furthermore, fine-tuning from the “multilingual 536

checkpoint” frequently yielded superior WER/CER 537

compared to an English-only checkpoint for a range 538

of languages including Spanish, Dutch, Italian, Por- 539

tuguese, Polish, and Japanese. This advantage held 540

across varying data volumes (e.g., Polish 139 hours, 541

Japanese 3489 hours), suggesting that pre-training 542

on a diverse linguistic set fosters more generalized 543

and transferable representations than exposure to 544
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Table 2: Cross-lingual transfer learning performance on zero-shot TTS task. Comparison of fine-tuning from
different pre-trained models versus training from scratch for various target languages. Character Error Rate (CER)
for Korean and Japanese, indicated by *. "-" indicates data not available or not applicable.

Language #Hours Multilingual from Scratch from English from Chinese/Japanese from Multilingual

WER SIM-o WER SIM-o WER SIM-o WER SIM-o WER SIM-o

Korean* 832 31.11 0.56 45.79 0.51 42.10 0.54 49.11/42.08 0.50/0.52 41.36 0.53
Japanese* 3489 15.09 0.66 22.36 0.62 - - 36.18 0.61 19.35 0.67
Spanish 1191 4.67 0.63 7.08 0.38 4.54 0.47 - - 3.30 0.52
French 1338 13.22 0.60 18.85 0.43 12.50 0.49 - - 16.39 0.53
German 3405 8.19 0.60 6.43 0.43 5.93 0.50 - - 7.25 0.53
Dutch 2147 16.28 0.61 16.85 0.37 16.02 0.35 - - 11.78 0.46
Italian 294 15.46 0.54 142.30 0.22 13.97 0.36 - - 13.93 0.46

Portuguese 223 22.57 0.56 91.89 0.26 15.87 0.46 - - 14.74 0.55
Polish 139 24.80 0.61 163.08 0.25 20.73 0.46 - - 19.47 0.55

English alone, capturing a broader array of pho-545

netic and prosodic patterns.546

Finally, the original multilingual model’s547

speaker similarity is significantly higher than mod-548

els fine-tuned from other checkpoints for nearly549

all languages. This indicates that joint training on550

diverse linguistic data, leveraging collective data551

volume, allows the model to disentangle speaker-552

specific characteristics from language-specific fea-553

tures. This robust performance across varied lan-554

guages suggests it learns a more abstract, shared555

representation space for speech, facilitating both556

high-fidelity synthesis and strong cross-lingual ca-557

pabilities. While fine-tuning on single language558

data may impact this disentanglement ability, as559

evidenced by SIM-o drops in many such cases.560

4.4 Speech Editing561

Table 3: Performance on English speech editing.

WER NMOS IMOS

Original 2.42 3.78 3.79

VoiceCraft 5.99 3.87 3.87
VoiceCraft-X 5.62 3.68 3.79

For English speech editing (Table 3), VoiceCraft-562

X demonstrated a better Word Error Rate (WER)563

than VoiceCraft. Both models produced edited564

speech that listeners found to be highly natural565

(NMOS) and intelligible (IMOS), comparable to566

the original recordings. VoiceCraft’s slightly higher567

scores in these subjective tests are not surprising,568

given its monolingual English focus, especially569

considering both models have similar parameter570

counts and amounts of English training data.571

For multilingual speech editing in other lan-572

guages—a capability where comparative baselines573

are notably scarce as most models do not sup-574

port multilingual editing—we conducted subjective575

Table 4: Subjective performance on speech editing.

Original Edited

NMOS IMOS NMOS IMOS

French 3.62 4.10 3.13 3.60
Italian 4.38 4.78 3.77 4.28

Portuguese 4.42 4.98 2.63 3.78
Spanish 3.80 3.93 3.58 3.78

MOS evaluations. These evaluations focused on a 576

subset of languages (French, Italian, Portuguese, 577

and Spanish) for which MTurk annotators were 578

available, with results presented in Table 4. The 579

evaluations demonstrate VoiceCraft-X’s effective 580

performance in this challenging scenario. While 581

naturalness (NMOS) scores for edited speech are, 582

as anticipated, lower than the original recordings, 583

intelligibility (IMOS) remains high across these 584

languages. Particularly for Spanish and Italian, 585

where edited NMOS and IMOS scores closely 586

matched the original audio, these findings under- 587

score VoiceCraft-X’s significant and unique capa- 588

bility for coherent, comprehensible multilingual 589

speech editing. 590

5 Conclusion 591

We present VoiceCraft-X, an autoregressive neural 592

codec language model that successfully unifies mul- 593

tilingual speech editing and Text-to-Speech (TTS) 594

synthesis. Leveraging the Qwen3 LLM and a novel 595

token reordering strategy, VoiceCraft-X supports 596

eleven languages, producing high-quality, natural- 597

sounding speech. Our model demonstrates robust 598

performance across diverse conditions and shows 599

that a unified framework can effectively advance 600

both speech editing and synthesis in multilingual 601

contexts, even with limited data for some languages. 602

This work underscores the potential of autoregres- 603

sive models for complex, real-world speech gener- 604

ation tasks. 605
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Limitations606

One key limitation is the scale of our training data.607

Although VoiceCraft-X performs well with approx-608

imately 32,578 hours across eleven languages, this609

is notably less than some state-of-the-art models.610

This comparative data scarcity, particularly for611

lower-resource languages in our set, may limit the612

model’s capacity to capture the full spectrum of613

speech nuances as effectively as systems trained on614

more extensive datasets.615

Secondly, while the model’s multilingual sup-616

port is a core feature, its current reach of eleven617

languages (with around 20-30 explored internally)618

only scratches the surface of global linguistic di-619

versity. Expanding coverage to more languages,620

especially under-resourced ones, remains a signifi-621

cant challenge that would require substantial data622

curation and potential model adaptations to address623

varied linguistic features.624

Finally, further investigation into model size scal-625

ability is also warranted. The current VoiceCraft-X626

utilizes the Qwen3-0.6B architecture; exploring627

larger model variants could unlock enhanced learn-628

ing capabilities and higher fidelity in speech synthe-629

sis and editing. Systematically assessing different630

model sizes is crucial for optimizing the balance631

between performance improvements and computa-632

tional demands.633
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A Dataset906

A.1 Training Dataset Statistics907

The training datasets for each language are as908

shown in Table 5. For all of them, we remove909

all YouTube clips.

Table 5: Speech-corpus statistics used for training (total:
32 578 h).

Language Dataset(s) Hours

English
LibriTTS-R (Koizumi et al., 2023) 516
GigaSpeech (Chen et al., 2021) 5 783
MLS (Pratap et al., 2020) 8 235

Chinese
WenetSpeech4TTS (Ma et al., 2024) 3 282
AISHELL-2 (Du et al., 2018) 997
MAGICDATA (Magic Data, 2019) 707

Korean KsponSpeech (Bang et al., 2020) 832

Japanese ReazonSpeech (Yin, 2023) 3 489

Spanish

MLS (Pratap et al., 2020)
CML-TTS (Oliveira et al., 2023)

1 191
French 1 338
German 3 405
Dutch 2 147
Italian 294
Portuguese 223
Polish 139

Total 32 578

910

A.2 Speech Editing Dataset911

To create a comprehensive evaluation set for speech912

editing, we began by selecting a subset of samples913

from the Text-to-Speech (TTS) evaluation datasets914

described in Section 4.1. For each language, 100-915

300 original text samples were chosen.916

Unlike RealEdit (Peng et al., 2024), which relies917

on manual, sentence-by-sentence human annota-918

tion and modification, a process that limits its scal-919

ability across many languages, we employed the920

powerful multilingual capabilities of the Gemini921

language model (Team et al., 2023) to systemati-922

cally introduce textual modifications to the original923

sentences. The goal was to generate edited ver-924

sions that reflect common editing scenarios. To925

achieve this, Gemini was instructed to perform ex-926

actly one of the following specified operations on927

each original sentence:928

• Insertion: Adding a sequence of new words929

into the original sentence.930

• Deletion: Removing a sequence of words931

from the original sentence.932

• Substitution: Replacing a sequence of words 933

in the original sentence with a new sequence 934

of words. 935

To ensure diversity in the complexity and scope 936

of edits, the length of the modified segments was 937

varied. Specifically, all edits involved at least two 938

contiguous words. The modifications ranged from 939

short (2–3 words), to medium (4–6 words), and 940

occasionally longer spans (7–10 words). We show 941

examples in Table 6. 942

B Implementational Details 943

B.1 Encodec Model 944

The Encodec model we employ operates with a 945

stride of 320 samples, corresponding to a codec 946

frame rate of 50 Hz when processing audio 947

recorded at 16 kHz. Its encoder begins with a base 948

channel dimension of 64, which doubles at each 949

of the five successive convolutional layers. Fol- 950

lowing (Défossez et al., 2022), we utilize the open- 951

source audiocraft repository3 for training. Specif- 952

ically, we sample one-second speech segments 953

from the multilingual dataset (shown in Table 5) 954

and train for 200 epochs with a batch size of 832. 955

Optimization is performed using the Adam algo- 956

rithm (Kingma and Ba, 2014) with a base learning 957

rate of 5e-5. 958

B.2 Qwen3 Base Model 959

The Qwen3-0.6B-Base model4, foundational to 960

VoiceCraft-X, is a causal language model with 0.6 961

billion total parameters, of which 0.44 billion are 962

non-embedding parameters. It features 28 Trans- 963

former layers, a hidden dimension of 1024, and a 964

feed-forward network (FFN) dimension of 3072, 965

along with 16 attention heads. The model employs 966

Grouped-Query Attention (16 query heads and 8 967

key/value heads) and supports a context length of 968

32,768 tokens. A key factor in its suitability for 969

VoiceCraft-X’s multilingual requirements is its pre- 970

training on 36 trillion tokens across 119 languages. 971

This pre-training utilized a diverse, high-quality 972

data mix that included multilingual texts, books, 973

and synthetic data. Furthermore, the model incor- 974

porates architectural refinements such as qk layer- 975

norm and benefits from a three-stage pre-training 976

process designed for robust long-context handling. 977

3https://github.com/facebookresearch/
audiocraft/blob/main/docs/ENCODEC.md

4https://huggingface.co/Qwen/Qwen3-0.6B-Base
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Table 6: Examples of the multilingual speech editing dataset.

EditedOriginalEdit TypesLanguage

Since I've gotten a dog, the nightly disturbances have stopped.Since I've gotten a dog, the regular visits of the fox have stopped.Substitution

English Increment the order quantity in the online form if you require more 
than one item.Increment the order quantity if you require more than one item.Insertion

A bus shuttle took us to the metro.A bus shuttle took us from the airport to the metro.Deletion

女主在等男主回来，手头上的事情多得不可思议，不会无聊。女主在等男主回来，事情挺多，不会无聊。Substitution

Chinese 那无边无际的大海啊，其波澜壮阔的景象不会因时间的推移而变
化。

那无边无际的大海啊，不会因时间的推移而变化。Insertion

丈夫再次放下了斧子，朝四周张望。丈夫又惊又怕，再次放下了斧子，朝四周张望。Deletion

이렇게안하면니가한번가슴운동하면가슴근육이지쳐서다음
날힘이안들어가는데

이렇게안하면니가한번가슴하면가슴이지쳐서다음날힘이
안들어가는데Substitution

Korean 아뭐계획은아주거창하게잡았는데막상한건하루라서이제
쫌해볼려고하는데.

아뭐계획은거창하게잡았는데막상한건하루라서이제쫌
해볼려고하는데.Insertion

빼빼로데이때아는동생한테빼빼로하나받았다. 기프티콘으로.빼빼로데이빼빼로데이때아는동생한테빼빼로하나받았다. 
기프티콘으로.Deletion

⼀般学⽣よりはずっと裕福な家庭環境に違いないと信じていま
すそうですともとＫ君はうなずいた。

⼀般学⽣よりはずっと⾦持に違いないと信じていますそうです
ともとＫ君はうなずいた。Substitution

Japanese ⽥中も全く同じようにそう申しておりました。それから、先⽣
に是⾮お⽬にかかってお

⽥中もそう申しておりました。それから、先⽣に是⾮お⽬にか
かっておInsertion

私は興味にみちた眼をもって事さえある。私は興味にみちた眼をもってそれらの⼈を迎えたり送ったりし
た事さえある。Deletion

Los troyanos han derrotado completamente a los griegos en el llano.Los troyanos han vencido a los griegos en el llano.Substitution

Spanish Tan esbelta y tan velera que rápidamente consumió todos sus ahorros.Tan esbelta y tan velera que consumió todos sus ahorros.Insertion
La corrección que merodeaba, y las bolsitas de cera, lo iluminaron
suficientemente.

La corrección que merodeaba aún por allí, y las bolsitas de cera, lo 
iluminaron suficientemente.Deletion

Alors le malheureux navire s'enfonça dans les abîmes profonds.Alors le malheureux navire s'enfonça plus rapidement.Substitution

French
Je m'étonne, vraiment et très sincèrement, que vous m'ayez prêté de 
pareils sentiments.Je m'étonne que vous m'ayez prêté de pareils sentiments.Insertion

C'est quand elle est accomplie, qu'elle semble possible.C'est quand elle est accomplie, qu'elle semble possible aux êtres du 
commun.Deletion

Dasselbe gilt für die außerordentlich komplizierte Entwicklung der 
Sexualfunktion.Dasselbe gilt für die so komplizierte Entwicklung der Sexualfunktion.Substitution

German Aber schon hatte sich das feindliche Luftschiff fortgeschnellt.Aber schon hatte sich das Luftschiff fortgeschnellt.Insertion

Und in des Schiffs Kielwasser schwammen hinterher.Und in des Schiffs Kielwasser schwammen Grüngoldne Schlangen
hinterher.Deletion

Il professor Gori balzò improvvisamente in piedi, urlando: Lasciate!Il professor Gori scattò in piedi, urlando: Lasciate!Substitution

Italian Il terzo comandamento importante, che'l cibo vostro sia da bestia.Il terzo, che'l cibo vostro sia da bestia.Insertion

Non era mai venuto a visitarla, è vero.Non era mai venuto neppure una volta a visitarla, è vero.Deletion
Astros! Qual é o mundo, Pelo qual vocês todos rodais Por esse
firmamento?

Astros! Qual é o mundo, Em torno ao qual rodais Por esse
firmamento?Substitution

Portuguese Indagando atentamente e curiosamente com os olhos atilados o vôo
do corvo.Indagando com os olhos atilados o vôo do corvo.Insertion

Era preciso decidir entre os seus desejos e as conveniências da sua
posição.

Era preciso decidir entre os seus desejos de vingar o sexo e as 
conveniências da sua posição.Deletion

Het is slechts een interessante maar onbewezen veronderstelling.Het is slechts een zeer vage veronderstelling.Substitution

Dutch
Wij zullen Toby bij ons houden voorlopig in ieder geval, want hij kan
ons nog van dienst zijn.Wij zullen Toby bij ons houden, want hij kan ons nog van dienst zijn.Insertion

En het oudste jongetje kwam mij vertellen.En het oudste jongetje kwam mij vertellen, dat ze honger en kou
leden.Deletion

Pozostawało tylko zbudować solidne rusztowanie.Pozostawało tylko osnuć na nich poprzeczne drabinki.Substitution

Polish
Jest on jedynym skutecznym i niezawodnym puklerzem niewinnej
pluskwy polnej.Jest on jedynym puklerzem niewinnej pluskwy polnej.Insertion

Podniecenie nerwów sprawiło, żem dostrzegł światło.Podniecenie nerwów sprawiło, żem zaraz w ciągu pierwszych
minut dostrzegł światło.Deletion
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B.3 Loss Design978

VoiceCraft-X is trained as an autoregressive model979

to predict a sequence of neural codec tokens.980

Given the input context, which includes text tokens,981

speaker embeddings, and potentially prefix/suffix982

audio tokens, the model predicts the target audio983

tokens one by one. The overall training objective is984

a weighted cross-entropy loss, designed to enhance985

learning efficiency and focus on the crucial aspects986

of the speech generation task.987

Let the sequence of all ground truth speech988

tokens (encompassing prefix, suffix, and middle989

segments, and structured according to the delay990

pattern described in Section 3.5) be denoted by991

Z = (z1, z2, . . . , zN ), where N is the total number992

of tokens in the flattened sequence. Each token zi993

in this sequence corresponds to an original codec994

token Yti,ki from timestep ti and the ki-th code-995

book of the EnCodec output (where K = 4 is the996

total number of codebooks). The model predicts997

the probability distribution for each token ẑi condi-998

tioned on previous tokens and the input context.999

The total loss L is a sum of individual cross-1000

entropy losses for each token, with two layers of1001

weighting:1002

1. Codebook Weighting: As mentioned in Sec-1003

tion 4.1, each of the K = 4 parallel code-1004

books contributes differently to the overall1005

perceptual quality. We assign weights α =1006

(α1, α2, α3, α4) = (1.0, 0.8, 0.6, 0.4) to the1007

tokens from codebook 1 to 4, respectively. So,1008

for a token zi corresponding to Yti,ki , its code-1009

book weight is αki .1010

2. Segment Weighting: While the model is1011

trained to predict tokens for all three segments1012

(prefix, middle, and suffix) to improve train-1013

ing efficacy and contextual understanding, the1014

primary goal is the accurate generation of the1015

"middle" (target) segment. To reflect this, we1016

introduce segment-specific weights. Tokens1017

belonging to the "prefix" and "suffix" seg-1018

ments are assigned a weight wseg = 1. Tokens1019

belonging to the "middle" segment, which is1020

the primary target for generation or editing,1021

are assigned a higher weight wseg = 3. Let1022

wseg(zi) denote the segment weight for token1023

zi.1024

Combining these, the total loss L is formulated

as:

L =
N∑
i=1

wseg(zi) · αki · LCE(ẑi, zi)

where LCE(ẑi, zi) is the cross-entropy loss for 1025

predicting token zi. This weighted loss function 1026

guides the model to prioritize the generation of 1027

the target audio segment while still learning from 1028

the context provided by the prefix and suffix, and 1029

appropriately valuing the contribution of each code- 1030

book. 1031

C Subjective Evaluation 1032

C.1 Setup 1033

To compute our subjective evaluation metrics 1034

(SMOS and CMOS for TTS, NMOS and IMOS for 1035

Speech Editing), for all languages except Chinese, 1036

we recruited Amazon Mechanical Turk workers 1037

with a minimum approval rate of 98% and at least 1038

1000 successful HITs. We manually recruited uni- 1039

versity students for Chinese. We filtered workers 1040

by the following countries in Table 7 for each of 1041

our languages:

Language Countries

English United States
Chinese China
French Belgium, Canada, France,

Luxembourg, Switzerland
Italian Italy
Portuguese Brazil, Portugal
Spanish Argentina, Chile, Colombia,

Mexico, Spain, United States

Table 7: Countries used to filter crowdworkers for each
language

1042
Each sample was annotated by 3 different anno- 1043

tators. We display annotation UIs for our metrics 1044

in Figures 4, 5, 6 and 7. 1045

C.2 Additional Results 1046

A scarcity of Amazon Mechanical Turk workers 1047

for less common languages prevented us from col- 1048

lecting subjective evaluation results for all targeted 1049

languages. Consequently, the SMOS results for 1050

French, Italian, Portuguese, and Spanish on the 1051

Zero-Shot TTS task that we were able to gather are 1052

detailed in Table 8. 1053
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Table 8: SMOS on Zero-Shot TTS.

Model French Italian Portuguese Spanish

Ground Truth 3.07 3.57 4.15 3.42
XTTS-v1 2.07 2.00 1.63 2.83
XTTS-v2 2.23 2.75 2.48 3.22

VoiceCraft-X 3.58 3.30 2.87 3.58

D Ablations1054

D.1 Reordering Mechanism1055

Table 9: Impact of token reordering in a low-resource
scenario. Models were trained from scratch: one on
English (585h LibriTTS-R), the other on Chinese (601h
WenetSpeech4TTS Premium subset).

English Chinese

WER↓ SIM-o↑ CER↓ SIM-o↑

w/o Reordering 104.02 0.31 262.25 0.29
w/ Reordering 11.60 0.32 19.25 0.46

For this ablation study, considering the low-1056

resource nature of most languages, we used1057

LibriTTS-R (Koizumi et al., 2023) and the Wenet-1058

Speech4TTS Premium (Ma et al., 2024) subset as1059

training data. LibriTTS-R contains 585 hours of1060

speech, while the WenetSpeech4TTS Premium sub-1061

set includes 601 hours5. Models were trained for1062

15 epochs, both with and without the reordering1063

mechanism. The final epoch was then evaluated on1064

the Seed-TTS test set. As can be seen from Table 9,1065

the model using the reordering mechanism shows1066

significant performance improvements across all1067

objective evaluation metrics on both the English1068

and Chinese datasets. Specifically, the WER for1069

English dropped dramatically from 104.02 to 11.60,1070

and the CER for Chinese also decreased sharply1071

from 262.25 to 19.25. Concurrently, the SIM-o1072

scores for both languages also showed noticeable1073

increases, indicating an improvement in the quality1074

and naturalness of the synthesized speech. These1075

results strongly demonstrate that the reordering1076

mechanism is very effective in training under low-1077

resource scenarios.1078

D.2 Position of Prompt in Zero-Shot TTS1079

Inference1080

The token reordering mechanism, integral to our1081

training methodology, introduces flexibility in how1082

prompts are structured during zero-shot Text-to-1083

Speech (TTS) inference. To determine the optimal1084

5YouTube clips are removed.

placement, we evaluated several configurations for 1085

incorporating the prompt text (Tprompt) and prompt 1086

audio (Aprompt) into the input sequence. These 1087

configurations are detailed in Table 10. 1088

Our evaluation, based on WER and SIM-o, re- 1089

vealed that placing the prompt at the beginning 1090

of the "middle" segment yields the most favor- 1091

able overall performance. Specifically, structur- 1092

ing the input such that the prompt text precedes 1093

the target text within the middle text segment (i.e., 1094

TP = ∅, TS = ∅, TM = (Tprompt, Ttarget), with 1095

Aprompt appended after the mask tokens and be- 1096

fore where Atarget would be generated) resulted in 1097

a WER of 4.37, which is notably better than the 1098

alternative placements. 1099

E Code-Switching 1100

A desirable characteristic of a multilingual Text-to- 1101

Speech (TTS) model is its ability to generate code- 1102

switched speech—that is, speech that fluidly transi- 1103

tions between languages. Although our model was 1104

trained exclusively on monolingual data, meaning 1105

code-switched speech is an out-of-distribution phe- 1106

nomenon for it, the model still demonstrated a cer- 1107

tain capacity for code-switching without needing 1108

additional language identifiers for inputs in differ- 1109

ent languages. 1110

We also observed that the model tends to per- 1111

form better when the initial language of the target 1112

text matches the language of the prompt. Con- 1113

versely, if the starting language of the target text 1114

differs from the prompt, the model’s performance 1115

may be significantly worse. We have made code- 1116

switched samples available on our demo page. 1117

F Cross-lingual Finetuning Hours on 1118

Zero-Shot TTS 1119

To further assess VoiceCraft-X’s adaptability 1120

and the impact of data quantity, we extended 1121

fine-tuning experiments across diverse languages. 1122

Building on cross-lingual transfer insights (Sec- 1123

tion §4.3), we examined the correlation between 1124

per-language fine-tuning data volume and zero-shot 1125

Text-to-Speech (TTS) quality. 1126

Figure 3 illustrates these findings, plotting per- 1127

language fine-tuning data volume (x-axis) against 1128

the relative Word Error Rate (WER) from zero-shot 1129

TTS (y-axis). This relative WER, the difference 1130

between Whisper’s WER on synthesized versus 1131

ground-truth audio, offers a normalized measure 1132

of intelligibility. The figure generally shows that 1133
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Table 10: WER and SIM-o of different prompt positions in zero-shot TTS inference on Seed-TTS test-en set.

WER SIM-o

∅,∅, Tprompt, Ttarget,<SPK>,∅,<M>,∅,<M>, Aprompt, Atarget 4.37 0.54
Tprompt,∅, Ttarget,<SPK>, Aprompt,<M>,∅,<M>, Atarget 5.68 0.53
∅, Tprompt, Ttarget,<SPK>,∅,<M>, Aprompt,<M>, Atarget 6.32 0.54
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Figure 3: Relationship between per-language fine-tuning data and zero-shot TTS quality. Each point represents a
target language, positioned by the number of hours used to fine-tune VoiceCraft-X (x-axis) and the relative Word
Error Rate – the difference between Whisper’s WER on synthesized audio and its WER on ground-truth audio.

more fine-tuning data improves pronunciation accu-1134

racy, especially for languages sharing similarities1135

with VoiceCraft-X’s initial training set. However,1136

this correlation is not universally linear. For lan-1137

guages like Korean and Thai, a moderate data in-1138

crease (around 1000 hours) did not yield significant1139

WER improvements. This plateauing suggests that1140

for such languages, substantial gains may require1141

much larger or more diverse datasets, or different1142

fine-tuning approaches.1143
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Figure 4: SMOS Annotation UI
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Figure 5: CMOS Annotation UI
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Figure 6: NMOS Annotation UI

Figure 7: IMOS Annotation UI
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