Under review as a conference paper at ICLR 2026

TOWARDS UNIVERSAL & EFFICIENT MODEL COMPRES-
SION VIA EXPONENTIAL TORQUE PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth in complexity and size of modern deep neural networks (DNNs)
has increased challenges related to computational costs and memory usage, spurring
a growing interest in efficient model compression techniques. Previous state-of-
the-art approach proposes using a Torque-inspired regularization which forces the
weights of neural modules around a selected pivot point. Whereas, we observe
that the pruning effect of this approach is far from perfect, as the post-trained
network is still dense and also suffers from high accuracy drop. In this work,
we attribute such ineffectiveness to the default linear force application scheme,
which imposes inappropriate force on neural module of different distances. To
efficiently prune the redundant and distant modules while retaining those that are
close and necessary for effective inference, in this work, we propose Exponential
Torque Pruning (ETP), which adopts an exponential force application scheme for
regularization. Experimental results on a broad range of domains demonstrate
that, despite its simplicity and ease of implementation, ETP manages to achieve
significantly higher compression rate than the previous state-of-the-art pruning
strategies with negligible accuracy drop.

1 INTRODUCTION

Deep neural networks (DNN5s) have revolutionized count-

less domains by setting state-of-the-art baselines that sig- CIFAR-100 (VGG-19)
nificantly surpass previous approaches. However, nowa-
days DNNs are pretty large in size and require substan-
tial floating point operations per second (FLOPS) for £

inference, which limits their applications in resource- = o0.2 - 12:33:;::;22;
constrained scenarios (e.g., edge devices |Qin et al.|(2018); S

Han et al.| (2015b)); Hintonl (2015))). To achieve more 0.1

efficient while also effective inference, many model com- 0. N VR N S Sy
pression techniques have been proposed. E.g., low rank 0 50 100 150
approximation, which aims to leverage a lower-rank matrix
to capture the essential structure of the original model’s Figure 1: L2-norm curve during training
weight matrix while reducing complexity [Hu et al.|(2022); process of VGG-19 on CIFAR-100.
Tiwary et al.| (2025); Zanella and Ben Ayed| (2024); un-

structured pruning, which removes unimportant weights from DNNs to reduce its size while preserv-
ing performance |LeCun et al.| (1989)); [Liao et al.|(2023)); Muralidharan| (2023)); Structured pruning,
which removes entire groups of weights (such as channels, filters, or blocks) from DNNs in a regular
pattern, to reduce its size and computational cost while preserving performance Ding et al.| (2018);
He et al.|(2018b); Fang et al.|(2023b). Specifically, the previous state-of-the-art structured prun-
ing method proposes a Torque-inspired regularization loss |Gupta et al.|(2024b)), named as Torque.
Concisely, analogous to the physical definition of “Torque”, this approach uses a regularization
that functions as a force that consolidates the weights of a neural module around a selected pivot
point during training. By regularizing the model in this way, the weights of the neural modules
that are far away from the pivot point would be forced to be zero, which could therefore be pruned.
However, we observe that the vanilla Torque structured pruning is still far from perfect. Figure|T]
shows the L2-norm curves of two neural modules during the training process. Concretely, the two
neural modules are of different distances d from a selected pivot module, which are all from the same

Under review as a conference paper at ICLR 2026

network layelﬂ It is obvious that though the two investigated modules are far from the pivot point
(i.e., d = 150, d = 255), their L2-norm is quite high (i.e., ||w|| > 0, where w denotes the weight
tensor), which is far from optimal. Thus, because of the low sparsity of the regularized model, it
still suffers from a high accuracy drop after pruning, specifically, a 7% absolute accuracy reduction
despite achieving only a 9x speed—u%] on the CIFAR-100 dataset for the VGG19 model.

In this paper, we attribute the ineffectiveness of Torque to its improper force application to modules
of different distances. Concisely, Torque adopts a simple linear force application scheme, which
applies inadequate force on distant neural modules while imposing unnecessarily large penalties on
neural modules that are close to the pivot point, which are indispensable for effective inference. To
mitigate this drawback, in this work, we propose Exponential Torque Pruning (ETP), which adopts an
exponential force application scheme for regularization. By applying ETP, we could efficiently prune
the redundant and distant modules by applying exponentially large forces that constrain the neural
modules’ weights to zero while retaining those that are close and necessary for effective inference.

Though being extremely simple and straightforward, we observe that ETP manages to achieve
fascinating improvements over the previous state-of-the-art baselines on various domains. Besides,
ETP is universal and is directly applicable to different model architectures. For example, on the
natural language understanding tasks, ETP achieves a 42x speed-up with merely 2.4% accuracy
drop on BERT (SST-2), while the previous state-of-the-art (SoTA) pruning methods sustains > 5%
accuracy drop; and on the image classification tasks, ETP achieves a 23 x speed-up with merely 4.5%
drop in accuracy on VGG-19 (CIFAR-100), while the previous SoTA suffers from a large accuracy
drop of 10.8%.

The contributions of our paper are as follows:

* We propose a universal structured pruning strategy, called Exponential Torque Pruning (ETPﬂ
which leverages an exponential force application scheme that imposes a larger force on distant
neural modules so as to constrain their weights to zero while preserving those that are close to the
pivot point that are indispensable for effective inference.

» Experimental results on four distinct downstream domains and various model architectures validate
that ETP can surpass the previous state-of-the-art pruning techniques regarding compression rate
by a large margin, while retaining negligible accuracy drop.

* The significant improvement, high generality, and low additional training overhead pave the way
for its strong potential in compressing modern Large Language Models (LLMs).

2 PRELIMINARY

In this section, we introduce the fundamentals of structured pruning and a state-of-the-art
regularization-based structured pruning technique: torque-based structured pruning.

2.1 REGULARIZATION-BASED STRUCTURED PRUNING
To better understand regularization-based structured pruning, we first formally define the notion of
neural module, which is as follows:

Definition 1 (Neural Module). A neural module is defined as a discrete, fundamental computational
unit within a neural network that performs a specific transformation or operation on its input.
Formally, given a neural network N parameterized by 0, a neural module M; corresponds to a subset
of parameters 0; C 0 and a corresponding functional mapping

M; : X — Vs,

where X; and Y; denote the input and output spaces of the module, respectively.

'The first neural module in a layer is selected to be the pivot point, and the distance of a neural module from
the pivot point is number of neural modules in between

2speed-up is a metric that measures the reduction in computational cost, which calculates the ratio of the
total operations required in the baseline model to that in the pruned model.

3The implementation is available at: https://anonymous.4open.science/r/ETP-3EB6

https://anonymous.4open.science/r/ETP-3EB6

Under review as a conference paper at ICLR 2026

Examples of neural modules include individual convolutional filters in a convolutional neural network
(CNN) Ding et al.|(2018)); |You et al.|(2019)), attention heads in a Transformer Ma et al.| (2023); |Fang
et al.|(2023b), or neurons within a fully connected layer [Fang et al.|(2023b)); |Gupta et al.| (2024b)).
Regularization-based structured pruning is a vital technique in deep neural network compression [Liu
et al.[(2017); |Wang et al.| (2020); Fang et al.[(2023b)); (Gupta et al.| (2024b); He and Xiao| (2023b);
Ding et al.| (2019b); Fang et al.| (2023a) which operates based on fundamental neural modules, where
entire components such as filters, neurons, or layers are removed instead of individual weights. This
leads to more efficient models that are computationally and memory efficient, making them ideal for
deployment on resource-constrained devices. Given a network N (x; 6), where x denotes the input
data, 6 is the model’s parameters, structured pruning aims to find a reduced set of parameters 6* C 6
such that: N'(x; 6*) ~ N (x; 6), while minimizing the network size. The pruning process is typically
guided by a combined loss function:

£t0tal(9*) = £task(N(X§ 9*)) + /\[fpruning(e*) (1

where L, represents task-specific loss (e.g., classification), and Lynuning regularizes sparsity. Com-
mon types of structured pruning include filter pruning |He et al.| (2019); [Li et al.[(2016)); Ding et al.
(2019a; 2018)), neuron pruning LeCun et al.| (1989); |[Zhuang et al.| (2020); 'Yu et al.| (2018)); [Lee
et al.| (2019), channel pruning |Gao et al|(2021); Wang et al.| (2019); [Ding et al.| (2021)); [He et al.
(2017), and layer pruning |[Fan et al.| (2019); |Wang et al. (2018b)); Dong et al.[(2017); Elkerdawy et al.
(2020). These methods present unique challenges in balancing the trade-off between reduced size and
maintaining task performance, with each approach requiring careful optimization to avoid excessive
accuracy degradation.

2.2 TORQUE-BASED STRUCTURED PRUNING

Previous state-of-the-art pruning techniques require modifications to the network architecture or
implementation of complex gradient update rules. Whereas, Gupta et al. |Gupta et al.| (2024a)
propose a simple yet effective Torque-inspired approach (denoted as Torque in the following paper)
which manages to achieve a great compression rate while requiring no change to model architecture.
Analogous to the very definition of the physical concept (i.e., Torque), this approach proposes to
apply a force to neural modules in order to consolidate the weights of a network layer around a
selected pivot point during training. Formally, Torque approximates the concept with the following
implementation:

I7ill2 = [IF x rill2 =~ |lwill2 - i, i € ZF @
where 7; denotes the torque applied to the i*" neural module of a layer [, r; is the corresponding
position vector. Torque-pruning approximates the L2-norm of the Torque that applies to the neural
module’s weights as the multiplication of the L2-norm of the module’s weight matrix (i.e., force)
||w||2 and the Euclidean distance of their corresponding indices d} = ||p} — pl,||2, where p! is the

index of the i*" neural module, pé is the index of the pivot point. (Gupta et al.|(2024a)) adopt a random
indexing strategy for the modules within a layer, which performs well empirically. Given the Torque
T;, Torque-pruning proposes using it as a force that pushes the weights of neural modules that are
distant from the pivot point to zero. Concretely, it implements it as a regularization term Lrorque. The
detailed optimization objective is as follows:

Etotal(o*) = Etask(N(X; 9*)) + ALanque(o*) (3)
= LaskcN(:07)) + A |72 “
l %

where A denotes the regularization coefficient of Lrorque. Figure a) shows an intuitive visualization
of the vanilla Torque regularization. Specifically, the Lrorque regularization imposes a penalty on

. a .
neural modules proportional to their distance from the pivot point (i.e., T‘;H o ||pk — p;fj| |2); the

further it is, the more its weights would be penalized (illustrated via the depth of the color of the
representing circles).

3 EXPONENTIAL TORQUE PRUNING

In this section, we introduce the detailed motivation and design of our proposed method, called
ETP (Exponential Torque Pruning). The key motivation of ETP is the sub-optimal force application

Under review as a conference paper at ICLR 2026

A 'y 67-
a|wl|
“dZdh
d
00000 0000
(a) Linear (b) Heavi. & Exp.

Figure 2: (a) Visualization of vanilla Torque-prune regularization. The circles below the coordinate
system, arranged from left to right, represent neural modules at corresponding distances from the
pivot point (leftmost circle). The depth of the circle’s fill color represents the L2-norm of the module.
The lighter the color, the smaller the weight. The colored area within the coordinate denotes the
magnitude of force applied to neural modules of different distances. The darker the color is, the
greater the magnitude of the applied force is. (b) The ideal Heaviside Torque regularization and the
exponential approximation.

scheme of the previous state-of-the-art Torque-prune approach. Specifically, we argue that the
linear proportionality between the partial derivative of torque regularization with respect to the
neural module’s weights and the distance (i.e., % o ||pk — pi,Hg) is inappropriate. Intuitively,
this denotes that for neural modules of different distances from the pivot point, we are applying
the same amount of force to drive them to zero. As demonstrated in Figure [T} such linear force
application scheme fails to constrain the weights of modules that are distant from the pivot point,
while inappropriately penalizing the ones that are close and necessary for inference. To achieve a
sparser and effective network architecture, we propose using a nonlinear force application scheme. In
particular, we should apply a much larger force on the distant neural modules to drive them towards
zero, while a smaller or no force (i.e., penalty) on those that are close to the pivot point, since they
are essential for effective inference. Figure 2{a) and Figure [2(b) show the intuitive visualization of
different force application schemes as well as the corresponding illustration of the regularized neural
modules’ L2-norm (denoted as circles filled with colors below the distance axis). The colored area
within the coordinate denotes the magnitude of force applied to neural modules of different distance.
The darker the color is, the greater the magnitude of the applied force is.

Concretely, we can observe from the colored blue area within the coordinate in Figure P{a) that
due to the linear force application scheme of the vanilla Torque-prune, all the neural modules are
penalized in a linear manner according to their distant from the pivot point (denoted as the origin).
This results in an undesirable weight distribution (shown as the blue circles sequence) where neural
modules farther from the pivot point remain densely weighted, while the neural modules that are
close to the pivot point (which are considered necessary for effective inference) are inappropriately
penalized. Ideally, the force application scheme should exert a large penalty on the neural modules
that are distant from the pivot point while fully preserving the neural modules that are close to the
pivot point and are necessary for effective inference. Therefore, we formulate such nonlinear force
application scheme using a Heaviside step function (denoted as the dashed gray line) in Figure 2|b),
such that % x ILH pt—pl [l >dm> where d;, denotes the threshold distance from the pivot point,

1}pt—pt |],>q» denotes the indicator function that outputs 1 if the relative distance of the investigated
i D =
neural module and the pivot point ||p} — pl||2 is larger than dj, otherwise it outputs 0. Thus, the
detailed implementation of the Heaviside Torque regularization ||7/ ||, is as follows:
-l Ly ol
I17ill2 = [1F5 x w52)
~ llwl R —
~ Hwi||2'(6']]'||péfplp”22dh)7 (ASW/A (6)

Specifically, for neural modules within the threshold distance dj,, we apply zero force on them since
they are considered necessary for inference, and for the modules that are beyond dj,, we exert a large

Under review as a conference paper at ICLR 2026

force which is of size € on these modules, driving their weights toward zero. Whereas the Heaviside
step function is non-differentiable, we therefore use an exponential function for approximation
(denoted as the solid red line in Figure Ekb)), formally:

17112 = ||F5 > x2 ©)
~ [lwilla - el i e 27 ®)

where) is a hyperparameter that serves as the base of the exponentiation that controls the threshold
distance. Finally, given the exponential approximation of the Heaviside Torque regularization, the
overall optimization objective with the exponential torque pruning regularization (ETP) loss is:

Liow (W) = Loask(x; W) + B - LEp)
:Etask(X§W) +ﬂZZ||w£H2 .)\“Pi—/};\|2 (10)
l i

where L, is the original optimization objective of the specific task, g is the regulatory coefficient of
the ETP loss. Therefore, by exerting extremely low penalty on the neural modules that are close to
pivot point and are considered essential for effective inference, while much larger penalty on those
that are distant from the pivot point, the exponential force application scheme introduced by ETP are
expected to achieve a much sparser yet effective model architecture.

4 EXPERIMENTS

To evaluate the effectiveness of ETP, we conduct experiments on four distinct domains, including
vision, language, graph, and time series. In the remainder of this section, we first introduce the
detailed experimental setup, and then we answer three research questions (RQs) to lead our discussion,
which are as follows:

(RQ1) Speed-up Improvement How effective is ETP in improving the models’ speed-up while
retaining a low performance drop?

(RQ2) Aggresive Pruning Analysis Does ETP perform well under different speed-up ratios?
(RQ3) Effectiveness on Large Models Can ETP effectively compress the prevalent large models?

4.1 EXPERIMENTAL SETUP

We demonstrate the effectiveness of ETP by evaluating it on multiple benchmarks of different domains.
The details of the benchmarks are as follows’t

Datasets & Backbone Models. For the image classification tasks, we evaluate on CIFAR-
100 [Krizhevsky et al| (2009), and ImageNet Deng et al.|(2009) datasets. CIFAR-100 consist of
50,000 training and 10,000 test images of size 32 x 32, with 100 classes respectively. All images are
normalized using dataset-specific RGB means and standard deviations and resized to 224 x 224. For
ImageNet, we use the ILSVRC-2012 subset with 1.2 million training images and 50,000 validation im-
ages across 1,000 classes. The images are resized and randomly cropped to 224 x 224 during training.
In terms of the backbone models, we follow the setup of Gupta et al. Gupta et al.|(2024a) and conduct
experiments on Vision Transformers (i.e., ViT-B/16 |Dosovitskiy et al.|(2020)), CNN models with
linear connections only (i.e., VGG-19 Simonyan and Zisserman|(2014))), and the ones with residual
connections (ResNet-50 He et al.| (2016)). For the graph classification task, we use the Protein-Protein
Interaction (PPI) dataset|Hamilton et al.[(2017)), which contains 24 graphs with over 56,000 nodes and
818,000 edges, each node is represented with 50-dimensional features. We adopt the Graph Attention
Network (GAT) |Velickovi¢ et al.| (2017)) as the backbone model. For the domain of natural language
understanding (NLU), we evaluated two GLUE benchmark datasets: SST-2 and MRPC [Wang et al.
(2018a). SST-2 is a sentiment classification task with 67,349 training and 872 test examples, while
MRPC is a paraphrase detection task with 3,668 training and 408 test pairs. We use BERT |De+
vlin et al.| (2019) and RoBERTa |Liu et al.| (2019) models as the backbone models for evaluation.

*Please refer to the appendix for the detailed experimental setup.

Under review as a conference paper at ICLR 2026

For the time-series forecasting task, we use
the ETTh1 dataset from the ETT benchmark
suite [Zhou et al.| (2021). The dataset includes
hourly energy consumption features across one

Table 1: Pruning results on vision benchmarks. We
highlight the top-1 results in red.

CIFAR100 (VGG 19)

week, with 7 input features and 1 target variable. =~ Method Base Pruned Ascg- Drop _ Speed-up
GReg-1 7402 67355015 -6.6720.15 8.84x
We adopt the Informer model Zhou et al.|(2021) Greg2 7402 6775+40.18 -627+0.18 884x
as the backbone, using an input sequence length ~ Depgraph 7350 70.39+004 -3.11+004 8.92x
of 96 and forecasting 48 future time steps. The — poae 7303 Ga87x02] 7.Jok0.21 - B88x
g ; ps. ETP (Ours) 73.50 71.30+0.08 -2.2040.08 9.03x
features are normalized using the z-score nor- ImageNet (ResNet50)
malization based on the training data statistics. ~_Method Base Pruned _ Acc.Drop Speed-up
HRank 7615 74984046 -1.174046 1.78x
SFP 76.15 74514032 -1.64+0.32 1.72x
. GReg-2 7613 75164012 -0.97+0.12 1.49x
Compa_red Methqu. We malnl}{ compare peporpn 76.15 75531028 -0.624028 2.08x
ETP with the vanilla Torque pruning (Gupta] Torque (p) 7607 74.67+0.11 -1.40+0.11 234x
ETP (Ours) 7615 76.21+0.01 +0.06+0.01 2.30x
et al.[(2024b) and DepGraph |[Fang et al. .(2023b) TmageNet (VIT-B/i6)
Apart from these general-purpose baselines, We “Nethod Base Pruncd Acc. Drop _ Speed-up
also compare ETP against the domain-specific SP-‘({,iT o EMA gigz Z;;gigig ;;ﬁgig }»2gx
. .. C] Taj + . .. X -1. X N X
SoTA baselines. Concretely, for the vision tasks, De§0raﬁh 81.07 79174021 -1.94021 1.69x
we also compare ETP agalnst HRank Lin et al. ETP (Ours) 81.07 81.93+0.51 +0.86+0.51 1.69x

(2020), SFP He et al.|(2018a), and GReg|Wang

et al.[(2020); For the natural language under-

standing (NLU) tasks, we further benchmark

ETP against CoFi [Xia et al.|(2022), DynaBERT |[Hou et al.| (2020), EBERT [Liu et al.| (2021), and
LLM-Pruner Ma et al.[|(2023). Please refer to the Appendix for more detailed introduction of these
methods.

Evaluation Measurements. An ideal model compression algorithm should control the compression-
accuracy tradeoff well, i.e., that is to effectively reduce the models’ size, therefore reducing the
number of computations for inference while controlling the accuracy loss within an acceptable range.
To evaluate the compression-accuracy tradeoff quantitatively, we follow previous literature Fang et al.
(2023b); \Gupta et al.| (2024b); Wang et al.|(2020)) and adopt the speed-up and accuracy-drop

metrics for evaluation. Specifically, speedup is defined as follows: speed-up = gz MACS
e

(Multiply-Accumulate operations) denotes the total number of arithmetic operations required for a
single forward pass of the model. This is often used to approximate computational cost and inference
latency. Intuitively, speed—up quantifies how much more efficient the pruned model is compared
to the original model. A higher value indicates greater computational savings, which enables faster
inference and lower energy consumption. The accuracy drop is defined as: accuracy—-drop =
ACCUTaCYpruned — @CCUTACYhye Concretely, the accuracy-drop measures the accuracy loss of
the model before and after pruning. Other task-specific metrics are further elaborated in the Appendix.
Note that all the reported results are averaged over five random seeds.

4.2 SPEED-UP IMPROVEMENT (RQ1)

To answer RQ1, we compare ETP against the state-of-the-art pruning techniques on four domains
(i.e., image classification, natural language understanding (NLU), graph classification, and time-series
forecasting). The detailed results are illustrated in Table[I] Table[2] Tabled] and Table [3|respectively.
First, for image classification tasks, we compare ETP with the state-of-the-art pruning baselines on
ImageNet on ResNet-50 and ViT-B/16, and CIFAR-100 with VGG-19 model, following the same
experimental setup as previous literature [Fang et al.|(2023b); |Gupta et al.| (2024b)). The results in
Table|l|show that ETP performs consistently better than the previous state-of-the-art baselines on
all the investigated backbone models. Specifically, on the CIFAR-100 dataset using the VGG-19
backbone model, ETP achieves a 9x speed-up while incurring only a 2.2% drop in classification
accuracy, while Torque and DepGraph suffers from a significantly higher accuracy degradation of
7.16% and 3.11% respectively. Moreover, ETP attains a 1.69 x speed-up on ViT-B/16 without any
loss in accuracy, whereas competing approaches typically suffer a 1.5-2% accuracy reduction under
comparable speed-up.

For the NLU, graph classification, and time-series forecasting tasks, we observe that ETP
generally surpasses both the general-purpose structured pruning methods as well as the state-
of-the-art task-specific baselines as well. Specifically, for the GAT on the PPI dataset, we

Under review as a conference paper at ICLR 2026

Table 2: Pruning results on the NLU benchmarks.

SST-2
Method BERT RoBERTa
Base Pruned Acc.Drop Speed-up | Base Pruned Acc.Drop Speed-up
CoFi 935% 87.6% -5.9% 11x 953% 80.0% -15.3% 13.5%
DynaBERT 93.5% 85.1% -8.4% 11x 953% 18.1% -17.2% 13.5%
EBERT 93.5% 86.0% -7.5% 11x 953% 78.7% -16.6% 13.5%
DepGraph 93.5% 91.8% -1.7% 11x 953% 89.9% -5.4% 13.5x%
LLM-Pruner 93.5% 91.8% -1.7% 11x 95.3% 90.3% -5% 13.5%
Torque 93.5% 90.9% -2.6% 11x 953% 90.6% -4.7% 13.5%
ETP (Ours) 935% 92.1% -1.4% 11x 953% 92.9% -2.4% 13.5%
MRPC
Method BERT RoBERTa
Base Pruned Acc.Drop Speed-up | Base Pruned Acc.Drop Speed-up

CoFi 88.0% 80.3% -1.7% 8x 90.0% 82.4% -17.6% 8x

DynaBERT 88.0% 79.6% -8.4% 8x 90.0% 83.8% -16.2% 8x

EBERT 88.0% 74.5% -13.5% 8x 90.0% 81.1% -18.9% 8x

DepGraph 88.0% 83.5% -4.5% 8x 90.0% 86.1% -3.9% 8x

LLM-Pruner 88.0% 83.0% -5% 8x 90.0% 85.9% -4.1% 8x

Torque 88.0% 83.2% -4.8% 8x 90.0% 85.3% -4.7% 8x

ETP (Ours) 88.0% 85.0% -3.0% 8x 90.0% 86.6% -3.4% 8x

evaluate different methods under two speed-up settings. For speed-up=12x, ETP achieves
a F1 score drop of only 0.027, while DepGraph incurs a F1 score drop of 0.03 for
the same speed-up. The results on 9x speed-up rate are similar. Despite our best ef-
forts, the vanilla Torque method fails to achieve the 12x speed-up on the GAT (PPD).
We believe that this is because Torque is
unable to penalize the GAT models’ pa-

Table 3: Pruning results on the Informer model.
rameters enough to make them structurally

Sparse. Etth-1(48) (Informer)
DepGraph Torque ETP (Ours)
ETP outperforms DepGraph and Torque ~Speed-Up | MAE MSE | MAE MSE | MAE MSE
on Informer for Etth-1 dataset as well for Ix 0319 0.I58 | 0319 0.158 [0319 0.158
- 25x | 03559 0.1636 | 0.3398 0.1621 | 03402 0.1618
speed-up > 6.5x for both MAE and 4x 03632 0.1671 | 0.3492 0.1665 | 0.3495 0.1631
MSE. For speed—up < 4x, ETP consis- 65x | 03737 0.1702 | 03606 0.1698 | 0.3580 0.1645
tently outperforms DepGraph with a signif- 10.5x | 03818 0.1743 | 03723 0.1756 8.;64213 0.166;
: : : 145x | 03959 0.1797 | 03843 0.1810 | 0.3726 0.167
icant performance gain and is competent 25% | 04118 0.1852 | 03937 0.1843 | 0.3812 0.1692

or slightly worse than Torque. The results
indicate that ETP’s superiority is more sig-
nificant under large speed-up rate scenarios. The reason is that with more redundant parameters (i.e.
more distant and redundant neural modules) awaiting to be pruned, ETP can achieve more effective
pruning by applying much larger penalty on the redundancy while retaining the modules that are
necessary for inference according to its exponential force application scheme .

To have a better understanding of the im-
provement, we also present wall-clock

Table 4: Pruning results on the GAT model.

latency and energy consumption results PPI (GAT)
across 5 hardware platforms: NVIDIA Method Base Pruned Flscore Drop Speed-Up
A100. L4. RTX 8000. Tesla T4. and DepGraph 0.9860 0.9610£0.0000 -0.0250£0.0000 843x

’ i K > Torque 0.9860 - - -
Google TPU v6. The results are shown ETP (Ours) 09860 0.9701:0.0010 _-0.0159:0.0010 _ 9.13x __
in Table E} We present the results of DepGraph ~ 0.9860 0.9555+0.0007 -0.03454+0.0007 12x

Torque 0.9860 - - -

BERT on SST-2 and VGG-19 on CIFAR- grp (Qurs) 09860 0.9624:0.0005 -0.0236£0.0005 12.16x

100. Specifically, ETP achieves 6.4-9.3x
latency speed-up on GPUs and TPUs. It
also attains a 56-90% energy reduction depending on device class.

To better understand the source of improvement, we conduct an in-depth analysis to track the progress
of the L2-norm of specific neural modules during the learning process. Concretely, we randomly
select two neural modules within a specific layer that are of different distances from the pivot point, we
compare the L2-norm learning process of ETP and the vanilla Torque pruning approach. The results
are shown in Figure[3] We can observe that compared with the vanilla Torque, ETP can significantly
reduce the L2-norm of the distant neural modules, e.g., for VGG-19 trained on CIFAR-100, ETP
manages to optimally prune the distant module (i.e., L2-norm equals to 0 (||mbs,|| = 0.0)), while
Torque remains a high L2-norm (i.e., ||mbs,|| = 0.134). The extensive L2-norm analysis during
training validates that the exponential force application scheme enables ETP to achieve a significantly

Under review as a conference paper at ICLR 2026

Table 5: Cross-hardware evaluation of latency and energy for pruned BERT (SST-2) and VGG-19
(CIFAR-100). Theoretical speed-ups are 11x (BERT) and 9x (VGG-19).

Model Hardware Base Lat. (ms) Pruned Lat. (ms) Speedup Base Energy (J) Pruned Energy (J) Reduction
NVIDIA A100 45.863+0.115 7.098+0.377 6.46x 14.471+0.605 2.439+0.722 83.1%
BERT NVIDIA L4 101.166+1.258 10.868+0.341 9.31x 7.492+0.082 0.787-+0.019 89.5%
SST-2 Quadro RTX 8000 66.540+0.608 9.650+0.044 6.90% 17.547+0.173 3.507+0.551 80.0%
(92.1%) NVIDIA Tesla T4 188.705+3.687 23.293+0.486 8.10x 14.585+0.586 1.622+0.079 88.9%
Google TPU v6 546.013+12.463 79.637+8.126 6.86x 73.390+4.653 11.277+3.972 84.6%
NVIDIA A100 5.578+0.004 0.818+0.013 6.82x 1.853+0.559 0.278+0.119 85.3%
VGG-19 NVIDIA L4 14.914+0.151 6.117+0.084 4.43% 1.080+0.010 0.240-+0.000 77.4%
CIFAR-100 Quadro RTX 8000 15.013+0.065 3.538+0.804 4.25x% 3.535+0.023 1.556+0.222 56.0%
(71.30%) NVIDIA Tesla T4 35.426+0.192 9.262+0.116 3.82x 2.521+0.273 1.090+0.230 56.7%
Google TPU v6 171.202+6.831 19.641+0.373 8.72x 22.934+2.0142 2.630+0.371 88.5%
CIFAR-100 (VGG-19) SST-2 (BERT) PPI (GAT)

— Torque (i=7) —— Torque (group=conv1_7)
- ETP(i=7) = = ETP (group=conv1_7)
Torque (i=11) Torque (group=conv2_7)

g i ,/ — Torque (i=150) 6 ~ ETP (i=11) ETP (group=conv2_7)
=« ETP (i=150) ~
Z 0.2 o/ Torque (i=255) |
g i 4 1
o - ETP (i=255) |
— 0.1 2 S~ — “/'
0.0 = e — [p—— T EE L F i —
0 50 100 150 5 10 15 20 0 200 400 600 800 1000

Figure 3: Comparison of the L2-norm curves during the training process.

sparser yet effective neural network architecture, resulting in a much higher compression rate with
minimal performance degradation.

4.3 AGGRESSIVE PRUNING ANALYSIS (RQ2)

Different real-world applications require different levels of model compression due to hardware
limitations; therefore, to perform well (i.e., retain low accuracy drop) under different speed-up ratios
is a crucial ability for the model compression techniques. To systematically quantify such ability,
we propose evaluating different pruning methods via the aggressive pruning analysis. Concretely,
that is to record the model’s accuracy drop across progressively increasing speed-up ratios. We
conduct the analysis on the six different tasks, the results are shown in FigureEL It is obvious that
ETP manages to retain the accuracy within an acceptable range while the other compared methods
suffer from a significant accuracy drop. For example, for BERT on MRPC, under the 30x speed-up
ratio, ETP achieves an accuracy drop of only 3.5%, while DepGraph and Torque’s accuracy drop by
6% and 6.1% respectively. Similarly, for VGG19 on CIFAR 100 dataset, under the 23 x speed-up
setting, ETP incurs an accuracy drop of only 3.87%, while DepGraph and GReg’s accuracy is 10.73%
and 13% respectively. We observe similar trends on Informer for ETTh-1 (48) dataset as well. ETP
incurs a change in MSE of 0.02 for a 38 x speed-up, while DepGraph incurs a change in MSE of
0.032 for the same speed-up. Torque performs the worst out of the 3 methods at 38x speed-up
and incurs a change in MSE of 0.041. The results demonstrate that, thanks to a more reasonable
force application scheme, ETP is a much more robust pruning technique and it is more suitable for
scenarios that require a large speed-up ratio (e.g., model deployment on edge devices with limited
computing power) compared to the previous state-of-the-art baselines.

4.4 EFFECTIVENESS ON LARGE MODELS (RQ3)

To demonstrate ETP’s potential in compressing large models, we further evaluate ETP on the OPT-
350M [Zhang et al.|(2022) language model using the WikiText Merity et al|(2016) dataset, with
perplexity as the evaluation metric. All methods are constrained to 50% sparsity for a fair comparison.
As summarized in Table [T6] unstructured magnitude pruning fails under this budget (perplexity
6 x 103), while structured baselines such as SparseGPT Frantar and Alistarh|(2023), Wanda[Sun et al.
(2023)), and DepGraph Fang et al.|(2023b) achieve perplexities in the 32-36 range. LLM-Pruner Ma
et al.| (2023), a recent method specialized for large language models, improves performance to 31.05.
ETP achieves 29.14 perplexity, surpassing all baselines under identical sparsity. This corresponds to
a 6-10% relative improvement over SparseGPT and DepGraph, which narrows the gap to the dense

Under review as a conference paper at ICLR 2026

SST (BERT) MRPC(BERT) CIFAR100 (VGG19)
—~ —~ 70
X 0 — ETP X 70 = ETP o —
~-1 e DepGraph vl —— DepGraph 68
8‘*2 ﬂﬂﬂﬂﬂ 8‘:2 Torque 66 — ETP
= = -3 = = DepGraph
Aa-3 Ay Qe GReg-1
4 PR y —
g3 23 i <=
5 10 15 20 25 30 35 40 5 10 15 20 25 30 200 20.5 21.0 215 22.0 22.5 23.0 23.5 24.0
Speedup Speedup Speedup
SST (RoBERTa) MRPC (RoBERTa) ETTh-1(48) (Informer)
—~ —~
X ,(1) — ETP X1 — ETP @ 004 === ETP
\:-:/.’Z — pepcmph \5’:2 — Pchrapl) § 003 ™ DepGllwh /
- Torque Torque = Torque e
2 3 - 23 . 2002
As Q-4 = o /
. . [=3] >
83 e————— g —~ . A
O - O
23 S S—— < S L Fo
0 5 10 15 20 25 30 35 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35 40
Speedup Speedup Speedup

Figure 4: Results of aggressive pruning analysis for six distinct tasks.

baseline (22.00). These results highlight ETP’s ability to retain model quality across autoregressive
language modeling tasks, suggesting its potential as a general pruning framework for large models.
We leave the comprehensive evaluation of ETP on other large language models to future work.

5 RELATED WORKS

Unstructured pruning aims to remove individual Table 6: Pruning results on OPT-350M
weights in a network, typically based on magnitude- [WikiText].

based heuristics or importance scores [LeCun et al.

(1989); Muralidharan| (2023); [Dong et al.| (2017); [Lee WikiText (OPT350M

et al| (2019). One of the seminal works in this area ikiText ()

was introduced by Han et al.[(2015a)), who proposed Method Sparsity Perplexity
an iterative pruning framework that eliminates weights ~ D€NSe 50% 22.00 5
with small magnitudes and then retrains the network to Magnitude 50% 6x 10
recover any lost accuracy. This approach was shown SparseGPT 50% 34.76
to significantly reduce model size while maintaining Wanda 50% 35.92
competitive performance. DepGraph 50% 32.61
LLM-Pruner 50% 31.05
Structured pruning focuses on removing higher-level ETP (Ours) 50% 29.14

structures, such as entire channels, filters, or even layers.
This yields a compact and dense model architecture that is more compatible with conventional
hardware and software frameworks. He and Xiao|(2023a); Ding et al.| (2018)); [He et al.| (2018b); |Ding
et al. (2021);[You et al.| (2019); |Lin et al.| (2020) Early approaches, such as that by [Li et al.|(2016),
prune filters in convolution layers based on their /1 norm, under the assumption that filters with
smaller norms contribute less to the final output. [He et al.[|(2017) proposed channel pruning guided
by evaluating the change in loss when specific channels are removed, allowing for a more data-driven
pruning strategy. These methods are typically followed by fine-tuning to restore the performance
of the pruned network |Lin et al.|(2020); [Fang et al.|(2023b)). Recent advances have cast structured
pruning as a learning or optimization problem.

6 CONCLUSION

In this work, motivated by the observation that the vanilla Torque-based pruning still fails to achieve
satisfying model sparsity, we introduce a simple yet effective pruning method called Exponential
Torque Pruning (ETP) based on an exponential force application scheme. Concretely, ETP imposes
a larger force on distant neural modules so as to constrain their weights to zero while preserving
those that are close to the pivot point that are indispensable for effective inference. Experiments
across four diverse downstream domains and multiple model architectures (including modern large
language models) demonstrate that despite its simplicity and ease of implementation, ETP significantly
outperforms prior state-of-the-art pruning methods, achieving a much higher compression rate while
maintaining considerably lower accuracy degradation. Future progress could be made in the force
application scheme to mitigate this limitation. Besides, we also plan to apply ETP to other emerging
architectures (e.g., diffusion models, Mixture-of-Experts architectures, etc.) to further assess its
generalizability.

Under review as a conference paper at ICLR 2026

Reproducibility Statement: Our implementation is publicly available athttps://anonymous .
4open.science/r/ETP-3EB6, including training, evaluation, and preprocessing scripts. All
datasets used in this work are publicly accessible, and preprocessing steps are followed in accordance
with State-of-The-Art. Comprehensive details of model configurations, hyperparameters, and training
schedules are provided in section[7.1} Experiments were conducted on a single NVIDIA A100 GPU.

REFERENCES

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171-4186, 2019.

Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-balanced filter pruning for
efficient convolutional neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4943-4953, 2019a.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4943—-4953, 2019b.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang Ding.
Resrep: Lossless cnn pruning via decoupling remembering and forgetting. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4510-4520, 2021.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in neural information processing systems, 30, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong Zhang, and Nilanjan Ray. To filter prune,
or to layer prune, that is the question. In proceedings of the Asian conference on computer vision,

2020.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16091-16101, 2023a.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16091-16101, 2023b.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pages 10323-10337. PMLR, 2023.

Shanggian Gao, Feihu Huang, Weidong Cai, and Heng Huang. Network pruning via performance
maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9270-9280, 2021.

10

https://anonymous.4open.science/r/ETP-3EB6
https://anonymous.4open.science/r/ETP-3EB6

Under review as a conference paper at ICLR 2026

Arshita Gupta, Tien Bau, Joonsoo Kim, Zhe Zhu, Sumit Jha, and Hrishikesh Garud. Torque based
structured pruning for deep neural network. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2711-2720, 2024a.

Arshita Gupta, Tien Bau, Joonsoo Kim, Zhe Zhu, Sumit Jha, and Hrishikesh Garud. Torque based
structured pruning for deep neural network. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2711-2720, 2024b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 46(5):2900-2919, 2023a.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023b.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4340-4349, 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pages 1389-1397, 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pages 784-800, 2018b.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782-9793, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009),
2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint arXiv:1906.06307, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

11

Under review as a conference paper at ICLR 2026

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1402-1406, 2023.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 1529-1538, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng. Ebert: Efficient bert inference with dynamic
structured pruning. In Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, pages 4814-4823, 2021.

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pages 2736-2744, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Saurav Muralidharan. Uniform sparsity in deep neural networks. Proceedings of Machine Learning
and Systems, 5, 2023.

Qing Qin, Jie Ren, Jialong Yu, Hai Wang, Ling Gao, Jie Zheng, Yansong Feng, Jianbin Fang,
and Zheng Wang. To compress, or not to compress: Characterizing deep learning model
compression for embedded inference. In 2018 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages 729-736. IEEE, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Anupam Tiwary, Shek Diya Sarkar, Aditya Pratap Singh, Pankaj Kumar Agarwal, Subham Burman,
and Rishab Poddar. Fine-tuning vision transformer using lora for image classification. In 2025 8th
International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech),
pages 1-4. IEEE, 2025.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018a.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In International conference on machine learning, pages
6566-6575. PMLR, 2019.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In Proceedings of the European conference on computer vision
(ECCV), pages 409—424, 2018b.

12

Under review as a conference paper at ICLR 2026

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. arXiv preprint arXiv:2204.00408, 2022.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score

propagation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 9194-9203, 2018.

Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1593-1603, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pages 11106-11115, 2021.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. Advances in neural information processing
systems, 33:9865-9877, 2020.

13

Under review as a conference paper at ICLR 2026

7 APPENDIX
7.1 TRAINING SETUP

Table 7: Training configurations for ETP across all evaluated benchmarks. Standard schedules are
used per task to ensure fair comparison with the compared baselines.

Dataset (Model) Epochs Batch Size LR Scheduler Optimizer
CIFAR-10 (ResNet-56) 100 128 MultiStepLR (milestones = [60, SGD (Ir = 0.001, momentum = 0.9,
80],v=0.1) weight decay = be—4)
CIFAR-100 (VGG-19) 100 128 MultiStepLR (milestones = [60, SGD (Ir = 0.001, momentum = 0.9,
80],v=0.1) weight decay = 5e—4)
ImageNet-1k (ResNet- 90 256 StepLR (step size =30,y = 0.1) SGD (Ir = 0.1, momentum = 0.9, weight
50) decay = le—4)
MRPC (BERT) 10 32 Linear decay with 10% warm-up ~AdamW (Ir = 2e—5, weight decay =
0.01)
SST-2 (BERT) 10 32 Linear decay with 10% warm-up ~AdamW (Ir = 2e—5, weight decay =
0.01)
MRPC (RoBERTa) 10 32 Linear decay with 10% warm-up ~AdamW (Ir = 2e—5, weight decay =
0.01)
SST-2 (RoBERTa) 10 32 Linear decay with 10% warm-up ~AdamW (Ir = 2e—5, weight decay =
0.01)
PPI (GAT) 1000 1 CosineAnnealingLR (T,.x = Adam (Ir = 0.005, weight decay =
1000) 5e—4)
ETTh1 (Informer) 6 32 CosineAnnealingLR (T},.x = Adam (Ir = 5e—4, weight decay =
6) le—4)
C4 (OPT-350M) 5 64 Linear warmup; LR (1x 1075) AdamW (Ir = 1e—5); gradient clipping
=1.0

In this section, we detail the training configuration of our proposed method and the baseline ap-
proaches. First, for ETP, we use the following strategy for all tasks to select the A and 3 for
our loss function. The regularization coefficient 3 is selected via grid search over the range
{107%, 5 x 107%, 107°, 5 x 1075, 1074, 5 x 10~%, 1073}. The optimal value of 3 varies
depending on the model architecture and the desired pruning aggressiveness. Higher compression
rates are obtained by increasing (3 accordingly. For the exponential base A, we defined it as a function

of the number of grouped parameters in a layer I: \; = exp (ﬁ), where |G;| denotes the total num-

ber of parameter groups (e.g., convolutional filter, attention head, etc.). The detailed training setup of
ETP for all the evaluated benchmarks is illustrated in Table|/] We strictly follow the experimental
setup of the compared baselines according to their provided implementations for fair comparison.

7.2 DETAILED INFORMATION ABOUT THE COMPARED METHODS

We compare all experiments against two general-purpose baselines namely, DepGraph [Fang et al.
(2023b)) and Torque |Gupta et al.| (2024b):

1. DepGraph: DepGraph introduces a dependency-graph-based perspective for structured
pruning in deep neural networks, where the pruning of one module (e.g., a convolutional
filter or neuron) inherently affects the computational graph downstream. Mathematically,
the network is represented as a graph G = (V| F), where vertices v € V correspond
to computational operators (e.g., filters, channels, or layers) and edges e € E represent
data-flow dependencies. Pruning is then formulated as an optimization problem under
dependency constraints:

njan L(fm(x),y) st M CV, M satisfies dependency closure,

where M denotes the set of retained modules, £ the task loss, and dependency closure
ensures that if a vertex is preserved, all of its prerequisite vertices along G are also preserved.

2. Torque: The Torque Structured Pruning method introduces a physics-inspired regularization
during training that encourages weight concentration near a chosen pivot filter while pushing

14

Under review as a conference paper at ICLR 2026

peripheral filters toward zero. The regularization loss is represented as:
£tot = »Ctask + Ar Z ||T’ﬂH27
n

where
[Tl = [Wall2 - [rn = 7],
approximating the physical torque F' x 7.

We also compare against domain-specific techniques. For vision tasks we compare against:

1.

HRank: HRank introduces a filter pruning method that quantifies filter importance by the
rank of their induced feature maps. Specifically, denote the feature map for filter j in layer ¢
on input I by o0;;(I). HRank defines the importance score as

1 g
L(0i;) = Erwp(r) [Rank(o0;; (1 - Z Rank (0;;(1¢))

Q

where {I;}{_; is a small sampled batch. Filters whose scores fall among the lowest in a
layer are pruned

. SFP: Soft Filter Pruning (SFP) introduces a pruning scheme for CNNs in which filters are

not permanently removed but instead set to zero and allowed to be updated during training.
This differs from conventional hard pruning, where pruned filters are discarded and the
network capacity is irreversibly reduced. At the end of each training epoch, a proportion of
filters with the smallest /5-norms are selected and reset:

w0, forjem,
where ") denotes the j-th filter in layer [and P; is the set of pruned filters determined by

norm ranking. Gradient descent continues to update all filters, including those zeroed, so
that previously pruned filters may recover if they become useful.

. GReg: It proposes a pruning framework in which a sparsity-inducing regularization term

increases gradually during training, allowing the network to adapt smoothly to pruning
pressure. Instead of applying a fixed strong regularizer from the start, GReg introduces a
time-dependent weighting:

Ltot == Elask +)\<t) R(W)7

where R(TV) denotes a structured sparsity regularizer (e.g. ¢2,1 norm over filters or channels),
and A(t) is a monotonically increasing function of the training step ¢.

For NLU tasks we compare against:

1.

CoFi: This method introduces a unified compression-and-fine-tuning framework for pre-
trained transformers, in which structured pruning and task adaptation are optimized jointly
rather than sequentially. The method applies learnable binary masks m to weight groups
at multiple granularities (attention heads, intermediate dimensions, hidden layers) and
optimizes

Iglllrrrll Etask(f@@m(x)» y) + A ||mH07

where 6 are pretrained parameters, m are structured pruning masks, and A controls sparsity.
This method is primarily evaluated on BERT and RoBERTa.

. DynaBERT: It proposes an adaptive width—depth pruning framework for transformers,

training a single BERT that can dynamically adjust hidden dimensions (width) and number
of layers (depth) to meet resource budgets. The method first conducts width-adaptive
training, pruning attention heads and intermediate dimensions to form slimmer subnetworks,
and then depth-adaptive training, progressively pruning layers with knowledge distillation.
Denote by fy(w.a) a subnetwork with width w and depth d. DynaBERT jointly optimizes

{9%1{})} Ew,dy~ut L(fow.a) (), y) + 1 Lxp(fow.a (2), fou (),

where Lxp denotes a knowledge-distillation loss from the full teacher model.

15

Under review as a conference paper at ICLR 2026

Informer (ETTh1) BERT (MRPC)
4
== Torque (i=4) === Torque (i=7)
=« ETP (i=4) 75 § =« ETP (i=7)
3 Torque (i=12) : \\ Torque (i=11)

ETP (i=12) N ETP (i=11)

N S~
- il
Ny ————— 1 T —— W] —— — o ——— e e
2 4 6 8 10 5 10 15 20
Epoch Epoch

Figure 5: Additional results on the 12-norm analysis during the training process.

3. EBERT:It introduces an input-adaptive structured pruning approach for transformers, in
which lightweight predictors produce binary masks over attention heads and FFN channels
conditioned on the [CLS] token representation. The masks are sampled with a Gumbel—
Softmax relaxation for differentiable optimization. The objective balances task accuracy
with FLOPs constraints:

2
L = Lak + M1 (%_Ct) + X (Ly + L),

where F, and F, denote original and current FLOPs, C} is a target budget, and Ly, Lg
penalize unbalanced pruning across attention and feed-forward modules.

4. LLM-Pruner: The method first constructs dependency groups, i.e., coupled parameter sets
that must be pruned jointly to maintain architectural validity. For each group, an importance
score is estimated using a first-order Taylor expansion with Hessian-based correction under
a limited data budget. Formally, letting G denote the set of groups and I(g) their importance,

i 1 t.d d 1
oin, ;/t (g) s.t. dependency closure,
9

where M is the set of groups selected for removal. Following pruning, lightweight post-
training (e.g. LoRA) efficiently recovers accuracy.

7.3 ADDITIONAL EXPERIMENTS ON L2-NORM LEARNING PROCESS

We further present additional results of the L2-norm analysis during training process on Informer
(ETThl) and BERT (MRPC) as a supplementary of RQ1. The detailed results are shown in Figure El
It is obvious that the results are consistent with that of RQ1. For example, for Informer trained and
evaluated on ETTh1, ETP manages to optimally prune both investigated modules (m/,, m!,) as ETP
deems them redundant for effective inference (i.e., L2-norm equals to O (||m}]| = 0.0, |[m},]| =
0.0)), while the ones regularized by the vanilla Torque remains a high L2-norm for these modules
(i.e., ||[m4]| = 0.99, ||ml,|| = 2.44). The extensive L2-norm analysis during the training process
validate that the exponential force application scheme can indeed help ETP achieve a much sparser
neural network architecture, and therefore achieve a much higher compression rate with lower
performance drop.

7.4 DIFFERENT FORCE SCHEMES

A key motivation of Exponential Torque Pruning (ETP) is to address the sub-optimal regularization
exhibited by linear or constant force-application schemes. As shown in Figure[2] even after applying
linear regularization (as in Torque), the resulting sparsity pattern remains sub-optimal.

To overcome this limitation, we propose using the Heaviside step function as the force-application
scheme:

* Modules close to the pivot (i.e., essential for inference) receive zero penalty.
* Distant, redundant modules incur a large penalty.

16

Under review as a conference paper at ICLR 2026

Table 8: Comparison of different force schemes on VGG19 (CIFAR-100, base accuracy 73.50%).

Speed-Up | ETP (Ours) Torque Log-Torque | Group Lasso (L2)
3x 73.93 +0.17 | 72.40 £0.29 | 71.39 £ 0.20 71.49 £0.14
6% 72.13 £ 0.13 | 70.86 £ 0.03 | 70.25 £ 0.07 70.36 + 0.12
9x 71.54 +0.19 | 65.87 £0.12 | 66.13 £ 0.11 66.01 +0.04
15x% 69.95 + 0.08 | 62.31 £0.17 | 61.84 +£0.29 61.74 £+ 0.03
24 x 67.98 + 0.11 | 60.08 £0.04 | 58.11 =0.78 58.29 + 0.11

Since the Heaviside function is non-differentiable, we approximate it with a differentiable exponential
function, enabling gradient-based optimization.

We compare ETP against the following alternative force application schemes, which include:

1. Torque: Serves as one of our general-purpose benchmarks, with the loss defined as

Etot = ﬁtask + /\T Z ||TnH27

where
[Tollz = [[Wallz - |rn — 7pl.

Here, the regularization grows linearly with the distance from the pivot, and its effect can be
directly modulated by Ap.

2. Log-Torque: Defined as

£tot - £task +)\T Z ||TnH27
n

where
[Tall2 = [Whall2 - log(|rn — rpl).

In this variant, the force grows logarithmically with distance, resulting in a slower increase
compared to the linear Torque scheme.

3. Group-Lasso: Defined as

Etot = Ltask + /\T Z ||TnH27

where

ITalle = [Wallo - 1177l
In this case, the penalty is independent of the distance from the pivot, effectively reducing
to standard ¢, regularization on the filter weights.

As shown in Table[§] ETP consistently outperforms all competing schemes on VGG19 (CIFAR-100)
across different speed-up ratios, achieving higher accuracy at every compression level. Notably, the
Log-Torque variant underperforms the baseline Torque scheme, highlighting the need for stronger
force scheme.

7.5 STATISTICAL VALIDATION

To ensure the statistical significance of our findings, we conduct 5 independent runs and apply paired
t-tests against the strongest competing baseline in each setting. We select a few tasks to run statistical
significance tests, namely:

* BERT @ SST-2,

* RoBERTa @ MRPC,

* GAT @ PPI (9% and 12x),

* VGG19 @ CIFAR-100 (9x%).

17

Under review as a conference paper at ICLR 2026

Table 9: Statistical validation on BERT (SST-2) and RoBERTa (MRPC).

Dataset Model Method | Accuracy + Std | Speed-Up | p-value vs ETP
SST-2 BERT ETP 92.13 £ 0.01 11x -
DepGraph 91.86 £ 0.05 11x 0.009
Torque 90.81 + 0.06 11x 0.005
MRPC | RoBERTa ETP 86.57 £+ 0.01 8% -
DepGraph 86.01 £ 0.06 8% 0.003
Torque 85.27 £ 0.12 8% 0.003

Table 10: Statistical validation on VGG19 (CIFAR-100) at 9x speed-up.

Method Accuracy + Std | Speed-Up | p-value vs ETP
ETP (Ours) 71.54 +£0.19 9% -
DepGraph 70.38 + 0.32 9% 0.010

Torque 65.77 £ 0.30 9% 0.000

GReg-1 67.35 +£0.22 9% 0.000

GReg-2 67.55+£0.29 9% 0.000

Table 11: Statistical validation on GAT (PPI dataset) at 9x and 12x speed-ups.

Method F1 + Std Speed-Up | p-value vs ETP
ETP 0.9633 £ 0.0005 9% -
DepGraph | 0.9610 + 0.0000 9x 0.015
ETP 0.9587 £+ 0.0005 12x -
DepGraph | 0.9555 + 0.0007 12x 0.004

As shown in Tables[OHIT] ETP yields statistically significant improvements in all cases (p < 0.05). For
example, on SST-2 with BERT, ETP improves accuracy by 0.27 points over DepGraph (p = 0.009).
On VGGI19 (9% speed-up), ETP surpasses the closest baseline by more than 1 percentage point
(p = 0.010). These results confirm that ETP’s gains are consistent and not due to variance.

7.6 ABLATION OF A AND 3

We conduct ablation experiments to study the sensitivity of our method to the hyperparameters A and
B. Recall that X is defined as A = exp(a/|G|), where a controls the steepness of the exponential
weighting, while 3 governs the relative importance of the ETP loss term.

Effect of \: Table shows results on VGG19 (CIFAR100) and ResNet50 (ImageNet-1k).
Varying a from 2.5 to 15 has little impact on the speed-up ratio, which remains constant (9 x for
VGG19 and 2.3 x for ResNet50). However, accuracy steadily improves as a increases. For instance,
on CIFAR100, accuracy rises from 68.19% to 72.47% as a increases from 2.5 to 15. Similarly, on
ImageNet- 1k, accuracy improves from 73.55% to 76.04%. This trend suggests that a larger a leads to
a sharper exponential curve, causing the force application to approximate a Heaviside function more
closely, thereby offering modest but consistent performance gains.

18

Under review as a conference paper at ICLR 2026

Table 12: Ablation of \: varying a on VGG19 (CIFAR100) and ResNet50 (ImageNet-1k).

VGG19 on CIFAR100 ¢ =25 a=5 a=75 a=10 a=15
Speed-Up 9x 9x 9x 9% 9x
Acc. (%) 68.19 71.30 71.50 71.90 72.47
ResNet50 on ImageNet-1k =25 a=5 a=75 a=10 a=15
Speed-Up 2.3x 2.3x% 2.3x 2.3x% 2.3x
Acc. (%) 73.55 7517 75.62 75.63 76.04

Effect of 5: Table[I3]presents the results for VGG19 on CIFAR100. Increasing 3 directly impacts
the speed-up ratio, which scales from 3.69x at 3 = 107° to 24x at 3 = 3 x 10~3. This confirms that
[strongly controls the aggressiveness of the pruning process. However, this comes with a trade-off
in accuracy: performance peaks at 73.93% for 3 = 10~° and declines to 67.98% at the highest value.
Thus, while larger 5 enables more aggressive acceleration, it must be chosen carefully to balance
accuracy and efficiency.

Table 13: Ablation of §: varying 8 on VGG19 (CIFAR100).

B 1x107° 1x107% 5x107% 1x1072 3x1073
Speed-Up 3.69 % 6x 9x 14 x 24 %
Acc. (%) 73.93 72.53 71.30 69.95 67.98

7.7 HARDWARE EFFICIENCY ANALYSIS

While MACs-based reductions are a standard proxy for computational savings in structured pruning,
they do not always translate proportionally to real deployment gains due to hardware-, kernel-, and
memory-related overheads. To provide a more faithful assessment, we additionally measure the
wall-clock inference time speed-up, defined as the ratio between the dense and pruned model
runtimes on the entire test set.

As shown in Table[I4} ETP yields substantial end-to-end inference acceleration across convolutional,
transformer, and graph neural network architectures. Importantly, the measured speed-ups closely
track the theoretical MACs-based estimates, confirming that the spatial sparsity patterns induced by
ETP are highly aligned with the underlying hardware execution pathways.

Table 14: Wall-clock inference speed-up versus MACs-based theoretical speed-up. Pruned accuracy
is reported with the dense baseline accuracy in parentheses.

Model & Dataset

Pruned Acc.

Inference Speed-Up

MAC:s Speed-Up

VGG-19 on CIFAR100 (73.5%) 71.3 6.82x 9%
BERT on SST-2 (93.5%) 92.1 7.41% 11x
RoBERTa on MRPC (90.0%) 86.6 5.72x% 8x
GAT on PPI (0.986) 0.963 5.48x% 9%

Across all settings, ETP consistently provides strong inference-time gains while preserving model
quality. This confirms the practicality of ETP for both real-time deployment and large-scale inference
workloads. To address increasing interest in deployment gains, we further benchmark wall-clock
latency and energy consumption across five hardware platforms: NVIDIA A100, L4, RTX 8000,
Tesla T4, and Google TPU v6. Table T3] reports results for two representative workloads (BERT on
SST-2 and VGG-19 on CIFAR-100).

ETP achieves:
* 6.4-9.3x latency speed-up on GPUs and TPUs,

19

Under review as a conference paper at ICLR 2026

Table 15: Cross-hardware evaluation of latency and energy for pruned BERT (SST-2) and VGG-19
(CIFAR-100). Theoretical speed-ups are 11x (BERT) and 9x (VGG-19).

Model Hardware Base Lat. (ms) Pruned Lat. (ms) Speedup Base Energy (J) Pruned Energy (J) Reduction
NVIDIA A100 45.863+0.115 7.098+0.377 6.46x 14.471+0.605 2.439+0.722 83.1%
BERT NVIDIA L4 101.166+1.258 10.868+0.341 9.31x 7.492+0.082 0.787-+0.019 89.5%
SST-2 Quadro RTX 8000 66.540+0.608 9.650£0.044 6.90x 17.547+0.173 3.507+0.551 80.0%
(92.1%) NVIDIA Tesla T4 188.705+3.687 23.293+0.486 8.10x 14.585+0.586 1.622+0.079 88.9%
Google TPU v6 546.013+12.463 79.637+8.126 6.86x 73.390+4.653 11.277+£3.972 84.6%
NVIDIA A100 5.578+0.004 0.818+0.013 6.82x 1.853+0.559 0.278+0.119 85.3%
VGG-19 NVIDIA L4 14.914+0.151 6.117+0.084 4.43% 1.080+0.010 0.240-+0.000 77.4%
CIFAR-100 Quadro RTX 8000 15.013+0.065 3.538+0.804 4.25x% 3.535+0.023 1.556+£0.222 56.0%
(71.30%) NVIDIA Tesla T4 35.426+0.192 9.262+0.116 3.82x 2.521+0.273 1.090+0.230 56.7%
Google TPU v6 171.2024+6.831 19.641+0.373 8.72x 22.934+2.0142 2.630+0.371 88.5%

* 56-90% energy reduction depending on device class,

* close alignment to theoretical sparsity-induced MACs reductions.

These results highlight that ETP maintains efficiency across both high-end accelerators (A100, TPU
v6) and cost-efficient inference hardware (L4, T4), demonstrating broad practicality for deployment
scenarios.

7.8 ADDITIONAL EXPERIMENTS ON LLMS

To further validate the generality of ETP beyond vision models, we evaluate its performance on large
language models of both decoder-only and encoder-based architectures. Decoder models are assessed
using perplexity—a direct measure of generative modeling capability—while encoder models are
evaluated on downstream tasks from the GLUE benchmark. Together, these experiments examine
whether the sparsity patterns induced by ETP preserve both intrinsic language modeling behavior and
task-specific semantic reasoning.

Decoder-Based LLMs (Llama-3-8B). Table[I6]reports pruning results on Llama-3-8B under three
sparsity regimes: 50% unstructured sparsity, 4:8 semi-structured sparsity, and the more restrictive 2:4
pattern. Perplexity (PPL) is used as the evaluation metric; lower values indicate better preservation of
the next-token distribution.

Across all regimes, ETP consistently outper- Table 16: Pruning results on Llama-3-8B. Lower
forms existing unstructured and semi-structured perplexity is better.

pruning baselines. At 50% sparsity, ETP

achieves a perplexity of 5.84—nearly identical Llama-3-SB

to the dense model’s 5.72—while substantially

surpassing classical baselines such as Magni- g[;f:?d Spafsny Persp 17er ity
tude (15.21) and SparseGPT (7.06). More recent ’
structured and correlation-aware approaches, in- Magnitude 50% 15.21
cluding SlimGPT (11.41), FLAP (9.30), and PP Wanda 50% 6.97
(6.81), also perform worse than ETP, indicating SparseGPT 50% 7.06
that exponential regularization provides a more g}fgng gggz 191 ;01
effective inductive bias for identifying redundant PP 50% 6.81
components. ETP (Ours) 50% 5.84
In the 4:8 semi-structured case, ETP again deliv- Magnitude 4:8 16.98
ers the strongest performance with a perplexity Wanda 4:8 8.46
of 6.27, compared to 8.46 (Wanda) and 8.01 SparseGPT 4-8 8.01
(SparseGPT). Even under the highly restric- ETP (Ours) 4:8 6.27
tive 2:4 constraint—where prunjng decisions Magnitude 24 5537
are tightly coupled to hardware-imposed spar- Wanda 2:4 11.02
sity patterns—ETP achieves 9.71, a notable im- SparseGPT 2:4 10.53
provement over Wanda (11.02) and SparseGPT ETP (Ours) 2:4 9.71

(10.53). These results highlight that ETP pre-
serves attention heads and MLP channels critical to autoregressive modeling, while reliably eliminat-
ing peripheral structures that contribute little to next-token prediction. The robustness of ETP across

20

Under review as a conference paper at ICLR 2026

Table 17: Performance comparison between BERT-base and an ETP-pruned BERT on GLUE tasks.
Despite aggressive 86.89% parameter reduction, the pruned model maintains strong downstream
performance.

Dataset Metric BERT-base Pruned BERT Drop Speedup

SST-2 Accuracy 0.935 0.9256 —0.0094 9%
MRPC F1 0.880 0.8440 —0.0360 9%
STS-B Pearson 0.889 0.8620 —0.0270 9%
QQP F1 0.887 0.8521 —0.0349 9x
MNLI Accuracy 0.843 0.8031 —0.0399 9%
QNLI Accuracy 0.905 0.8554 —0.0496 9%
RTE Accuracy 0.711 0.6859 —0.0251 9%
WNLI Accuracy 0.653 0.5634 —0.0896 9%

sparsity formats underscores its advantage as a principled, architecture-aware pruning strategy for
large decoder-only transformers.

Encoder-Based LLMs (BERT-base on GLUE). To assess the downstream reasoning capability of
ETP-pruned models, we apply ETP to BERT-base and evaluate on multiple GLUE tasks (Table[T7).
Despite an 86.89% parameter reduction and a 9x inference speed-up, the pruned model preserves
competitive task performance across classification, entailment, and semantic similarity benchmarks.

Performance on sentiment and paraphrase detection tasks (SST-2, MRPC, QQP) remains stable,
demonstrating that lexical and syntactic reasoning pathways remain intact. Tasks requiring fine-
grained semantic inference (MNLI, QNLI, RTE) exhibit moderate drops yet remain within a practical
operating range given the extreme compression level. These results suggest that ETP retains the most
influential attention heads and MLP channels driving contextual representation quality, while safely
pruning peripheral structures that contribute less to downstream task performance.

7.9 ETP AND QUANTIZATION

Modern deployment scenarios increasingly require models that are both sparse and low-precision in
order to meet stringent latency, memory, and energy constraints. To assess whether ETP is compatible
with quantization pipelines, we evaluate dense, ETP-pruned, and ETP+QAT variants across CNN
and Transformer architectures. In addition to accuracy and inference speed, Table [T§] reports the
corresponding on-disk model sizes, allowing us to quantify the combined compression effect of
pruning and quantization.

Table 18: Accuracy, speed-up, and model size of ETP-pruned models with and without QAT. Model
size refers to the on-disk checkpoint size in megabytes (MB).

Model Dataset Accuracy (%) Speed-up Model Size (MB)

Base ETP ETP+QAT Base ETP ETP+QAT
ResNet-56 CIFAR-10 93.44 93.56 93.38 2.72x 342 1.17 0.29
VGG-19 CIFAR-100 73.50 71.30 71.03 9x 80.16 7.13 1.78
ViT-B/16 ImageNet-1K 81.07 81.93 80.52 1.69 % 346.27 174.88 43.27

Across all three architectures, ETP alone yields substantial storage reductions while preserving
competitive accuracy. For instance, ResNet-56 is reduced from 3.42MB to 1.17 MB (a 65.8%
reduction), while achieving a slight improvement in accuracy. VGG-19 undergoes an order-of-
magnitude shrinkage (80.16 MB — 7.13 MB), reflecting the significant intra-filter redundancy that
ETP removes. ViT-B/16, despite operating at a much larger scale, also compresses by nearly half
(346.27 MB — 174.88 MB) while exhibiting improved top-1 accuracy, suggesting that ETP acts as
an effective regularizer even on transformer architectures.

21

Under review as a conference paper at ICLR 2026

When quantization-aware training is additionally applied, the memory footprint decreases even more
dramatically. For example, ResNet-56 shrinks from 3.42 MB to only 0.29 MB, and VGG-19 from
80.16 MB to 1.78 MB—representing over a 45x compression relative to the dense baseline. ViT-B/16
also benefits substantially, with the ETP+QAT variant occupying only 43.27 MB, an 87.5% reduction
from the dense model. Crucially, these large reductions come with only modest accuracy changes:
93.56% — 93.38% for ResNet-56 and 81.93% — 80.52% for ViT-B/16.

These results highlight that ETP not only produces structured sparsity patterns that preserve model
accuracy and reduce compute, but also yields weight distributions that are inherently stable under
quantization. By removing redundant or low-signal parameter groups prior to quantization, ETP
minimizes the quantization error accumulated in critical regions of the network, thereby enabling
aggressive bitrate reduction with minimal degradation. The synergy between ETP and QAT holds
across both convolutional and transformer-based models, demonstrating that ETP serves as a strong
foundation for multi-dimensional compression pipelines targeting latency, compute, and memory
simultaneously.

7.10 SUBGRADIENT STATIONARITY ANALYSIS OF ETP

To formalize the effect of exponential distance weighting, we analyze the first-order stationarity
(KKT) conditions of the regularized objective

J(w) = L(w) + 8> R(w,),

where L(w) is the task loss, w, denotes the parameters of group g, and R(wy) is a distance-weighted
group regularizer. We compare three choices:
Group Lasso: R(wy) = ||wg]|2, Torque (Linear): R(wy) = d(g)|lwgl|2,
ETP (Exponential): R(wy) = A9 lw,|la, A > 1,
where d(g) is the distance of group g from a designated pivot (e.g., kernel center or early-layer
position).

Because the group norm is non-differentiable at w, = 0, we use subgradient analysis. At any
stationary point w*, the optimality condition requires

0 € Vi, L(w*) + B¢y 9wy |2,

where ¢, is the distance-dependent weight. For groups that are driven exactly to zero (wj; = 0), this
condition reduces to the well-known pruning criterion:

IV, L(w")|l2 < B ey
Thus, the effective pruning threshold for group g is
T(Q) =p Cg-

Comparison of Regularizers. Group Lasso uses a constant threshold 7'(¢g) = (3, which forces
pruning uniformly across all distances; increasing /3 risks removing high-importance (small-d) groups
and leads to underfitting. Torque introduces linear scaling T'(g) = $d(g), but the pruning-force
ratio between far and near groups grows only as d(far) /d(near), which is often insufficient in deep
networks.

ETP instead uses an exponentially increasing threshold T'(g) = SA%9). The pruning-force ratio
between far and near groups becomes

T(far) — /\d(far)fd(near)
T(near) '

which grows exponentially in the distance difference. Consequently, near groups (d(g) small) have
low thresholds and are rarely pruned, while far groups rapidly exceed the pruning condition and are
removed. This produces a step-like separation—a smooth convex surrogate for a hard distance-based
prior—and naturally induces strong sparsity heterogeneity across spatial or architectural depth.

Overall, this analysis explains why ETP consistently preserves core functional components while
aggressively suppressing distant or redundant groups, aligning well with the empirical sparsity
patterns observed across CNNs, ViTs, and LLMs.

22

	Introduction
	Preliminary
	Regularization-based Structured Pruning
	Torque-based Structured Pruning

	Exponential Torque Pruning
	Experiments
	Experimental Setup
	Speed-up improvement (RQ1)
	Aggressive Pruning Analysis (RQ2)
	Effectiveness on Large Models (RQ3)

	Related Works
	Conclusion
	Appendix
	Training Setup
	Detailed information about the compared methods
	Additional experiments on L2-norm learning process
	Different Force Schemes
	Statistical Validation
	Ablation of and
	Hardware Efficiency Analysis
	Additional Experiments on LLMs
	ETP and Quantization
	Subgradient Stationarity Analysis of ETP

