
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS UNIVERSAL & EFFICIENT MODEL COMPRES-
SION VIA EXPONENTIAL TORQUE PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth in complexity and size of modern deep neural networks (DNNs)
has increased challenges related to computational costs and memory usage, spurring
a growing interest in efficient model compression techniques. Previous state-of-
the-art approach proposes using a Torque-inspired regularization which forces the
weights of neural modules around a selected pivot point. Whereas, we observe
that the pruning effect of this approach is far from perfect, as the post-trained
network is still dense and also suffers from high accuracy drop. In this work,
we attribute such ineffectiveness to the default linear force application scheme,
which imposes inappropriate force on neural module of different distances. To
efficiently prune the redundant and distant modules while retaining those that are
close and necessary for effective inference, in this work, we propose Exponential
Torque Pruning (ETP), which adopts an exponential force application scheme for
regularization. Experimental results on a broad range of domains demonstrate
that, despite its simplicity and ease of implementation, ETP manages to achieve
significantly higher compression rate than the previous state-of-the-art pruning
strategies with negligible accuracy drop.

1 INTRODUCTION

0 50 100 150
Epoch

0.0

0.1

0.2

0.3

0.4

L2
­N

or
m

CIFAR­100 (VGG­19)

Torque (i=150)
Torque (i=255)

Figure 1: L2-norm curve during training
process of VGG-19 on CIFAR-100.

Deep neural networks (DNNs) have revolutionized count-
less domains by setting state-of-the-art baselines that sig-
nificantly surpass previous approaches. However, nowa-
days DNNs are pretty large in size and require substan-
tial floating point operations per second (FLOPS) for
inference, which limits their applications in resource-
constrained scenarios (e.g., edge devices Qin et al. (2018);
Han et al. (2015b); Hinton (2015)). To achieve more
efficient while also effective inference, many model com-
pression techniques have been proposed. E.g., low rank
approximation, which aims to leverage a lower-rank matrix
to capture the essential structure of the original model’s
weight matrix while reducing complexity Hu et al. (2022);
Tiwary et al. (2025); Zanella and Ben Ayed (2024); un-
structured pruning, which removes unimportant weights from DNNs to reduce its size while preserv-
ing performance LeCun et al. (1989); Liao et al. (2023); Muralidharan (2023); Structured pruning,
which removes entire groups of weights (such as channels, filters, or blocks) from DNNs in a regular
pattern, to reduce its size and computational cost while preserving performance Ding et al. (2018);
He et al. (2018b); Fang et al. (2023b). Specifically, the previous state-of-the-art structured prun-
ing method proposes a Torque-inspired regularization loss Gupta et al. (2024b), named as Torque.
Concisely, analogous to the physical definition of “Torque”, this approach uses a regularization
that functions as a force that consolidates the weights of a neural module around a selected pivot
point during training. By regularizing the model in this way, the weights of the neural modules
that are far away from the pivot point would be forced to be zero, which could therefore be pruned.
However, we observe that the vanilla Torque structured pruning is still far from perfect. Figure 1
shows the L2-norm curves of two neural modules during the training process. Concretely, the two
neural modules are of different distances d from a selected pivot module, which are all from the same

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

network layer1. It is obvious that though the two investigated modules are far from the pivot point
(i.e., d = 150, d = 255), their L2-norm is quite high (i.e., ||w|| ≫ 0, where w denotes the weight
tensor), which is far from optimal. Thus, because of the low sparsity of the regularized model, it
still suffers from a high accuracy drop after pruning, specifically, a 7% absolute accuracy reduction
despite achieving only a 9× speed-up2 on the CIFAR-100 dataset for the VGG19 model.

In this paper, we attribute the ineffectiveness of Torque to its improper force application to modules
of different distances. Concisely, Torque adopts a simple linear force application scheme, which
applies inadequate force on distant neural modules while imposing unnecessarily large penalties on
neural modules that are close to the pivot point, which are indispensable for effective inference. To
mitigate this drawback, in this work, we propose Exponential Torque Pruning (ETP), which adopts an
exponential force application scheme for regularization. By applying ETP, we could efficiently prune
the redundant and distant modules by applying exponentially large forces that constrain the neural
modules’ weights to zero while retaining those that are close and necessary for effective inference.

Though being extremely simple and straightforward, we observe that ETP manages to achieve
fascinating improvements over the previous state-of-the-art baselines on various domains. Besides,
ETP is universal and is directly applicable to different model architectures. For example, on the
natural language understanding tasks, ETP achieves a 42× speed-up with merely 2.4% accuracy
drop on BERT (SST-2), while the previous state-of-the-art (SoTA) pruning methods sustains ≥ 5%
accuracy drop; and on the image classification tasks, ETP achieves a 23× speed-up with merely 4.5%
drop in accuracy on VGG-19 (CIFAR-100), while the previous SoTA suffers from a large accuracy
drop of 10.8%.

The contributions of our paper are as follows:

• We propose a universal structured pruning strategy, called Exponential Torque Pruning (ETP)3,
which leverages an exponential force application scheme that imposes a larger force on distant
neural modules so as to constrain their weights to zero while preserving those that are close to the
pivot point that are indispensable for effective inference.

• Experimental results on four distinct downstream domains and various model architectures validate
that ETP can surpass the previous state-of-the-art pruning techniques regarding compression rate
by a large margin, while retaining negligible accuracy drop.

• The significant improvement, high generality, and low additional training overhead pave the way
for its strong potential in compressing modern Large Language Models (LLMs).

2 PRELIMINARY

In this section, we introduce the fundamentals of structured pruning and a state-of-the-art
regularization-based structured pruning technique: torque-based structured pruning.

2.1 REGULARIZATION-BASED STRUCTURED PRUNING

To better understand regularization-based structured pruning, we first formally define the notion of
neural module, which is as follows:

Definition 1 (Neural Module). A neural module is defined as a discrete, fundamental computational
unit within a neural network that performs a specific transformation or operation on its input.
Formally, given a neural networkN parameterized by θ, a neural module Mi corresponds to a subset
of parameters θi ⊆ θ and a corresponding functional mapping

Mi : Xi → Yi,

where Xi and Yi denote the input and output spaces of the module, respectively.

1The first neural module in a layer is selected to be the pivot point, and the distance of a neural module from
the pivot point is number of neural modules in between

2speed-up is a metric that measures the reduction in computational cost, which calculates the ratio of the
total operations required in the baseline model to that in the pruned model.

3The implementation is available at: https://anonymous.4open.science/r/ETP-3EB6

2

https://anonymous.4open.science/r/ETP-3EB6

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Examples of neural modules include individual convolutional filters in a convolutional neural network
(CNN) Ding et al. (2018); You et al. (2019), attention heads in a Transformer Ma et al. (2023); Fang
et al. (2023b), or neurons within a fully connected layer Fang et al. (2023b); Gupta et al. (2024b).
Regularization-based structured pruning is a vital technique in deep neural network compression Liu
et al. (2017); Wang et al. (2020); Fang et al. (2023b); Gupta et al. (2024b); He and Xiao (2023b);
Ding et al. (2019b); Fang et al. (2023a) which operates based on fundamental neural modules, where
entire components such as filters, neurons, or layers are removed instead of individual weights. This
leads to more efficient models that are computationally and memory efficient, making them ideal for
deployment on resource-constrained devices. Given a network N (x; θ), where x denotes the input
data, θ is the model’s parameters, structured pruning aims to find a reduced set of parameters θ∗ ⊂ θ
such that: N (x; θ∗) ≈ N (x; θ), while minimizing the network size. The pruning process is typically
guided by a combined loss function:

Ltotal(θ
∗) = Ltask(N (x; θ∗)) + λLpruning(θ

∗) (1)

where Ltask represents task-specific loss (e.g., classification), and Lpruning regularizes sparsity. Com-
mon types of structured pruning include filter pruning He et al. (2019); Li et al. (2016); Ding et al.
(2019a; 2018), neuron pruning LeCun et al. (1989); Zhuang et al. (2020); Yu et al. (2018); Lee
et al. (2019), channel pruning Gao et al. (2021); Wang et al. (2019); Ding et al. (2021); He et al.
(2017), and layer pruning Fan et al. (2019); Wang et al. (2018b); Dong et al. (2017); Elkerdawy et al.
(2020). These methods present unique challenges in balancing the trade-off between reduced size and
maintaining task performance, with each approach requiring careful optimization to avoid excessive
accuracy degradation.

2.2 TORQUE-BASED STRUCTURED PRUNING

Previous state-of-the-art pruning techniques require modifications to the network architecture or
implementation of complex gradient update rules. Whereas, Gupta et al. Gupta et al. (2024a)
propose a simple yet effective Torque-inspired approach (denoted as Torque in the following paper)
which manages to achieve a great compression rate while requiring no change to model architecture.
Analogous to the very definition of the physical concept (i.e., Torque), this approach proposes to
apply a force to neural modules in order to consolidate the weights of a network layer around a
selected pivot point during training. Formally, Torque approximates the concept with the following
implementation:

||τ li ||2 = ||Fl
i × rli||2 ≈ ||wl

i||2 · dli, i ∈ Z+ (2)
where τi denotes the torque applied to the ith neural module of a layer l, ri is the corresponding
position vector. Torque-pruning approximates the L2-norm of the Torque that applies to the neural
module’s weights as the multiplication of the L2-norm of the module’s weight matrix (i.e., force)
||wl

i||2 and the Euclidean distance of their corresponding indices dli = ||ρli − ρlp||2, where ρli is the
index of the ith neural module, ρlp is the index of the pivot point. Gupta et al. (2024a) adopt a random
indexing strategy for the modules within a layer, which performs well empirically. Given the Torque
τi, Torque-pruning proposes using it as a force that pushes the weights of neural modules that are
distant from the pivot point to zero. Concretely, it implements it as a regularization term LTorque. The
detailed optimization objective is as follows:

Ltotal(θ
∗) = Ltask(N (x; θ∗)) + λLTorque(θ

∗) (3)

= Ltask(N (x; θ∗)) + λ
∑
l

∑
i

||τ li ||2 (4)

where λ denotes the regularization coefficient of LTorque. Figure 2(a) shows an intuitive visualization
of the vanilla Torque regularization. Specifically, the LTorque regularization imposes a penalty on
neural modules proportional to their distance from the pivot point (i.e., ∂τ

∂||w|| ∝ ||ρ
l
i − ρlp||2); the

further it is, the more its weights would be penalized (illustrated via the depth of the color of the
representing circles).

3 EXPONENTIAL TORQUE PRUNING

In this section, we introduce the detailed motivation and design of our proposed method, called
ETP (Exponential Torque Pruning). The key motivation of ETP is the sub-optimal force application

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Linear (b) Heavi. & Exp.

Figure 2: (a) Visualization of vanilla Torque-prune regularization. The circles below the coordinate
system, arranged from left to right, represent neural modules at corresponding distances from the
pivot point (leftmost circle). The depth of the circle’s fill color represents the L2-norm of the module.
The lighter the color, the smaller the weight. The colored area within the coordinate denotes the
magnitude of force applied to neural modules of different distances. The darker the color is, the
greater the magnitude of the applied force is. (b) The ideal Heaviside Torque regularization and the
exponential approximation.

scheme of the previous state-of-the-art Torque-prune approach. Specifically, we argue that the
linear proportionality between the partial derivative of torque regularization with respect to the
neural module’s weights and the distance (i.e., ∂τ

∂||w|| ∝ ||ρ
l
i − ρlp||2) is inappropriate. Intuitively,

this denotes that for neural modules of different distances from the pivot point, we are applying
the same amount of force to drive them to zero. As demonstrated in Figure 1, such linear force
application scheme fails to constrain the weights of modules that are distant from the pivot point,
while inappropriately penalizing the ones that are close and necessary for inference. To achieve a
sparser and effective network architecture, we propose using a nonlinear force application scheme. In
particular, we should apply a much larger force on the distant neural modules to drive them towards
zero, while a smaller or no force (i.e., penalty) on those that are close to the pivot point, since they
are essential for effective inference. Figure 2(a) and Figure 2(b) show the intuitive visualization of
different force application schemes as well as the corresponding illustration of the regularized neural
modules’ L2-norm (denoted as circles filled with colors below the distance axis). The colored area
within the coordinate denotes the magnitude of force applied to neural modules of different distance.
The darker the color is, the greater the magnitude of the applied force is.

Concretely, we can observe from the colored blue area within the coordinate in Figure 2(a) that
due to the linear force application scheme of the vanilla Torque-prune, all the neural modules are
penalized in a linear manner according to their distant from the pivot point (denoted as the origin).
This results in an undesirable weight distribution (shown as the blue circles sequence) where neural
modules farther from the pivot point remain densely weighted, while the neural modules that are
close to the pivot point (which are considered necessary for effective inference) are inappropriately
penalized. Ideally, the force application scheme should exert a large penalty on the neural modules
that are distant from the pivot point while fully preserving the neural modules that are close to the
pivot point and are necessary for effective inference. Therefore, we formulate such nonlinear force
application scheme using a Heaviside step function (denoted as the dashed gray line) in Figure 2(b),
such that ∂τ

∂||w|| ∝ 1||ρl
i−ρl

p||2≥dh , where dh denotes the threshold distance from the pivot point,
1||ρl

i−ρl
p||2≥dh denotes the indicator function that outputs 1 if the relative distance of the investigated

neural module and the pivot point ||ρli − ρlp||2 is larger than dh, otherwise it outputs 0. Thus, the
detailed implementation of the Heaviside Torque regularization ||τ̃ li ||2 is as follows:

||τ̃ li ||2 = ||Fl
i × rli||2 (5)

≈ ||wl
i||2 · (ϵ · 1||ρl

i−ρl
p||2≥dh), i ∈ Z+ (6)

Specifically, for neural modules within the threshold distance dh, we apply zero force on them since
they are considered necessary for inference, and for the modules that are beyond dh, we exert a large

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

force which is of size ϵ on these modules, driving their weights toward zero. Whereas the Heaviside
step function is non-differentiable, we therefore use an exponential function for approximation
(denoted as the solid red line in Figure 2(b)), formally:

||τ̂ li ||2 = ||Fl
i × rli||2 (7)

≈ ||wl
i||2 · λ||ρl

i−ρl
p||2 , i ∈ Z+ (8)

where λ is a hyperparameter that serves as the base of the exponentiation that controls the threshold
distance. Finally, given the exponential approximation of the Heaviside Torque regularization, the
overall optimization objective with the exponential torque pruning regularization (ETP) loss is:

L̂total(w) = Ltask(x;w) + β · Lw
ETP (9)

= Ltask(x;w) + β
∑
l

∑
i

||wl
i||2 · λ||ρl

i−ρl
p||2 (10)

where Ltask is the original optimization objective of the specific task, β is the regulatory coefficient of
the ETP loss. Therefore, by exerting extremely low penalty on the neural modules that are close to
pivot point and are considered essential for effective inference, while much larger penalty on those
that are distant from the pivot point, the exponential force application scheme introduced by ETP are
expected to achieve a much sparser yet effective model architecture.

4 EXPERIMENTS

To evaluate the effectiveness of ETP, we conduct experiments on four distinct domains, including
vision, language, graph, and time series. In the remainder of this section, we first introduce the
detailed experimental setup, and then we answer three research questions (RQs) to lead our discussion,
which are as follows:

(RQ1) Speed-up Improvement How effective is ETP in improving the models’ speed-up while
retaining a low performance drop?

(RQ2) Aggresive Pruning Analysis Does ETP perform well under different speed-up ratios?

(RQ3) Effectiveness on Large Models Can ETP effectively compress the prevalent large models?

4.1 EXPERIMENTAL SETUP

We demonstrate the effectiveness of ETP by evaluating it on multiple benchmarks of different domains.
The details of the benchmarks are as follows4:

Datasets & Backbone Models. For the image classification tasks, we evaluate on CIFAR-
100 Krizhevsky et al. (2009), and ImageNet Deng et al. (2009) datasets. CIFAR-100 consist of
50,000 training and 10,000 test images of size 32× 32, with 100 classes respectively. All images are
normalized using dataset-specific RGB means and standard deviations and resized to 224× 224. For
ImageNet, we use the ILSVRC-2012 subset with 1.2 million training images and 50,000 validation im-
ages across 1,000 classes. The images are resized and randomly cropped to 224×224 during training.
In terms of the backbone models, we follow the setup of Gupta et al. Gupta et al. (2024a) and conduct
experiments on Vision Transformers (i.e., ViT-B/16 Dosovitskiy et al. (2020)), CNN models with
linear connections only (i.e., VGG-19 Simonyan and Zisserman (2014)), and the ones with residual
connections (ResNet-50 He et al. (2016)). For the graph classification task, we use the Protein-Protein
Interaction (PPI) dataset Hamilton et al. (2017), which contains 24 graphs with over 56,000 nodes and
818,000 edges, each node is represented with 50-dimensional features. We adopt the Graph Attention
Network (GAT) Veličković et al. (2017) as the backbone model. For the domain of natural language
understanding (NLU), we evaluated two GLUE benchmark datasets: SST-2 and MRPC Wang et al.
(2018a). SST-2 is a sentiment classification task with 67,349 training and 872 test examples, while
MRPC is a paraphrase detection task with 3,668 training and 408 test pairs. We use BERT De-
vlin et al. (2019) and RoBERTa Liu et al. (2019) models as the backbone models for evaluation.

4Please refer to the appendix for the detailed experimental setup.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Pruning results on vision benchmarks. We
highlight the top-1 results in red.

CIFAR100 (VGG 19)
Method Base Pruned Acc. Drop Speed-up
GReg-1 74.02 67.35±0.15 -6.67±0.15 8.84×
GReg-2 74.02 67.75±0.18 -6.27±0.18 8.84×
Depgraph 73.50 70.39±0.04 -3.11±0.04 8.92×
Torque (r) 73.03 65.87±0.21 -7.16±0.21 8.88×
ETP (Ours) 73.50 71.30±0.08 -2.20±0.08 9.03×

ImageNet (ResNet50)
Method Base Pruned Acc. Drop Speed-up
HRank 76.15 74.98±0.46 -1.17±0.46 1.78×
SFP 76.15 74.51±0.32 -1.64±0.32 1.72×
GReg-2 76.13 75.16±0.12 -0.97±0.12 1.49×
Depgraph 76.15 75.53±0.28 -0.62±0.28 2.08×
Torque (p) 76.07 74.67±0.11 -1.40±0.11 2.34×
ETP (Ours) 76.15 76.21±0.01 +0.06±0.01 2.30×

ImageNet (ViT-B/16)
Method Base Pruned Acc. Drop Speed-up
CP-ViT 81.07 77.36±0.22 -3.71±0.22 1.69×
DepGraph + EMA 81.07 79.58±0.47 -1.39±0.47 1.69×
DepGraph 81.07 79.17±0.21 -1.9±0.21 1.69×
ETP (Ours) 81.07 81.93±0.51 +0.86±0.51 1.69×

For the time-series forecasting task, we use
the ETTh1 dataset from the ETT benchmark
suite Zhou et al. (2021). The dataset includes
hourly energy consumption features across one
week, with 7 input features and 1 target variable.
We adopt the Informer model Zhou et al. (2021)
as the backbone, using an input sequence length
of 96 and forecasting 48 future time steps. The
features are normalized using the z-score nor-
malization based on the training data statistics.

Compared Methods. We mainly compare
ETP with the vanilla Torque pruning Gupta
et al. (2024b) and DepGraph Fang et al. (2023b)
Apart from these general-purpose baselines, we
also compare ETP against the domain-specific
SoTA baselines. Concretely, for the vision tasks,
we also compare ETP against HRank Lin et al.
(2020), SFP He et al. (2018a), and GReg Wang
et al. (2020); For the natural language under-
standing (NLU) tasks, we further benchmark
ETP against CoFi Xia et al. (2022), DynaBERT Hou et al. (2020), EBERT Liu et al. (2021), and
LLM-Pruner Ma et al. (2023). Please refer to the Appendix for more detailed introduction of these
methods.

Evaluation Measurements. An ideal model compression algorithm should control the compression-
accuracy tradeoff well, i.e., that is to effectively reduce the models’ size, therefore reducing the
number of computations for inference while controlling the accuracy loss within an acceptable range.
To evaluate the compression-accuracy tradeoff quantitatively, we follow previous literature Fang et al.
(2023b); Gupta et al. (2024b); Wang et al. (2020) and adopt the speed-up and accuracy-drop
metrics for evaluation. Specifically, speedup is defined as follows: speed-up = MACsbase

MACspruned
, MACS

(Multiply-Accumulate operations) denotes the total number of arithmetic operations required for a
single forward pass of the model. This is often used to approximate computational cost and inference
latency. Intuitively, speed-up quantifies how much more efficient the pruned model is compared
to the original model. A higher value indicates greater computational savings, which enables faster
inference and lower energy consumption. The accuracy drop is defined as: accuracy-drop =
accuracypruned−accuracybase Concretely, the accuracy-drop measures the accuracy loss of
the model before and after pruning. Other task-specific metrics are further elaborated in the Appendix.
Note that all the reported results are averaged over five random seeds.

4.2 SPEED-UP IMPROVEMENT (RQ1)

To answer RQ1, we compare ETP against the state-of-the-art pruning techniques on four domains
(i.e., image classification, natural language understanding (NLU), graph classification, and time-series
forecasting). The detailed results are illustrated in Table 1, Table 2, Table 4, and Table 3 respectively.
First, for image classification tasks, we compare ETP with the state-of-the-art pruning baselines on
ImageNet on ResNet-50 and ViT-B/16, and CIFAR-100 with VGG-19 model, following the same
experimental setup as previous literature Fang et al. (2023b); Gupta et al. (2024b). The results in
Table 1 show that ETP performs consistently better than the previous state-of-the-art baselines on
all the investigated backbone models. Specifically, on the CIFAR-100 dataset using the VGG-19
backbone model, ETP achieves a 9× speed-up while incurring only a 2.2% drop in classification
accuracy, while Torque and DepGraph suffers from a significantly higher accuracy degradation of
7.16% and 3.11% respectively. Moreover, ETP attains a 1.69× speed-up on ViT-B/16 without any
loss in accuracy, whereas competing approaches typically suffer a 1.5–2% accuracy reduction under
comparable speed-up.

For the NLU, graph classification, and time-series forecasting tasks, we observe that ETP
generally surpasses both the general-purpose structured pruning methods as well as the state-
of-the-art task-specific baselines as well. Specifically, for the GAT on the PPI dataset, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Pruning results on the NLU benchmarks.

SST-2

Method BERT RoBERTa
Base Pruned Acc. Drop Speed-up Base Pruned Acc. Drop Speed-up

CoFi 93.5% 87.6% -5.9% 11× 95.3% 80.0% -15.3% 13.5×
DynaBERT 93.5% 85.1% -8.4% 11× 95.3% 78.1% -17.2% 13.5×

EBERT 93.5% 86.0% -7.5% 11× 95.3% 78.7% -16.6% 13.5×
DepGraph 93.5% 91.8% -1.7% 11× 95.3% 89.9% -5.4% 13.5×

LLM-Pruner 93.5% 91.8% -1.7% 11× 95.3% 90.3% -5% 13.5×
Torque 93.5% 90.9% -2.6% 11× 95.3% 90.6% -4.7% 13.5×

ETP (Ours) 93.5% 92.1% -1.4% 11× 95.3% 92.9% -2.4% 13.5×
MRPC

Method BERT RoBERTa
Base Pruned Acc. Drop Speed-up Base Pruned Acc. Drop Speed-up

CoFi 88.0% 80.3% -7.7% 8× 90.0% 82.4% -17.6% 8×
DynaBERT 88.0% 79.6% -8.4% 8× 90.0% 83.8% -16.2% 8×

EBERT 88.0% 74.5% -13.5% 8× 90.0% 81.1% -18.9% 8×
DepGraph 88.0% 83.5% -4.5% 8× 90.0% 86.1% -3.9% 8×

LLM-Pruner 88.0% 83.0% -5% 8× 90.0% 85.9% -4.1% 8×
Torque 88.0% 83.2% -4.8% 8× 90.0% 85.3% -4.7% 8×

ETP (Ours) 88.0% 85.0% -3.0% 8× 90.0% 86.6% -3.4% 8×

evaluate different methods under two speed-up settings. For speed-up=12×, ETP achieves
a F1 score drop of only 0.027, while DepGraph incurs a F1 score drop of 0.03 for
the same speed-up. The results on 9× speed-up rate are similar. Despite our best ef-
forts, the vanilla Torque method fails to achieve the 12× speed-up on the GAT (PPI).

Table 3: Pruning results on the Informer model.

Etth-1(48) (Informer)
DepGraph Torque ETP (Ours)

Speed-Up MAE MSE MAE MSE MAE MSE
1× 0.319 0.158 0.319 0.158 0.319 0.158

2.5× 0.3559 0.1636 0.3398 0.1621 0.3402 0.1618
4× 0.3632 0.1671 0.3492 0.1665 0.3495 0.1631

6.5× 0.3737 0.1702 0.3606 0.1698 0.3580 0.1645
10.5× 0.3818 0.1743 0.3723 0.1756 0.3643 0.1661
14.5× 0.3959 0.1797 0.3843 0.1810 0.3726 0.1678
25× 0.4118 0.1852 0.3937 0.1843 0.3812 0.1692

We believe that this is because Torque is
unable to penalize the GAT models’ pa-
rameters enough to make them structurally
sparse.

ETP outperforms DepGraph and Torque
on Informer for Etth-1 dataset as well for
speed-up ≥ 6.5× for both MAE and
MSE. For speed-up ≤ 4×, ETP consis-
tently outperforms DepGraph with a signif-
icant performance gain and is competent
or slightly worse than Torque. The results
indicate that ETP’s superiority is more sig-
nificant under large speed-up rate scenarios. The reason is that with more redundant parameters (i.e.
more distant and redundant neural modules) awaiting to be pruned, ETP can achieve more effective
pruning by applying much larger penalty on the redundancy while retaining the modules that are
necessary for inference according to its exponential force application scheme .

Table 4: Pruning results on the GAT model.

PPI (GAT)
Method Base Pruned F1 score Drop Speed-Up

DepGraph 0.9860 0.9610±0.0000 -0.0250±0.0000 8.43×
Torque 0.9860 - - -

ETP (Ours) 0.9860 0.9701±0.0010 -0.0159±0.0010 9.13×
DepGraph 0.9860 0.9555±0.0007 -0.0345±0.0007 12×

Torque 0.9860 - - -
ETP (Ours) 0.9860 0.9624±0.0005 -0.0236±0.0005 12.16×

To have a better understanding of the im-
provement, we also present wall-clock
latency and energy consumption results
across 5 hardware platforms: NVIDIA
A100, L4, RTX 8000, Tesla T4, and
Google TPU v6. The results are shown
in Table 5. We present the results of
BERT on SST-2 and VGG-19 on CIFAR-
100. Specifically, ETP achieves 6.4–9.3×
latency speed-up on GPUs and TPUs. It
also attains a 56–90% energy reduction depending on device class.

To better understand the source of improvement, we conduct an in-depth analysis to track the progress
of the L2-norm of specific neural modules during the learning process. Concretely, we randomly
select two neural modules within a specific layer that are of different distances from the pivot point, we
compare the L2-norm learning process of ETP and the vanilla Torque pruning approach. The results
are shown in Figure 3. We can observe that compared with the vanilla Torque, ETP can significantly
reduce the L2-norm of the distant neural modules, e.g., for VGG-19 trained on CIFAR-100, ETP
manages to optimally prune the distant module (i.e., L2-norm equals to 0 (||ml

254|| = 0.0)), while
Torque remains a high L2-norm (i.e., ||ml

254|| = 0.134). The extensive L2-norm analysis during
training validates that the exponential force application scheme enables ETP to achieve a significantly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Cross-hardware evaluation of latency and energy for pruned BERT (SST-2) and VGG-19
(CIFAR-100). Theoretical speed-ups are 11× (BERT) and 9× (VGG-19).

Model Hardware Base Lat. (ms) Pruned Lat. (ms) Speedup Base Energy (J) Pruned Energy (J) Reduction

BERT
SST-2
(92.1%)

NVIDIA A100 45.863±0.115 7.098±0.377 6.46× 14.471±0.605 2.439±0.722 83.1%
NVIDIA L4 101.166±1.258 10.868±0.341 9.31× 7.492±0.082 0.787±0.019 89.5%
Quadro RTX 8000 66.540±0.608 9.650±0.044 6.90× 17.547±0.173 3.507±0.551 80.0%
NVIDIA Tesla T4 188.705±3.687 23.293±0.486 8.10× 14.585±0.586 1.622±0.079 88.9%
Google TPU v6 546.013±12.463 79.637±8.126 6.86× 73.390±4.653 11.277±3.972 84.6%

VGG-19
CIFAR-100
(71.30%)

NVIDIA A100 5.578±0.004 0.818±0.013 6.82× 1.853±0.559 0.278±0.119 85.3%
NVIDIA L4 14.914±0.151 6.117±0.084 4.43× 1.080±0.010 0.240±0.000 77.4%
Quadro RTX 8000 15.013±0.065 3.538±0.804 4.25× 3.535±0.023 1.556±0.222 56.0%
NVIDIA Tesla T4 35.426±0.192 9.262±0.116 3.82× 2.521±0.273 1.090±0.230 56.7%
Google TPU v6 171.202±6.831 19.641±0.373 8.72× 22.934±2.0142 2.630±0.371 88.5%

Figure 3: Comparison of the L2-norm curves during the training process.

sparser yet effective neural network architecture, resulting in a much higher compression rate with
minimal performance degradation.

4.3 AGGRESSIVE PRUNING ANALYSIS (RQ2)

Different real-world applications require different levels of model compression due to hardware
limitations; therefore, to perform well (i.e., retain low accuracy drop) under different speed-up ratios
is a crucial ability for the model compression techniques. To systematically quantify such ability,
we propose evaluating different pruning methods via the aggressive pruning analysis. Concretely,
that is to record the model’s accuracy drop across progressively increasing speed-up ratios. We
conduct the analysis on the six different tasks, the results are shown in Figure 4. It is obvious that
ETP manages to retain the accuracy within an acceptable range while the other compared methods
suffer from a significant accuracy drop. For example, for BERT on MRPC, under the 30× speed-up
ratio, ETP achieves an accuracy drop of only 3.5%, while DepGraph and Torque’s accuracy drop by
6% and 6.1% respectively. Similarly, for VGG19 on CIFAR 100 dataset, under the 23 × speed-up
setting, ETP incurs an accuracy drop of only 3.87%, while DepGraph and GReg’s accuracy is 10.73%
and 13% respectively. We observe similar trends on Informer for ETTh-1 (48) dataset as well. ETP
incurs a change in MSE of 0.02 for a 38× speed-up, while DepGraph incurs a change in MSE of
0.032 for the same speed-up. Torque performs the worst out of the 3 methods at 38× speed-up
and incurs a change in MSE of 0.041. The results demonstrate that, thanks to a more reasonable
force application scheme, ETP is a much more robust pruning technique and it is more suitable for
scenarios that require a large speed-up ratio (e.g., model deployment on edge devices with limited
computing power) compared to the previous state-of-the-art baselines.

4.4 EFFECTIVENESS ON LARGE MODELS (RQ3)

To demonstrate ETP’s potential in compressing large models, we further evaluate ETP on the OPT-
350M Zhang et al. (2022) language model using the WikiText Merity et al. (2016) dataset, with
perplexity as the evaluation metric. All methods are constrained to 50% sparsity for a fair comparison.
As summarized in Table 16, unstructured magnitude pruning fails under this budget (perplexity
6× 103), while structured baselines such as SparseGPT Frantar and Alistarh (2023), Wanda Sun et al.
(2023), and DepGraph Fang et al. (2023b) achieve perplexities in the 32–36 range. LLM-Pruner Ma
et al. (2023), a recent method specialized for large language models, improves performance to 31.05.
ETP achieves 29.14 perplexity, surpassing all baselines under identical sparsity. This corresponds to
a 6–10% relative improvement over SparseGPT and DepGraph, which narrows the gap to the dense

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Results of aggressive pruning analysis for six distinct tasks.

baseline (22.00). These results highlight ETP’s ability to retain model quality across autoregressive
language modeling tasks, suggesting its potential as a general pruning framework for large models.
We leave the comprehensive evaluation of ETP on other large language models to future work.

5 RELATED WORKS

Table 6: Pruning results on OPT-350M
[WikiText].

WikiText (OPT350M)
Method Sparsity Perplexity
Dense 50% 22.00
Magnitude 50% 6 x 103
SparseGPT 50% 34.76
Wanda 50% 35.92
DepGraph 50% 32.61
LLM-Pruner 50% 31.05
ETP (Ours) 50% 29.14

Unstructured pruning aims to remove individual
weights in a network, typically based on magnitude-
based heuristics or importance scores LeCun et al.
(1989); Muralidharan (2023); Dong et al. (2017); Lee
et al. (2019). One of the seminal works in this area
was introduced by Han et al. (2015a), who proposed
an iterative pruning framework that eliminates weights
with small magnitudes and then retrains the network to
recover any lost accuracy. This approach was shown
to significantly reduce model size while maintaining
competitive performance.

Structured pruning focuses on removing higher-level
structures, such as entire channels, filters, or even layers.
This yields a compact and dense model architecture that is more compatible with conventional
hardware and software frameworks. He and Xiao (2023a); Ding et al. (2018); He et al. (2018b); Ding
et al. (2021); You et al. (2019); Lin et al. (2020) Early approaches, such as that by Li et al. (2016),
prune filters in convolution layers based on their ℓ1 norm, under the assumption that filters with
smaller norms contribute less to the final output. He et al. (2017) proposed channel pruning guided
by evaluating the change in loss when specific channels are removed, allowing for a more data-driven
pruning strategy. These methods are typically followed by fine-tuning to restore the performance
of the pruned network Lin et al. (2020); Fang et al. (2023b). Recent advances have cast structured
pruning as a learning or optimization problem.

6 CONCLUSION

In this work, motivated by the observation that the vanilla Torque-based pruning still fails to achieve
satisfying model sparsity, we introduce a simple yet effective pruning method called Exponential
Torque Pruning (ETP) based on an exponential force application scheme. Concretely, ETP imposes
a larger force on distant neural modules so as to constrain their weights to zero while preserving
those that are close to the pivot point that are indispensable for effective inference. Experiments
across four diverse downstream domains and multiple model architectures (including modern large
language models) demonstrate that despite its simplicity and ease of implementation, ETP significantly
outperforms prior state-of-the-art pruning methods, achieving a much higher compression rate while
maintaining considerably lower accuracy degradation. Future progress could be made in the force
application scheme to mitigate this limitation. Besides, we also plan to apply ETP to other emerging
architectures (e.g., diffusion models, Mixture-of-Experts architectures, etc.) to further assess its
generalizability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement: Our implementation is publicly available at https://anonymous.
4open.science/r/ETP-3EB6, including training, evaluation, and preprocessing scripts. All
datasets used in this work are publicly accessible, and preprocessing steps are followed in accordance
with State-of-The-Art. Comprehensive details of model configurations, hyperparameters, and training
schedules are provided in section 7.1. Experiments were conducted on a single NVIDIA A100 GPU.

REFERENCES

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-balanced filter pruning for
efficient convolutional neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4943–4953, 2019a.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4943–4953, 2019b.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang Ding.
Resrep: Lossless cnn pruning via decoupling remembering and forgetting. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4510–4520, 2021.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in neural information processing systems, 30, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong Zhang, and Nilanjan Ray. To filter prune,
or to layer prune, that is the question. In proceedings of the Asian conference on computer vision,
2020.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16091–16101, 2023a.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16091–16101, 2023b.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pages 10323–10337. PMLR, 2023.

Shangqian Gao, Feihu Huang, Weidong Cai, and Heng Huang. Network pruning via performance
maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9270–9280, 2021.

10

https://anonymous.4open.science/r/ETP-3EB6
https://anonymous.4open.science/r/ETP-3EB6

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arshita Gupta, Tien Bau, Joonsoo Kim, Zhe Zhu, Sumit Jha, and Hrishikesh Garud. Torque based
structured pruning for deep neural network. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2711–2720, 2024a.

Arshita Gupta, Tien Bau, Joonsoo Kim, Zhe Zhu, Sumit Jha, and Hrishikesh Garud. Torque based
structured pruning for deep neural network. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2711–2720, 2024b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 46(5):2900–2919, 2023a.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023b.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4340–4349, 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pages 784–800, 2018b.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009),
2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint arXiv:1906.06307, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1402–1406, 2023.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 1529–1538, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng. Ebert: Efficient bert inference with dynamic
structured pruning. In Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, pages 4814–4823, 2021.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pages 2736–2744, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Saurav Muralidharan. Uniform sparsity in deep neural networks. Proceedings of Machine Learning
and Systems, 5, 2023.

Qing Qin, Jie Ren, Jialong Yu, Hai Wang, Ling Gao, Jie Zheng, Yansong Feng, Jianbin Fang,
and Zheng Wang. To compress, or not to compress: Characterizing deep learning model
compression for embedded inference. In 2018 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages 729–736. IEEE, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Anupam Tiwary, Shek Diya Sarkar, Aditya Pratap Singh, Pankaj Kumar Agarwal, Subham Burman,
and Rishab Poddar. Fine-tuning vision transformer using lora for image classification. In 2025 8th
International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech),
pages 1–4. IEEE, 2025.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018a.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In International conference on machine learning, pages
6566–6575. PMLR, 2019.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In Proceedings of the European conference on computer vision
(ECCV), pages 409–424, 2018b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. arXiv preprint arXiv:2204.00408, 2022.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score
propagation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 9194–9203, 2018.

Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1593–1603, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115, 2021.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. Advances in neural information processing
systems, 33:9865–9877, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

7 APPENDIX

7.1 TRAINING SETUP

Table 7: Training configurations for ETP across all evaluated benchmarks. Standard schedules are
used per task to ensure fair comparison with the compared baselines.

Dataset (Model) Epochs Batch Size LR Scheduler Optimizer
CIFAR-10 (ResNet-56) 100 128 MultiStepLR (milestones = [60,

80], γ = 0.1)
SGD (lr = 0.001, momentum = 0.9,
weight decay = 5e−4)

CIFAR-100 (VGG-19) 100 128 MultiStepLR (milestones = [60,
80], γ = 0.1)

SGD (lr = 0.001, momentum = 0.9,
weight decay = 5e−4)

ImageNet-1k (ResNet-
50)

90 256 StepLR (step size = 30, γ = 0.1) SGD (lr = 0.1, momentum = 0.9, weight
decay = 1e−4)

MRPC (BERT) 10 32 Linear decay with 10% warm-up AdamW (lr = 2e−5, weight decay =
0.01)

SST-2 (BERT) 10 32 Linear decay with 10% warm-up AdamW (lr = 2e−5, weight decay =
0.01)

MRPC (RoBERTa) 10 32 Linear decay with 10% warm-up AdamW (lr = 2e−5, weight decay =
0.01)

SST-2 (RoBERTa) 10 32 Linear decay with 10% warm-up AdamW (lr = 2e−5, weight decay =
0.01)

PPI (GAT) 1000 1 CosineAnnealingLR (Tmax =
1000)

Adam (lr = 0.005, weight decay =
5e−4)

ETTh1 (Informer) 6 32 CosineAnnealingLR (Tmax =
6)

Adam (lr = 5e−4, weight decay =
1e−4)

C4 (OPT-350M) 5 64 Linear warmup; LR (1×10−5) AdamW (lr = 1e−5); gradient clipping
= 1.0

In this section, we detail the training configuration of our proposed method and the baseline ap-
proaches. First, for ETP, we use the following strategy for all tasks to select the λ and β for
our loss function. The regularization coefficient β is selected via grid search over the range
{10−6, 5 × 10−6, 10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3}. The optimal value of β varies
depending on the model architecture and the desired pruning aggressiveness. Higher compression
rates are obtained by increasing β accordingly. For the exponential base λ, we defined it as a function
of the number of grouped parameters in a layer l: λl = exp

(
5

|Gl|

)
, where |Gl| denotes the total num-

ber of parameter groups (e.g., convolutional filter, attention head, etc.). The detailed training setup of
ETP for all the evaluated benchmarks is illustrated in Table 7. We strictly follow the experimental
setup of the compared baselines according to their provided implementations for fair comparison.

7.2 DETAILED INFORMATION ABOUT THE COMPARED METHODS

We compare all experiments against two general-purpose baselines namely, DepGraph Fang et al.
(2023b) and Torque Gupta et al. (2024b):

1. DepGraph: DepGraph introduces a dependency-graph-based perspective for structured
pruning in deep neural networks, where the pruning of one module (e.g., a convolutional
filter or neuron) inherently affects the computational graph downstream. Mathematically,
the network is represented as a graph G = (V,E), where vertices v ∈ V correspond
to computational operators (e.g., filters, channels, or layers) and edges e ∈ E represent
data-flow dependencies. Pruning is then formulated as an optimization problem under
dependency constraints:

min
M
L(fM(x), y) s.t. M⊆ V, M satisfies dependency closure,

where M denotes the set of retained modules, L the task loss, and dependency closure
ensures that if a vertex is preserved, all of its prerequisite vertices along G are also preserved.

2. Torque: The Torque Structured Pruning method introduces a physics-inspired regularization
during training that encourages weight concentration near a chosen pivot filter while pushing

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

peripheral filters toward zero. The regularization loss is represented as:

Ltot = Ltask + λT

∑
n

∥Tn∥2,

where
∥Tn∥2 = ∥Wn∥2 · |rn − rp|,

approximating the physical torque F × r.

We also compare against domain-specific techniques. For vision tasks we compare against:

1. HRank: HRank introduces a filter pruning method that quantifies filter importance by the
rank of their induced feature maps. Specifically, denote the feature map for filter j in layer i
on input I by oij(I). HRank defines the importance score as

L̂(oij) = EI∼P (I)

[
Rank(oij(I))

]
≈ 1

g

g∑
t=1

Rank
(
oij(It)

)
,

where {It}gt=1 is a small sampled batch. Filters whose scores fall among the lowest in a
layer are pruned.

2. SFP: Soft Filter Pruning (SFP) introduces a pruning scheme for CNNs in which filters are
not permanently removed but instead set to zero and allowed to be updated during training.
This differs from conventional hard pruning, where pruned filters are discarded and the
network capacity is irreversibly reduced. At the end of each training epoch, a proportion of
filters with the smallest ℓ2-norms are selected and reset:

W
(l)
j ← 0, for j ∈ Pl,

where W
(l)
j denotes the j-th filter in layer l and Pl is the set of pruned filters determined by

norm ranking. Gradient descent continues to update all filters, including those zeroed, so
that previously pruned filters may recover if they become useful.

3. GReg: It proposes a pruning framework in which a sparsity-inducing regularization term
increases gradually during training, allowing the network to adapt smoothly to pruning
pressure. Instead of applying a fixed strong regularizer from the start, GReg introduces a
time-dependent weighting:

Ltot = Ltask + λ(t)R(W),

where R(W) denotes a structured sparsity regularizer (e.g. ℓ2,1 norm over filters or channels),
and λ(t) is a monotonically increasing function of the training step t.

For NLU tasks we compare against:

1. CoFi: This method introduces a unified compression-and-fine-tuning framework for pre-
trained transformers, in which structured pruning and task adaptation are optimized jointly
rather than sequentially. The method applies learnable binary masks m to weight groups
at multiple granularities (attention heads, intermediate dimensions, hidden layers) and
optimizes

min
θ,m
Ltask(fθ⊙m(x), y) + λ ∥m∥0,

where θ are pretrained parameters, m are structured pruning masks, and λ controls sparsity.
This method is primarily evaluated on BERT and RoBERTa.

2. DynaBERT: It proposes an adaptive width–depth pruning framework for transformers,
training a single BERT that can dynamically adjust hidden dimensions (width) and number
of layers (depth) to meet resource budgets. The method first conducts width-adaptive
training, pruning attention heads and intermediate dimensions to form slimmer subnetworks,
and then depth-adaptive training, progressively pruning layers with knowledge distillation.
Denote by fθ(w,d) a subnetwork with width w and depth d. DynaBERT jointly optimizes

min
{θ(w,d)}

E(w,d)∼U L(fθ(w,d)(x), y) + µLKD(fθ(w,d)(x), fθfull(x)) ,

where LKD denotes a knowledge-distillation loss from the full teacher model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Additional results on the l2-norm analysis during the training process.

3. EBERT:It introduces an input-adaptive structured pruning approach for transformers, in
which lightweight predictors produce binary masks over attention heads and FFN channels
conditioned on the [CLS] token representation. The masks are sampled with a Gumbel–
Softmax relaxation for differentiable optimization. The objective balances task accuracy
with FLOPs constraints:

L = Ltask + λ1

(
Fc

Fo
− Ct

)2

+ λ2 (LM + LF),

where Fo and Fc denote original and current FLOPs, Ct is a target budget, and LM , LF

penalize unbalanced pruning across attention and feed-forward modules.
4. LLM-Pruner: The method first constructs dependency groups, i.e., coupled parameter sets

that must be pruned jointly to maintain architectural validity. For each group, an importance
score is estimated using a first-order Taylor expansion with Hessian-based correction under
a limited data budget. Formally, letting G denote the set of groups and I(g) their importance,

min
M⊆G

∑
g∈M

I(g) s.t. dependency closure,

whereM is the set of groups selected for removal. Following pruning, lightweight post-
training (e.g. LoRA) efficiently recovers accuracy.

7.3 ADDITIONAL EXPERIMENTS ON L2-NORM LEARNING PROCESS

We further present additional results of the L2-norm analysis during training process on Informer
(ETTh1) and BERT (MRPC) as a supplementary of RQ1. The detailed results are shown in Figure 5.
It is obvious that the results are consistent with that of RQ1. For example, for Informer trained and
evaluated on ETTh1, ETP manages to optimally prune both investigated modules (ml

4,m
l
12) as ETP

deems them redundant for effective inference (i.e., L2-norm equals to 0 (||ml
4|| = 0.0, ||ml

12|| =
0.0)), while the ones regularized by the vanilla Torque remains a high L2-norm for these modules
(i.e., ||ml

4|| = 0.99, ||ml
12|| = 2.44). The extensive L2-norm analysis during the training process

validate that the exponential force application scheme can indeed help ETP achieve a much sparser
neural network architecture, and therefore achieve a much higher compression rate with lower
performance drop.

7.4 DIFFERENT FORCE SCHEMES

A key motivation of Exponential Torque Pruning (ETP) is to address the sub-optimal regularization
exhibited by linear or constant force-application schemes. As shown in Figure 2, even after applying
linear regularization (as in Torque), the resulting sparsity pattern remains sub-optimal.

To overcome this limitation, we propose using the Heaviside step function as the force-application
scheme:

• Modules close to the pivot (i.e., essential for inference) receive zero penalty.
• Distant, redundant modules incur a large penalty.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Comparison of different force schemes on VGG19 (CIFAR-100, base accuracy 73.50%).

Speed-Up ETP (Ours) Torque Log-Torque Group Lasso (L2)
3× 73.93 ± 0.17 72.40 ± 0.29 71.39 ± 0.20 71.49 ± 0.14
6× 72.13 ± 0.13 70.86 ± 0.03 70.25 ± 0.07 70.36 ± 0.12
9× 71.54 ± 0.19 65.87 ± 0.12 66.13 ± 0.11 66.01 ± 0.04
15× 69.95 ± 0.08 62.31 ± 0.17 61.84 ± 0.29 61.74 ± 0.03
24× 67.98 ± 0.11 60.08 ± 0.04 58.11 ± 0.78 58.29 ± 0.11

Since the Heaviside function is non-differentiable, we approximate it with a differentiable exponential
function, enabling gradient-based optimization.

We compare ETP against the following alternative force application schemes, which include:

1. Torque: Serves as one of our general-purpose benchmarks, with the loss defined as

Ltot = Ltask + λT

∑
n

∥Tn∥2,

where
∥Tn∥2 = ∥Wn∥2 · |rn − rp|.

Here, the regularization grows linearly with the distance from the pivot, and its effect can be
directly modulated by λT .

2. Log-Torque: Defined as

Ltot = Ltask + λT

∑
n

∥Tn∥2,

where
∥Tn∥2 = ∥Wn∥2 · log(|rn − rp|).

In this variant, the force grows logarithmically with distance, resulting in a slower increase
compared to the linear Torque scheme.

3. Group-Lasso: Defined as

Ltot = Ltask + λT

∑
n

∥Tn∥2,

where
∥Tn∥2 = ∥Wn∥2 · 1|rn−rp|.

In this case, the penalty is independent of the distance from the pivot, effectively reducing
to standard ℓ2 regularization on the filter weights.

As shown in Table 8, ETP consistently outperforms all competing schemes on VGG19 (CIFAR-100)
across different speed-up ratios, achieving higher accuracy at every compression level. Notably, the
Log-Torque variant underperforms the baseline Torque scheme, highlighting the need for stronger
force scheme.

7.5 STATISTICAL VALIDATION

To ensure the statistical significance of our findings, we conduct 5 independent runs and apply paired
t-tests against the strongest competing baseline in each setting. We select a few tasks to run statistical
significance tests, namely:

• BERT @ SST-2,

• RoBERTa @ MRPC,

• GAT @ PPI (9× and 12×),

• VGG19 @ CIFAR-100 (9×).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Statistical validation on BERT (SST-2) and RoBERTa (MRPC).

Dataset Model Method Accuracy ± Std Speed-Up p-value vs ETP
SST-2 BERT ETP 92.13 ± 0.01 11× -

DepGraph 91.86 ± 0.05 11× 0.009
Torque 90.81 ± 0.06 11× 0.005

MRPC RoBERTa ETP 86.57 ± 0.01 8× -
DepGraph 86.01 ± 0.06 8× 0.003

Torque 85.27 ± 0.12 8× 0.003

Table 10: Statistical validation on VGG19 (CIFAR-100) at 9× speed-up.

Method Accuracy ± Std Speed-Up p-value vs ETP
ETP (Ours) 71.54 ± 0.19 9× -
DepGraph 70.38 ± 0.32 9× 0.010

Torque 65.77 ± 0.30 9× 0.000
GReg-1 67.35 ± 0.22 9× 0.000
GReg-2 67.55 ± 0.29 9× 0.000

Table 11: Statistical validation on GAT (PPI dataset) at 9× and 12× speed-ups.

Method F1 ± Std Speed-Up p-value vs ETP
ETP 0.9633 ± 0.0005 9× -

DepGraph 0.9610 ± 0.0000 9× 0.015
ETP 0.9587 ± 0.0005 12× -

DepGraph 0.9555 ± 0.0007 12× 0.004

As shown in Tables 9–11, ETP yields statistically significant improvements in all cases (p < 0.05). For
example, on SST-2 with BERT, ETP improves accuracy by 0.27 points over DepGraph (p = 0.009).
On VGG19 (9× speed-up), ETP surpasses the closest baseline by more than 1 percentage point
(p = 0.010). These results confirm that ETP’s gains are consistent and not due to variance.

7.6 ABLATION OF λ AND β

We conduct ablation experiments to study the sensitivity of our method to the hyperparameters λ and
β. Recall that λ is defined as λ = exp(a/|Gx|), where a controls the steepness of the exponential
weighting, while β governs the relative importance of the ETP loss term.

Effect of λ: Table 12 shows results on VGG19 (CIFAR100) and ResNet50 (ImageNet-1k).
Varying a from 2.5 to 15 has little impact on the speed-up ratio, which remains constant (9× for
VGG19 and 2.3× for ResNet50). However, accuracy steadily improves as a increases. For instance,
on CIFAR100, accuracy rises from 68.19% to 72.47% as a increases from 2.5 to 15. Similarly, on
ImageNet-1k, accuracy improves from 73.55% to 76.04%. This trend suggests that a larger a leads to
a sharper exponential curve, causing the force application to approximate a Heaviside function more
closely, thereby offering modest but consistent performance gains.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Ablation of λ: varying a on VGG19 (CIFAR100) and ResNet50 (ImageNet-1k).

VGG19 on CIFAR100 a = 2.5 a = 5 a = 7.5 a = 10 a = 15

Speed-Up 9× 9× 9× 9× 9×
Acc. (%) 68.19 71.30 71.50 71.90 72.47

ResNet50 on ImageNet-1k a = 2.5 a = 5 a = 7.5 a = 10 a = 15

Speed-Up 2.3× 2.3× 2.3× 2.3× 2.3×
Acc. (%) 73.55 75.17 75.62 75.63 76.04

Effect of β: Table 13 presents the results for VGG19 on CIFAR100. Increasing β directly impacts
the speed-up ratio, which scales from 3.69× at β = 10−5 to 24× at β = 3×10−3. This confirms that
β strongly controls the aggressiveness of the pruning process. However, this comes with a trade-off
in accuracy: performance peaks at 73.93% for β = 10−5 and declines to 67.98% at the highest value.
Thus, while larger β enables more aggressive acceleration, it must be chosen carefully to balance
accuracy and efficiency.

Table 13: Ablation of β: varying β on VGG19 (CIFAR100).

β 1× 10−5 1× 10−4 5× 10−4 1× 10−3 3× 10−3

Speed-Up 3.69× 6× 9× 14× 24×
Acc. (%) 73.93 72.53 71.30 69.95 67.98

7.7 HARDWARE EFFICIENCY ANALYSIS

While MACs-based reductions are a standard proxy for computational savings in structured pruning,
they do not always translate proportionally to real deployment gains due to hardware-, kernel-, and
memory-related overheads. To provide a more faithful assessment, we additionally measure the
wall-clock inference time speed-up, defined as the ratio between the dense and pruned model
runtimes on the entire test set.

As shown in Table 14, ETP yields substantial end-to-end inference acceleration across convolutional,
transformer, and graph neural network architectures. Importantly, the measured speed-ups closely
track the theoretical MACs-based estimates, confirming that the spatial sparsity patterns induced by
ETP are highly aligned with the underlying hardware execution pathways.

Table 14: Wall-clock inference speed-up versus MACs-based theoretical speed-up. Pruned accuracy
is reported with the dense baseline accuracy in parentheses.

Model & Dataset Pruned Acc. Inference Speed-Up MACs Speed-Up
VGG-19 on CIFAR100 (73.5%) 71.3 6.82× 9×
BERT on SST-2 (93.5%) 92.1 7.41× 11×
RoBERTa on MRPC (90.0%) 86.6 5.72× 8×
GAT on PPI (0.986) 0.963 5.48× 9×

Across all settings, ETP consistently provides strong inference-time gains while preserving model
quality. This confirms the practicality of ETP for both real-time deployment and large-scale inference
workloads. To address increasing interest in deployment gains, we further benchmark wall-clock
latency and energy consumption across five hardware platforms: NVIDIA A100, L4, RTX 8000,
Tesla T4, and Google TPU v6. Table 15 reports results for two representative workloads (BERT on
SST-2 and VGG-19 on CIFAR-100).

ETP achieves:

• 6.4–9.3× latency speed-up on GPUs and TPUs,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 15: Cross-hardware evaluation of latency and energy for pruned BERT (SST-2) and VGG-19
(CIFAR-100). Theoretical speed-ups are 11× (BERT) and 9× (VGG-19).

Model Hardware Base Lat. (ms) Pruned Lat. (ms) Speedup Base Energy (J) Pruned Energy (J) Reduction

BERT
SST-2
(92.1%)

NVIDIA A100 45.863±0.115 7.098±0.377 6.46× 14.471±0.605 2.439±0.722 83.1%
NVIDIA L4 101.166±1.258 10.868±0.341 9.31× 7.492±0.082 0.787±0.019 89.5%
Quadro RTX 8000 66.540±0.608 9.650±0.044 6.90× 17.547±0.173 3.507±0.551 80.0%
NVIDIA Tesla T4 188.705±3.687 23.293±0.486 8.10× 14.585±0.586 1.622±0.079 88.9%
Google TPU v6 546.013±12.463 79.637±8.126 6.86× 73.390±4.653 11.277±3.972 84.6%

VGG-19
CIFAR-100
(71.30%)

NVIDIA A100 5.578±0.004 0.818±0.013 6.82× 1.853±0.559 0.278±0.119 85.3%
NVIDIA L4 14.914±0.151 6.117±0.084 4.43× 1.080±0.010 0.240±0.000 77.4%
Quadro RTX 8000 15.013±0.065 3.538±0.804 4.25× 3.535±0.023 1.556±0.222 56.0%
NVIDIA Tesla T4 35.426±0.192 9.262±0.116 3.82× 2.521±0.273 1.090±0.230 56.7%
Google TPU v6 171.202±6.831 19.641±0.373 8.72× 22.934±2.0142 2.630±0.371 88.5%

• 56–90% energy reduction depending on device class,

• close alignment to theoretical sparsity-induced MACs reductions.

These results highlight that ETP maintains efficiency across both high-end accelerators (A100, TPU
v6) and cost-efficient inference hardware (L4, T4), demonstrating broad practicality for deployment
scenarios.

7.8 ADDITIONAL EXPERIMENTS ON LLMS

To further validate the generality of ETP beyond vision models, we evaluate its performance on large
language models of both decoder-only and encoder-based architectures. Decoder models are assessed
using perplexity—a direct measure of generative modeling capability—while encoder models are
evaluated on downstream tasks from the GLUE benchmark. Together, these experiments examine
whether the sparsity patterns induced by ETP preserve both intrinsic language modeling behavior and
task-specific semantic reasoning.

Decoder-Based LLMs (Llama-3-8B). Table 16 reports pruning results on Llama-3-8B under three
sparsity regimes: 50% unstructured sparsity, 4:8 semi-structured sparsity, and the more restrictive 2:4
pattern. Perplexity (PPL) is used as the evaluation metric; lower values indicate better preservation of
the next-token distribution.

Table 16: Pruning results on Llama-3-8B. Lower
perplexity is better.

Llama-3-8B
Method Sparsity Perplexity
Dense - 5.72

Magnitude 50% 15.21
Wanda 50% 6.97
SparseGPT 50% 7.06
SlimGPT 50% 11.41
FLAP 50% 9.30
PP 50% 6.81
ETP (Ours) 50% 5.84
Magnitude 4:8 16.98
Wanda 4:8 8.46
SparseGPT 4:8 8.01
ETP (Ours) 4:8 6.27
Magnitude 2:4 55.37
Wanda 2:4 11.02
SparseGPT 2:4 10.53
ETP (Ours) 2:4 9.71

Across all regimes, ETP consistently outper-
forms existing unstructured and semi-structured
pruning baselines. At 50% sparsity, ETP
achieves a perplexity of 5.84—nearly identical
to the dense model’s 5.72—while substantially
surpassing classical baselines such as Magni-
tude (15.21) and SparseGPT (7.06). More recent
structured and correlation-aware approaches, in-
cluding SlimGPT (11.41), FLAP (9.30), and PP
(6.81), also perform worse than ETP, indicating
that exponential regularization provides a more
effective inductive bias for identifying redundant
components.

In the 4:8 semi-structured case, ETP again deliv-
ers the strongest performance with a perplexity
of 6.27, compared to 8.46 (Wanda) and 8.01
(SparseGPT). Even under the highly restric-
tive 2:4 constraint—where pruning decisions
are tightly coupled to hardware-imposed spar-
sity patterns—ETP achieves 9.71, a notable im-
provement over Wanda (11.02) and SparseGPT
(10.53). These results highlight that ETP pre-
serves attention heads and MLP channels critical to autoregressive modeling, while reliably eliminat-
ing peripheral structures that contribute little to next-token prediction. The robustness of ETP across

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 17: Performance comparison between BERT-base and an ETP-pruned BERT on GLUE tasks.
Despite aggressive 86.89% parameter reduction, the pruned model maintains strong downstream
performance.

Dataset Metric BERT-base Pruned BERT Drop Speedup
SST-2 Accuracy 0.935 0.9256 −0.0094 9×
MRPC F1 0.880 0.8440 −0.0360 9×
STS-B Pearson 0.889 0.8620 −0.0270 9×
QQP F1 0.887 0.8521 −0.0349 9×
MNLI Accuracy 0.843 0.8031 −0.0399 9×
QNLI Accuracy 0.905 0.8554 −0.0496 9×
RTE Accuracy 0.711 0.6859 −0.0251 9×
WNLI Accuracy 0.653 0.5634 −0.0896 9×

sparsity formats underscores its advantage as a principled, architecture-aware pruning strategy for
large decoder-only transformers.

Encoder-Based LLMs (BERT-base on GLUE). To assess the downstream reasoning capability of
ETP-pruned models, we apply ETP to BERT-base and evaluate on multiple GLUE tasks (Table 17).
Despite an 86.89% parameter reduction and a 9× inference speed-up, the pruned model preserves
competitive task performance across classification, entailment, and semantic similarity benchmarks.

Performance on sentiment and paraphrase detection tasks (SST-2, MRPC, QQP) remains stable,
demonstrating that lexical and syntactic reasoning pathways remain intact. Tasks requiring fine-
grained semantic inference (MNLI, QNLI, RTE) exhibit moderate drops yet remain within a practical
operating range given the extreme compression level. These results suggest that ETP retains the most
influential attention heads and MLP channels driving contextual representation quality, while safely
pruning peripheral structures that contribute less to downstream task performance.

7.9 ETP AND QUANTIZATION

Modern deployment scenarios increasingly require models that are both sparse and low-precision in
order to meet stringent latency, memory, and energy constraints. To assess whether ETP is compatible
with quantization pipelines, we evaluate dense, ETP-pruned, and ETP+QAT variants across CNN
and Transformer architectures. In addition to accuracy and inference speed, Table 18 reports the
corresponding on-disk model sizes, allowing us to quantify the combined compression effect of
pruning and quantization.

Table 18: Accuracy, speed-up, and model size of ETP-pruned models with and without QAT. Model
size refers to the on-disk checkpoint size in megabytes (MB).

Model Dataset Accuracy (%) Speed-up Model Size (MB)

Base ETP ETP+QAT Base ETP ETP+QAT

ResNet-56 CIFAR-10 93.44 93.56 93.38 2.72× 3.42 1.17 0.29
VGG-19 CIFAR-100 73.50 71.30 71.03 9× 80.16 7.13 1.78
ViT-B/16 ImageNet-1K 81.07 81.93 80.52 1.69× 346.27 174.88 43.27

Across all three architectures, ETP alone yields substantial storage reductions while preserving
competitive accuracy. For instance, ResNet-56 is reduced from 3.42 MB to 1.17 MB (a 65.8%
reduction), while achieving a slight improvement in accuracy. VGG-19 undergoes an order-of-
magnitude shrinkage (80.16 MB→ 7.13 MB), reflecting the significant intra-filter redundancy that
ETP removes. ViT-B/16, despite operating at a much larger scale, also compresses by nearly half
(346.27 MB→ 174.88 MB) while exhibiting improved top-1 accuracy, suggesting that ETP acts as
an effective regularizer even on transformer architectures.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

When quantization-aware training is additionally applied, the memory footprint decreases even more
dramatically. For example, ResNet-56 shrinks from 3.42 MB to only 0.29 MB, and VGG-19 from
80.16 MB to 1.78 MB—representing over a 45× compression relative to the dense baseline. ViT-B/16
also benefits substantially, with the ETP+QAT variant occupying only 43.27 MB, an 87.5% reduction
from the dense model. Crucially, these large reductions come with only modest accuracy changes:
93.56%→ 93.38% for ResNet-56 and 81.93%→ 80.52% for ViT-B/16.

These results highlight that ETP not only produces structured sparsity patterns that preserve model
accuracy and reduce compute, but also yields weight distributions that are inherently stable under
quantization. By removing redundant or low-signal parameter groups prior to quantization, ETP
minimizes the quantization error accumulated in critical regions of the network, thereby enabling
aggressive bitrate reduction with minimal degradation. The synergy between ETP and QAT holds
across both convolutional and transformer-based models, demonstrating that ETP serves as a strong
foundation for multi-dimensional compression pipelines targeting latency, compute, and memory
simultaneously.

7.10 SUBGRADIENT STATIONARITY ANALYSIS OF ETP

To formalize the effect of exponential distance weighting, we analyze the first-order stationarity
(KKT) conditions of the regularized objective

J(w) = L(w) + β
∑
g

R(wg),

where L(w) is the task loss, wg denotes the parameters of group g, and R(wg) is a distance-weighted
group regularizer. We compare three choices:

Group Lasso: R(wg) = ∥wg∥2, Torque (Linear): R(wg) = d(g)∥wg∥2,
ETP (Exponential): R(wg) = λd(g)∥wg∥2, λ > 1,

where d(g) is the distance of group g from a designated pivot (e.g., kernel center or early-layer
position).

Because the group norm is non-differentiable at wg = 0, we use subgradient analysis. At any
stationary point w⋆, the optimality condition requires

0 ∈ ∇wg
L(w⋆) + β cg ∂∥w⋆

g∥2,
where cg is the distance-dependent weight. For groups that are driven exactly to zero (w⋆

g = 0), this
condition reduces to the well-known pruning criterion:

∥∇wgL(w
⋆)∥2 ≤ β cg.

Thus, the effective pruning threshold for group g is

T (g) = β cg.

Comparison of Regularizers. Group Lasso uses a constant threshold T (g) = β, which forces
pruning uniformly across all distances; increasing β risks removing high-importance (small-d) groups
and leads to underfitting. Torque introduces linear scaling T (g) = βd(g), but the pruning-force
ratio between far and near groups grows only as d(far)/d(near), which is often insufficient in deep
networks.

ETP instead uses an exponentially increasing threshold T (g) = βλd(g). The pruning-force ratio
between far and near groups becomes

T (far)
T (near)

= λd(far)−d(near),

which grows exponentially in the distance difference. Consequently, near groups (d(g) small) have
low thresholds and are rarely pruned, while far groups rapidly exceed the pruning condition and are
removed. This produces a step-like separation—a smooth convex surrogate for a hard distance-based
prior—and naturally induces strong sparsity heterogeneity across spatial or architectural depth.

Overall, this analysis explains why ETP consistently preserves core functional components while
aggressively suppressing distant or redundant groups, aligning well with the empirical sparsity
patterns observed across CNNs, ViTs, and LLMs.

22

	Introduction
	Preliminary
	Regularization-based Structured Pruning
	Torque-based Structured Pruning

	Exponential Torque Pruning
	Experiments
	Experimental Setup
	Speed-up improvement (RQ1)
	Aggressive Pruning Analysis (RQ2)
	Effectiveness on Large Models (RQ3)

	Related Works
	Conclusion
	Appendix
	Training Setup
	Detailed information about the compared methods
	Additional experiments on L2-norm learning process
	Different Force Schemes
	Statistical Validation
	Ablation of and
	Hardware Efficiency Analysis
	Additional Experiments on LLMs
	ETP and Quantization
	Subgradient Stationarity Analysis of ETP

