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ABSTRACT

In this paper, we introduce SemHiTok, a unified image Tokenizer via Semantic-
Guided Hierarchical codebook that provides consistent discrete representations
for multimodal understanding and generation. Recently, unified image tokenizers
have sparked exploration within the research community, which is designed to
capture high-level semantic features for understanding and retaining low-level pixel
features for generation. Previous works attempt to train a unified image tokenizer
by combining loss for semantic distillation and pixel reconstruction. However,
due to the differing levels of features prioritized by multimodal understanding and
generation, joint training methods face significant challenges in achieving a good
trade-off. SemHiTok addresses this challenge through a novel semantic-guided
hierarchical codebook, which builds pixel sub-codebooks on a pretrained semantic
codebook. This design decouples the semantic and pixel in terms of structure and
training strategy, enabling the tokenizer to capture pixel features while retaining its
ability to comprehend high-level semantic information. Our experiments demon-
strate that SemHiTok achieves SOTA performance in image reconstruction and
multimodal understanding under the LLaVA-v1.5 setting. Further, we develop
a unified MLLM with SemHiTok, which exhibits superior performance across
multimodal understanding and generation tasks. For understanding, SemHiTok
achieves impressive performance on most benchmarks. For generations, our model
achieves SOTA performance on MJHQ30K in unified MLLMs. Our code and
models will be open source.

1 INTRODUCTION

In recent years, autoregressive models have achieved great success in natural language processing
and have been extended to the multimodal understanding domain, demonstrating immense potential.
This triggers researchers’ interest in unified multimodal understanding and generation by employing
a single autoregressive framework. To achieve a unified multimodal large model, the key challenge is
designing a tokenizer suitable for both multimodal generation and understanding tasks.
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Figure 1: Illustration of other tokenizers and SemHiTok. HyStruct: Using a single model to extract
information at different levels; DStruct: Using different models to extract information at various
levels; JTrain: Using a joint optimization training strategy; DTrain: Adopt a phased optimization

training strategy.
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However, there is a vast gap in the visual information required for these two tasks. For instance,
models from the CLIP (Radford et al.|[2021a}|Sun et al.| 2023}; [Zhai et al.| 2023) family, commonly
used in multimodal understanding tasks, tend to lose visual pixel information. On the contrary, the
VQGAN (Yu et al.,|2021a; Zhu et al., [2024a)) family models, often used in autoregressive generation
tasks, lack the ability to extract semantic features for multimodal understanding tasks. This leads to
poor performance when a single tokenizer is applied to a unified MLLM (Wau et al., 2024b; |Jin et al.,
2023; L1 et al., 2024b). In light of the aforementioned issues, some recent work has attempted to
incorporate a semantic learning branch into the original VQGAN training pipeline, aiming to obtain
a unified tokenizer via joint optimization. VILA-U (Wu et al.| |2024c) employs a straightforward
combination of semantic alignment loss and pixel reconstruction loss, which allows the model to
capture both low-level and high-level information. Nevertheless, the reliance on a hybrid structure
and joint optimization often drives the tokenizer toward a suboptimal solution. Furthermore, some
recent works (Xie et al., [2025; |Qu et al., [2024) have built upon it with further improvements. As
shown in Figa), while SDE (Xie et al., [2025) further decouples the encoders, the remaining hybrid
codebook continues to impede the model’s optimization. TokenFlow (Qu et al.,|2024) uses shared
mapping to decouple the semantic branch and pixel branch while maintaining the consistency of the
codebook index, but joint training still affects the final performance.

A straightforward approach is to use CLIP and VQGAN to extract semantic and pixel information, re-
spectively, and the concatenation of these two token sequences is then used as a unified representation.
Janus (Wu et al.,20244) introduces a dual-encoder method that separates encoders for understanding
and generation tasks to address this conflict, but this increases the complexity of handling mixed tasks
and does not fundamentally resolve the feature conflict challenge. However, this leads to a doubling
of the token sequence count or multiplicative expansion in vocabulary size, depending on whether the
concatenation is applied along the length or dimension. These limitations underscore a fundamental
challenge in the field: How fo balance semantic-level and pixel-level information effectively, without
compromising the ease of integration into MLLM frameworks?

To address this challenge, we propose SemHiTok, a unified image tokenizer that provides consis-
tent feature representations for multimodal understanding and generation tasks through a unique
hierarchical codebook design. Inspired by the observation that image patches with the same seman-
tic code tend to have similar pixel features, we introduce a novelty hierarchical codebook which
uses a sub-codebook to model the pixel-level space associated with each semantic code, named
Semantic-Guided Hierarchical Codebook(SGHC). Unlike existing approaches, SemHiTok supports a
stage-wise training paradigm where each stage exclusively optimizes specific hierarchy level features,
allowing us to achieve a better trade-off between semantic and pixel feature extraction. In addition,
SemHiTok can be seamlessly integrated into existing MLLMs following the next-token paradigm
through a simple codebook flattening operation.

Our contributions can be summarized as follows: (1): A novel unified tokenizer that achieves
a trade-off between semantic and pixel information, demonstrating outstanding performance in
both image reconstruction and multimodal understanding tasks. (2): We develop a unified MLLM
architecture that demonstrates superior performance across both multimodal understanding and
generation tasks, validating its versatility. (3): Our approach further pushes the performance boundary
of unified discrete MLLMs, enabling improved scalability and representation capacity within next-
token prediction frameworks.

2  METHOD

The main objective of SemHiTok is to establish a simple and unified image tokenizer for multimodal
understanding and generation. In this model, the image is transformed into discrete tokens that contain
semantic information and pixel information. We begin with a semantic codebook training recipe
that reconstructs semantic features extracted from a language image pre-training model (Zhai et al.,
2023}, |Wei et al.,[2022)), and point out the semantic codebook’s poor texture feature representation in
section [2.1] In section [2.2] we conduct a preliminary discussion and observation. Building on this
observation, we introduce Semantic-Guided Hierarchical Codebook(SGHC), incorporating texture
information while perfectly inheriting the semantic information of the semantic codebook, to enable
pixel reconstruction enablement. Finally, we introduce the application of SemHiTok on unified
MLLM in section[2.3] The overview framework is shown in Fig[2]
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Figure 2: (a) SemHiTok is structurally composed of two branches: semantic branch and

The semantic branch is trained following the VQKD (Wei et al.| [2022), where the
semantic codebook is learned through semantic loss. We propose semantic-guided hierarchical
codebook(SGCH) composed of multiple pixel sub-codebooks, in which each pixel sub-codebook is
in a one-to-one correspondence with a semantic code. The selection of pixel sub-codebook is indexed
by the semantic code from semantic quantization. To enable a unified discrete representation, we
concatenate the quantized semantic and pixel features along the channel dimension and feed the result
into the pixel decoder for reconstruction. (b) Each semantic code is allocated to the corresponding
pixel sub-codebook, and their features are concatenated along the dimension. (c) An illustration of
the unified MLLM framework.

2.1 SEMANTIC CODEBOOK TRAINING

For multimodal understanding, using a text-aligned visual encoder (Zhai et al., {2023} |Radford et al.,
2021a; [Sun et al} 2023; Wang et all 2024b) as an image tokenizer can accelerate convergence
and improve performance. However, these text-aligned visual encoders typically output continuous
semantic features. In this work, to achieve a unified visual tokenizer, we first train a semantic
codebook to quantize the continuous semantic feature following VQKD (Wei et al., 2022).

Given an image X HXWX3 the semantic encoder &, extract continuous semantic features:
hxwXdsem
Zsem = gsem(X) e R*™*¥ (1)

Where &, is a frozen text-aligned image encoder, e.g., CLIP (Radford et al.,[2021a)) or SigLIP (Zhai
et al., |2023). Then Zs.,, are transformed into discrete feature space Cser, = {c1,¢2,...,cK} €
REXdsem”through quantization function Qsem (*). The quantization process Qger, (*) is as follows:

Zgeem Lgecr = argmin || Zsem — Coem k]| 2
ke{l,...,K}
Where I, € [Csem|"™" is quantized index, Z,,_,, is discrete feature indexed from Cge,,. Finally,

semantic decoder Ds.,, maps Z,,,,. toraw semantic feature space Zsem. The D,.,, are end-to-end
trainable by minimizing semantic distill loss:

Lgem, =1 —cos(Z,

Gsem?

Zsem) + |Z sem Zsem| (3)

For Cserm, we adopt EMA (Hunter, |1986) VQ as the semantic codebook. Unlike traditional quantiza-
tion methods, the EMA VQ is not updated via gradient descent, but instead through an Exponential
Moving Average (EMA) algorithm:
1
t _ (t=1)

c, =m-c, —l—(l—m)'E;Zi, 4
where ¢!, denotes the k-th codebook vector at update step ¢, m is the momentum term, and the update
is based on the average of all input vectors z; assigned to code k in the current batch. However,
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tion of image textures and color information. tures.

we further conduct an experiment that reconstructs the original pixel from the quantized semantic
features extracted by Cer,. The reconstructed images exhibited noticeable blurriness and a significant
loss of high-frequency details, as shown in Fig. 3] This indicates that the semantic codebook lacks
pixel information.

2.2  PIXEL RECONSTRUCTION ENABLEMENT

Discussion. In section 2.I] we demonstrate that semantic code lacks the ability to model pixel
information. In order to pixel reconstruction enablement and avoid a reduction of understand ability,
a straightforward approach is to add an extra VQGAN [202Ta) model. Semantic codebook
extracts discrete semantic tokens for multimodal understanding, and VQGAN extracts discrete texture
tokens for generation. The two token sets are concatenated—either dimensionally or sequentially,
and passed to the LLM. However, the resulting token inflation or oversized codebook introduces a
significant computational burden, limiting its feasibility for MLLMs.

Furthermore, we present the visualization results of the semantic code, as shown in Fig@ It can
be observed that image patches corresponding to the same code exhibit similar pixel features. For
example, the code v14312 is more likely to be assigned to the rooster comb element in the image. At
the same time, the image patches corresponding to these combs exhibit similar pixel features, such as
color, patterns, and shapes. Based on this observation, we propose Semantic-Guided Hierarchical
Codebook to model the pixel feature space corresponding to each semantic code using a sub-codebook.

Semantic-Guided Hierarchical Codebook (SGHC). The SGHC consists of a pretrained semantic
codebook and several sub-codebooks, where each sub-codebook corresponds to a semantic code
of the semantic codebook, as shown in figure [2] (a). Specially, given the pre-trained semantic
codebook Ceern = {1, Ca, ..., ci } € RE*%em the pixel codebook Cpiw = {Cip, Coi - - -, Cliu} €
RExmxdpiz where C km € R™*dpis ig k,, semantic code’s pixel sub-codebook, m is sub-codebook
size. At first, the semantic codebook quantizes X to a discrete semantic token Z.,, and a semantic
codebook index Is.,,. In parallel, pixel encoder £,;, extract continuous pixel features Zp;; =
Epiz(X). For the quantization process of the pixel codebook, the corresponding pixel sub-codebook
is selected based on the quantization result of the semantic codebook. For instance, given image
patch i, its semantic quantization codebook index k and continuous pixel feature Z. , SGHC selects

P
pixel sub-codebook C*

». to quantize Z

piz- Lhe process is as follows:

i i : % k .
quiz’ quiz = 'arg min Hszx - Cpi:v [j] || (5)
je{1,....m}

4
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Table 1: Comparison of reconstruction quality on ~ Sem
the ImageNet-50k validation set. *: quantizer uses
residual quantization (RQ), where the total Code

Shape is multiplied by RQ depth. *: quantizer uses PRE
multiple codebooks and product quantization.

Code Codebook

Method Res rFID|

Shape Size +ED
Only Reconstruction
LlamaGen (Sun et al.|[2024a 256 16 x 16 16,384 2.19
RQVAE (Lee et al.|2022] 256 16x16 x4 % 16,384 3.20
VQGAN-LC (Zhu et al.[[2024a) 256 16 x 16 100,000 2.62
IBQ (Shi et al.}[2024] 256 16 x 16 16,384 1.37 7
IBQ (Shi et al.}[2024) 256 16 x 16 262,144 1.00 GT »
FQGAN (Bai et al.|[2024) 256 16 x 16 x 2 16,384 x 2F 0.94
Unified
VILA-U (Wu et al.}[2024c] 256 16x16x4* 16,384 1.80 . . . .
SDE(MUSE-VL) (Xie etal|[2025] 256 16 x 16 32768 226 Figure 5: Visualized reconstruction results
TokenFlow (Qu et al.[[2024} 256 680 32,768 1.37 . .
TokLIP {Lin et al.| 2035 256 16x 16 16384 219 from the ablation of key modules. PRE brings
QLIP-B (Lin et al.{|2025} 256 16 x 16 228 3.21 1 1 1 1 _
UniTok (Ma et al.|[2025] 256 16x16 16,384 x47 039 about. a Slgnl.ﬁcant Improvement n recon
SemHiTok(ours) 25 16x16 196,608 116 struction quality. Moreover, the Enhance De-
SemHiTok(ours) 384 27 x 27 196,608 0.66

coder(ED) further improves reconstruction on
hard samples.

where j is the selected sub-codebook internal index. Finally, the semantic quantized tokens and pixel
quantized tokens are concatenated to Z, = concategim(Z,,.,,, Zq,:,) as the input of pixel decoder
Dpiz to reconstruct the raw pixel image:

X =D,in(Z,) (6)

where X is reconstructed pixel image. The &z, Cpiz and Dp;, are end-to-end trainable by minimiz-

ing reconstruction loss L;p,g = ¢1 (X ,X), codebook loss Le, perceptual loss L., and represents
adversarial loss L4, (Yu et al.,[2021a). The reconstruction loss is formulated as:

Lrec = Limg + )\ILC + >\2Lpe7' + )\3Lgan (7)
where A1, A2 and A3 are loss weight of each item.

Our SGHC can be regarded as the refinement of a semantic discrete space to enable pixel recon-
struction. We place a specific emphasis on two key advantages of SGHC: (1) Non-Conflicting
Extension: Our method leverages a pre-trained semantic codebook as a foundation, with pixel
reconstruction losses exclusively employed to optimize pixel branch modules during the PRE. This
strategic approach effectively circumvents the suboptimal solutions that arise from joint optimization
processes. Furthermore, SGHC’s final output is generated by concatenating semantic-quantized
features with pixel-quantized features, preserving the full expressive capacity of the original semantic
features while integrating complementary texture information through this unified feature fusion
paradigm. Subsequent tasks, such as reconstruction, multimodal understanding, and generation,
all share the same discrete token representation; (2) Efficient Downstream Applications: SGHC
effectively avoids two critical predicaments: token quantity inflation and codebook overexpansion.
As defined before, the semantic codebook size is K, and each pixel sub-codebook size is m. Due to
dimensional concatenation, the complete codebook flattens to K x m, where m is much smaller than
K. In our experimental default settings, we extend the complete codebook to a size comparable to
existing LLMSs’ text vocabulary size, e.g., the size of Qwen2 vocabulary is 150k.

2.3 UNIFIED MLLM

The framework diagram for unified MLLM is shown in Fig[2c). We use SemHiTok to develop a
unified multimodal model, which models discrete vision and text token sequences with a universal
next-token prediction loss. Particularly, in image processing, SemHiTok is utilized to discretize
images into token sequences. On the model side, we merely expand the text vocabulary and adjust
the head layer to incorporate visual token IDs. To enable a unified head layer, we flatten SGHC by
merging all sub-codebooks into a single flat representation as shown in Fig[2{b). Specifically, for the
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Table 2: Comparative analysis of tokenizers on multimodal comprehension tasks. *: Both the
tokenizer and LLM are reproduced in our setting. Our method achieves SOTA performance compared
with other discrete tokenizers.

Model LLM Data Res. \ POPE MME-P SEED GQA
SigLIP (Zhai et al.|[2023) Vicuna-7B LLaVA-vl.5 256 \ 83.76 1481.0 6528 619
LlamaGen (Sun et al.|[2024a) Vicuna-7B LLaVA-vl.5 256 65.6 716.8 35.0 39.8
VILA-U (Wu et al.[[2024¢) Vicuna-7B LLaVA-vl.5 256 81.6 1311.6 56.9 55.3
SDE(MUSE-VL)" (Xie et al.|[2025)  Vicuna-7B LLaVA-vl.5 256 77.3 1240.0 56.7 58.0
TokLIP (Lin et al.}[2025) Qwen2.5-7B-Ins LLaVA-vl.5 256 81.2 1346.8 59.8 57.4
SemHiTok(Ours) Vicuna-7B LLaVA-vl.5 256 82.5 1355.8 62.9 60.3
TokenFlow-384 (Qu et al.|[2024) Vicuna-7B LLaVA-vl.5 384 84.9 1416.4 62.7 61.2
TokLIP (Lin et al./[2025) Qwen2.5-7B-Ins LLaVA-vl.5 384 82.7 1410.2 65.2 59.3
SemHiTok-384(Ours) Vicuna-7B LLaVA-vl.5 384 86.3 1465.6 64.1 62.3

Jen, semantic code in the 74, pixel sub-codebook, the discrete code index in the completed codebook
is h = ¢ X m + j, where m is the sub-codebook size. It is also worth noting that the vocabulary
expansion is merely for implementation convenience. We still use the features extracted from SGHC
as input and align with LLM through a lightweight adapter layer. After training is completed, we
replace the visual component in the embedding layer in order to achieve consistency between training
and inference. To enable LLM to better handle features at two different levels, we introduce a
Dual-MLP adapter layer, which projects semantic features and pixel features separately, and then
concatenates them along the dimension before feeding them into the LLM. To enable classifier-free
guidance (Ho & Salimans) 2022)), we randomly replace the text condition with a probability of 0.1 to
the unconditioned text during training. More deployment details are provided in the Supplementary
Material

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Tokenizer. For the semantic branch, we employ SigLIP (Zhai et al.}2023) as the semantic encoder
and three self-attention layers as the semantic decoder to reconstruct semantic features. For the pixel
branch, we employ ViT as both the pixel encoder and decoder, assigning 8 pixel sub-codes to each
semantic code. More tokenizer detail, please refer to Supplementary Material 8.3]

Unified MLLM. We use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base LLM, and expand its
vocabulary and output head layer. We evaluate visual understanding on standard VQA benchmarks
including SEEDB (Li et al.| [2023a), POPE (Li et al.| [2023c), GQA (Hudson & Manning} [2019)),
MMMU (Yue et al.,|2024), MMB (Liu et al.}|2024b) and MME (Fu et al.,|2023). For visual generation
evaluation, we report results on MJHQ-30K (Li et al.| 2024¢]) and GenAl-Bench (Li et al., 2024al).
More unified MLLM detail, please refer to Supplementary Material

3.2 UNIFIED IMAGE TOKENIZER

Image Reconstruction. We present the reconstruction performance on the ImageNet-50k validation
set in Tab[T] Notably, SemHiTok excels in reconstruction quality compared to the unified tokenizer,
recording an impressive 1.16 rFID with 16 x downsampling ratio. While SemHiTok’s vocabulary
size(approx 196k) appears larger than baselines, it is crucial to consider the effective representational
capacity defined by the code shape. VILA-U(using RQ) and FQGAN(using Product Quantization)
operate within a combinatorial search space(N” or N; x N-), resulting in a significantly larger
effective capacity than SemHiTok’s linearly constrained structure(X x m). Furthermore, these
approaches typically employ a denser code shape, whereas SemHiTok relies on a single unified
hierarchical index. This indicates that our superior performance derives from the structured efficiency
of SGHC rather than brute-force capacity expansion. Increasing the training 384 resolution led to a
significant improvement in the rFID score, reaching 0.66. The results validate the effectiveness of
SGHC design in modeling pixel feature space of the semantic code.
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Table 3: Quantitative results on multimodal understanding benchmarks. SemHiTok achieves SOTA
performance on most benchmarks among Und&Gen Discrete MLLMs, and is comparable to or
even surpasses some Only Und and Und&Gen. Continuous models. The performance on Und&Gen
Discrete with top-1 and top-2 values is denoted in bold and underline, respectively.

Method #Params Res. | SEED POPE GQA MMMU MMB MME MME-P MMV
Only Und.

LLaVA-Phi (Zhu et al.|[2024b) 2.7B 256 - 85.0 - - 59.8 - 1335.1 28.9
LLaVA-v1.5 (Liu et al.[[2023b) 7B 336 58.6 85.9 62.0 354 64.3 - 1510.7 31.1
Qwen-VI-Chat (Bai et al.|[2023b) 7B 448 577 - 57.5 30.5 - 1848.3 14875 -
ShareGPT4V (Chen et al.|[2024b) 7B 336 69.7 - 63.3 37.2 68.8  1943.8 15674 37.6
Und&Gen. Continuous

LaVIT (Jin et al.|[2023) 7B 224 - - 46.8 - 58.0 - - -
Janus (Wu et al.||2024a) 1.5B 384 63.7 87.0 59.1 30.5 69.4 - 1338.0 34.3
Janus-Pro-TB (Chen et al.||2025) 1.5B 384 68.3 86.2 58.9 389 65.5 - 1444.0 -
MAR (Wu et al.|[2025) 1.5B 512 67.1 87.6 58.9 389 65.5 - 1155.0 -
Und&Gen. Discrete

LWM (Liu et al./|[2024a) 7B 256 - 752 44.8 - - - - 9.6
SEED-LLaMA (L et al.|[2024b) 13B 256 53.7 - - - - - - -
Show-o (Xie et al.|[2024) 1.5B 256 - 80.0 - 26.7 - - 1097.2 -
Liquid (Wu et al.[[2024b) 7B 512 - 81.1 71.3 - - - 1119.3 -
EMUS3 (Wang et al.|[2024c) 8B 512 68.2 85.2 60.3 31.6 58.5 1509.9 12438 37.2
VILA-U (Wu et al.|[2024¢) 7B 256 56.3 83.9 58.3 - - - 1336.2 27.7
VILA-U (Wu et al.|[2024¢) 7B 384 59.0 85.8 60.8 - - - 1401.8 335
UniToken (Jiao et al.[[2025) 7B 384 69.3 - - 32.8 69.9 - - -
TokLIP (Lin et al.|[2025) 7B 384 76.9 84.1 59.5 43.1 67.6 - 1488.4 29.8
TokenFlow-B (Qu et al.|[2024) 13B 224 60.4 84.0 59.3 34.2 553 16604  1353.6 224
TokenFlow-L (Qu et al.|[2024) 13B 256 62.6 85.0 60.3 34.4 60.3 16229 13654 27.7
SynerGen-VL (L1 et al.|[2025) 2.4B 512 62.0 85.3 59.7 342 537 1837.0 1381.0 345
SemHiTok(Ours) 7B 256 | 69.7 83.4 60.3 39.3 723 17759  1449.0 30.5
SemHiTok(Ours) 7B 384 79.8 85.5 61.7 41.0 752 1993.8 1512.8 36.6

Table 4: Comparison of generation quality on GenAl and MJHQ30K. SemHiTok achieves comparable
results with specialist models and unified MLLM:s.

#Training GenAl-Bench MJHQ30K
Model Params — Type Images Res. BasicT Advanced 1 ¢FID |
Only Gen.
SD v2.1 (Rombach et al.||2022b) - Diff 2000M 1024 0.78 0.62 -
DALL-E 3 (Betker et al.|[2023) - Diff - 1024 0.90 0.70 -
PixArt-ar (Chen et al.|[2023) 0.6B Diff - 1024 - - 6.14
SDXL (Podell et al.[[2023) 2.6B Diff 2000M 1024 0.83 0.63 9.55
Playgroundv2.5 (Li et al.[|2024c) - Diff - 1024 - - 448
Und&Gen.
LWM (Liu et al.|[2024a) 7B AR - 256 0.63 0.53 17.77
Show-o (Xie et al.|[2024) 1.5B Diff 36M 256 0.70 0.60 15.18
Janus (Wu et al.|[2024a) 1.3B AR 65M 384 - - 10.10
VILA-U (Wu et al.||[2024c) 7B AR 15M 256 0.76 0.64 12.81
VILA-U (Wu et al.|[2024c) 7B AR 15M 384 0.73 0.61 7.69
SynerGen-VL (Li et al.[[2025) 2.4B AR 25M 256 - - 6.10
SDE(MUSE-VL) (Xie et al.|[2025) 7B AR 10M 256 - - 7.73
ILLUME (Wang et al.[|2024a) 7B AR 15M 512 0.75 0.60 7.76
ILLUME+ (Huang et al.||2025a) 7B AR 15M 512 0.75 0.60 7.76
TokenFlow (Qu et al.|[2024) 7B AR 60M 256 0.65 0.65 7.78
Liquid (Wu et al.[[2024b) 7B AR 30M 512 0.83 0.65 5.47
UniTok (Ma et al.||2025) 7B AR 30M 256 0.85 0.67 7.46
SemHiTok(ours) 7B AR 15M 256 0.83 0.64 5.40
SemHiTok(ours) 7B AR 15M 384 0.83 0.66 5.70

LLaVa-v1.5 Multimodal Understanding. To ensure a fair comparison, we conduct experiments to
evaluate the multimodal understanding performance of existing open-source tokenizers and SemHiTok
under the standard LLaVA-v1.5 setting. The results are as shown in TabZ] LlamaGen’s performance
is notably inferior, a consequence of its deficient pre-alignment with text. In contrast, unified image
tokenizers show considerable advancements in understanding. However, due to their inherent hybrid
structures or joint training strategies, a substantial disparity in understanding performance remains
between prior discrete tokenizers and continuous representations. Notably, even though TokLIP
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uses a stronger base model (Qwen2.5-7B-Ins), its performance remains inferior to ours. SemHiTok
achieves state-of-the-art results for discrete tokenizers, nearing the performance of continuous inputs
such as SigLIP.

3.3 UNIFIED MLLM

Multimodal Understanding. We evaluate the understanding performance of SemHiTok on diverse
benchmarks in Table[3} Und means support multimodal understanding, Gen means support text-to-
image generation. Among Und&Gen. Discrete, SemHiTok achieves state-of-the-art performance
on most metrics, such as SEED, MMB, MME, and MME-P. Compared to other unified tokenizers
(e.g., VILA-U, TokenFlow, UniToken), our models demonstrate significant advantages. Notably,
our model surpasses expert-level models on key benchmarks, achieving 3.8 and 6.4 points higher
than ShareGPT4V on MMMU and MMB, respectively. This bridges the gap between discrete visual
tokens and continuous visual tokens in multimodal understanding tasks, strongly demonstrating the
superiority and potential of our approach. Visualizations on understanding tasks are available in
Supplementary Material

Text-to-Image Generation To evaluate the text-to-image generation, we use GenAl-bench
[20244) and MJHQ30K benchmark, and the results are shown in Tatd] For
GenAl-bench, we use clip-flant5-xxl as the VQA score model to reflect the consistency between text
descriptions and generated images. On this challenging benchmark, our model achieves competitive
performance, closely matching Liquid, even though Liquid employs a generation-focused tokenizer.
Furthermore, our model even outperformed some diffusion-based expert models, such as SDXL
and SD v2. The strong results underscore the superior capability of our unified MLLM in complex
text-to-image generation tasks. For MJHQ30K, we use the generation FID metric on generated
images and high-quality images. On this benchmark, SemHiTok-256 attains 5.40 gFID, setting a
new state-of-the-art in autoregressive image generation. In addition, we conduct further quantitative
comparisons on GenEval osh et al| [2023)) and DPG [2024)), which are available in
Supplementary Material 8.7, More quantitative analysis results and visualizations on generation
tasks are available in Supplementary Material [8.8]

3.4 QUANTITATIVE ANALYSIS OF PIXEL FEATURES IN THE SEMANTIC CODEBOOK

In Fig[] we provide visualization results showing that image patches corresponding to the same
semantic code share similar pixel features. To further support this analysis, we attempt to provide
quantitative evidence using the following method:

1. Using the tokenizer to extract the code indices along with their corresponding image patches.

2. Applying the DCT(Discrete Cosine Transform) to extract patch’s pixel
features.

3. For each code, we compute the variance of the DCT features extracted from its associated image

patches, followed by averaging these variances over all codes, denoted as V,;,¢q,,. The more

similar the pixels of the tokenized results are, the smaller the V,,,¢,,, becomes.

Computing the global variance of all image patches, denoted as Vjpq;.

Computing Variance Reduction Ratio (VRR), denoted as VRR = 1 — Viycan/Viiobar- The

larger VRR indicates that the patches corresponding to the given code have more similar pixel

features.

i

We randomly sampled 10K images from the ImageNet-Val (50K) dataset across 5 independent runs.
The Random Baseline refers to randomly tokenized results, serving as the lower bound for the VRR
metric. VQGAN [20214)), as an expert model for pixel reconstruction, serves as the standard
reference for the VRR metric.

As illustrated in Tab. [5] the results provide strong quantitative evidence for the effectiveness of
our Semantic-Guided Hierarchical Codebook (SGHC) design. 1.)Validation of Semantic-Pixel
Correlation. The SemHiToks., achieves a VRR of 5.245%, which is significantly higher than the
Random Baseline (0.185%). This quantitatively verifies our observation in Subsed2.2] that image
patches assigned to the same semantic code naturally exhibit intrinsic pixel-level similarities. This
correlation forms the theoretical foundation for using semantic codes to guide pixel quantization.
2.)The Necessity of Pixel Branch. However, compared to VQGAN (9.535%), the lower VRR
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Table 5: Quantitative evaluation of pixel consistency using Variance Reduction Ratio (VRR).
SemHiTok.n, significantly outperforms the random baseline, verifying the intrinsic semantic-pixel
correlation. Furthermore, our hierarchical refinement (SemHiTok;,) achieves the best consistency,
exceeding the standard VQGAN baseline.

Experiment \ Random Baseline SemHiToKgem VQGAN SemHiTokpiy
VRR \ 0.185%+0.005%  5.245%=%0.085%  9.535%=+0.095% 13.705%=0.075%

Table 6: Impact of key design choices on reconstruction and multimodal understanding.

Semantic Dual Enhance

Codebook SGHC MLP Decoder MME-PT  MMBT SEEDT MMUT | rFID|

1387.5 61.3 62.3 35.6 3.17
1355.8 60.7 62.9 358 1.42
1393.0 61.6 63.2 36.1 1.42
v 1393.0 61.6 63.2 36.1 1.16

SENENEN
SNENEN
ANEN

of SemHiTokge, confirms that semantic codes alone are insufficient to capture fine-grained high-
frequency details. This justifies the necessity of our pixel branch design to bridge the gap between
semantic abstraction and pixel fidelity. 3.)Superiority of Hierarchical Design. Most notably,
SemHiTok, achieves the highest VRR of 13.705%, surpassing the expert pixel reconstruction
model VQGAN by a substantial margin (+4.17%). This result demonstrates that decomposing the
complex global pixel space into semantic-conditioned sub-spaces allows for significantly tighter
feature clustering and lower variance than standard global quantization methods. This explains
why SemHiTok achieves superior reconstruction performance despite utilizing a decoupled training
strategy.

4 ABLATION

4.1 IMPACT OF KEY DESIGN.

In Tabff] we validate the impact of our key design choices in SemHiTok: semantic codebook,
semantic-guided hierarchical codebook(SGHC), Dual MLP, and Enhance Deocoder. For efficiency,
we only test the understanding performance under LLaVA-v1.5, and train 40 epochs on ImageNet-1K
for reconstruction tasks. We begin with the semantic codebook, which suffices for multimodal
understanding but suffers from poor reconstruction. Incorporating SGHC enables pixel reconstruction
and reduces rFID by 1.75, without noticeably affecting understanding performance. Introducing
Dual-MLP further enhances multimodal understanding, even surpassing the semantic codebook alone,
highlighting the effectiveness of multi-level feature modeling. Finally, a stronger pixel decoder
brings additional improvements in reconstruction quality. figure [5] demonstrates the effects of various
modules on reconstruction results. Compared to the semantic codebook, SGHC delivers more detailed
reconstructions. Additionally, the enhanced decoder boosts performance on difficult samples. More
reconstruction comparisons are available in Supplementary Material [8.9]

4.2 IMPACT OF TRAINING STRATEGY AND STRUCTURE.

As shown in Table /| (Exp 1), we used the same architecture as SDE and adopted a joint training
strategy. Its performance is observed to be the lowest across both multimodal understanding and
reconstruction tasks. In Exp 2, using the same architecture as SemHiTok but with joint training,
the performance showed an overall improvement compared to Exp 1. Furthermore, to examine the
influence of architectural design, we conduct Exp 3, where two separately pretrained tokenizers
are employed to independently extract semantic and pixel information. Specifically, we use the
semantic branch of SemHiTok and LlamaGen. Compared with Exp 3, SemHiTok achieves superior
performance on both multimodal understanding and reconstruction tasks. The above experiments
demonstrate the advantages of structural decoupling and training decoupling in jointly modeling
semantic and pixel-level information. Exp 3 and Exp 4 suggest that naively incorporating pixel
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Table 7: Impact of training strategy and structure. DStruct: Using different models to extract
information at various levels; DTrain: Adopt a phased optimization training strategy

Reconstruction
rFID| Usage?

Multimodal understanding

Exp  DStruct  DTrain | 500+ \ME P SEEDB POPEf

1 X X 58.0 1240.0 56.7 713 378  92.9%
2 4 X 57.8 1357.4 553 80.4 322 459%
3 v v 58.7 1210.9 56.1 80.1 2.19  97.0%
4 SemHiTok | 603 1355.8 62.9 826 | 142 937%

features may negatively affect the alignment between image features and the LLM. This suggests that
naively incorporating pixel features may negatively affect the alignment between image features and
the LLM. In contrast, SemHiTok leverages pixel features as a complementary refinement to semantic
features, thereby effectively bridging the gap between semantic and pixel representations.

4.3 MORE COMPARISONS AND ABLATION STUDIES

In Supplementary Material[8.5] we compare our method with others across additional reconstruction
metrics. Meanwhile, to further illustrate how different hyperparameters in our method affect model
performance, we also conduct ablation studies on Concat Type and Sub-Codebook Size in Supple-
mentary Material [8.10] Semantic VQ Type, Codebook dim and Codebook size in Supplementary
Material[8.11] and different K x m and more comparison with other large codebook reconstruction
methods in Supplementary Material 8.12]

5 RELATED WORK

We present and analyze the Specialized Image Tokenizer and Unified Image Tokenizer. Please refer
to Supplementary Materia [8.13]and [8.14

6 CONCLUSION

Conclusion: In this work, we introduce SemHiTok, a unified image tokenizer that implements a better
trade-off between semantic and pixel information, and is fully compatible with and readily deployable
within existing next-token MLLMs architectures. SemHiTok innovatively utilizes a semantic-guided
hierarchical codebook (SGHC) to realize the reconstruction capability of pixel features without
affecting the understanding performance of the original semantic codebook, and achieves SOTA
performance on multimodal understanding under LLaVA-v1.5 setting and on ImageNet-50k recon-
struction in unified image tokenizers. We further develop a unified MLLM with SemHiTok, which
demonstrates competitive performance on both understanding and generation tasks compared to
existing unified MLLMs. This highlights the strong potential of SemHiTok and further bridges the
gap between discrete and continuous tokenizers, providing the community with a powerful discrete
tokenizer.

Limitation: We present two limitations: (/). Low generation efficiency: Owing to the use of standard
image quantization methods and settings, each 256-resolution image is represented by 256 tokens.
This results in relatively low efficiency and high computational cost. (2). Unified large model
potential: In tasks involving natural language understanding and multimodal reasoning, advanced
post-training techniques such as Chain-of-Thought (CoT) are not explored. This remains a promising
direction for future research in the community.

Future Work: In the future, we can explore the potential of unified image tokenizers and test their
performance on more difficult tasks, such as image editing and multiple rounds of conversations. In
addition, improving the compression ratio of the model and designing a tokenizer that serializes the
image in one dimension are also expected.

10
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7 STATEMENT

7.1 ETHICS STATEMENT

This research does not involve potentially harmful insights, methodologies, or applications, and it
raises no concerns regarding conflicts of interest, sponsorship, discrimination, bias, fairness, privacy,
security, legal compliance, or research integrity.

7.2 REPRODUCIBILITY STATEMENT

Data. The training datasets employed in this study are detailed in Appendix[8.3]and Appendix. [8.4]
and all are publicly accessible open-source resources.

Method. To support reproducibility, we elaborate on the methodological details in Section[2] and the
implementation will be open-sourced after acceptance.

Performance. All evaluations are carried out on open benchmarks, thereby ensuring the reproducibil-
ity of our results.

Code And Model Weight. We will open-source the code and model weight files after acceptance.
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8 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

8.1 LLM USAGE STATEMENT

We clarify that the use of LLMs in this study is restricted to writing assistance, specifically for
grammar correction and enhancing readability. No LLM was involved in the research design,
experimental execution, or data analysis.

8.2 DEPLOYMENT DETAILS OF UNIFIED MLLM.

Training Data Form. For multimodal understanding, we use <lim_startl> and <lim_end|> to delimit
the image segment within the input sequence. To distinguish between modalities and enable visual
content generation, we insert special tokens: <IMG_XXXXX>, which represent image codes in
LLMs’ vocabulary. Specifically, the i-th code in the unified tokenizer codebook corresponds to
<IMG_i>. In addition, we add <start_of_image> and <end_of_image> to indicate the start and end of
image generation.

Vocabulary Embedding Processing Flow. For understanding samples, we follow the LLaVA setting:
discrete features are first extracted by the tokenizer and then fed into the LLM through an adapter
layer. To ensure consistency between understanding and generation, we employ the same features for
generation samples instead of using the embeddings of <IMG_XXXXX>. After training, we replace
the visual code embedding in the vocabulary to align training with inference. The detailed procedure
is illustrated in Algorithm [T}

Algorithm 1: Procedure: Training and Generation Pipeline

Before Training:;

1. Add special tokens <IMG_XXXXX> into LLM vocabulary 2. Preprocess training images, e.g.
“generate a dog + <Image>" —
“generate a dog + <start_of_image><IMG_i>...<IMG_k><end_of_image>”

During Training:;

1. Feed preprocessed samples into LLM tokenizer — text_id;
2. Lookup embedding V from text_id — Fieyt;

3. Get image IDs from text_id — img_id;;

Lookup unified codebook embedding from img_id — Eipngs;
Apply adapter layer: Ejy,g — Ef,, 3
4. Replace image embeddings in Ey.,¢ with EY, ¢ E
5. Feed F},,, into LLM backbone for training;

/ .
text>

Generation:;

1. Apply adapter layer on codebook embeddings Cimg — Cf,, 43
2. Replace image part of V with C =~ — V';

img
3. Start autoregressive generation;

8.3 TOKENIZER EXPERIMENTAL DETAILS

The training of SemHiTok is conducted in two stages. During semantic codebook training, we train
the semantic tokenizer for one epoch on SOM subset of COYO-700M(Byeon et al.,|[2022). For the
PRE stage, we first train the model(ViT-Base) on ImageNet(Deng et al., 2009), and then fine-tune on
50M COYO to improve its generalization, following LlamaGen(Sun et al., 2024a)). To further improve
the reconstruction and generation performance, we enlarge the size of the pixel decoder(ViT-Large)
and fine-tune on the 20M COYO data and 20M MidJourney-style synthetic data. The full training
takes about 3 days on 32 v100 GPUs.

8.4 UNIFIED MLLM EXPERIMENTAL DETAILS

Following existing work(Wu et al.,2024c;|Ma et al.,|2025)), we first pretrain the model and adapter
layer on a mix of multimodal data, which is composed of 3.5M language data from Magpie(Xu et al.,
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Table 8: More Comparison on more metrics for the reconstruction task.

Method Res Sch(;‘;‘; CO‘;‘;'Z’:"I‘ fFID| | PSNRT SSIMt
LlamaGen (Sun et al.|, 2024a) 256 16 x 16 16,384 2.19 20.65 0.54
Show-o (Xie et al.; 2024 256 16 x 16 8192 321 | 2134 059
TokenFlow (Qu et al, 20 256 16 x 16 16,384 137 | 2141  0.69
SDE(MUSE-VL) (Xie et al,2025) 256 16 x 16 32,768 226 | 2014  0.65
QLIP-B (Lin et al | 2025) 256 16 x 16 228 321 | 2134 059
UniTok (Ma et al., 2025 256 16x16x8 16,384 x47 041 | 2728  0.77
SemHiTok(ours 256 16 x 16 196,608 1.16 | 2138  0.69

2024b) and Openorca(Lian et al.,2023), 10M caption image-text pairs data, and 15M MidJourney-
style synthetic data. Subsequently, we finetune the model on 1M language dataset from Magpie(Xu]

2024b)) and Evol-Instruct(Xu et al.,[2024a), 4M generation data and 4M understanding data
from emova(Chen et al.,[2024a) and LLaVA-SFT(Liu et al., 2023b)). The full training takes about 7
days on 32 A800 GPUs. During image generation inference, we apply classifier-free guidance(Ho &

[2022) with a scale factor of 2.5.

8.5 COMPARISON WITH OTHER METHODS ON MORE METRICS FOR THE RECONSTRUCTION
TASK

We present the reconstruction metrics of several tokenizers in Tab. |§|, including rFID, PSNR, and
SSIM. Our method achieves competitive performance across multiple reconstruction task metrics.

8.6 VISUALIZATIONS ON UNDERSTANDING TASKS

We present more visualization of multimodal understanding samples in figure[6]

8.7 MORE COMPARISON OF GENERATION ON GENEVAL AND DPG

To more fully demonstrate the superiority of SemHiTok, we conduct further comparisons with other

generative models and unified models on GenEval|[Ghosh et al| (2023) and DPG [Hu et al| (2024). As

shown in Tab[9] our method still demonstrates competitive performance.

8.8 VISUALIZATIONS ON GENERATION TASKS

We present more visualization of generated images in figure[7]

8.9 MORE VISUALIZED RECONSTRUCTION RESULTS FROM THE ABLATION OF KEY MODULE

We show more reconstruction effects on the ablation of key modules in figure 8]

8.10 IMPACT OF CONCAT TYPE AND SUB-CODEBOOK SIZE.

For efficiency, we only conduct training and evaluation on ImageNet-1K. We investigate the impact of
the concat type of semantics between pixel and the sub-codebook size, on reconstruction performance
as shown in Tab. For the Concat type, w/o semantic tokens leads to a significant drop in
reconstruction quality, with s core increase of 0.73 compared to the default setting. Furthermore,
concatenation along the sequence length performs worse than along the dimension, as the two token
sets are spatially aligned, making dimensional concatenation more appropriate. For sub-codebook
size, increasing the size can improve the model’s reconstruction performance, but it exhibits marginal
utility. In addition, the codebook usage significantly decreases when the sub-codebook size is set to
16, which indicates that too large a sub-codebook size is not cost-effective.
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a Is there a red brick building in the a Does this artwork belong to a Is it overcast?
image? the type of landscape?

Yes 'IF_‘Tll' Yes IF_‘Tlll No, it is clear ||[T_'T||.

©  What lanmark is this? And ® What is the relationship between ® Which of the following captions best
describes this image?

where is it? the two animals in the images?

) ’ . R " A. Awoman applying makeu infrom' of
A. The Taj Mahal in Agra, India A. Symbiotic relationships & R PPIYing P

B. Machu Picchu in Peru B. Predatory relationships B. A person taking a photo with a camera
C. Windmills at Kinderdijk, Holland C. Competitive relationships C. A group of people watching a movie in
D. The Great Chinese Wall in China D. Parasitic relationships a theater

D. A person reading a book in a library
c IIDII G IIGII B IIF_‘T]II

® Which animal in the picture is larger, the
D cat or the dog? IIDI'

To determine which animal is larger, we can compare the size of
the cat and the dog based on their relative positions in the image.
The cat appears to be standing upright with its body fully visible,
while the dog is crouched down, making it difficult to see its full
height. However, by comparing the proportions of their bodies as
they stand next to each other, it's clear that the cat is taller than
the dog. Therefore, the cat is larger than the dog in this picture.

Figure 6: Visualizations on understanding tasks.

8.11 IMPACT OF SEMANITC VQ TYPE, CODEBOOK DIM AND CODEBOOK SIZE.

In Tab[TT] we ablate VQ type and codebook dimension on multimodal understanding. Specifically,
Norm VQ is not suitable for semantic discretization and shows the worst performance in understanding
tasks. This indicates that it is difficult to discretely model complex and rich semantic information by
Norm VQ. Replacing it with vanilla VQ brings a clear improvement. To further stabilize the semantic
codebook, we use EMA VQ, which achieves the best results. For the semantic codebook dimension,
higher values offer better representation but with a marginal effect. We empirically set the dimension
to 48 as the default.

Furthermore, we investigate the impact of semantic codebook size K on multimodal understanding in
Table[I2] The results indicate that while larger codebooks generally enhance performance, increasing
K beyond 16,384 yields only marginal gains and leads to a noticeable decline in codebook usage.
Therefore, we select K = 16,384 as the optimal balance between representational capacity and
utilization efficiency.

8.12 IMPACT OF DIFFERENT K X m AND MORE COMPARISON WITH OTHER LARGE CODEBOOK
RECONSTRUCTION METHODS.

We investigate the impact of semantic codebook size K and sub-codebook size m in Table[I3] The

results indicate that increasing either K or m generally enhances reconstruction fidelity (lower rFID).
However, excessive expansion leads to a significant decline in codebook usage. Furthermore, when
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Table 9: Comparison with other methods on GenEval and DPG Bench. SemHiTok still achieves
competitive performance even with a smaller amount of data.

Model Params Type #;I‘rammg Res. | GenEval DPG
mages
Only Gen.
SD v2.1 Rombach et al.|[2022b - Diff 2000M 1024 0.50 -
DALL-E |l7 - Diff 650M 1024 0.52 -
DALL-E 3 llm - Diff - 1024 0.67 83.50
PixArt-v (Chen et al mw 0.6B Diff - 1024 0.48 -
SDXL (P 023] 2.6B Diff 2000M 1024 0.55 74.65
Playgroundv?2. - Diff - 1024 - 75.47
Und&Gen.
7.3B AR 3.5B 256 0.63 -
8B AR-Scale M 512 0.62 -
1.5B Diff 36M 256 0.53 67.27
8B AR - 256 0.66 80.60
1.3B AR 65M 384 0.61 -
2.4B AR 25M 256 0.61 -
UniFork (Li et al. 202 0.76B AR - 384 0.46 -
ILLUME (Wang et al.[[2024a 7B AR 15M 512 0.61 -
ILLUME+ (Huang et al. a 3B AR 46M 512 0.72 -
MUSE-VL (Xie et al. 7B AR 10M 256 0.57 -
QLIP-B (Zhao et al. 1.5B AR 18M 256 0.48 78.17
TokenFlow (Qu et al.|[2024 7B AR 60M 256 0.63 73.38
MMaDA ﬁlngﬁ‘ 2025 8B Diff - 512 0.63  69.97
Liquid (Wu et al.[[2024b’ 7B AR 30M 512 0.55 83.45
UniTok ( 7B AR 30M 256 0.59 83.45
Tar-1.5B (Han et al., 3B AR 46M 256 0.76 82.96
Tar-1.5B " elf-Re ect 17 an eta. 3B AR 46M 256 0.78 84.10
Tar-7B (Han et al.] m 2025] 7B AR 46M 256 0.84  84.19
Tar-7B W/Self-Reflect ||_'{_M 2025 7B AR 46M 256 0.85 84.65
Ming-UniVision (Huang et al. 16B-A3B  AR-Continuous - 512 0.85 82.12
SemHiTok(ours) 7B AR 15M 256 0.71 83.59

controlling for the total codebook size (X' x m), we observe that prioritizing a larger semantic
codebook K yields slightly better performance than increasing the sub-codebook size m.

To further demonstrate the effectiveness of our method, we conduct a more detailed comparison
with other approaches that use large codebooks. As show in Tab[T4] we conduct comparisons on the
reconstruction task under two codebook sizes (65K and 262K). Under the 65K setting, our model
surpasses the expert reconstruction model while maintaining good usage. Under the 262K setting,
our method still achieves competitive performance compared to the expert model.

8.13 SPECIALIZED IMAGE TOKENIZER

Tokenization for Generation. Image tokenizers are crucial for autoregressive image generation(Van|

Den Oord et al.l [2017; Rombach et al, 20224} [Tian et al.| [2025). VQVAE(Van Den Oord et al.,2017)

learns a discrete representation using a learnable codebook in auto-encoder architectures. VQGAN

Table 10: Impact of Concat type and  Typle 11: Impact of VQ Type and dim of the semantic
sub-codebook size. w/o sem: not use odebook. We evaluate multimodal understanding per-
the semantic discrete token. The gray  formance under the LLaVA-v1.5 setting. The gray bar

bar represents the default setting in our  repregents the default setting in our experiments.
experiments.

vVQ Codebok
Concat ~ Subc Size | rFID | Usage? Type ‘ MME-Pt  MMBT  SEEDT MMUT
w/o 12 1.99 95.4% Norm 48 1249.6 52.2 52.8 34.8
Len 12 1.45 94.1% Vanilla 48 1319.9 56.3 57.2 33.1
Dim 12 1.26 93.7% EMA 48 1387.5 61.3 62.3 35.6

Dim 8 142 96.4% EMA 32 1385.9 58.3 61.2 35.1
1428.7 60.9 62.5 35.5

Dim 16 1.19 79.3% EMA 64
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Figure 7: More generated images presentation.

further improves better perceptual quality by using adversarial training(Goodfellow et al., 2014).
advanced the existing architecture by integrating perceptual loss and discriminator loss, alongside
adversarial loss, to enhance reconstruction quality. This approach yields more precise and detailed
image representations, significantly improving upon previous methodologies in image generation and

processing. Subsequently, VIT-VQGAN(Yu et al., [2021b) and Efficient-VQGAN(Cao et al. 2023)

advance the framework with the transformer design. In recent literature, researchers are turning to

efficient codebook structures(Shi et al.| 2024} [Zhang et al,[2023} [Yu et al.,[2021b}, [Bai et al., 2024)

and better quantization methods(Zha et al.,[2024; [Yu et al., [2025)) to improve generation performance
and compression rates. IBQ(Shi et al.| [2024) proposes the Index Backpropagation Quantization
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Figure 8: More visualized reconstruction results from the ablation of key module.

Table 13: Comparative exper-
Table 12: Ablation of Semantic Codebook K. We evaluate on iments with Different X' x m

multimodal understanding tasks. on reconstruction task.
K | POPE MME-P SEED GQA Usage K m [rFID| Usaget
12 1.58 95.5
4096 79.7 1297.7 60.4 56.6 100 19y 10| 145 92.7
8192 81.9 1343.0 61.7 59.7 99.7 g‘z‘ }2 gg-g
16384 | 82.5 1355.8 62.9 60.3 99.0 5 1'42 96'4
32768 82.8 1364.2 62.5 60.6 93.0 16384 12| 126 93.7

16 | 1.19 79.3

codebook update method, achieving stable training of large-scale codebooks. Although these methods
efficiently retain low-level texture information, they frequently fail to capture high-level semantic
information, which limits their application to multimodal understanding tasks. FQGAN(Bai et al.
2024)) uses multiple codebooks and product quantization, where each codebook encodes a different

type of feature (Pixel, CLIP(Radford et al.| 2021a)), DINO(Caron et al},2021)), etc.). However, this

work focuses only on image reconstruction and generation tasks, performing poorly on multimodal
understanding tasks(Wu et al.| 20245} [Liu et all, [2024a).

Tokenization for Understanding. In multimodal large language models (MLLMs)(Li et al.,
[2022; [Radford et al.l 20210} [20234; [Bai et all [2023a}; [Chen et al, [2024c), researchers
leverage CLIP(Radford et al.| 2021b) and BLIP(Li et al., [2022) to extract visual characteristics that
align with the language during its pre-training phase. Building upon many works 2023a;

Bai et al.| 20234; [Chen et al}, [2024c) have been collected and trained on high-quality datasets to
achieve remarkable performance. LLaVA(Liu et al.,[20234) utilizes a vision encoder to align the

vision inputs before LLMs. QwenVL(Bai et al., [2023a) and InterVL(Chen et all 2024c)) achieve
better results through increased resolution, higher-quality datasets, etc. However, these text-aligned
image encoders tend to focus on semantic information and ignore texture information, which is
important for the generation task.

8.14 UNIFIED IMAGE TOKENIZER

Numerous efforts have emerged to develop unified visual generation and understanding within one

MLLM(Wang et al., 2024act [Xie et al.| 2024} Dong et al.| 2023} |Ge et al.,[2024; [Sun et al.| 2024b;,

[Team| [2024; Wu et al., 2024d). There are two main lines to bridge the gap. Many workers (Dong
et al} 2023} [Ge et al, 2024} [Sun et all, 2024b) combine diffusion models with LLMs for image
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Table 14: Quantitative comparison of reconstruction quality under consistent total codebook sizes.
SemHiTok outperforms existing quantization methods at the 65k scale and achieves comparable rFID
to expert models at the 262k scale.

Method Codebook Size \ rFID]  Usage?
VQGAN-LC (Zhu et al., Mb 65546 2.63 100.0
VQGAN-LC(CLIP) (Zhu et al| 65546 240  100.0
FSQ (Bai et al.l, 2024 64000 2.80 100.0
LFQ (Yuet al. ]% 65536 2.88 100.0
SimVQ (Zhu et al., 2025) 65536 2.24 100.0

8192 x8(65536) 1.93 98.1

SemHiTok 16384x4(65536) | 1.84  99.0

SimVQ (Zhu et al. 262144 199 100.0
Open-MAGVIT2 | 2024) 262144 .17 100.0
IBQ (Shi et al] 262144 100 793

8192x32(262144) | 1.21 83.7

SemHiTok 16384x8(262144) | 1.19 793

generation. DREAMLLM(Dong et al} [2023)) presents a unified framework that not only provides
multimodal understanding but also creates multimodal content via diffusion models. Emu2(Sun|
2024b) trains a unified generative model using a diffusion-based decoder. These approaches
inevitably increase model complexity and are not simple enough. Other workers
Wu et al}, 2024d; [Xie et al.} [2024; [Wang et al.} adopt VQVAE-based encoders to convert
images into discrete tokens. Chameleon(Team), and EMU3(Wang et al,[2024c)) directly use
VQGAN(Yu et al 2021a), which is optimized by pixel reconstruction as the image tokenizer, while
this method increases resource consumption during the pre-training stage and degrades multimodal
understanding performance. VILA-U(Wu et al.| [2024d) introduces a unified image tokenizer that
incorporates a text-aligned branch within the VQGAN training paradigm. However, due to the
gap between the semantic feature and texture feature, the joint optimization approach may lead to
suboptimal solutions In contrast, our proposed SemHiTok can add the ability of extracting texture
features without changing the discrete semantic features, and avoids the challenges brought by joint
optimization.
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