

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SEMHiTok: A UNIFIED IMAGE TOKENIZER VIA SEMANTIC-GUIDED HIERARCHICAL CODEBOOK FOR MULTIMODAL UNDERSTANDING AND GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

In this paper, we introduce **SemHiTok**, a unified image **Tokenizer** via **Semantic-Guided Hierarchical** codebook that provides consistent discrete representations for multimodal understanding and generation. Recently, unified image tokenizers have sparked exploration within the research community, which is designed to capture high-level semantic features for understanding and retaining low-level pixel features for generation. Previous works attempt to train a unified image tokenizer by combining loss for semantic distillation and pixel reconstruction. However, due to the differing levels of features prioritized by multimodal understanding and generation, joint training methods face significant challenges in achieving a good trade-off. SemHiTok addresses this challenge through a novel semantic-guided hierarchical codebook, which builds pixel sub-codebooks on a pretrained semantic codebook. This design decouples the semantic and pixel in terms of structure and training strategy, enabling the tokenizer to capture pixel features while retaining its ability to comprehend high-level semantic information. Our experiments demonstrate that SemHiTok achieves SOTA performance in image reconstruction and multimodal understanding under the LLaVA-v1.5 setting. Further, we develop a unified MLLM with SemHiTok, which exhibits superior performance across multimodal understanding and generation tasks. For understanding, SemHiTok achieves impressive performance on most benchmarks. For generations, our model achieves SOTA performance on MJHQ30K in unified MLLMs. Our code and models will be open source.

1 INTRODUCTION

In recent years, autoregressive models have achieved great success in natural language processing and have been extended to the multimodal understanding domain, demonstrating immense potential. This triggers researchers' interest in unified multimodal understanding and generation by employing a single autoregressive framework. To achieve a unified multimodal large model, the key challenge is designing a tokenizer suitable for both multimodal generation and understanding tasks.

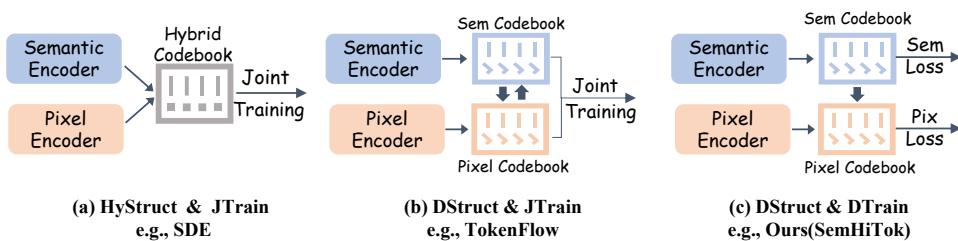


Figure 1: Illustration of other tokenizers and SemHiTok. **HyStruct**: Using a single model to extract information at different levels; **DStruct**: Using different models to extract information at various levels; **JTrain**: Using a joint optimization training strategy; **DTTrain**: Adopt a phased optimization training strategy.

054 However, there is a vast gap in the visual information required for these two tasks. For instance,
 055 models from the CLIP (Radford et al., 2021a; Sun et al., 2023; Zhai et al., 2023) family, commonly
 056 used in multimodal understanding tasks, tend to lose visual pixel information. On the contrary, the
 057 VQGAN (Yu et al., 2021a; Zhu et al., 2024a) family models, often used in autoregressive generation
 058 tasks, lack the ability to extract semantic features for multimodal understanding tasks. This leads to
 059 poor performance when a single tokenizer is applied to a unified MLLM (Wu et al., 2024b; Jin et al.,
 060 2023; Li et al., 2024b). In light of the aforementioned issues, some recent work has attempted to
 061 incorporate a semantic learning branch into the original VQGAN training pipeline, aiming to obtain
 062 a unified tokenizer via joint optimization. VILA-U (Wu et al., 2024c) employs a straightforward
 063 combination of semantic alignment loss and pixel reconstruction loss, which allows the model to
 064 capture both low-level and high-level information. Nevertheless, the reliance on a hybrid structure
 065 and joint optimization often drives the tokenizer toward a suboptimal solution. Furthermore, some
 066 recent works (Xie et al., 2025; Qu et al., 2024) have built upon it with further improvements. As
 067 shown in Fig.1(a), while SDE (Xie et al., 2025) further decouples the encoders, the remaining hybrid
 068 codebook continues to impede the model’s optimization. TokenFlow (Qu et al., 2024) uses shared
 069 mapping to decouple the semantic branch and pixel branch while maintaining the consistency of the
 070 codebook index, but joint training still affects the final performance.

071 A straightforward approach is to use CLIP and VQGAN to extract semantic and pixel information, re-
 072 spectively, and the concatenation of these two token sequences is then used as a unified representation.
 073 Janus (Wu et al., 2024a) introduces a dual-encoder method that separates encoders for understanding
 074 and generation tasks to address this conflict, but this increases the complexity of handling mixed tasks
 075 and does not fundamentally resolve the feature conflict challenge. However, this leads to a doubling
 076 of the token sequence count or multiplicative expansion in vocabulary size, depending on whether the
 077 concatenation is applied along the length or dimension. These limitations underscore a fundamental
 078 challenge in the field: *How to balance semantic-level and pixel-level information effectively, without
 079 compromising the ease of integration into MLLM frameworks?*

080 To address this challenge, we propose **SemHiTok**, a unified image tokenizer that provides consis-
 081 tent feature representations for multimodal understanding and generation tasks through a unique
 082 hierarchical codebook design. Inspired by the observation that image patches with the same seman-
 083 tic code tend to have similar pixel features, we introduce a novelty hierarchical codebook which
 084 uses a sub-codebook to model the pixel-level space associated with each semantic code, named
 085 Semantic-Guided Hierarchical Codebook(SGHC). Unlike existing approaches, SemHiTok supports a
 086 stage-wise training paradigm where each stage exclusively optimizes specific hierarchy level features,
 087 allowing us to achieve a better trade-off between semantic and pixel feature extraction. In addition,
 088 SemHiTok can be seamlessly integrated into existing MLLMs following the next-token paradigm
 089 through a simple codebook flattening operation.

090 Our contributions can be summarized as follows: **(1)**: A novel unified tokenizer that achieves
 091 a trade-off between semantic and pixel information, demonstrating outstanding performance in
 092 both image reconstruction and multimodal understanding tasks. **(2)**: We develop a unified MLLM
 093 architecture that demonstrates superior performance across both multimodal understanding and
 094 generation tasks, validating its versatility. **(3)**: Our approach further pushes the performance boundary
 095 of unified discrete MLLMs, enabling improved scalability and representation capacity within next-
 096 token prediction frameworks.

097 2 METHOD

098 The main objective of **SemHiTok** is to establish a simple and unified image tokenizer for multimodal
 099 understanding and generation. In this model, the image is transformed into discrete tokens that contain
 100 semantic information and pixel information. We begin with a semantic codebook training recipe
 101 that reconstructs semantic features extracted from a language image pre-training model (Zhai et al.,
 102 2023; Wei et al., 2022), and point out the semantic codebook’s poor texture feature representation in
 103 section 2.1. In section 2.2, we conduct a preliminary discussion and observation. Building on this
 104 observation, we introduce Semantic-Guided Hierarchical Codebook(SGHC), incorporating texture
 105 information while perfectly inheriting the semantic information of the semantic codebook, to enable
 106 pixel reconstruction enablement. Finally, we introduce the application of SemHiTok on unified
 107 MLLM in section 2.3. The overview framework is shown in Fig.2.

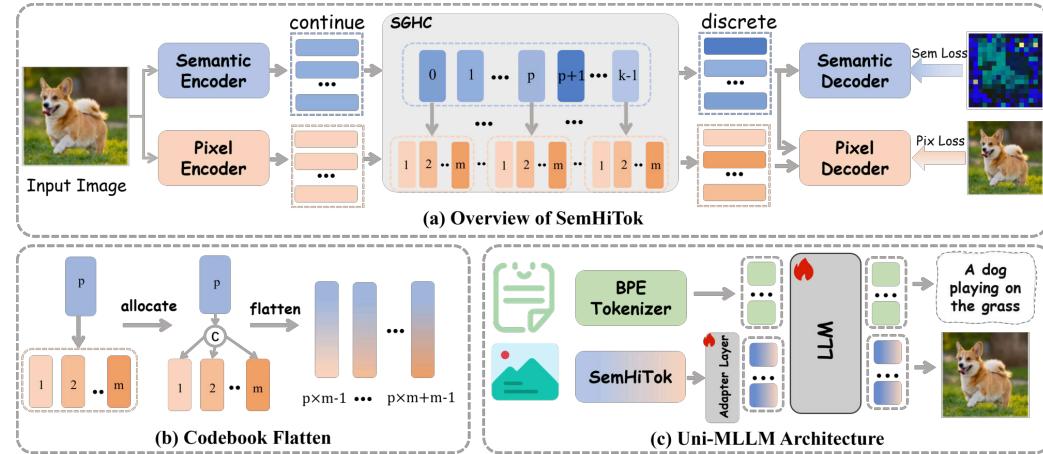


Figure 2: (a) SemHiTok is structurally composed of two branches: **semantic branch** and **pixel branch**. The **semantic branch** is trained following the VQKD (Wei et al., 2022), where the semantic codebook is learned through semantic loss. We propose semantic-guided hierarchical codebook(SGCH) composed of multiple pixel sub-codebooks, in which each pixel sub-codebook is in a one-to-one correspondence with a semantic code. The selection of pixel sub-codebook is indexed by the semantic code from semantic quantization. To enable a unified discrete representation, we concatenate the quantized semantic and pixel features along the channel dimension and feed the result into the pixel decoder for reconstruction. (b) Each semantic code is allocated to the corresponding pixel sub-codebook, and their features are concatenated along the dimension. (c) An illustration of the unified MLLM framework.

2.1 SEMANTIC CODEBOOK TRAINING

For multimodal understanding, using a text-aligned visual encoder (Zhai et al., 2023; Radford et al., 2021a; Sun et al., 2023; Wang et al., 2024b) as an image tokenizer can accelerate convergence and improve performance. However, these text-aligned visual encoders typically output continuous semantic features. In this work, to achieve a unified visual tokenizer, we first train a semantic codebook to quantize the continuous semantic feature following VQKD (Wei et al., 2022).

Given an image $X^{H \times W \times 3}$, the semantic encoder \mathcal{E}_{sem} extract continuous semantic features:

$$Z_{\text{sem}} = \mathcal{E}_{\text{sem}}(X) \in \mathbb{R}^{h \times w \times d_{\text{sem}}} \quad (1)$$

Where \mathcal{E}_{sem} is a frozen text-aligned image encoder, e.g., CLIP (Radford et al., 2021a) or SigLIP (Zhai et al., 2023). Then Z_{sem} are transformed into discrete feature space $\mathcal{C}_{\text{sem}} = \{c_1, c_2, \dots, c_K\} \in \mathbb{R}^{K \times d_{\text{sem}}}$ through quantization function $\mathcal{Q}_{\text{sem}}(\cdot)$. The quantization process $\mathcal{Q}_{\text{sem}}(\cdot)$ is as follows:

$$Z_{q_{\text{sem}}}, I_{q_{\text{sem}}} = \arg \min_{k \in \{1, \dots, K\}} \|Z_{\text{sem}} - \mathcal{C}_{\text{sem}}[k]\| \quad (2)$$

Where $I_{q_{\text{sem}}} \in [\mathcal{C}_{\text{sem}}]^{h \times w}$ is quantized index, $Z_{q_{\text{sem}}}$ is discrete feature indexed from \mathcal{C}_{sem} . Finally, semantic decoder \mathcal{D}_{sem} maps $Z_{q_{\text{sem}}}$ to raw semantic feature space \hat{Z}_{sem} . The \mathcal{D}_{sem} are end-to-end trainable by minimizing semantic distill loss:

$$L_{\text{sem}} = 1 - \cos(Z_{q_{\text{sem}}}, \hat{Z}_{\text{sem}}) + |Z_{q_{\text{sem}}} - \hat{Z}_{\text{sem}}| \quad (3)$$

For \mathcal{C}_{sem} , we adopt EMA (Hunter, 1986) VQ as the semantic codebook. Unlike traditional quantization methods, the EMA VQ is not updated via gradient descent, but instead through an Exponential Moving Average (EMA) algorithm:

$$\mathbf{c}_k^{(t)} = m \cdot \mathbf{c}_k^{(t-1)} + (1 - m) \cdot \frac{1}{N_k} \sum_{i=1}^{N_k} \mathbf{z}_i, \quad (4)$$

where \mathbf{c}_k^t denotes the k -th codebook vector at update step t , m is the momentum term, and the update is based on the average of all input vectors \mathbf{z}_i assigned to code k in the current batch. However,

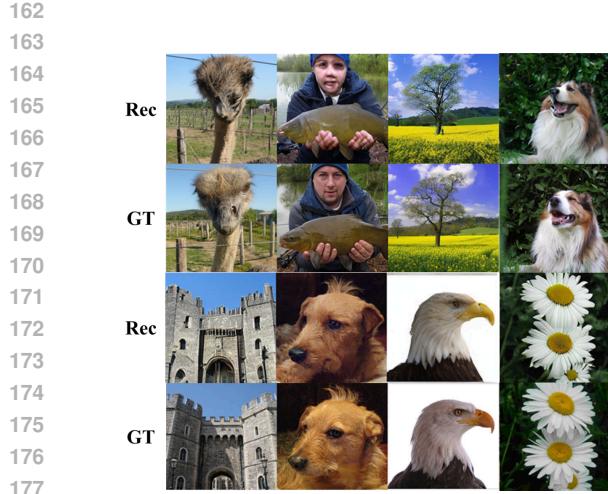


Figure 3: Visualization of reconstruction by quantized semantic features. Semantic codebook tends to produce inaccuracies in the reconstruction of image textures and color information.

we further conduct an experiment that reconstructs the original pixel from the quantized semantic features extracted by \mathcal{C}_{sem} . The reconstructed images exhibited noticeable blurriness and a significant loss of high-frequency details, as shown in Fig. 3. This indicates that the semantic codebook lacks pixel information.

2.2 PIXEL RECONSTRUCTION ENABLING

Discussion. In section 2.1, we demonstrate that semantic code lacks the ability to model pixel information. In order to pixel reconstruction enabling and avoid a reduction of understandability, a straightforward approach is to add an extra VQGAN (Yu et al., 2021a) model. Semantic codebook extracts discrete semantic tokens for multimodal understanding, and VQGAN extracts discrete texture tokens for generation. The two token sets are concatenated—either dimensionally or sequentially, and passed to the LLM. However, the resulting token inflation or oversized codebook introduces a significant computational burden, limiting its feasibility for MLLMs.

Furthermore, we present the visualization results of the semantic code, as shown in Fig. 4. It can be observed that image patches corresponding to the same code exhibit similar pixel features. For example, the code v_{14312} is more likely to be assigned to the rooster comb element in the image. At the same time, the image patches corresponding to these combs exhibit similar pixel features, such as color, patterns, and shapes. Based on this observation, we propose Semantic-Guided Hierarchical Codebook to model the pixel feature space corresponding to each semantic code using a sub-codebook.

Semantic-Guided Hierarchical Codebook (SGHC). The SGHC consists of a pretrained semantic codebook and several sub-codebooks, where each sub-codebook corresponds to a semantic code of the semantic codebook, as shown in figure 2 (a). Specifically, given the pre-trained semantic codebook $\mathcal{C}_{sem} = \{c_1, c_2, \dots, c_K\} \in \mathbb{R}^{K \times d_{sem}}$, the pixel codebook $\mathcal{C}_{pix} = \{\mathcal{C}_{pix}^1, \mathcal{C}_{pix}^2, \dots, \mathcal{C}_{pix}^K\} \in \mathbb{R}^{K \times m \times d_{pix}}$, where $\mathcal{C}_{pix}^k \in \mathbb{R}^{m \times d_{pix}}$ is k th semantic code’s pixel sub-codebook, m is sub-codebook size. At first, the semantic codebook quantizes X to a discrete semantic token Z_{sem} and a semantic codebook index I_{sem} . In parallel, pixel encoder \mathcal{E}_{pix} extract continuous pixel features $Z_{pix} = \mathcal{E}_{pix}(X)$. For the quantization process of the pixel codebook, the corresponding pixel sub-codebook is selected based on the quantization result of the semantic codebook. For instance, given image patch i , its semantic quantization codebook index k and continuous pixel feature Z_{pix}^i , SGHC selects pixel sub-codebook \mathcal{C}_{pix}^k to quantize Z_{pix}^i . The process is as follows:

$$Z_{pix}^i, I_{pix}^i = \arg \min_{j \in \{1, \dots, m\}} \|Z_{pix}^i - \mathcal{C}_{pix}^k[j]\| \quad (5)$$

216

217

Table 1: Comparison of reconstruction quality on the ImageNet-50k validation set. \ddagger : quantizer uses residual quantization (RQ), where the total Code Shape is multiplied by RQ depth. \dagger : quantizer uses multiple codebooks and product quantization.

222

223

Method	Res	Code Shape	Codebook Size	rFID \downarrow
<i>Only Reconstruction</i>				
LlamaGen (Sun et al., 2024a)	256	16 \times 16	16,384	2.19
RQVAE (Lee et al., 2022)	256	16 \times 16 \times 4 \ddagger	16,384	3.20
VOGAN-LC (Zhu et al., 2024a)	256	16 \times 16	100,000	2.62
IBQ (Shi et al., 2024)	256	16 \times 16	16,384	1.37
IBQ (Shi et al., 2024)	256	16 \times 16	262,144	1.00
FQGAN (Bai et al., 2024)	256	16 \times 16 \times 2	16,384 \times 2 \dagger	0.94
<i>Unified</i>				
VILA-U (Wu et al., 2024c)	256	16x16x4 \ddagger	16,384	1.80
SDE(MUSE-VL) (Xie et al., 2025)	256	16 \times 16	32,768	2.26
TokenFlow (Qu et al., 2024)	256	680	32,768	1.37
TokLIP (Lin et al., 2025)	256	16 \times 16	16,384	2.19
QLIP-B (Lin et al., 2025)	256	16 \times 16	2 \dagger	3.21
UniTok (Ma et al., 2025)	256	16 \times 16	16,384 \times 4 \dagger	0.39
SemHiTok(ours)	256	16 \times 16	196,608	1.16
SemHiTok(ours)	384	27 \times 27	196,608	0.66

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

where j is the selected sub-codebook internal index. Finally, the semantic quantized tokens and pixel quantized tokens are concatenated to $Z_q = \text{concat}_{\text{dim}}(Z_{q_{\text{sem}}}, Z_{q_{\text{pix}}})$ as the input of pixel decoder \mathcal{D}_{pix} to reconstruct the raw pixel image:

$$\hat{X} = \mathcal{D}_{\text{pix}}(Z_q) \quad (6)$$

240

241

where \hat{X} is reconstructed pixel image. The \mathcal{E}_{pix} , C_{pix} and \mathcal{D}_{pix} are end-to-end trainable by minimizing reconstruction loss $L_{\text{img}} = \ell_1(\hat{X}, X)$, codebook loss L_c , perceptual loss L_{per} and represents adversarial loss L_{gan} (Yu et al., 2021a). The reconstruction loss is formulated as:

$$L_{\text{rec}} = L_{\text{img}} + \lambda_1 L_c + \lambda_2 L_{\text{per}} + \lambda_3 L_{\text{gan}} \quad (7)$$

242

243

where λ_1 , λ_2 and λ_3 are loss weight of each item.

244

245

246

Our SGHC can be regarded as the refinement of a semantic discrete space to enable pixel reconstruction. We place a specific emphasis on two key advantages of SGHC: (1) **Non-Conflicting Extension**: Our method leverages a pre-trained semantic codebook as a foundation, with pixel reconstruction losses exclusively employed to optimize pixel branch modules during the PRE. This strategic approach effectively circumvents the suboptimal solutions that arise from joint optimization processes. Furthermore, SGHC’s final output is generated by concatenating semantic-quantized features with pixel-quantized features, preserving the full expressive capacity of the original semantic features while integrating complementary texture information through this unified feature fusion paradigm. Subsequent tasks, such as reconstruction, multimodal understanding, and generation, all share the same discrete token representation; (2) **Efficient Downstream Applications**: SGHC effectively avoids two critical predicaments: token quantity inflation and codebook overexpansion. As defined before, the semantic codebook size is K , and each pixel sub-codebook size is m . Due to dimensional concatenation, the complete codebook flattens to $K \times m$, where m is much smaller than K . In our experimental default settings, we extend the complete codebook to a size comparable to existing LLMs’ text vocabulary size, e.g., the size of Qwen2 vocabulary is 150k.

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

The framework diagram for unified MLLM is shown in Fig.2(c). We use SemHiTok to develop a unified multimodal model, which models discrete vision and text token sequences with a universal next-token prediction loss. Particularly, in image processing, SemHiTok is utilized to discretize images into token sequences. On the model side, we merely expand the text vocabulary and adjust the head layer to incorporate visual token IDs. To enable a unified head layer, we flatten SGHC by merging all sub-codebooks into a single flat representation as shown in Fig.2(b). Specifically, for the

Figure 5: Visualized reconstruction results from the ablation of key modules. PRE brings about a significant improvement in reconstruction quality. Moreover, the Enhance Decoder(ED) further improves reconstruction on hard samples.

270 Table 2: Comparative analysis of tokenizers on multimodal comprehension tasks. *: Both the
 271 tokenizer and LLM are reproduced in our setting. Our method achieves SOTA performance compared
 272 with other discrete tokenizers.

Model	LLM	Data	Res.	POPE	MME-P	SEED	GQA
SigLIP (Zhai et al., 2023)	Vicuna-7B	LLaVA-v1.5	256	83.76	1481.0	65.28	61.9
LlamaGen (Sun et al., 2024a)	Vicuna-7B	LLaVA-v1.5	256	65.6	716.8	35.0	39.8
VILA-U (Wu et al., 2024c)	Vicuna-7B	LLaVA-v1.5	256	81.6	1311.6	56.9	55.3
SDE(MUSE-VL) [*] (Xie et al., 2025)	Vicuna-7B	LLaVA-v1.5	256	77.3	1240.0	56.7	58.0
TokLIP (Lin et al., 2025)	Qwen2.5-7B-Ins	LLaVA-v1.5	256	81.2	1346.8	59.8	57.4
SemHiTok(Ours)	Vicuna-7B	LLaVA-v1.5	256	82.5	1355.8	62.9	60.3
TokenFlow-384 (Qu et al., 2024)	Vicuna-7B	LLaVA-v1.5	384	84.9	1416.4	62.7	61.2
TokLIP (Lin et al., 2025)	Qwen2.5-7B-Ins	LLaVA-v1.5	384	82.7	1410.2	65.2	59.3
SemHiTok-384(Ours)	Vicuna-7B	LLaVA-v1.5	384	86.3	1465.6	64.1	62.3

283
 284
 285 j_{th} semantic code in the i_{th} pixel sub-codebook, the discrete code index in the completed codebook
 286 is $h = i \times m + j$, where m is the sub-codebook size. It is also worth noting that the vocabulary
 287 expansion is merely for implementation convenience. We still use the features extracted from SGHC
 288 as input and align with LLM through a lightweight adapter layer. After training is completed, we
 289 replace the visual component in the embedding layer in order to achieve consistency between training
 290 and inference. To enable LLM to better handle features at two different levels, we introduce a
 291 Dual-MLP adapter layer, which projects semantic features and pixel features separately, and then
 292 concatenates them along the dimension before feeding them into the LLM. To enable classifier-free
 293 guidance (Ho & Salimans, 2022), we randomly replace the text condition with a probability of 0.1 to
 294 the unconditioned text during training. More deployment details are provided in the **Supplementary**
Material 8.2.

295 3 EXPERIMENTS

296 3.1 EXPERIMENTAL SETUP

300 **Tokenizer.** For the semantic branch, we employ SigLIP (Zhai et al., 2023) as the semantic encoder
 301 and three self-attention layers as the semantic decoder to reconstruct semantic features. For the pixel
 302 branch, we employ ViT as both the pixel encoder and decoder, assigning 8 pixel sub-codes to each
 303 semantic code. More tokenizer detail, please refer to **Supplementary Material 8.3.**

305 **Unified MLLM.** We use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base LLM, and expand its
 306 vocabulary and output head layer. We evaluate visual understanding on standard VQA benchmarks
 307 including SEEDB (Li et al., 2023a), POPE (Li et al., 2023c), GQA (Hudson & Manning, 2019),
 308 MMMU (Yue et al., 2024), MMB (Liu et al., 2024b) and MME (Fu et al., 2023). For visual generation
 309 evaluation, we report results on MJHQ-30K (Li et al., 2024c) and GenAI-Bench (Li et al., 2024a).
 310 More unified MLLM detail, please refer to **Supplementary Material 8.4.**

311 3.2 UNIFIED IMAGE TOKENIZER

313 **Image Reconstruction.** We present the reconstruction performance on the ImageNet-50k validation
 314 set in Tab.1. Notably, SemHiTok excels in reconstruction quality compared to the unified tokenizer,
 315 recording an impressive 1.16 rFID with 16 \times downsampling ratio. While SemHiTok’s vocabulary
 316 size(approx 196k) appears larger than baselines, it is crucial to consider the effective representational
 317 capacity defined by the code shape. VILA-U(using RQ) and FQGAN(using Product Quantization)
 318 operate within a combinatorial search space(N^D or $N_1 \times N_2$), resulting in a significantly larger
 319 effective capacity than SemHiTok’s linearly constrained structure($K \times m$). Furthermore, these
 320 approaches typically employ a denser code shape, whereas SemHiTok relies on a single unified
 321 hierarchical index. This indicates that our superior performance derives from the structured efficiency
 322 of SGHC rather than brute-force capacity expansion. Increasing the training 384 resolution led to a
 323 significant improvement in the rFID score, reaching 0.66. The results validate the effectiveness of
 SGHC design in modeling pixel feature space of the semantic code.

Table 3: Quantitative results on multimodal understanding benchmarks. SemHiTok achieves SOTA performance on most benchmarks among *Und&Gen Discrete* MLLMs, and is comparable to or even surpasses some *Only Und* and *Und&Gen. Continuous* models. The performance on *Und&Gen Discrete* with top-1 and top-2 values is denoted in bold and underline, respectively.

Method	# Params	Res.	SEED	POPE	GQA	MMMU	MMB	MME	MME-P	MMV
<i>Only Und.</i>										
LLaVA-Phi (Zhu et al., 2024b)	2.7B	256	-	85.0	-	-	59.8	-	1335.1	28.9
LLaVA-v1.5 (Liu et al., 2023b)	7B	336	58.6	85.9	62.0	35.4	64.3	-	1510.7	31.1
Qwen-VI-Chat (Bai et al., 2023b)	7B	448	57.7	-	57.5	30.5	-	1848.3	1487.5	-
ShareGPT4V (Chen et al., 2024b)	7B	336	69.7	-	63.3	37.2	68.8	1943.8	1567.4	37.6
<i>Und&Gen. Continuous</i>										
LaVIT (Jin et al., 2023)	7B	224	-	-	46.8	-	58.0	-	-	-
Janus (Wu et al., 2024a)	1.5B	384	63.7	87.0	59.1	30.5	69.4	-	1338.0	34.3
Janus-Pro-1B (Chen et al., 2025)	1.5B	384	68.3	86.2	58.9	38.9	65.5	-	1444.0	-
MAR (Wu et al., 2025)	1.5B	512	67.1	87.6	58.9	38.9	65.5	-	1155.0	-
<i>Und&Gen. Discrete</i>										
LWM (Liu et al., 2024a)	7B	256	-	75.2	44.8	-	-	-	-	9.6
SEED-LLaMA (Li et al., 2024b)	13B	256	53.7	-	-	-	-	-	-	-
Show-o (Xie et al., 2024)	1.5B	256	-	80.0	-	26.7	-	-	1097.2	-
Liquid (Wu et al., 2024b)	7B	512	-	81.1	71.3	-	-	-	1119.3	-
EMU3 (Wang et al., 2024c)	8B	512	68.2	85.2	60.3	31.6	58.5	1509.9	1243.8	37.2
VILA-U (Wu et al., 2024c)	7B	256	56.3	83.9	58.3	-	-	-	1336.2	27.7
VILA-U (Wu et al., 2024c)	7B	384	59.0	85.8	60.8	-	-	-	1401.8	33.5
UniToken (Jiao et al., 2025)	7B	384	69.3	-	-	32.8	69.9	-	-	-
TokLIP (Lin et al., 2025)	7B	384	76.9	84.1	59.5	43.1	67.6	-	1488.4	29.8
TokenFlow-B (Qu et al., 2024)	13B	224	60.4	84.0	59.3	34.2	55.3	1660.4	1353.6	22.4
TokenFlow-L (Qu et al., 2024)	13B	256	62.6	85.0	60.3	34.4	60.3	1622.9	1365.4	27.7
SynerGen-VL (Li et al., 2025)	2.4B	512	62.0	85.3	59.7	34.2	53.7	1837.0	1381.0	34.5
SemHiTok(Ours)	7B	256	69.7	83.4	60.3	39.3	72.3	1775.9	1449.0	30.5
SemHiTok(Ours)	7B	384	79.8	85.5	61.7	41.0	75.2	1993.8	1512.8	36.6

Table 4: Comparison of generation quality on GenAI and MJHQ30K. SemHiTok achieves comparable results with specialist models and unified MLLMs.

Model	Params	Type	#Training Images	Res.	GenAI-Bench		MJHQ30K
					Basic \uparrow	Advanced \uparrow	gFID \downarrow
<i>Only Gen.</i>							
SD v2.1 (Rombach et al., 2022b)	–	Diff	2000M	1024	0.78	0.62	–
DALL-E 3 (Betker et al., 2023)	–	Diff	–	1024	0.90	0.70	–
PixArt- α (Chen et al., 2023)	0.6B	Diff	–	1024	–	–	6.14
SDXL (Podell et al., 2023)	2.6B	Diff	2000M	1024	0.83	0.63	9.55
Playgroundv2.5 (Li et al., 2024c)	–	Diff	–	1024	–	–	4.48
<i>Und&Gen.</i>							
LWM (Liu et al., 2024a)	7B	AR	–	256	0.63	0.53	17.77
Show-o (Xie et al., 2024)	1.5B	Diff	36M	256	0.70	0.60	15.18
Janus (Wu et al., 2024a)	1.3B	AR	65M	384	–	–	10.10
VILA-U (Wu et al., 2024c)	7B	AR	15M	256	0.76	0.64	12.81
VILA-U (Wu et al., 2024c)	7B	AR	15M	384	0.73	0.61	7.69
SynerGen-VL (Li et al., 2025)	2.4B	AR	25M	256	–	–	6.10
SDE(MUSE-VL) (Xie et al., 2025)	7B	AR	10M	256	–	–	7.73
ILLUME (Wang et al., 2024a)	7B	AR	15M	512	0.75	0.60	7.76
ILLUME+ (Huang et al., 2025a)	7B	AR	15M	512	0.75	0.60	7.76
TokenFlow (Qu et al., 2024)	7B	AR	60M	256	0.65	0.65	7.78
Liquid (Wu et al., 2024b)	7B	AR	30M	512	0.83	0.65	5.47
UniTok (Ma et al., 2025)	7B	AR	30M	256	0.85	0.67	7.46
SemHiTok(ours)	7B	AR	15M	256	0.83	0.64	5.40
SemHiTok(ours)	7B	AR	15M	384	0.83	0.66	5.70

LLaVa-v1.5 Multimodal Understanding. To ensure a fair comparison, we conduct experiments to evaluate the multimodal understanding performance of existing open-source tokenizers and SemHiTok under the standard LLaVA-v1.5 setting. The results are as shown in Tab.2. LlamaGen’s performance is notably inferior, a consequence of its deficient pre-alignment with text. In contrast, unified image tokenizers show considerable advancements in understanding. However, due to their inherent hybrid structures or joint training strategies, a substantial disparity in understanding performance remains between prior discrete tokenizers and continuous representations. Notably, even though TokLIP

378 uses a stronger base model (Qwen2.5-7B-Ins), its performance remains inferior to ours. SemHiTok
 379 achieves state-of-the-art results for discrete tokenizers, nearing the performance of continuous inputs
 380 such as SigLIP.
 381

382 **3.3 UNIFIED MLLM**
 383

384 **Multimodal Understanding.** We evaluate the understanding performance of SemHiTok on diverse
 385 benchmarks in Table 3. *Und* means support multimodal understanding, *Gen* means support text-to-
 386 image generation. Among *Und&Gen*. *Discrete*, SemHiTok achieves state-of-the-art performance
 387 on most metrics, such as SEED, MMB, MME, and MME-P. Compared to other unified tokenizers
 388 (e.g., VILA-U, TokenFlow, UniToken), our models demonstrate significant advantages. Notably,
 389 our model surpasses expert-level models on key benchmarks, achieving 3.8 and 6.4 points higher
 390 than ShareGPT4V on MMMU and MMB, respectively. This bridges the gap between discrete visual
 391 tokens and continuous visual tokens in multimodal understanding tasks, strongly demonstrating the
 392 superiority and potential of our approach. Visualizations on understanding tasks are available in
 393 **Supplementary Material 8.6**.
 394

395 **Text-to-Image Generation** To evaluate the text-to-image generation, we use GenAI-bench (Li
 396 et al., 2024a) and MJHQ30K (Li et al., 2024c) benchmark, and the results are shown in Tab4. For
 397 GenAI-bench, we use clip-flant5-xxl as the VQA score model to reflect the consistency between text
 398 descriptions and generated images. On this challenging benchmark, our model achieves competitive
 399 performance, closely matching Liquid, even though Liquid employs a generation-focused tokenizer.
 400 Furthermore, our model even outperformed some diffusion-based expert models, such as SDXL
 401 and SD v2. The strong results underscore the superior capability of our unified MLLM in complex
 402 text-to-image generation tasks. For MJHQ30K, we use the generation FID metric on generated
 403 images and high-quality images. On this benchmark, SemHiTok-256 attains 5.40 gFID, setting a
 404 new state-of-the-art in autoregressive image generation. **In addition, we conduct further quantitative**
 405 **comparisons on GenEval (Ghosh et al., 2023) and DPG (Hu et al., 2024), which are available in**
 406 **Supplementary Material 8.7.** More quantitative analysis results and visualizations on generation
 407 tasks are available in **Supplementary Material 8.8**.
 408

409 **3.4 QUANTITATIVE ANALYSIS OF PIXEL FEATURES IN THE SEMANTIC CODEBOOK**
 410

411 In Fig.4, we provide visualization results showing that image patches corresponding to the same
 412 semantic code share similar pixel features. To further support this analysis, we attempt to provide
 413 quantitative evidence using the following method:

- 414 1. Using the tokenizer to extract the code indices along with their corresponding image patches.
- 415 2. Applying the **DCT(Discrete Cosine Transform)** (Rao & Yip, 2014) to extract patch's pixel
 416 features.
- 417 3. For each code, we compute the variance of the DCT features extracted from its associated image
 418 patches, followed by **averaging these variances over all codes**, denoted as V_{mean} . The more
 419 similar the pixels of the tokenized results are, the smaller the V_{mean} becomes.
- 420 4. Computing the **global variance of all image patches**, denoted as V_{global} .
- 421 5. Computing **Variance Reduction Ratio (VRR)**, denoted as $VRR = 1 - V_{mean}/V_{global}$. The
 422 larger VRR indicates that the patches corresponding to the given code have more similar pixel
 423 features.

424 We randomly sampled 10K images from the ImageNet-Val (50K) dataset across 5 independent runs.
 425 The Random Baseline refers to randomly tokenized results, serving as the lower bound for the VRR
 426 metric. VQGAN (Yu et al., 2021a), as an expert model for pixel reconstruction, serves as the standard
 427 reference for the VRR metric.

428 As illustrated in Tab. 5, the results provide strong quantitative evidence for the effectiveness of
 429 our Semantic-Guided Hierarchical Codebook (SGHC) design. **1.)Validation of Semantic-Pixel**
 430 **Correlation.** The $SemHiTok_{sem}$ achieves a VRR of 5.245%, which is significantly higher than the
 431 Random Baseline (0.185%). This quantitatively verifies our observation in Subsec2.2 that image
 432 patches assigned to the same semantic code naturally exhibit intrinsic pixel-level similarities. This
 433 correlation forms the theoretical foundation for using semantic codes to guide pixel quantization.
 434 **2.)The Necessity of Pixel Branch.** However, compared to VQGAN (9.535%), the lower VRR

432 **Table 5:** Quantitative evaluation of pixel consistency using Variance Reduction Ratio (VRR).
 433 $\text{SemHiTok}_{\text{sem}}$ significantly outperforms the random baseline, verifying the intrinsic semantic-pixel
 434 correlation. Furthermore, our hierarchical refinement ($\text{SemHiTok}_{\text{pix}}$) achieves the best consistency,
 435 exceeding the standard VQGAN baseline.

Experiment	Random Baseline	$\text{SemHiTok}_{\text{sem}}$	VQGAN	$\text{SemHiTok}_{\text{pix}}$
VRR	$0.185\% \pm 0.005\%$	$5.245\% \pm 0.085\%$	$9.535\% \pm 0.095\%$	$13.705\% \pm 0.075\%$

440 **Table 6:** Impact of key design choices on reconstruction and multimodal understanding.
 441

Semantic Codebook	SGHC	Dual MLP	Enhance Decoder	MME-P↑	MMB↑	SEED↑	MMU↑	rFID↓
✓				1387.5	61.3	62.3	35.6	3.17
✓	✓			1355.8	60.7	62.9	35.8	1.42
✓	✓	✓		1393.0	61.6	63.2	36.1	1.42
✓	✓	✓	✓	1393.0	61.6	63.2	36.1	1.16

450 of $\text{SemHiTok}_{\text{sem}}$ confirms that semantic codes alone are insufficient to capture fine-grained high-
 451 frequency details. This justifies the necessity of our pixel branch design to bridge the gap between
 452 semantic abstraction and pixel fidelity. **3.)Superiority of Hierarchical Design.** Most notably,
 453 $\text{SemHiTok}_{\text{pix}}$ achieves the highest VRR of **13.705%**, surpassing the expert pixel reconstruction
 454 model VQGAN by a substantial margin (+4.17%). This result demonstrates that decomposing the
 455 complex global pixel space into semantic-conditioned sub-spaces allows for significantly tighter
 456 feature clustering and lower variance than standard global quantization methods. This explains
 457 why SemHiTok achieves superior reconstruction performance despite utilizing a decoupled training
 458 strategy.

4 ABLATION

4.1 IMPACT OF KEY DESIGN.

463 In Tab.6, we validate the impact of our key design choices in SemHiTok : semantic codebook,
 464 semantic-guided hierarchical codebook(SGHC), Dual MLP, and Enhance Deocoder. For efficiency,
 465 we only test the understanding performance under LLaVA-v1.5, and train 40 epochs on ImageNet-1K
 466 for reconstruction tasks. We begin with the semantic codebook, which suffices for multimodal
 467 understanding but suffers from poor reconstruction. Incorporating SGHC enables pixel reconstruction
 468 and reduces rFID by 1.75, without noticeably affecting understanding performance. Introducing
 469 Dual-MLP further enhances multimodal understanding, even surpassing the semantic codebook alone,
 470 highlighting the effectiveness of multi-level feature modeling. Finally, a stronger pixel decoder
 471 brings additional improvements in reconstruction quality. figure 5 demonstrates the effects of various
 472 modules on reconstruction results. Compared to the semantic codebook, SGHC delivers more detailed
 473 reconstructions. Additionally, the enhanced decoder boosts performance on difficult samples. More
 474 reconstruction comparisons are available in [Supplementary Material 8.9](#).

4.2 IMPACT OF TRAINING STRATEGY AND STRUCTURE.

477 As shown in Table 7 (**Exp 1**), we used the same architecture as SDE and adopted a joint training
 478 strategy. Its performance is observed to be the lowest across both multimodal understanding and
 479 reconstruction tasks. In **Exp 2**, using the same architecture as SemHiTok but with joint training,
 480 the performance showed an overall improvement compared to **Exp 1**. Furthermore, to examine the
 481 influence of architectural design, we conduct **Exp 3**, where two separately pretrained tokenizers
 482 are employed to independently extract semantic and pixel information. Specifically, we use the
 483 semantic branch of SemHiTok and LlamaGen. Compared with **Exp 3**, SemHiTok achieves superior
 484 performance on both multimodal understanding and reconstruction tasks. The above experiments
 485 demonstrate the advantages of structural decoupling and training decoupling in jointly modeling
 semantic and pixel-level information. **Exp 3** and **Exp 4** suggest that naively incorporating pixel

486
487
488
489 Table 7: Impact of training strategy and structure. DStruct: Using different models to extract
490 information at various levels; DTrain: Adopt a phased optimization training strategy
491
492
493
494
495

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539	Exp	DStruct	DTrain	Multimodal understanding				Reconstruction	
				GQA↑	MME-P↑	SEEDB↑	POPE↑	rFID↓	Usage↑
1	✗	✗	✗	58.0	1240.0	56.7	77.3	3.78	92.9%
2	✓	✗	✗	57.8	1357.4	55.3	80.4	3.22	45.9%
3	✓	✓	✓	58.7	1210.9	56.1	80.1	2.19	97.0%
4	SemHiTok			60.3	1355.8	62.9	82.6	1.42	93.7%

497 features may negatively affect the alignment between image features and the LLM. This suggests that
498 naively incorporating pixel features may negatively affect the alignment between image features and
499 the LLM. In contrast, SemHiTok leverages pixel features as a complementary refinement to semantic
500 features, thereby effectively bridging the gap between semantic and pixel representations.

501 4.3 MORE COMPARISONS AND ABLATION STUDIES

502 In [Supplementary Material 8.5](#), we compare our method with others across additional reconstruction
503 metrics. Meanwhile, to further illustrate how different hyperparameters in our method affect model
504 performance, we also conduct ablation studies on Concat Type and Sub-Codebook Size in [Supple-
505 mentary Material 8.10](#), Semantic VQ Type, Codebook dim and [Codebook size in Supplementary
506 Material 8.11](#), and different $K \times m$ and more comparison with other large codebook reconstruction
507 methods in [Supplementary Material 8.12](#).

508 5 RELATED WORK

509 We present and analyze the Specialized Image Tokenizer and Unified Image Tokenizer. Please refer
510 to [Supplementary Materia 8.13 and 8.14](#).

511 6 CONCLUSION

512 **Conclusion:** In this work, we introduce SemHiTok, a unified image tokenizer that implements a better
513 trade-off between semantic and pixel information, and is fully compatible with and readily deployable
514 within existing next-token MLLMs architectures. SemHiTok innovatively utilizes a semantic-guided
515 hierarchical codebook (SGHC) to realize the reconstruction capability of pixel features without
516 affecting the understanding performance of the original semantic codebook, and achieves SOTA
517 performance on multimodal understanding under LLaVA-v1.5 setting and on ImageNet-50k recon-
518 struction in unified image tokenizers. We further develop a unified MLLM with SemHiTok, which
519 demonstrates competitive performance on both understanding and generation tasks compared to
520 existing unified MLLMs. This highlights the strong potential of SemHiTok and further bridges the
521 gap between discrete and continuous tokenizers, providing the community with a powerful discrete
522 tokenizer.

523 **Limitation:** We present two limitations: (1). *Low generation efficiency*: Owing to the use of standard
524 image quantization methods and settings, each 256-resolution image is represented by 256 tokens.
525 This results in relatively low efficiency and high computational cost. (2). *Unified large model
526 potential*: In tasks involving natural language understanding and multimodal reasoning, advanced
527 post-training techniques such as Chain-of-Thought (CoT) are not explored. This remains a promising
528 direction for future research in the community.

529 **Future Work:** In the future, we can explore the potential of unified image tokenizers and test their
530 performance on more difficult tasks, such as image editing and multiple rounds of conversations. In
531 addition, improving the compression ratio of the model and designing a tokenizer that serializes the
532 image in one dimension are also expected.

540 7 STATEMENT
541542 7.1 ETHICS STATEMENT
543544 This research does not involve potentially harmful insights, methodologies, or applications, and it
545 raises no concerns regarding conflicts of interest, sponsorship, discrimination, bias, fairness, privacy,
546 security, legal compliance, or research integrity.547 7.2 REPRODUCIBILITY STATEMENT
548549 **Data.** The training datasets employed in this study are detailed in Appendix.8.3 and Appendix. 8.4,
550 and all are publicly accessible open-source resources.
551552 **Method.** To support reproducibility, we elaborate on the methodological details in Section.2, and the
553 implementation will be open-sourced after acceptance.
554555 **Performance.** All evaluations are carried out on open benchmarks, thereby ensuring the reproducibil-
556 ity of our results.
557558 **Code And Model Weight.** We will open-source the code and model weight files after acceptance.
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

594 REFERENCES
595

596 Inclusion AI, Biao Gong, Cheng Zou, Dandan Zheng, Hu Yu, Jingdong Chen, Jianxin Sun, Junbo
597 Zhao, Jun Zhou, Kaixiang Ji, et al. Ming-lite-uni: Advancements in unified architecture for natural
598 multimodal interaction. *arXiv preprint arXiv:2505.02471*, 2025.

599 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
600 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
601 *ArXiv*, abs/2308.12966, 2023a. URL <https://api.semanticscholar.org/CorpusID:263875678>.

603 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
604 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
605 *arXiv preprint arXiv:2308.12966*, 1(2):3, 2023b.

606 Zechen Bai, Jianxiong Gao, Ziteng Gao, Pichao Wang, Zheng Zhang, Tong He, and Mike Zheng
607 Shou. Factorized visual tokenization and generation. *arXiv preprint arXiv:2411.16681*, 2024.

609 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
610 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
611 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

612 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
613 Coyo-700m: Image-text pair dataset, 2022.

615 Shiyue Cao, Yueqin Yin, Lianghua Huang, Yu Liu, Xin Zhao, Deli Zhao, and Kaigi Huang. Efficient-
616 vqgan: Towards high-resolution image generation with efficient vision transformers. In *Proceedings
617 of the IEEE/CVF International Conference on Computer Vision*, pp. 7368–7377, 2023.

618 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
619 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the
620 IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

622 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
623 Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
624 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

625 Kai Chen, Yunhao Gou, Runhui Huang, Zhili Liu, Dixin Tan, Jing Xu, Chunwei Wang, Yi Zhu,
626 Yihan Zeng, Kuo Yang, et al. Emova: Empowering language models to see, hear and speak with
627 vivid emotions. *arXiv preprint arXiv:2409.18042*, 2024a.

628 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
629 Sharegpt4v: Improving large multi-modal models with better captions. In *European Conference
630 on Computer Vision*, pp. 370–387. Springer, 2024b.

632 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
633 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
634 scaling. *arXiv preprint arXiv:2501.17811*, 2025.

635 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
636 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
637 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision
638 and pattern recognition*, pp. 24185–24198, 2024c.

639 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
640 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
641 pp. 248–255. Ieee, 2009.

642 Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
643 Sun, Hongyu Zhou, Haoran Wei, et al. Dreamllm: Synergistic multimodal comprehension and
644 creation. *arXiv preprint arXiv:2309.11499*, 2023.

646 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
647 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. *arXiv preprint arXiv:2306.13394*, 2023.

648 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
 649 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
 650 *arXiv preprint arXiv:2404.14396*, 2024.

651 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 652 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 653 52132–52152, 2023.

654 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 655 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information
 656 processing systems*, 27, 2014.

657 Jiaming Han, Hao Chen, Yang Zhao, Hanyu Wang, Qi Zhao, Ziyan Yang, Hao He, Xiangyu Yue,
 658 and Lu Jiang. Vision as a dialect: Unifying visual understanding and generation via text-aligned
 659 representations. *arXiv preprint arXiv:2506.18898*, 2025.

660 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 661 2022.

662 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 663 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.

664 Runhui Huang, Chunwei Wang, Junwei Yang, Guansong Lu, Yunlong Yuan, Jianhua Han, Lu Hou,
 665 Wei Zhang, Lanqing Hong, Hengshuang Zhao, et al. Illume+: Illuminating unified mllm with dual
 666 visual tokenization and diffusion refinement. *arXiv preprint arXiv:2504.01934*, 2025a.

667 Ziyuan Huang, DanDan Zheng, Cheng Zou, Rui Liu, Xiaolong Wang, Kaixiang Ji, Weilong Chai,
 668 Jianxin Sun, Libin Wang, Yongjie Lv, et al. Ming-univision: Joint image understanding and
 669 generation with a unified continuous tokenizer. *arXiv preprint arXiv:2510.06590*, 2025b.

670 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 671 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer
 672 vision and pattern recognition*, pp. 6700–6709, 2019.

673 J Stuart Hunter. The exponentially weighted moving average. *Journal of quality technology*, 18(4):
 674 203–210, 1986.

675 Yang Jiao, Haibo Qiu, Zequn Jie, Shaoxiang Chen, Jingjing Chen, Lin Ma, and Yu-Gang Jiang.
 676 Unitoken: Harmonizing multimodal understanding and generation through unified visual encoding.
 677 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3600–3610, 2025.

678 Yang Jin, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin Chen, Chenyi Lei,
 679 An Liu, Chengru Song, et al. Unified language-vision pretraining in llm with dynamic discrete
 680 visual tokenization. *arXiv preprint arXiv:2309.04669*, 2023.

681 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 682 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer
 683 Vision and Pattern Recognition*, pp. 11523–11532, 2022.

684 Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Li, Yixin Fei, Kewen Wu, Tiffany Ling, Xide Xia,
 685 Pengchuan Zhang, Graham Neubig, et al. Genai-bench: Evaluating and improving compositional
 686 text-to-visual generation. *arXiv preprint arXiv:2406.13743*, 2024a.

687 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 688 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 689 2023a.

690 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 691 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF
 692 Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024b.

693 Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2.
 694 5: Three insights towards enhancing aesthetic quality in text-to-image generation. *arXiv preprint
 695 arXiv:2402.17245*, 2024c.

702 Hao Li, Changyao Tian, Jie Shao, Xizhou Zhu, Zhaokai Wang, Jinguo Zhu, Wenhan Dou, Xiaogang
 703 Wang, Hongsheng Li, Lewei Lu, et al. Synergen-vl: Towards synergistic image understanding
 704 and generation with vision experts and token folding. In *Proceedings of the Computer Vision and*
 705 *Pattern Recognition Conference*, pp. 29767–29779, 2025.

706 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 707 training for unified vision-language understanding and generation. In *International conference on*
 708 *machine learning*, pp. 12888–12900. PMLR, 2022.

709 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 710 pre-training with frozen image encoders and large language models. In *International conference*
 711 *on machine learning*, pp. 19730–19742. PMLR, 2023b.

712 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 713 hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023c.

714 Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichek Vong, and “Teknium”.
 715 Openorca: An open dataset of gpt augmented flan reasoning traces, 2023.

716 Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan Sun,
 717 and Ying Shan. Toklip: Marry visual tokens to clip for multimodal comprehension and generation.
 718 *arXiv preprint arXiv:2505.05422*, 2025.

719 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
 720 language with ringattention. *arXiv e-prints*, pp. arXiv–2402, 2024a.

721 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 722 *neural information processing systems*, 36:34892–34916, 2023a.

723 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 724 *neural information processing systems*, 36:34892–34916, 2023b.

725 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 726 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
 727 In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

728 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
 729 An open-source project toward democratizing auto-regressive visual generation. *arXiv preprint*
 730 *arXiv:2409.04410*, 2024.

731 Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiao-
 732 juan Qi. Unitok: A unified tokenizer for visual generation and understanding. *arXiv preprint*
 733 *arXiv:2502.20321*, 2025.

734 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 735 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 736 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

737 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K Du, Zehuan
 738 Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding and
 739 generation. *arXiv preprint arXiv:2412.03069*, 2024.

740 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 741 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 742 models from natural language supervision. In *International conference on machine learning*, pp.
 743 8748–8763. PMLR, 2021a.

744 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 745 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 746 models from natural language supervision. In *International conference on machine learning*, pp.
 747 8748–8763. PMLR, 2021b.

748 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 749 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

756 K Ramamohan Rao and Ping Yip. *Discrete cosine transform: algorithms, advantages, applications*.
 757 Academic press, 2014.

758

759 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 760 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 761 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022a.

762 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 763 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 764 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022b.

765

766 Fengyuan Shi, Zhuoyan Luo, Yixiao Ge, Yujiu Yang, Ying Shan, and Limin Wang. Taming scalable
 767 visual tokenizer for autoregressive image generation. *arXiv preprint arXiv:2412.02692*, 2024.

768 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 769 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 770 arXiv:2406.06525*, 2024a.

771

772 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
 773 techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

774 Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao,
 775 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
 776 learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 777 pp. 14398–14409, 2024b.

778

779 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 780 arXiv:2405.09818*, 2024.

781 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 782 Scalable image generation via next-scale prediction. *Advances in neural information processing
 783 systems*, 37:84839–84865, 2025.

784

785 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 786 neural information processing systems*, 30, 2017.

787 Chunwei Wang, Guansong Lu, Junwei Yang, Runhui Huang, Jianhua Han, Lu Hou, Wei Zhang,
 788 and Hang Xu. Illume: Illuminating your llms to see, draw, and self-enhance. *arXiv preprint
 789 arXiv:2412.06673*, 2024a.

790

791 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 792 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 793 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

794

795 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 796 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 797 *arXiv preprint arXiv:2409.18869*, 2024c.

798

799 Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.
 800 Masked feature prediction for self-supervised visual pre-training. In *Proceedings of the IEEE/CVF
 conference on computer vision and pattern recognition*, pp. 14668–14678, 2022.

801

802 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
 803 Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal
 understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024a.

804

805 Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai,
 806 and Xiang Bai. Liquid: Language models are scalable multi-modal generators. *arXiv preprint
 807 arXiv:2412.04332*, 2024b.

808

809 Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li, and
 Chen Change Loy. Harmonizing visual representations for unified multimodal understanding and
 generation. *arXiv preprint arXiv:2503.21979*, 2025.

810 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 811 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 812 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024c.

813 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 814 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 815 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024d.

816 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 817 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 818 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

819 Rongchang Xie, Chen Du, Ping Song, and Chang Liu. Muse-vl: Modeling unified vlm through se-
 820 mantic discrete encoding. In *Proceedings of the IEEE/CVF International Conference on Computer
 821 Vision*, pp. 24135–24146, 2025.

822 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
 823 Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow complex
 824 instructions. In *The Twelfth International Conference on Learning Representations*, 2024a.

825 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
 826 Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
 827 nothing. *arXiv preprint arXiv:2406.08464*, 2024b.

828 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 829 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 830 arXiv:2412.15115*, 2024.

831 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 832 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.

833 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
 834 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
 835 *arXiv preprint arXiv:2110.04627*, 2021a.

836 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
 837 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
 838 *arXiv preprint arXiv:2110.04627*, 2021b.

839 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 840 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 841 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

842 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
 843 An image is worth 32 tokens for reconstruction and generation. *Advances in Neural Information
 844 Processing Systems*, 37:128940–128966, 2025.

845 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 846 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 847 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on
 848 Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

849 Kaiwen Zha, Lijun Yu, Alireza Fathi, David A Ross, Cordelia Schmid, Dina Katabi, and Xiuye Gu.
 850 Language-guided image tokenization for generation. *arXiv preprint arXiv:2412.05796*, 2024.

851 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 852 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 853 pp. 11975–11986, 2023.

854 Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantization
 855 for tokenized image synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 856 and Pattern Recognition*, pp. 18467–18476, 2023.

864 Yue Zhao, Fuzhao Xue, Scott Reed, Linxi Fan, Yuke Zhu, Jan Kautz, Zhiding Yu, Philipp Krähenbühl,
865 and De-An Huang. Qlip: Text-aligned visual tokenization unifies auto-regressive multimodal
866 understanding and generation. *arXiv preprint arXiv:2502.05178*, 2025.

867 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
868 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
869 diffuse images with one multi-modal model. *arXiv preprint arXiv:2408.11039*, 2024.

870 Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vqgan to 100,000
871 with a utilization rate of 99%. *arXiv preprint arXiv:2406.11837*, 2024a.

872 Yichen Zhu, Minjie Zhu, Ning Liu, Zhiyuan Xu, and Yixin Peng. Llava-phi: Efficient multi-modal
873 assistant with small language model. In *Proceedings of the 1st International Workshop on Efficient
874 Multimedia Computing under Limited*, pp. 18–22, 2024b.

875 Yongxin Zhu, Bocheng Li, Yifei Xin, Zhihua Xia, and Linli Xu. Addressing representation collapse
876 in vector quantized models with one linear layer. In *Proceedings of the IEEE/CVF International
877 Conference on Computer Vision*, pp. 22968–22977, 2025.

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 8 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL
919920 8.1 LLM USAGE STATEMENT
921922 We clarify that the use of LLMs in this study is restricted to writing assistance, specifically for
923 grammar correction and enhancing readability. No LLM was involved in the research design,
924 experimental execution, or data analysis.
925926 8.2 DEPLOYMENT DETAILS OF UNIFIED MLLM.
927928 **Training Data Form.** For multimodal understanding, we use <lim_start> and <lim_end> to delimit
929 the image segment within the input sequence. To distinguish between modalities and enable visual
930 content generation, we insert special tokens: <IMG_XXXXX>, which represent image codes in
931 LLMs' vocabulary. Specifically, the i-th code in the unified tokenizer codebook corresponds to
932 <IMG_i>. In addition, we add <start_of_image> and <end_of_image> to indicate the start and end of
933 image generation.
934935 **Vocabulary Embedding Processing Flow.** For understanding samples, we follow the LLaVA setting:
936 discrete features are first extracted by the tokenizer and then fed into the LLM through an adapter
937 layer. To ensure consistency between understanding and generation, we employ the same features for
938 generation samples instead of using the embeddings of <IMG_XXXXX>. After training, we replace
939 the visual code embedding in the vocabulary to align training with inference. The detailed procedure
940 is illustrated in Algorithm 1.
941942 **Algorithm 1:** Procedure: Training and Generation Pipeline
943944 **Before Training::**
945946 1. Add special tokens <IMG_XXXXX> into LLM vocabulary 2. Preprocess training images, e.g.
947 “generate a dog + <Image>” →
948 “generate a dog + <start_of_image><IMG_i>...<IMG_k><end_of_image>”
949950 **During Training::**
951952 1. Feed preprocessed samples into LLM tokenizer → text_id ;
953 2. Lookup embedding V from $\text{text_id} \rightarrow E_{\text{text}}$;
954 3. Get image IDs from $\text{text_id} \rightarrow \text{img_id}$;
955 Lookup unified codebook embedding from $\text{img_id} \rightarrow E_{\text{img}}$;
956 Apply adapter layer: $E_{\text{img}} \rightarrow E'_{\text{img}}$;
957 4. Replace image embeddings in E_{text} with $E'_{\text{img}} \rightarrow E'_{\text{text}}$;
958 5. Feed E'_{text} into LLM backbone for training;
959960 **Generation::**
961962 1. Apply adapter layer on codebook embeddings $C_{\text{img}} \rightarrow C'_{\text{img}}$;
963 2. Replace image part of V with $C'_{\text{img}} \rightarrow V'$;
964 3. Start autoregressive generation;
965966 8.3 TOKENIZER EXPERIMENTAL DETAILS
967968 The training of SemHiTok is conducted in two stages. During semantic codebook training, we train
969 the semantic tokenizer for one epoch on 50M subset of COYO-700M(Byeon et al., 2022). For the
970 PRE stage, we first train the model(ViT-Base) on ImageNet(Deng et al., 2009), and then fine-tune on
971 50M COYO to improve its generalization, following LlamaGen(Sun et al., 2024a). To further improve
972 the reconstruction and generation performance, we enlarge the size of the pixel decoder(ViT-Large)
973 and fine-tune on the 20M COYO data and 20M MidJourney-style synthetic data. The full training
974 takes about 3 days on 32 v100 GPUs.
975976 8.4 UNIFIED MLLM EXPERIMENTAL DETAILS
977978 Following existing work(Wu et al., 2024c; Ma et al., 2025), we first pretrain the model and adapter
979 layer on a mix of multimodal data, which is composed of 3.5M language data from Magpie(Xu et al.,
980

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 8: More Comparison on more metrics for the reconstruction task.

Method	Res	Code Shape	Codebook Size	rFID \downarrow	PSNR \uparrow	SSIM \uparrow
LlamaGen (Sun et al., 2024a)	256	16×16	16,384	2.19	20.65	0.54
Show-o (Xie et al., 2024)	256	16×16	8192	3.21	21.34	0.59
TokenFlow (Qu et al., 2024)	256	16×16	16,384	1.37	21.41	0.69
SDE(MUSE-VL) (Xie et al., 2025)	256	16×16	32,768	2.26	20.14	0.65
QLIP-B (Lin et al., 2025)	256	16×16	2^{28}	3.21	21.34	0.59
UniTok (Ma et al., 2025)	256	$16 \times 16 \times 8$	$16,384 \times 4^\dagger$	0.41	27.28	0.77
SemHiTok(ours)	256	16×16	196,608	1.16	21.38	0.69

2024b) and Openorca(Lian et al., 2023), 10M caption image-text pairs data, and 15M MidJourney-style synthetic data. Subsequently, we finetune the model on 1M language dataset from Magpie(Xu et al., 2024b) and Evol-Instruct(Xu et al., 2024a), 4M generation data and 4M understanding data from emova(Chen et al., 2024a) and LLaVA-SFT(Liu et al., 2023b). The full training takes about 7 days on 32 A800 GPUs. During image generation inference, we apply classifier-free guidance(Ho & Salimans, 2022) with a scale factor of 2.5.

8.5 COMPARISON WITH OTHER METHODS ON MORE METRICS FOR THE RECONSTRUCTION TASK

We present the reconstruction metrics of several tokenizers in Tab. 8, including rFID, PSNR, and SSIM. Our method achieves competitive performance across multiple reconstruction task metrics.

8.6 VISUALIZATIONS ON UNDERSTANDING TASKS

We present more visualization of multimodal understanding samples in figure 6.

8.7 MORE COMPARISON OF GENERATION ON GENEVAL AND DPG

To more fully demonstrate the superiority of SemHiTok, we conduct further comparisons with other generative models and unified models on GenEval Ghosh et al. (2023) and DPG Hu et al. (2024). As shown in Tab.9, our method still demonstrates competitive performance.

8.8 VISUALIZATIONS ON GENERATION TASKS

We present more visualization of generated images in figure 7.

8.9 MORE VISUALIZED RECONSTRUCTION RESULTS FROM THE ABLATION OF KEY MODULE

We show more reconstruction effects on the ablation of key modules in figure 8.

8.10 IMPACT OF CONCAT TYPE AND SUB-CODEBOOK SIZE.

For efficiency, we only conduct training and evaluation on ImageNet-1K. We investigate the impact of the concat type of semantics between pixel and the sub-codebook size, on reconstruction performance as shown in Tab. 10. For the Concat type, w/o semantic tokens leads to a significant drop in reconstruction quality, with a core increase of 0.73 compared to the default setting. Furthermore, concatenation along the sequence length performs worse than along the dimension, as the two token sets are spatially aligned, making dimensional concatenation more appropriate. For sub-codebook size, increasing the size can improve the model’s reconstruction performance, but it exhibits marginal utility. In addition, the codebook usage significantly decreases when the sub-codebook size is set to 16, which indicates that too large a sub-codebook size is not cost-effective.

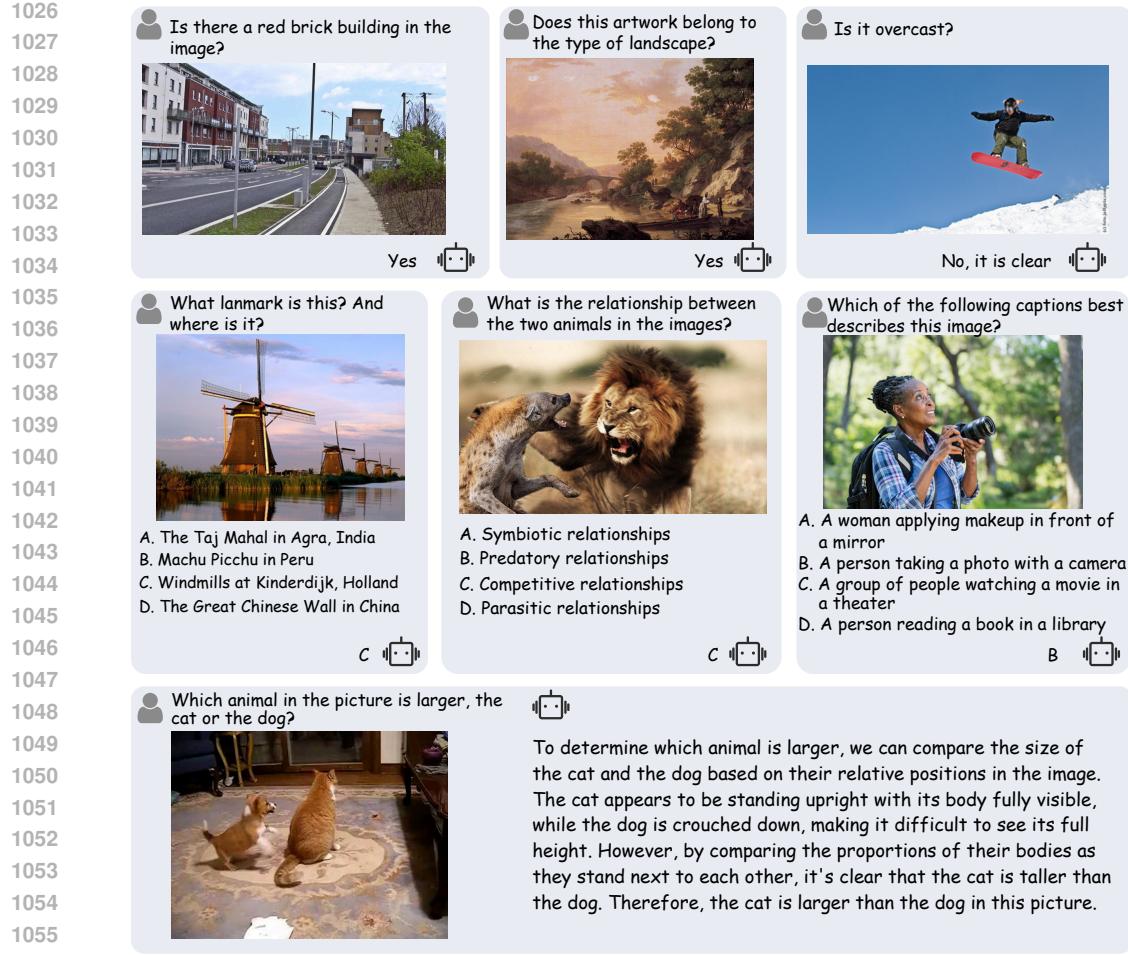


Figure 6: Visualizations on understanding tasks.

8.11 IMPACT OF SEMANTIC VQ TYPE, CODEBOOK DIM AND CODEBOOK SIZE.

In Tab.11, we ablate VQ type and codebook dimension on multimodal understanding. Specifically, Norm VQ is not suitable for semantic discretization and shows the worst performance in understanding tasks. This indicates that it is difficult to discretely model complex and rich semantic information by Norm VQ. Replacing it with vanilla VQ brings a clear improvement. To further stabilize the semantic codebook, we use EMA VQ, which achieves the best results. For the semantic codebook dimension, higher values offer better representation but with a marginal effect. We empirically set the dimension to 48 as the default.

Furthermore, we investigate the impact of semantic codebook size K on multimodal understanding in Table 12. The results indicate that while larger codebooks generally enhance performance, increasing K beyond 16,384 yields only marginal gains and leads to a noticeable decline in codebook usage. Therefore, we select $K = 16,384$ as the optimal balance between representational capacity and utilization efficiency.

8.12 IMPACT OF DIFFERENT $K \times m$ AND MORE COMPARISON WITH OTHER LARGE CODEBOOK RECONSTRUCTION METHODS.

We investigate the impact of semantic codebook size K and sub-codebook size m in Table 13. The results indicate that increasing either K or m generally enhances reconstruction fidelity (lower rFID). However, excessive expansion leads to a significant decline in codebook usage. Furthermore, when

1080 **Table 9: Comparison with other methods on GenEval and DPG Bench. SemHiTok still achieves**
 1081 **competitive performance even with a smaller amount of data.**

Model	Params	Type	#Training Images	Res.	GenEval	DPG
<i>Only Gen.</i>						
SD v2.1 (Rombach et al., 2022b)	–	Diff	2000M	1024	0.50	–
DALL-E 2 (Ramesh et al., 2022)	–	Diff	650M	1024	0.52	–
DALL-E 3 (Bettke et al., 2023)	–	Diff	–	1024	0.67	83.50
PixArt- α (Chen et al., 2023)	0.6B	Diff	–	1024	0.48	–
SDXL (Podell et al., 2023)	2.6B	Diff	2000M	1024	0.55	74.65
Playgroundv2.5 (Li et al., 2024c)	–	Diff	–	1024	–	75.47
<i>Und&Gen.</i>						
Transfusion (Zhou et al., 2024)	7.3B	AR	3.5B	256	0.63	–
Ming-Lite-Uni (AI et al., 2025)	8B	AR-Scale	5M	512	0.62	–
Show-o (Xie et al., 2024)	1.5B	Diff	36M	256	0.53	67.27
Emu3 (Wang et al., 2024c)	8B	AR	–	256	0.66	80.60
Janus (Wu et al., 2024a)	1.3B	AR	65M	384	0.61	–
SynerGen-VL (Li et al., 2025)	2.4B	AR	25M	256	0.61	–
UniFork (Li et al., 2025)	0.76B	AR	–	384	0.46	–
ILLUME (Wang et al., 2024a)	7B	AR	15M	512	0.61	–
ILLUME+ (Huang et al., 2025a)	3B	AR	46M	512	0.72	–
MUSE-VL (Xie et al., 2025)	7B	AR	10M	256	0.57	–
QLIP-B (Zhao et al., 2025)	1.5B	AR	18M	256	0.48	78.17
TokenFlow (Qu et al., 2024)	7B	AR	60M	256	0.63	73.38
MMaDA (Yang et al., 2025)	8B	Diff	–	512	0.63	69.97
Liquid (Wu et al., 2024b)	7B	AR	30M	512	0.55	83.45
UniTok (Ma et al., 2025)	7B	AR	30M	256	0.59	83.45
Tar-1.5B (Han et al., 2025)	3B	AR	46M	256	0.76	82.96
Tar-1.5B W/Self-Reflect (Han et al., 2025)	3B	AR	46M	256	0.78	84.10
Tar-7B (Han et al., 2025)	7B	AR	46M	256	0.84	84.19
Tar-7B W/Self-Reflect (Han et al., 2025)	7B	AR	46M	256	0.85	84.65
Ming-UniVision (Huang et al., 2025b)	16B-A3B	AR-Continuous	–	512	0.85	82.12
SemHiTok(ours)	7B	AR	15M	256	0.71	83.59

1109 controlling for the total codebook size ($K \times m$), we observe that prioritizing a larger semantic
 1110 codebook K yields slightly better performance than increasing the sub-codebook size m .

1111 To further demonstrate the effectiveness of our method, we conduct a more detailed comparison
 1112 with other approaches that use large codebooks. As show in Tab.14, we conduct comparisons on the
 1113 reconstruction task under two codebook sizes (65K and 262K). Under the 65K setting, our model
 1114 surpasses the expert reconstruction model while maintaining good usage. Under the 262K setting,
 1115 our method still achieves competitive performance compared to the expert model.

1117 8.13 SPECIALIZED IMAGE TOKENIZER

1119 **Tokenization for Generation.** Image tokenizers are crucial for autoregressive image generation(Van
 1120 Den Oord et al., 2017; Rombach et al., 2022a; Tian et al., 2025). VQVAE(Van Den Oord et al., 2017)
 1121 learns a discrete representation using a learnable codebook in auto-encoder architectures. VQGAN

1123 Table 10: Impact of Concat type and
 1124 sub-codebook size. w/o sem: not use
 1125 the semantic discrete token. The gray
 1126 bar represents the default setting in our
 1127 experiments.

Concat	Subc Size	rFID \downarrow	Usage \uparrow
w/o	12	1.99	95.4%
Len	12	1.45	94.1%
Dim	8	1.42	96.4%
Dim	12	1.26	93.7%
Dim	16	1.19	79.3%

1128 Table 11: Impact of VQ Type and dim of the semantic
 1129 codebook. We evaluate multimodal understanding per-
 1130 formance under the LLaVA-v1.5 setting. The gray bar
 1131 represents the default setting in our experiments.

VQ Type	Codebook Dim	MME-P \uparrow	MMB \uparrow	SEED \uparrow	MMU \uparrow
Norm	48	1249.6	52.2	52.8	34.8
Vanilla	48	1319.9	56.3	57.2	33.1
EMA	32	1385.9	58.3	61.2	35.1
EMA	48	1387.5	61.3	62.3	35.6
EMA	64	1428.7	60.9	62.5	35.5



Figure 7: More generated images presentation.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 further improves better perceptual quality by using adversarial training(Goodfellow et al., 2014). advanced the existing architecture by integrating perceptual loss and discriminator loss, alongside adversarial loss, to enhance reconstruction quality. This approach yields more precise and detailed image representations, significantly improving upon previous methodologies in image generation and processing. Subsequently, ViT-VQGAN(Yu et al., 2021b) and Efficient-VQGAN(Cao et al., 2023) advance the framework with the transformer design. In recent literature, researchers are turning to efficient codebook structures(Shi et al., 2024; Zhang et al., 2023; Yu et al., 2021b; Bai et al., 2024) and better quantization methods(Zha et al., 2024; Yu et al., 2025) to improve generation performance and compression rates. IBQ(Shi et al., 2024) proposes the Index Backpropagation Quantization

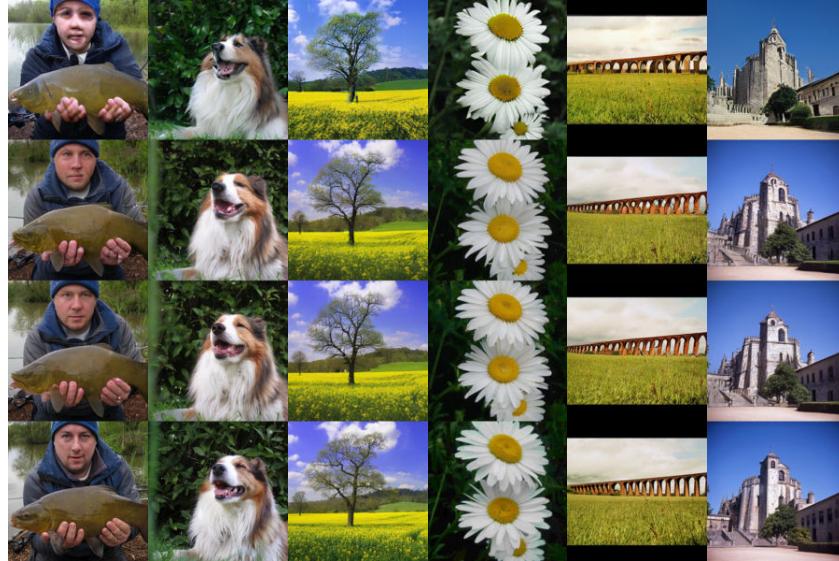


Figure 8: More visualized reconstruction results from the ablation of key module.

Table 12: **Ablation of Semantic Codebook K.** We evaluate on multimodal understanding tasks.

K	POPE	MME-P	SEED	GQA	Usage
4096	79.7	1297.7	60.4	56.6	100
8192	81.9	1343.0	61.7	59.7	99.7
16384	82.5	1355.8	62.9	60.3	99.0
32768	82.8	1364.2	62.5	60.6	93.0

Table 13: **Comparative experiments with Different $K \times m$ on reconstruction task.**

K	m	rFID \downarrow	Usage \uparrow
8192	12	1.58	95.5
	16	1.45	92.7
	24	1.31	89.8
	32	1.22	83.7
16384	8	1.42	96.4
	12	1.26	93.7
	16	1.19	79.3

codebook update method, achieving stable training of large-scale codebooks. Although these methods efficiently retain low-level texture information, they frequently fail to capture high-level semantic information, which limits their application to multimodal understanding tasks. FQGAN(Bai et al., 2024) uses multiple codebooks and product quantization, where each codebook encodes a different type of feature (Pixel, CLIP(Radford et al., 2021a), DINO(Caron et al., 2021), etc.). However, this work focuses only on image reconstruction and generation tasks, performing poorly on multimodal understanding tasks(Wu et al., 2024b; Liu et al., 2024a).

Tokenization for Understanding. In multimodal large language models (MLLMs)(Li et al., 2023b; 2022; Radford et al., 2021b; Liu et al., 2023a; Bai et al., 2023a; Chen et al., 2024c), researchers leverage CLIP(Radford et al., 2021b) and BLIP(Li et al., 2022) to extract visual characteristics that align with the language during its pre-training phase. Building upon many works (Liu et al., 2023a; Bai et al., 2023a; Chen et al., 2024c) have been collected and trained on high-quality datasets to achieve remarkable performance. LLaVA(Liu et al., 2023a) utilizes a vision encoder to align the vision inputs before LLMs. QwenVL(Bai et al., 2023a) and InterVL(Chen et al., 2024c) achieve better results through increased resolution, higher-quality datasets, etc. However, these text-aligned image encoders tend to focus on semantic information and ignore texture information, which is important for the generation task.

8.14 UNIFIED IMAGE TOKENIZER

Numerous efforts have emerged to develop unified visual generation and understanding within one MLLM(Wang et al., 2024a;c; Xie et al., 2024; Dong et al., 2023; Ge et al., 2024; Sun et al., 2024b; Team, 2024; Wu et al., 2024d). There are two main lines to bridge the gap. Many workers (Dong et al., 2023; Ge et al., 2024; Sun et al., 2024b) combine diffusion models with LLMs for image

1242 **Table 14: Quantitative comparison of reconstruction quality under consistent total codebook sizes.**
 1243 **SemHiTok** outperforms existing quantization methods at the 65k scale and achieves comparable rFID
 1244 to expert models at the 262k scale.

Method	Codebook Size	rFID↓	Usage↑
VQGAN-LC (Zhu et al., 2024a)	65546	2.63	100.0
VQGAN-LC(CLIP) (Zhu et al., 2024a)	65546	2.40	100.0
FSQ (Bai et al., 2024)	64000	2.80	100.0
LFQ (Yu et al., 2023)	65536	2.88	100.0
SimVQ (Zhu et al., 2025)	65536	2.24	100.0
SemHiTok	$8192 \times 8(65536)$	1.93	98.1
	$16384 \times 4(65536)$	1.84	99.0
SimVQ (Zhu et al., 2025)	262144	1.99	100.0
Open-MAGVIT2 (Luo et al., 2024)	262144	1.17	100.0
IBQ (Shi et al., 2024)	262144	1.00	79.3
SemHiTok	$8192 \times 32(262144)$	1.21	83.7
	$16384 \times 8(262144)$	1.19	79.3

1261 generation. DREAMLLM(Dong et al., 2023) presents a unified framework that not only provides
 1262 multimodal understanding but also creates multimodal content via diffusion models. Emu2(Sun
 1263 et al., 2024b) trains a unified generative model using a diffusion-based decoder. These approaches
 1264 inevitably increase model complexity and are not simple enough. Other workers (Team, 2024;
 1265 Wu et al., 2024d; Xie et al., 2024; Wang et al., 2024c) adopt VQVAE-based encoders to convert
 1266 images into discrete tokens. Chameleon(Team, 2024) and EMU3(Wang et al., 2024c) directly use
 1267 VQGAN(Yu et al., 2021a), which is optimized by pixel reconstruction as the image tokenizer, while
 1268 this method increases resource consumption during the pre-training stage and degrades multimodal
 1269 understanding performance. VILA-U(Wu et al., 2024d) introduces a unified image tokenizer that
 1270 incorporates a text-aligned branch within the VQGAN training paradigm. However, due to the
 1271 gap between the semantic feature and texture feature, the joint optimization approach may lead to
 1272 suboptimal solutions In contrast, our proposed SemHiTok can add the ability of extracting texture
 1273 features without changing the discrete semantic features, and avoids the challenges brought by joint
 1274 optimization.

1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295