
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Finer Behavioral Foundation Models via
Auto-Regressive Features and Advantage Weighting

Anonymous authors
Paper under double-blind review

Keywords: Unsupervised RL, offline training, autoregressive features, successor measures

Summary
The forward-backward representation (FB) is a recently proposed framework (Touati et al.,

2023; Touati & Ollivier, 2021) to train behavior foundation models (BFMs) that aim at providing
zero-shot efficient policies for any new task specified in a given reinforcement learning (RL)
environment, without training for each new task. Here we address two core limitations of FB
model training.

First, FB, like all successor-feature-based methods, relies on a linear encoding of tasks:
at test time, each new reward function is linearly projected onto a fixed set of pre-trained
features. This limits expressivity as well as precision of the task representation. We break the
linearity limitation by introducing auto-regressive features for FB, which let fine-grained task
features depend on coarser-grained task information. This can represent arbitrary nonlinear task
encodings, thus significantly increasing expressivity of the FB framework.

Second, it is well-known that training RL agents from offline datasets often requires specific
techniques.We show that FB works well together with such offline RL techniques, by adapting
techniques from (Nair et al., 2020b; Cetin et al., 2024) for FB. This is necessary to get non-
flatlining performance in some datasets, such as DMC Humanoid.

As a result, we produce efficient FB BFMs for a number of new environments. Notably, in
the D4RL locomotion benchmark, the generic FB agent matches the performance of standard
single-task offline agents (IQL, XQL). In many setups, the offline techniques are needed to get
any decent performance at all. The auto-regressive features have a positive but moderate impact,
concentrated on tasks requiring spatial precision and task generalization beyond the behaviors
represented in the trainset.

Together, these results establish that generic, reward-free FB BFMs can be competitive with
single-task agents on standard benchmarks, while suggesting that expressivity of the BFM is
not a key limiting factor in the environments tested.

Contribution(s)
1. We overcome the linearity of reward representations in the Forward-Backward (FB) frame-

work, without breaking the theoretical framework, thanks to auto-regressive features that let
fine-grained task features depend on coarser-grained task information.
Context: FB and Successor Features attempt to provide zero-shot RL adaptation to new re-
wards, but fundamentally rely on a linear reward encoding, which could restrict expressivity.

2. We show how to combine FB with offline RL techniques. We show this is necessary to get
good performance in a number of environments and datasets, such as DMC Humanoid. We
show that generic, zero-shot FB agents come close to the performance of recent task-specific
agents on the D4RL benchmark.
Context: Previous work has reported very poor FB performance in some situations (Park
et al., 2024; Frans et al., 2024), due to omitting offline RL techniques.

Finer Behavioral Foundation Models

Finer Behavioral Foundation Models via Auto-
Regressive Features and Advantage Weighting

Anonymous authors
Paper under double-blind review

Abstract

The forward-backward representation (FB) is a recently proposed framework (Touati1
et al., 2023; Touati & Ollivier, 2021) to train behavior foundation models (BFMs)2
that aim at providing zero-shot efficient policies for any new task specified in a given3
reinforcement learning (RL) environment, without training for each new task. Here we4
address two core limitations of FB model training.5

First, FB, like all successor-feature-based methods, relies on a linear encoding of tasks:6
at test time, each new reward function is linearly projected onto a fixed set of pre-trained7
features. This limits expressivity as well as precision of the task representation. We8
break the linearity limitation by introducing auto-regressive features for FB, which let9
fine-grained task features depend on coarser-grained task information. This can represent10
arbitrary nonlinear task encodings, thus significantly increasing expressivity of the FB11
framework.12

Second, it is well-known that training RL agents from offline datasets often requires13
specific techniques.We show that FB works well together with such offline RL techniques,14
by adapting techniques from (Nair et al., 2020b; Cetin et al., 2024) for FB. This is15
necessary to get non-flatlining performance in some datasets, such as DMC Humanoid.16

As a result, we produce efficient FB BFMs for a number of new environments. Notably,17
in the D4RL locomotion benchmark, the generic FB agent matches the performance of18
standard single-task offline agents (IQL, XQL). In many setups, the offline techniques19
are needed to get any decent performance at all. The auto-regressive features have a20
positive but moderate impact, concentrated on tasks requiring spatial precision and task21
generalization beyond the behaviors represented in the trainset.22

Together, these results establish that generic, reward-free FB BFMs can be competitive23
with single-task agents on standard benchmarks, while suggesting that expressivity of24
the BFM is not a key limiting factor in the environments tested.25

1 Introduction26

The forward-backward representation (FB) is a recently proposed framework (Touati et al., 2023;27
Touati & Ollivier, 2021) to train behavior foundation models (BFMs) from offline data. BFMs28
promise to provide zero-shot efficient policies for any new task specified in a given reinforcement29
learning (RL) environment, beyond the tasks and behaviors in the training set. This contrasts with30
traditional offline RL and imitation learning approaches, which are trained to accomplish individual31
target tasks, with no mechanism to tackle new tasks without repeating the full training procedure.32

The FB approach strives to learn an agent that recovers many possible behaviors in a given environ-33
ment, based on learning successor measure representations, without any reward signal. After training,34
an FB agent can be prompted via several kinds of task description: an explicit reward function, a goal35
state, or even a single demonstration (Pirotta et al., 2023).36

1

Under review for RLC 2025, to be published in RLJ 2025

However, in its current formulation, FB has been shown effective only for toy problems and rela-37
tively simple locomotion tasks and when trained on undirected datasets collected via unsupervised38
exploration (Burda et al., 2019).39

Here, we tackle two core limitations of the “vanilla” FB framework, namely, the difficulty to learn40
from complex offline datasets, and the linear correspondence between tasks and features. As a result,41
we can build high-performing FB BFMs for a series of new environments. Our main contributions42
are the following:43

1. We show that the vanilla FB policy optimization leads to poor performance when learning from44
datasets made of a few near-optimal examples for a few specific tasks. This failure is exactly45
analogous to naively using online RL algorithms in the offline setting, a well-studied problem46
(Fujimoto et al., 2019; Wu et al., 2019; Levine et al., 2020). This explains the poor performance47
of vanilla FB on the D4RL benchmark, as reported in recent unsupervised RL works (Park et al.,48
2024; Frans et al., 2024).49

2. Accordingly, we introduce a new policy optimization step for FB, to improve learning from offline50
datasets demonstrating complex behaviors. In particular, we integrate an improved version of51
advantage-weighted regression (Nair et al., 2020a), together with recent advancements from the52
offline RL literature (Cetin et al., 2024) and additional algorithmic refinements to FB (Section 3.2).53
We show these changes are crucial to train FB with common offline datasets beyond pure RND54
exploration and scale to more challenging environments, often making the difference between55
near-zero and satisfactory performance (Section 4.3).56

3. We overcome a core theoretical limitation of FB and, more generally, of all successor features57
frameworks (Barreto et al., 2017; Borsa et al., 2018): their linear correspondence between reward58
functions and task representation vectors. Indeed, in these frameworks, at test time, the reward59
function is linearly projected onto a fixed set of pre-trained features. This results in “reward60
blurring” and limits spatial precision in the task representation (Touati & Ollivier, 2021).61
We introduce a new auto-regressive encoding of task features (Section 3.1), that breaks the linearity62
constraint by letting fine-grained task features depend on coarser-grained task information. This63
allows for universal approximation of any arbitrary task space (Appendix, Theorem B.3).64
We show that auto-regressive features make a moderate but systematic difference when learning65
new test tasks far from ones considered to build the datasets, or for tasks requiring precise66
goal-reaching (eg, 15% relative increase for goal-reaching in the Jaco arm environment).67

4. With these improvements, we show that advantage-weighted autoregressive FB (FB-AWARE)68
extends FB performance to new environments such as Humanoid and the locomotion environments69
in the canonical D4RL benchmark (Fu et al., 2020). On the latter, FB-AWARE matches the70
performance of standard offline RL agents trained on a single task with full access to rewards71
(Section 4.3.3), further vindicating the use of behavior foundation models for zero-shot RL.72

2 Preliminaries73

Markov decision process, notation. We consider a reward-free Markov decision process (MDP)74
M = (S,A, P, γ) with state space S, action space A, transition probabilities P (s′|s, a) from state s75
to s′ given action a, and discount factor 0 < γ < 1 (Sutton & Barto, 2018). A policy π is a function76
π : S → Prob(A) mapping a state s to the probabilities of actions in A. Given (s0, a0) ∈ S ×A and77
a policy π, we denote Pr(·|s0, a0, π) and E[·|s0, a0, π] the probabilities and expectations under state-78
action sequences (st, at)t≥0 starting at (s0, a0) and following policy π in the environment, defined79
by sampling st ∼ P (st|st−1, at−1) and at ∼ π(at|st). Given any reward function r : S → R, the80
Q-function of π for r is Qπ

r (s0, a0) :=
∑

t≥0 γ
tE[r(st)|s0, a0, π]. The value function of π for r is81

V π
r (s) := Ea∼π(s)Q

π
r (s, a), and the advantage function is is Aπ

r (s, a) := Qπ
r (s, a)− V π

r (s).82

We assume access to a dataset consisting of reward-free observed transitions (st, at, st+1) in the83
environment. We denote by ρ the distribution of states st+1 in the training set.84

2

Finer Behavioral Foundation Models

Behavioral foundation models, zero-shot RL. A behavioral foundation model for a given reward-85
free MDP, is an agent that can produce approximately optimal policies for any reward function r86
specified at test time in the environment, without performing additional learning or fine-tuning for87
each new reward function. An early example of such a model includes universal successor features88
(SFs) (Borsa et al., 2018), which depend on a set of (sometimes handcrafted) features: at test time, the89
reward is linearly projected onto the features, and a pre-trained policy is applied. Forward-backward90
representations (defined below) are another one, mathematically related to SFs. Touati et al. (2023)91
compares a number of variants of SFs and FB on a number of empirical problems.92

The forward-backward framework. The FB framework (Touati & Ollivier, 2021; Touati et al.,93
2023) is a theoretically and empirically well-supported way to train BFMs, based on learning an94
efficient representation of the successor measures Mπ for various policies π. For each state-action95
(s0, a0) ∈ S ×A, this is a measure over states, describing the distribution of future states visited by96
starting at (s0, a0) and following policy π. It is defined as97

Mπ(s0, a0, X) :=
∑
t≥1

γt Pr(st ∈ X | s0, a0, π) (1)

for any subset X ⊂ S. Mπ satisfies a measure-valued Bellman equation (Blier et al., 2021), which98
can be used to learn approximate parametric models of M .99

Touati & Ollivier (2021) propose to learn a finite-rank parametric model of M , as follows:100

Mπz (s0, a0, X) ≈
∫
s∈X

F (s0, a0, z)
⊤B(s)ρ(ds) (2)

where ρ is the data distribution, where F and B take values in Rd, where z ∈ Rd is a task encoding101
vector, and where102

πz(s) = argmax
a

F (s, a, z)⊤z (3)

is a parametric policy depending on z. F , B and πz are learned at train time. At test time, given a103
reward function r, one estimates the task representation vector104

z = Es∼ρ[r(s)B(s)] (4)

and then the policy πz is applied.105

The main result of Touati & Ollivier (2021) is that when (2)–(3) hold, then for any reward function106
r, the policy πz so obtained is optimal. At test time, reward functions for FB may also be specified107
through an expert demonstration (Pirotta et al., 2023). The full algorithm for FB training is provided108
in Algo. 1 (Appendix B.3).109

3 Breaking Some Key Limitations of the Forward-Backward Framework110

3.1 Auto-Regressive Features for Non-Linear Task Encoding111

Intuition for auto-regressive FB: nonlinear task encoding. Forward-backward (FB) represen-112
tations and their predecessor, universal successor features (SFs), attempt to solve zero-shot RL by113
linearly projecting new tasks (reward functions r) onto a set of features B : S → Rd. At test time,114
when facing a new reward function r, a task encoding z ∈ Rd is computed by z = E[r(s)B(s)] (FB)115
or z = (E[ϕ(s)ϕ(s)⊤)−1E[r(s)ϕ(s)] (SFs). Then a pretrained policy πz is applied.116

FB aims at learning the features B that minimize the error from this process: B is obtained by a117
finite-rank approximation of the operator that sends a reward r to its Q-function. Bringing the FB118
loss to 0 (which requires infinitely many features) guarantees successful zero-shot RL for any reward119
function r. Theoretically, the features B in FB “most linearize” the computation of Q-functions, and120
empirically this brings better performance than other feature choices (Touati et al., 2023).121

3

Under review for RLC 2025, to be published in RLJ 2025

Still, even with the best features B, the task encoding z is linear, because z = E[r(s)B(s)] is linear122
in r: tasks are identified by the size-d vector of their correlations with a fixed set of d pre-trained123
features B.124

The standard FB framework learns a rank d approximation by focusing on the main eigenvectors of125
the environment dynamics (Blier et al., 2021). Projecting the reward onto these eigenvectors can126
remove spatial precision, creating short-term reward blurring (Touati & Ollivier, 2021).127

This is clearly suboptimal. Intuitively, if we first acquire information that the rewards are located in128
the top-left corner of S, we would like to use more precise features located in the top-left corner to129
better identify the reward function there.130

Auto-regressive features make this possible, while still keeping most of the theoretical properties131
of plain FB. The idea is to compute the task encoding z = E[r(s)B(s)] progressively, and let the132
later-computed features B depend on the early components of z. We decompose z and B into K133
blocks z = (z1, z2, . . . , zK) and B = (B1, B2, . . . , BK). We first compute z1 = E[r(s)B1(s)] as134
in plain FB. But then we compute z2 = E[r(s)B2(s, z1)] where the second block of features B2 is135
allowed to depend on z1, thus conditioning the features on the task information provided by z1. This136
can be iterated: z3 = E[r(s)B3(s, z1, z2)], etc. The resulting vector = (z1, z2, . . . , zK) encodes the137
task in an auto-regressive manner, where the meaning of zi depends on z1:i−1.138

Intuitively, z1 provides a “coarse” task encoding by linear features. Then we compute a further,139
finer task encoding z2 by computing the correlation of r with features B2 that depend on the coarse140
task encoding z1. Hopefully the features B2 can become more specialized and provide a better task141
encoding.142

In practice, the main change with respect to plain FB training is that B depends on z. We now143
represent the successor measures Mπz by F (z)⊤B(z), instead of simply F (z)⊤B which shares the144
same B for all policies. This allows for a better fit of the FB model. This is formalized in the next145
section and in Appendix B.146

Contrary to plain FB, the task encoding r 7→ z becomes fully nonlinear: the set of tasks r represented147
exactly becomes a nonlinear submanifold of all possible tasks, instead of a d-dimensional subspace.148
Even with just two levels of features, this model is able to represent an arbitrary nonlinear mapping149
between reward functions r and task representations z (Appendix, Theorem B.3), instead of just150
linearly projecting the reward onto a fixed basis of features. This greatly extends the theoretical151
expressivity of the FB and successor feature frameworks.152

This model also encodes a hierarchical prior on tasks, favoring tasks that can be described through a153
cascade of more and more specialized task features.154

FB with auto-regressive task encoding: formal description. Auto-regressive features extend155
plain FB by letting B depend on z. In ordinary FB, this would be problematic, since the task encoding156
z = E[r(s)B(s)] used at test time becomes a fixed point equation if B depends on z. However, this157
fixed point equation can be handled easily if B has a hierarchical or auto-regressive structure.158

Definition 3.1. A feature map B : S × Rd → Rd is called auto-regressive if, for any 1 ≤ i ≤ d159
and any (s, z) ∈ S × Rd, the i-th component of B(s, z) only depends on (z1, . . . , zi−1) and not on160
(zi, . . . , zd).161

For such models, we can easily compute fixed-points values of the type z = B(s, z), by first162
computing the component B1 of the output (which does not dependent on z), which determines z1,163
which allows us to compute the component B2 of the output, which determines z2, etc.164

In practice, auto-regressive models B(s, z) can be built by splitting both the representation vector z ∈165
Rd and the output B(s, z) ∈ Rd into k “auto-regressive groups” of dimension d/k. The first group166
B1(s, z) in the output of B is actually independent of z, and the i-th group Bi(s, z) of the output of B167
only takes as inputs the previous groups z1, . . . , zi−1 of z. At test time, this allows us to compute the168
fixed point z = Es∼ρ[r(s)B(s, z)] by first estimating the first group, z1 = Es∼ρ[r(s)B1(s)] similar169

4

Finer Behavioral Foundation Models

Figure 1: An auto-regressive architecture for B(s, z). The i-th block of the output B only depends on blocks z1, . . . , zi−1

of the input z. In each layer, the weights from each block to the lower-ranking blocks of the next layer have been removed.
The state s is still fed to every block on the input layer.

to plain FB. Then the other groups are computed iteratively: zi+1 = Es∼ρ[r(s)Bi+1(s, z1, . . . , zi)].170
In the experiments, we focus on k = 4 or k = 8 auto-regressive groups.171

We employ a network architecture (Fig. 1) in which each layer of Bi has access to the previous layers172
of all previous blocks B1...i: this ensures good expressivity while preserving the auto-regressive173
property. This allows for efficient evaluation: this is implemented as masks on fully-connected layers174
for the full model B.175

The following result extends the theorem from Touati & Ollivier (2021) for vanilla FB, to allow B to176
depend on z.177

Theorem 3.2. Assume we have learned representations F : S×A×Rd → Rd and B : S×Rd → Rd,178
as well as a parametric family of policies πz depending on z ∈ Rd, satisfying ∀s ∈ S, a ∈ A,X ⊂179
S, z ∈ Rd180 {

Mπz (s, a,X) =
∫
X
F (s, a, z)⊤B(s′, z) ρ(ds′),

πz(s) = argmaxa F (s, a, z)⊤z
(5)

Then the following holds. For any reward function r, if we can find a value zr ∈ Rd such that181

zr = Es∼ρ[r(s)B(s, zr)] (6)

then πzr is an optimal policy for reward r, and the optimal Q-function is Q⋆
r(s, a) = F (s, a, zr)

⊤zr.182

Moreover, if B is auto-regressive, then the fixed point (6) always exists, and can be computed directly,183
by iteratively computing each component zi = E[r(s)Bi(s, z1, . . . , zi−1)] for i = 1, . . . , d.184

Further theoretical properties and proofs are given in Appendix B. In particular, Theorem B.3185
establishes that autoregressive FB with two blocks is enough to represent any task encoding r 7→ zr,186
while vanilla FB is contrained to a linear task encoding r 7→ zr. Thus, autoregressive FB is inherently187
more expressive.188

Training F and B for this setup is similar to Touati & Ollivier (2021), except that B depends on z,189
which has some consequences for minibatch sampling, and results in higher variance. The details are190
given in Appendix B.2 and Algorithm 2. Training is based on the measure-valued Bellman equation191
satisfied by Mπz : we plug in the model Mπz ≈ F (z)⊤B(z)ρ in this equation and minimize the192
Bellman gaps.193

There is little computational overhead compared to vanilla FB. In practice, we enforce the auto-194
regressive property via a single neural network B, by dropping a specific subset of the layer connec-195
tions across neurons (Fig. 1). This implementation allows for efficient training: given access to any196
specific z and s, the output B(s, z) can be computed in a single forward pass. On the other hand, the197
computation of the fixed point zr from (6) requires several forward passes through the network B in198
Fig. 1, but this occurs only at test time when the reward function is known.199

Auto-regressive FB models the successor features Mπz via a model Mπz ≈ F (z)⊤B(z)ρ with full200
dependency on z, versus Mπz ≈ F (z)⊤Bρ for vanilla FB. This is more natural, especially for large201

5

Under review for RLC 2025, to be published in RLJ 2025

γ. Indeed, for γ → 1 we have Mπz (s0, a0,ds) =
1

1−γµz(ds) + o(1/(1− γ)) with µz the stationary202
distribution of πz , namely, approximately rank-one with z dependency on the s part. The vanilla203
FB model has no z dependency on the s part, only on the (s0, a0) part, which means all stationary204
distributions µz must be approximated using the shared features B(s).205

3.2 Better Offline Optimization for FB: Advantage Weighting and Other Improvements206

Like off-policy algorithms designed for the offline RL setting, vanilla FB training appears prone207
to distribution shift, hindering its ability to scale and to learn on datasets exhibiting mixtures of208
behaviors for various tasks. Inspired by the recent analysis (Cetin et al., 2024), we propose a set of209
modifications to FB training to overcome these limitations.210

Improved advantage weighting objective We introduce an alternative policy optimization step211
for FB, based on recent analysis and advancements in offline RL algorithms with policy constraints.212
We use an improved version of the advantage-weighted (AW) regression loss (Peng et al., 2019),213
commonly used in popular recent algorithms (Nair et al., 2020a; Kostrikov et al., 2022; Wang et al.,214
2020; Garg et al., 2023). Following Nair et al. (2020a), a first version starts with sampling a batch of215
n transitions from the data, and updates the parametric policy πθ to optimize216

argmax
θ

E(a1:n,s1:n)∼B

[
n∑

i=1

w(si, ai) log πθ(ai|si)

]
, (7)

where w(si, ai) =
exp(Aϕ(si, ai)/β)∑n

j=0 exp(Aϕ(sj , aj)/β)
, Aϕ(s, a) = Qϕ(s, a)− Ea′∼π[Qϕ(s, a

′)]

is the advantage function as estimated by the critic model Qϕ. The weights w(s, a) are217
a weighted importance sampling (WIS) approximation of exp(Aϕ(s, a)/β)/Z, where Z =218
Es,a∼B [exp(Aϕ(s, a)/β)].219

In the FB framework, the policies are conditioned by the latent variable z, and the Q-function estimate220
is Qϕ(s, a, z) = Fϕ(s, a, z)

T z. Therefore, a direct transposition of (7) to the FB framework leads to221
the following objective for training the policy:222

argmax
θ

E(a1:n,s1:n)∼B,
z1:n∼Z

[
n∑

i=1

w(si, ai.zi) log πθ(ai|si, zi)

]
, (8)

w(si, ai, zi) =
exp(Aϕ(si, ai, zi)/β)∑n

j=0 exp(Aϕ(sj , aj , zj)/β)
, Aϕ(s, a, z) = Fϕ(s, a, z)

T z − Ea′∼πz
[Fϕ(s, a

′, z)T z],

However, the variance and bias of this weighted importance sampling approach have a linear inverse223
relationship with the batch size n. Instead, we propose to use modified weights w′(s, a, z) that224
implement improved weighted importance sampling (IWIS), a simple change to WIS proposed by225
Skare et al. (2003), shown to reduce the bias of WIS from O(n−1) to O(n−2). Integrating IWIS226
yields our final policy improvement objective:227

argmax
θ

E(a1:n,s1:n)∼B,
z1:n∼Z

[
n∑

i=1

w′(si, ai.zi) log πθ(ai|si, zi)

]
, (9)

where w′(si, ai, zi) ∝
w(si, ai, zi)∑
j ̸=i w(sj , aj , zj)

,

n∑
j=0

w′(sj , aj , zj) = 1,

and w(si, ai, zi) is as in (8).228

We validate the effect of IWIS in Table 10 (Appendix E): FB-AW, which uses the IWIS weights (9),229
performs slightly but consistently better than with the WIS weights (8).230

Evaluation-based sampling. Furthermore, following Cetin et al. (2024), we integrate evaluation-231
based sampling (ES), an additional component to mitigate the undesirable consequences of learning232

6

Finer Behavioral Foundation Models

a Gaussian policy, which is generally insufficient to capture the distribution from the exponentiated233
advantages. Namely, when deploying πθ at test time, we approximate the argmax in (3) by sampling234
M actions a1, . . . , aM from the trained policy π(s), and perform the one with the largest Q-value as235
predicted by Fϕ(s, ai, z)

T z. The specific impact of this change is illustrated in Fig. 7 (Appendix E).236

Uncertainty representation. To represent uncertainty in the model, we train two different networks237
F1 and F2 for the forward embedding, inspired by (Fujimoto et al., 2018; Touati et al., 2023).238
However, we introduce two changes.239

In the Bellman equation, we use the average of the resulting two estimates of the target suc-240
cessor measures, namely, 1

2 (F1(st+1, at+1, z)
⊤B(s′) + F2(st+1, at+1, z)

⊤B(s′)). This departs241
from Touati et al. (2023), which used the min between the target successor measures, namely,242
min{F1(st+1, at+1, z)

⊤B(s′), F2(st+1, at+1, z)
⊤B(s′)}, in line with (Fujimoto et al., 2018). In-243

deed, for Q-function estimates, a min might encode some form of conservatism, but for successor244
measures, the interpretation of a min is less direct. 1245

Finally, we use two fully parallel networks for F1 and F2, while Touati et al. (2023) opted for a246
shared processing network with two separate shallow heads for F1 and F2. The specific impact of247
these changes is reported in Table 10 (Appendix E).248

4 Evaluation249

4.1 Algorithms and Baselines250

We mainly compare the following algorithms:251

1. “Vanilla” FB: the classical implementation of FB from Touati et al. (2023) that employs TD3252
policy improvement loss.253

2. FB-AW (FB with advantage weighting): The FB method using the advantage weighting compo-254
nents described in Section 3.2.255

3. FB-AWARE (FB with advantage weighting and auto-regressive encoding): The FB method using256
both AW and the auto-regressive component from Section 3.1. For the auto-regressive part, we257
test either 4 or 8 consecutive auto-regressive blocks for B.258

4. On some environments (those where AW is not necessary to reach good performance) we also259
include FB-ARE without the AW component.260

In addition to the vanilla FB baseline, we include universal successor features (Borsa et al., 2018)261
based on Laplacian eigenfunctions as the base features (Touati et al., 2023). This version of successor262
features was found to perform best in Touati et al. (2023). We denote it by LAP-AW, since we use the263
advantage weighting as in FB-AW.264

All the aforementioned variants of FB use the same architecture and consistent hyperparameters.265

4.2 Datasets and Benchmarks266

We consider a series of environments, tasks, and datasets for these environments, as follows.267

We start with the Jaco arm domain (Laskin et al., 2021), a simple robotic arm model. The tasks268
consist in reaching various target positions (Section 4.3.1). This provides a test of spatial precision.269
For this domain, we build a training dataset via the RND unsupervised exploration method from Yarats270
et al. (2022), which provides good data diversity if exploration is not too difficult in an environment.271

Next, we consider four standard domains from the DeepMind Control (DMC) Suite (Tassa et al.,272
2018): Walker, Cheetah, Quadruped, and Humanoid. Since we want to build behavior foundation273
models and not task-specific agents, on top of the classical tasks for these environments (walk, run...)274
we introduce a number of additional tasks such as bounce, flip, pullup..., described in Appendix C.3.275
For these domains, we consider two training datasets:276

1For instance, since the Q-function for reward r is Q = M.r, taking the min of M might encode a min for a reward r but
a max for the reward −r.

7

Under review for RLC 2025, to be published in RLJ 2025

d= 64 d= 128 d= 256
0

10
20
30
40
50
60
70
80
90

100

Cu
m

ul
at

iv
e

Re
tu

rn FB FB-AW FB-AWARE (4) FB-AWARE (8) LAP-AW

Figure 2: Average cumulative reward achieved by the algorithms, trained on RND dataset for different representation
dimensions when aiming to reach goals (four randomly selected goals and four corner goals), in the Jaco arm environment.

1. We build a first dataset using RND, as for Jaco. However, RND appears to provide insuffi-277
cient exploration (particularly on Humanoid); moreover, the RND trainset does not contain any278
purposeful trajectories.279

2. Therefore, we also train on the MOOD datasets from Cetin et al. (2024). MOOD contains a280
mixture of behaviors, obtained as follows. For each environment, a small number of “classical”281
tasks are selected. Then an online TD3 algorithm is used to train a classical agent for each of282
these tasks. The set of trajectories produced by these agents during training are then pooled and283
merged into a single dataset for the environment. Thus, the mixed-objective MOOD datasets284
include high-quality examples for a few tasks in each environment.285
Evaluation on the MOOD dataset must distinguish between tasks that contributed to the dataset286
(in-dataset tasks), and tasks that did not (out-of-dataset tasks). 2 A priori, one would expect the287
former to be easier, as information from the original single-task agents is present in the data. To288
evaluate the ability of the FB models to generalize beyond in-dataset tasks, we used the new tasks289
from Appendix C.3 as out-of-dataset tasks.290

Finally, to test the generality of the approach, we also train FB, FB-AW and FB-AWARE agents on291
the locomotion tasks of the D4RL benchmark (Fu et al., 2020). Here we stick to the original tasks292
in the benchmark, and compare FB performance to the best task-specific offline RL agents in the293
literature. Since those are single-task while FB is a generalist agent, this is a natural topline for FB,294
so we expect FB to reach a good fraction of the performance of the best task-specific agents, in line295
with the methodology of Touati et al. (2023).296

4.3 Empirical Evaluation297

We train FB, FB-AW, FB-AWARE (4 and 8 blocks) and LAP-AW on the four DMC locomotion298
environments (Walker, Cheetah, Quadruped and Humanoid), as well as the Jaco arm domain. We299
pretrain each model on both offline datasets (MOOD and RND), and repeat each training 5 times300
(with different random seeds).301

We evaluate each model on several downstream tasks per environment. For each model and task,302
we sample 100,000 states {s} from the offline dataset and compute their corresponding task reward303
{r(s)} in order to infer the task encoding vector zr ((4) or (6)). Then we compute the cumulated304
reward achieved by the policy πzr , computed using the task-specific reward, and averaged over 100305
episodes. Finally, we report the average and variance of the cumulative reward over the 5 pre-trained306
models (with different seeds).307

4.3.1 Jaco Arm Results308

We train each algorithm in the Jaco environment using the RND dataset, for three choices of309
representation dimension: d = 64, 128, and 256. The tasks involve reaching a goal within an episode310

2We avoid “in-distribution” and “out-of-distribution”, since FB is not trained on a distribution of tasks but in an unsupervised
way given the data.

8

Finer Behavioral Foundation Models

walker cheetah quadruped humanoid
0

100
200
300
400
500
600
700
800
900

1,000

Cu
m

ul
at

iv
e

Re
tu

rn FB FB-AW FB-AWARE (4) FB-AWARE (8) LAP-AW

Figure 3: Averaged cumulative reward achieved by the algorithms on in-dataset tasks, trained on MOOD dataset for DMC
Locomotion.

walker cheetah quadruped humanoid
0

100
200
300
400
500
600
700
800
900

1,000

Cu
m

ul
at

iv
e

Re
tu

rn FB FB-AW FB-AWARE (4) FB-AWARE (8) LAP-AW

Figure 4: Average cumulative reward achieved by the algorithms on out-of-dataset tasks, trained on MOOD dataset for
DMC Locomotion.

length of 250 time steps, with the agent receiving a reward of approximately 1 when the arm’s gripper311
is close to the target goal specified by its (x, y, z) coordinates. For the goals, we included the four312
corners of the environment, plus four goals selected at random (once and for all, common to all the313
algorithms tested).314

In Figure 2, we depict the average rewards attained by each algorithm for reaching this mixture of315
goals. The resulting goal-reaching rewards for dimensions 64, 128, and 256 are presented in Tables 5,316
6, and 7, respectively.317

FB-AW significantly outperforms FB, more than doubling the score for the best dimension d = 128.318
FB-AWARE with 4 autoregressive blocks further enhances performance by a relative margin of about319
15%.320

4.3.2 DMC Locomotion Results321

For Cheetah, Quadruped, Walker and Humanoid, the MOOD dataset results in substantially better322
models than the RND dataset, whatever the algorithm (Appendix D, Table 9 vs Table 8). This is323
especially striking for Humanoid, where RND does not explore enough and even a classical single-324
task TD3 agent is hard to train. Therefore, we focus the discussion on MOOD, with full RND results325
in Appendix D.326

Figures 3 and 4 report the results for the Cheetah, Quadruped, Walker and Humanoid environments,327
using MOOD data for training, evaluated on in-dataset tasks and out-of-dataset tasks respectively. We328
used a fixed representation dimension for all algorithms (d = 64 for Walker, Cheetah and Quadruped,329
d = 128 for Humanoid).330

In this setup, the advantage weighting component proves crucial for achieving satisfactory per-331
formance, particularly in the Humanoid environment, where vanilla FB performance is near-zero.332
However, on the lower-quality RND dataset, the advantage weighting component appears to hurt333
performance (Appendix D, Table 8). This is consistent with observations in Yarats et al. (2022) for334
the single-task setting, where conservative offline-RL methods hurt performance on RND data.335

9

Under review for RLC 2025, to be published in RLJ 2025

Table 1: Performance on the popular locomotion-v2 and FrankaKitchen datasets from the D4RL
benchmark, comparing with recent offline RL algorithms (with performance as reported in the
literature). FB-AWARE uses 8 AR groups. Other hyper-parameters are tuned per-environment,
consistently with the offline baselines.

Dataset/Algorithm BC 10%BC DT 1StepRL AWAC TD3+BC CQL IQL XQL FB FB-AW FB-AWARE

Reward-based learning Reward free learning

halfcheetah-medium-v2 42.6 42.5 42.6 48.4 43.5 48.3 44.0 47.4 48.3 49.0±1.93 60.0±0.9 62.7±0.9
hopper-medium-v2 52.9 56.9 67.6 59.6 57.0 59.3 58.5 66.3 74.2 0.9±0.69 59.1±5.0 59.9±21.4
walker2d-medium-v2 75.3 75.0 74.0 81.8 72.4 83.7 72.5 78.3 84.2 0.5±0.9 80.5±11.7 89.6±0.8
halfcheetah-medium-replay-v2 36.6 40.6 36.6 38.1 40.5 44.6 45.5 44.2 45.2 30.8±23.4 52.7±1.2 50.8±1.2
hopper-medium-replay-v2 18.1 75.9 82.7 97.5 37.2 60.9 95.0 94.7 100.7 16.4±2.9 87.1±3.7 89.6±4.0
walker2d-medium-replay-v2 26.0 62.5 66.6 49.5 27.0 81.8 77.2 73.9 82.2 9.9±4.9 91.7±6.3 98.8±0.5
halfcheetah-medium-expert-v2 55.2 92.9 86.8 93.4 42.8 90.7 91.6 86.7 94.2 91.7±6.7 99.6±0.8 100.1±0.7
hopper-medium-expert-v2 52.5 110.9 107.6 103.3 55.8 98.0 105.4 91.5 111.2 1.8±1.2 55.9±11.6 62.2±9.2
walker2d-medium-expert-v2 107.5 109.0 108.1 113.0 74.5 110.1 108.8 109.6 112.7 0.3±0.8 109.6±1.3 105.8±0.6

Locomotion-v2 total 466.7 666.2 672.6 684.6 450.7 677.4 698.5 692.6 752.9 22.3 696.2 719.5
kitchen-partial-v0 38.0 - - - - - 49.8 46.3 73.7 4±4 47.0±4.5 52.5±9.4
kitchen-mixed-v0 51.5 - - - - - 51.0 51.0 62.5 5±5 48.5±7.2 53.5±3.8

LAP-AW does well at in-dataset tasks, but lags behind FB for out-of-dataset tasks. This may336
be because LAP-AW’s learned features are closely tied to the in-dataset tasks, derived from the337
eigenfunctions of the Laplacian of the behavior policy present in the dataset.338

FB-AW and FB-AWARE exhibit the most favorable and consistent overall performance. The autore-339
gressive component provides a slight enhancement in out-of-dataset tasks across all environments340
except from Humanoid. This slight difference is not observed on the RND dataset (Table 8). The341
best-performing model overall is obtained with the MOOD dataset and FB-AWARE algorithm.342

4.3.3 D4RL Performance343

Finally, to test the generality and robustness of these methods, we test performance on the D4RL344
benchmark after reward-free training. D4RL is a ubiquitous benchmark, used by many recent offline345
RL research for evaluation and comparison.346

Here, we are comparing the multitask, unsupervised FB-AWARE agent to task-specifics agents, so347
the performance of the latter are a natural topline for FB-AW and FB-AWARE. In line with Touati348
et al. (2023), we expect FB-AWARE to reach a good fraction of the performance of the agents trained349
specifically on each task.350

So we compare FB-AWARE’s performance with the results available for a large pool of offline RL351
algorithms optimizing for an individual objective with full access to rewards. This setting is quite352
different from Section 4.3.2 and especially the MOOD datasets, since D4RL datasets mostly comprise353
trajectories from agents trying to accomplish a single task.354

FB-AW and FB-AWARE’s overall performance matches the task-specific recent state-of-the-art from355
XQL and IQL. There is a slight advantage to FB-AWARE over FB-AW, although this falls within the356
overall margin of error.357

This establishes that zero-shot, task-agnostic behavior foundation models trained via FB can compete358
with top task-specific agents for offline RL on standard benchmarks.359

4.4 Ablations and Discussion360

Appendix E contains additional tests and ablations concerning each of the components introduced,361
such as the impact of dimension d, the number of auto-regressive blocks for FB-AWARE, specific362
design choices for FB training (B normalization, z sampling), and the offline RL methods introduced363
in Section 3.2 (advantage weighting, improved weighted importance sampling, evaluation-based364
sampling, and uncertainty representation).365

10

Finer Behavioral Foundation Models

The impact of training data for learning behavior foundation models. Perhaps unsurprisingly,366
the dataset has a large impact on the performance of behavior foundation models, as exemplified by367
the higher scores of FB methods trained on MOOD vs RND for the Locomotion tasks. On Humanoid,368
the combination of both MOOD and advantage weighting appears necessary to reach any reasonable369
performance at all.370

On the other hand, the best algorithm to train a behavior foundation model also depends on the data371
available: with only RND data, advantage weighting actually hurts performance (Table 8), although372
with these data, performance is relatively poor anyway. This is consistent with existing observations373
for classical single-task agents: on RND data, TD3 is better than conservative offline-RL approaches374
(Yarats et al., 2022).375

Limitations. The environments considered here are all noise-free, Markovian (history-free) contin-376
uous control environments.377

The effect of autoregressive FB is relatively modest in these experiments. This is surprising given378
the huge theoretical change in expressivity compared to vanilla FB. This suggests that the main379
limiting factor in our suite of experiments may not be the expressivity of the behavior foundation380
model, perhaps due to limited exploration in the training datasets, or from the relative simplicity of381
the environments tested.382

5 Conclusions383

Specific offline RL training techniques are necessary to build efficient FB behavior foundation models384
in environments such as DMC Humanoid, and can make the difference between near-zero and good385
performance. Employing auto-regressive features greatly enhances the theoretical expressivity of386
these foundation models, and improves spatial precision and task generalization. The improvement387
is moderate in our setup, perhaps indicating that BFM expressivity is not a key limiting factor for388
these tasks. These improvements bring zero-shot, reward-free FB BFMs on par with single-task,389
reward-trained offline agents on a number of locomotion environments.390

References391

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob392
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.393
In Advances in neural information processing systems, pp. 5048–5058, 2017.394

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,395
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural396
information processing systems, 30, 2017.397

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent398
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.399

Diana Borsa, Andre Barreto, John Quan, Daniel J Mankowitz, Hado van Hasselt, Remi Munos, David400
Silver, and Tom Schaul. Universal successor features approximators. In International Conference401
on Learning Representations, 2018.402

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network403
distillation. In International Conference on Learning Representations, 2019. URL https:404
//openreview.net/forum?id=H1lJJnR5Ym.405

Edoardo Cetin, Andrea Tirinzoni, Matteo Pirotta, Alessandro Lazaric, Yann Ollivier, and Ahmed406
Touati. Asac: Simple ingredients for offline reinforcement learning with diverse data. ICML, 2024.407

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with408
imagined subgoals. In International Conference on Machine Learning, pp. 1430–1440. PMLR,409
2021.410

11

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

Under review for RLC 2025, to be published in RLJ 2025

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.411
Neural computation, 5(4):613–624, 1993.412

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation413
learning. Advances in neural information processing systems, 32, 2019.414

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve415
goals via recursive classification. In International Conference on Learning Representations, 2021.416
URL https://openreview.net/forum?id=tc5qisoB-C.417

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning418
as goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems,419
35:35603–35620, 2022.420

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforcement421
learning via functional reward encodings. arXiv preprint arXiv:2402.17135, 2024.422

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep423
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.424

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in425
actor-critic methods. In ICML, pp. 1582–1591, 2018. URL http://proceedings.mlr.426
press/v80/fujimoto18a.html.427

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without428
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.429

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL430
without entropy. In The Eleventh International Conference on Learning Representations, 2023.431
URL https://openreview.net/forum?id=SJ0Lde3tRL.432

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,433
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint434
arXiv:1912.06088, 2019.435

Christopher Grimm, Irina Higgins, Andre Barreto, Denis Teplyashin, Markus Wulfmeier, Tim Her-436
tweck, Raia Hadsell, and Satinder Singh. Disentangled cumulants help successor representations437
transfer to new tasks. arXiv preprint arXiv:1911.10866, 2019.438

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy439
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint440
arXiv:1910.11956, 2019.441

Philippe Hansen-Estruch, Amy Zhang, Ashvin Nair, Patrick Yin, and Sergey Levine. Bisimulation442
makes analogies in goal-conditioned reinforcement learning. In International Conference on443
Machine Learning, pp. 8407–8426. PMLR, 2022.444

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit445
q-learning. In International Conference on Learning Representations, 2022. URL https:446
//openreview.net/forum?id=68n2s9ZJWF8.447

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel448
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. arXiv preprint449
arXiv:2110.15191, 2021.450

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,451
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.452

12

https://openreview.net/forum?id=tc5qisoB-C
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://openreview.net/forum?id=SJ0Lde3tRL
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

Finer Behavioral Foundation Models

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Problems453
and solutions. In Lud De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference454
on Artificial Intelligence, IJCAI-22, pp. 5502–5511. International Joint Conferences on Artificial455
Intelligence Organization, 7 2022. DOI: 10.24963/ijcai.2022/770. URL https://doi.org/456
10.24963/ijcai.2022/770. Survey Track.457

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy458
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.459
arXiv preprint arXiv:2210.00030, 2022.460

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical461
reinforcement learning. Advances in neural information processing systems, 31, 2018.462

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online463
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020a.464

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online465
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020b.466

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with Hilbert representations.467
In Forty-first International Conference on Machine Learning, 2024.468

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:469
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.470

Matteo Pirotta, Andrea Tirinzoni, Ahmed Touati, Alessandro Lazaric, and Yann Ollivier. Fast471
imitation via behavior foundation models. In The Twelfth International Conference on Learning472
Representations, 2023.473

Dhruv Shah, Benjamin Eysenbach, Gregory Kahn, Nicholas Rhinehart, and Sergey Levine. Rapid474
exploration for open-world navigation with latent goal models. arXiv preprint arXiv:2104.05859,475
2021.476

Øivind Skare, Erik Bølviken, and Lars Holden. Improved sampling-importance resampling and477
reduced bias importance sampling. Scandinavian Journal of Statistics, 30(4):719–737, 2003.478

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.479
2nd edition.480

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,481
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint482
arXiv:1801.00690, 2018.483

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances in484
Neural Information Processing Systems, 34:13–23, 2021.485

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?486
In The Eleventh International Conference on Learning Representations, 2023. URL https:487
//openreview.net/forum?id=MYEap_OcQI.488

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E489
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas.490
Critic regularized regression. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin491
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 7768–7778. Curran As-492
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/493
588cb956d6bbe67078f29f8de420a13d-Paper.pdf.494

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.495
arXiv preprint arXiv:1911.11361, 2019.496

13

https://doi.org/10.24963/ijcai.2022/770
https://doi.org/10.24963/ijcai.2022/770
https://doi.org/10.24963/ijcai.2022/770
https://openreview.net/forum?id=MYEap_OcQI
https://openreview.net/forum?id=MYEap_OcQI
https://openreview.net/forum?id=MYEap_OcQI
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-Paper.pdf

Under review for RLC 2025, to be published in RLJ 2025

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,497
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline498
reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.499

Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard. Deep rein-500
forcement learning with successor features for navigation across similar environments. In 2017501
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2371–2378.502
IEEE, 2017.503

Chongyi Zheng, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang, Ruslan Salakhutdinov,504
and Sergey Levine. Stabilizing contrastive rl: Techniques for offline goal reaching. arXiv preprint505
arXiv:2306.03346, 2023a.506

Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach. Contrastive difference predictive507
coding. arXiv preprint arXiv:2310.20141, 2023b.508

14

Finer Behavioral Foundation Models

Supplementary Materials509

The following content was not necessarily subject to peer review.510
511

512

513

A Further Related Work514

The forward-backward framework (Touati & Ollivier, 2021) builds upon the principles of successor515
features (Barreto et al., 2017; Zhang et al., 2017; Grimm et al., 2019), the continuous extension516
to the canonical successor representation Dayan (1993) and its continuous state-space extension.517
However, in contrast to FB, this line of work has mostly focused on constructing a set of features,518
linear w.r.t. downstream rewards, using apriori knowledge and heuristic measures such as Laplacian519
eigenfunctions (Borsa et al., 2018). To this end Touati et al. (2023) showed, empirically, the superiority520
of end-to-end learning with FB as compared to many such heuristics, in line with results in this same521
work. The proposed autoregressive extension to FB could be also applied to this broader class of522
methods, a noteworthy direction for future work.523

Goal-conditioned RL (GCRL) (Liu et al., 2022) is another area of research closely related to FB, which524
has seen notable successful applications in real-world robotics (Shah et al., 2021; Ma et al., 2022;525
Zheng et al., 2023a). As with successor features, GCRL has traditionally relied on a priori knowledge526
taking the form of explicit demonstrations (Ding et al., 2019; Gupta et al., 2019), handcrafted527
subgoals (Andrychowicz et al., 2017; Nachum et al., 2018; Chane-Sane et al., 2021), together with528
other coverage heuristics (Ghosh et al., 2019; Hansen-Estruch et al., 2022) – which have been used529
both to construct the space of goals and learn its relative multi-task policy. Moreover, in a similar530
fashion to FB, recent work also strived to model and tackle the GCRL problem with a principled531
contrastive-like end-to-end objective (Eysenbach et al., 2021; 2022; Zheng et al., 2023b). However,532
GCRL is, by design, more restrictive than successor features and FB as it cannot capture tasks that go533
beyond reaching individual points in the space of goals.534

Other works avoid the linearity constraint of successor features and vanilla FB by explicitly relying on535
a prior over tasks. For instance, in an approach akin to meta-RL but without hand-crafted tasks, Frans536
et al. (2024) use a mixture of random MLPs, random linear functions, and random goal-reaching to537
pre-train a set of policies together with a encoder that quickly identifies a reward function from a few538
reward samples. Contrary to FB, the dynamics of the environment plays no role in building the set of539
features.540

B Auto-Regressive FB: Extensions, Proofs, Algorithmic Considerations541

B.1 Proof and Extension of Theorem 3.2542

Here we prove Theorem 3.2 and extend it in two directions similar to Touati & Ollivier (2021).543

The first extension concerns goal spaces, and is useful when we know in advance that the rewards544
functions of interest will not depend on the whole state. For instance, in a multi-agent setting, the545
reward of an agent may depend only on its own state, but it must still observe the whole state to make546
decisions. This is formalized by assuming that the reward function only depends on some variable547
g = ϕ(s) rather than the whole state s. Then we can learn with B(g) instead of B(s) (while F and548
policies still require the full state).549

The second extension only uses the finite-rank F⊤B model for the advantage functions, namely, the550
model is Mπz (s0, a0,ds) ≈ F (s0, a0, z)

⊤B(s′, z)+m̄(s0, z, s) where m̄ is any function independent551
of the actions. This lifts part of the finite-rank restriction, since m̄ itself is unconstrained: the finite-552

15

Under review for RLC 2025, to be published in RLJ 2025

rank FB model is only applied to the differential effect of actions on top of the baseline model553
m̄.554

Definition B.1 (Extended forward-backward representation of an MDP). Consider an MDP with555
state space S and action space A. Let ϕ : S ×A→ G be a function from state-actions to some goal556
space G = Rk.557

Let Z = Rd be some representation space. Let558

F : S ×A× Z → Z, B : G× Z → Z, m̄ : S × Z ×G→ R (10)

be three functions. For each z ∈ Z, define the policy559

πz(a|s) := argmax
a

F (s, a, z)⊤z. (11)

Let ρ be any measure over the goal space G.560

We say that F , B, and m̄ are an extended forward-backward representation of the MDP with respect561
to ρ, if the following holds: for any z ∈ Z, any state-action (s, a) the successor measure Mπz of562
policy πz is given by563

Mπz (s, a,X) =

∫
g∈X

(
F (s, a, z)⊤B(g, z) + m̄(s, z, g)

)
ρ(dg) (12)

for any goal subset X ⊂ G.564

Theorem B.2 (Forward-backward representation of an MDP, with features as goals). Consider an565
MDP with state space S and action space A. Let ϕ : S ×A→ G be a function from state-actions to566
some goal space G = Rk.567

Let F , B, and m̄ be an extended forward-backward representation of the MDP with respect to some568
measure ρ over G.569

Then the following holds. Let R : S ×A→ R be any bounded reward function, and assume that this570
reward function depends only on g = ϕ(s, a), namely, that there exists a function r : G→ R such571
that R(s, a) = r(ϕ(s, a)).572

Assume that there exists zR ∈ Rd satisfying573

zR =

∫
g∈G

r(g)B(g, zR) ρ(dg). (13)

This is always the case if B is auto-regressive.574

Then:575

1. πzR is an optimal policy for reward R in the MDP.576

2. The optimal Q-function Q⋆
R for reward R is577

Q⋆
R(s, a) = F (s, a, zR)

⊤zR +

∫
g∈G

m̄(s, zR, g)r(g) ρ(dg). (14)

The last term does not depend on the action a, so computing the m̄ term is not necessary to obtain578
the advantages Q∗(s, a)−Q∗(s, a′) or the optimal policies.579

Theorem B.2 implies Theorem 3.2, by taking ϕ = Id and m̄ = 0.580

There is an important difference between this result and the corresponding statement in non-auto-581
regressive FB (Theorem 4 in Touati & Ollivier (2021)). For non-autoregressive FB, the FB model582
provides the Q-functions of all policies πz for all rewards R, even if z ̸= zR. Namely, Qπz

R (s, a) =583
F (s, a, z)⊤zR for all pairs (z,R) (in the case m̄ = 0). Here, this only holds when z = zR. Classical,584
non-auto-regressive FB provides more Q-functions than strictly needed to obtain the policies: it585
models the Q-functions of πz even for rewards unrelated to z. With auto-regressive FB, the additional586
expressivity of the model comes at the price of getting less information about the other Q-functions.587

16

Finer Behavioral Foundation Models

Proof of Theorem B.2. Let Mπ be the successor measure of policy π. Let mπ be the density of Mπ588
with respect to ρ. Let R(s, a) = r(ϕ(s, a)) be a reward function as in the statement of the theorem.589

By Proposition 16 in Touati & Ollivier (2021), The Q-function of π for the reward R is590

Qπ
R(s, a) =

∫
g

r(g)Mπ(s, a,dg) (15)

Let zR satisfy the fixed point property (13), and let us take π = πzR . By definition of an extended591
FB representation, we have592

Q
πzR

R (s, a) =

∫
g

r(g)MπzR (s, a,dg) (16)

=

∫
g

r(g)(F (s, a, zR)
⊤B(g, zR) + m̄(s, zR, g))ρ(dg). (17)

= F (s, a, zR)
⊤
∫
g

r(g)B(g, zR)ρ(dg) +

∫
g

r(g)m̄(s, zR, g))ρ(dg). (18)

But thanks to the fixed point property (13), we have
∫
g
r(g)B(g, zR)ρ(dg) = zR. Therefore, the593

Q-function of πzR for reward R is594

Q
πzR

R (s, a) = F (s, a, zR)
⊤zR +

∫
g

r(g)m̄(s, zR, g))ρ(dg). (19)

We have to prove that this is the optimal Q-function for R. A pair of a Q-function and policy π595
are optimal for R if and only if simultaneously π(a|s) = argmaxa Q(s, a) and Q = Qπ

R. Here, by596
definition of the policies πz , we have597

πzR(a|s) = argmax
a

F (s, a, zR)
⊤zR (20)

= argmax
a

Q
πzR

R (s, a) (21)

since the additional term
∫
g
r(g)m̄(s, zR, g))ρ(dg) in Q

πzR

R does not depend on a.598

Therefore, Qπzr

R and πzR are optimal for reward R, which ends the proof.599

Theorem B.3 (Auto-regressive features with two levels are a universal approximator for task encod-600
ing). Assume the state space is finite, so that a reward function is an element of R#S . Then, for any601
continuous task encoding function ζ : R#S → Rd mapping rewards r to task encodings z = ζ(r),602
such that zr = 0 for r = 0, there exist neural networks B1(s) and B2(s, z) approximating ζ , namely,603
for any r,604

ζ(r) ≈ Es∼ρ[r(s)B2(s, z1)], z1 = Es∼ρ[r(s)B1(s)] (22)

up to an arbitrary precision.605

Lemma B.4. Let f : Rn → Rd be a C3 function such that f(0) = 0. Then there exists a continuous606
matrix-valued function g : Rn → Rn×d such that for any x ∈ Rn,607

f(x) = g(x) · x. (23)

Proof of the lemma. By working on each output component of f separately, we can assume that608
d = 1. Thus, we have to prove that for any C3 function f : Rn → R with f(0) = 0, there exists a609
vector-valued function g : Rn → R such that f(x) = g(x)⊤x.610

Since f is C3 with f(0) = 0, we can write its Taylor expansion611

f(x) = D⊤x+
1

2
x⊤Hx+R(x) (24)

17

Under review for RLC 2025, to be published in RLJ 2025

where D = ∂xf(0) is the gradient of f at x = 0, H = ∂2
xf(0) its Hessian, and where the remainder612

R is O(∥x∥3).613

A priori, the function R(x)/ ∥x∥2 is defined everywhere except x = 0. But since R is O(∥x∥3),614
R(x)/ ∥x∥2 tends to 0 for x = 0, so it is a well-defined continuous function on the whole domain.615

Thus, let us set616

g(x) := D +
1

2
Hx+

R(x)

∥x∥2
x. (25)

Then, by construction, g(x)⊤x = f(x) as needed.617

Proof. Proof of Theorem B.3 By the lemma, there exists a matrix-valued function g such that618
ζ(r) = g(r) · r for r ∈ R#S .619

Define B1(s) to be the one-hot encoding B1(s) = 1s/ρ(s) ∈ R#S , where 1i denotes the vector620
with all zeroes except a 1 at position i. By universal approximation theorems for neural networks,621
this choice of B1 can be realized by a neural network with arbitrary good approximation (actually a622
one-layer neural network with identity weights and no activation function).623

Then624
z1 = Es∼ρ[r(s)B1(s)] =

∑
s

ρ(s)r(s)1s/ρ(s) = r. (26)

Then in turn, for any B2,625

z2 = Es∼ρ[r(s)B2(s, z1)] =
∑
s

ρ(s)r(s)B2(s, r). (27)

For each s and r, B2(s, r) is an element of Rd. For each component 1 ≤ i ≤ d, define626

B2(s, r)i := gis(r)/ρ(s) (28)

where g(r) is the matrix defined above. Then we have, by construction627 ∑
s

ρ(s)r(s)B2(s, r)i =
∑
s

r(s)gis(r) (29)

namely628
B2(s, r) = g(r) · r = ζ(r) (30)

as needed.629

By universal approximation theorems for neural networks, it is possible to realize this choice of B2630
by a neural network, with arbitrarily good approximation.631

Note: the principle of this proof extends to continuous state spaces, by taking a partition of unity for632
B1 instead of a one-hot encoding, though this results in further approximation errors.633

B.2 Training Loss and Algorithmic Considerations for Auto-Regressive FB634

Loss for FB-AR; sampling. While plain FB represents the successor measures as Mπz (s, a,ds′) ≈635
F (s, a, z)⊤B(s′)ρ(ds′), auto-regressive FB uses Mπz (s, a,ds′) ≈ F (s, a, z)⊤B(s′, z)ρ(ds′). The636
training principle remains the same: learn F and B to minimize the error in this approximation.637
However, this leads to several changes in practice.638

The error of the FB model can be measured as in plain FB, based on the Bellman equation satisfies639
by Mπz (see Appendix B in Touati et al. (2023)). For each value of z, the Bellman loss on640

18

Finer Behavioral Foundation Models

Mπz (s, a,ds′)− F (s, a, z)⊤B(s′)ρ(ds′) is641

L(F,B) = E(st,at,st+1)∼ρ
s′∼ρ

[(
F (st, at, z)

⊤B(s′, z)− γF̄ (st+1, πz(st+1), z)
⊤B̄(s′, z)

)2
]

− 2E(st,at,st+1)∼ρ

[
F (st, at, z)

⊤B(st+1, z)
]
+ Const (31)

where Const is a constant term that we can discard since it does not depend on F and B. The only642
difference with plain FB is that now B depends on z.643

For training, the variable z is sampled as in Touati et al. (2023): namely, z is sampled 50% of the644
time from a standard d-dimensional Gaussian (and later normalized) and 50% of the time from the B645
representation of a state ramdomly sampled from the training data (computed every step for normal646
FB and computed every 32 steps for AR FB for speed). Fig. 13 (Appendix E) tests the effect of only647
sampling z from a Gaussian.648

For reasons discussed below, for FB we follow the original strategy of sampling a different z for each649
sampled transition, but for FB-AR we sample a unique z for the whole batch.650

Algorithm 2 implements this loss, together with sampling of z.651

Minibatch handling, and increased variance for auto-regressive FB. Having B depend on z has652
practical consequences for variance and minibatch sampling. In vanilla FB, starting from (31), it is653
possible to sample a minibatch of N transitions (st, at, st+1), a minibatch of N values of s′, choose654
a different value of z for each st in the minibatch, compute the N values of F (st, at, z) and B(s′),655
and compute the N2 dot products F (st, at, z)

⊤B(s′) involved in the loss, at a cost of N forward656
passes through F and B (Appendix A in Touati & Ollivier (2021)).657

In auto-regressive FB, the value of z must be the same for F and B in the loss (31). Therefore,658
contrary to plain FB, we only sample a single value of z for the minibatch. Then we can compute the659
N values F (st, at, z) and B(s′, z), and the N2 dot products F (st, at, z)

⊤B(s′, z) for the loss (31).660
This appears in Algorithm 2.661

Using a single value of z per minibatch results in increased variance of auto-regressive FB with662
respect to vanilla FB and longer training times, which we observe in practice.663

Indeed, if we want to keep using different values of z for each F (st, at, z), we must either compute664
many more values B(s′, z) (one for each pair s′ and z), or use fewer dot products by computing665
fewer values of B(s′, z) and only using them with F (st, at, z) with the same z.666

More precisely, in general we can proceed as follows: Let k be a hyperparameter controlling the667
number of distinct values of z we will use in the minibatch. We sample N transitions (st, at, st+1),668
N values of s′, and split these samples into k groups of size N/k. For each group, we sample a value669
of z, we compute the values F (st, at, z) and B(s′, z) for the states in that group, and we use all dot670
products F (st, at, z)

⊤B(s′, z) within that group.671

Thus, the solution we used just has k = 1: the same value of z is used throughout the minibatch, so672
we can compute N2 dot products F (st, at, z)

⊤B(s′, z) with only N forward passes through F and673
B. The other extreme would be k = N : for each (st, at, st+1), we pick a value of z and a value of s′,674
compute F (st, at, z) and B(s′, z), and form the dot product F (st, at, z)

⊤B(s′, z). This uses more675
distinct values of z, but has only N dot products. In practice this would mean a reduced variance676
from sampling z, but an increased variance from sampling s′. Our chosen option (k = 1) has the677
opposite trade-off. This choice was based on preliminary results showing that, while using a higher k678
appeared to learn slightly faster at the beginning, the fewer dot products led to convergence to slightly679
lower performance.680

To some extent, this effect may represent a hindrance for autoregressive FB compared with vanilla681
FB. However, Fig. 12 (Appendix E) shows that this effect is limited: indeed, vanilla FB with a single682
z per minibatch performs only slightly worse than vanilla FB with many z’s.683

19

Under review for RLC 2025, to be published in RLJ 2025

Normalization of B. As in Touati et al. (2023), to improve numerical conditioning on B, we use684
an auxiliary orthonormalization loss which ensures that B is approximately an orthognoal matrix.685
Indeed, one can change F and B without changing the B model, by F ← FC and B ← B(C⊤)−1 for686
any invertible matrix B, because the FB model only depends on the values of F⊤B (Touati & Ollivier,687
2021). In the case of auto-regressive features, since B depends on z, we can do this normalization688
separately for each z, without impacting the FB model. Explicitly, the orthonormalization loss is689

Lnorm(B) := Ez

∥∥Es∼ρ[B(s, z)B(s, z)⊤]− Id
∥∥2
Frobenius

(32)

= EzEs∼ρ, s′∼ρ

[
(B(s, z)⊤B(s′, z))2 − ∥B(s, z)∥22 − ∥B(s′, z)∥22

]
+ Const. (33)

where z is sampled as for the main loss.690

Moreover, we further normalize the output of B: for each input (s, z) and each auto-regressive block691

in the output of B, we set B(s, z) ← B(s, z)
√
dk

∥B(s,z)∥ with dk the size of the block k, so that each692
output component is of size approximately 1. Fig. 13 (Appendix E) tests the effect of not using this693
output normalization.694

Scale invariance in the reward, and normalization of z. In reinforcement learning, the optimal695
behavior is the same for reward r or reward α.r with any α > 0. This inherent invariance property696
can be directly enforced within the architecture of FB to help with learning.697

In non-autoregressive FB models, since z = Es[r×B(s)], the scaling r ← α×r directly translates to698
a scaling in the task representation z ← αz. Thus, one simple way to enforce invariance with respect699
to the rewards’ scale is to always normalize z to a fixed norm (in practice, norm

√
d, so each of z700

value value expectedly has a magnitude close to 1). We denote this operation by the preprocessing701
function fz = z̄ =

√
d× z

||z|| , which we apply when feeding any z to πθ and Fϕ. Hence, this ensures702
that F (s, a, z) = F (s, a, α × z) and πz = πα×z by construction. As a result, the predictions and703
behaviors made when facing rewards r and α× r are exactly the same.704

However, in our auto-regressive FB models where z = Es[r ×B(s, z)], the same strategy cannot be705
applied when feeding z as input to B. This is because we never have access to the full z until the706
very end of the inference procedure. Hence, given a reward r, we still want to have scale-invariance707
in B but have no means of performing a standard input normalization, as we have no access to the708
magnitude of the resulting z.709

A first strategy to counteract this limitation could be to normalize z only within each auto-regressive710
group, fg(z) = {fg(z)1, . . . , fg(z)n} = {z̄1, . . . , z̄n}. While this would enforce a fixed scale and711
not pose test-time issues it would non-trivially affect the information available to B about the actual712
task z, losing any notion of relative magnitude between different groups. For instance, in case for713
n = d, each normalized component z̄k would be a binary scalar only preserving the sign from the714
corresponding task representation zk.715

We overcome these limitations by designing a new ‘residual autoregressive normalization strategy,716
far compatible with the requirements of B’s inference while still fully and exclusively preserving the717
information about z’s direction as with traditional normalization.718

Our strategy achieves these properties by using an iterative normalization scheme for each autore-719
gressive component in its output fr(z) = {fr(z)1, . . . , fr(z)n}. As with the aforementioned naive720
approach, we start with normalizing the first component z1 within itself: fr(z)1 = z̄1. Then, we pro-721
ceed to residually normalize all other zk, also making use of all previous autoregressive components722
z1, . . . zk−1:723

fr(z)k =
zk
||z1:k||

,

where z1:k simply corresponds to the concatenated first k auto-regressive components of z. Finally,724

we also rescale each kth component by a constant factor
√∑k

i=0 di to avoid biasing later components725

to have a smaller magnitude at initialization and incentivize ||fr(z)|| ≈
√
d. We note there is a726

20

Finer Behavioral Foundation Models

bijective map between traditional normalization and this auto-regressive scheme, thus, preserving the727
full information of the direction component of z without requiring the full vector.728

B.3 Algorithms729

Algorithm 1 FB
1: Inputs Offline dataset D, number of ensemble networks M , randomly initialized network {Fθm}m∈[M],

Bω and πϕ, transition mini-batch size I mixing probability τmix,Polyak coefficient ζ, orthonormality
regularisation coefficient λ.

2: for t = 1, . . . do
3: /* Sampling
4: Sample I latent vectors
5:

6: z ∼
{
N (0, Id) with prob 1− τmix

B(s) where s ∼ D, with prob τmix

7: z ←
√
d z
∥z∥

8: Sample a mini-batch of I transitions {(si, ai, s
′
i)}i∈[I] from D

9: /* Compute FB loss
10: Sample a′

i ∼ πϕ(s
′
i, zi) for all i ∈ [I]

11: LFB(θm, ω) = 1
2I(I−1)

∑
j ̸=k

(
Fθk (si, ai, zi)

⊤Bω(s
′
k)− γ 1

M

∑
m∈[M] Fθ−m

(s′i, a
′
i, zi)

⊤Bω−(s′k)
)2

12: − 1
I

∑
i Fθk (si, ai, zi)

⊤Bω(s
′
i), ∀m ∈ [M]

13: /* Compute orthonormality regularization loss
14: Lortho(ω) =

1
2I(I−1)

∑
i ̸=k(Bω(s

′
i)

⊤Bω(s
′
k)

2 − 1
I

∑
i Bω(s

′
i)

⊤Bω(s
′
i)

15: /* Compute actor loss
16: Sample aϕ

i ∼ πϕ(si, zi) for all i ∈ [I]

17: Lactor(ϕ) = − 1
I

∑
i

(
minm∈[M] Fθm(si, a

ϕ
i , zi)

T zi
)

18: /* Update all networks
19: θm ← θm − ξ∇θm(LFB(θk, ω) for all m ∈ [M]
20: ω ← ω − ξ∇ω(

∑
l∈[m] LFB(θl, ω) + λ ·Lortho(ω))

21: ϕ← ϕ− ξ∇ϕLactor(ϕ)
22: /* Update target networks
23: θ−m ← ζθ−m + (1− ζ)θm for all m ∈ [M]
24: ω− ← ζω− + (1− ζ)ω

C Experimental Details730

C.1 Network Architecture731

• For the backward representation network B(s, z), we first preprocess separately s and (s, z). We732
use for s preprocessing a feedforward neural network with one single hidden layer of 256 units.733
We use for (s, z) preprocessing a masked network with one single hidden dimension of 256 units,734
The masked network employs multiplicative binary masks to remove some connections, such that735
each output layer unit of an autoregressive block is only predicted from the input units of previous736
blocks. After preprocessing, we concatenate the two outputs and pass them into a two hidden layer737
masked network that outputs a d-dimensional embedding.738

• For the forward network F (s, a, z), we first preprocess separately (s, a) and (s, z) by two feed-739
forward networks with one single hidden layer (with 1024 units) to 512-dimentional space. Then740
we concatenate their two outputs and pass it into a three hidden layer feedforward networks (with741
1024 units) to output a d-dimensional vector. We use an ensemble of two networks for F.742

• For the policy network π(s, z), we first preprocess separately s and (s, z) by two feedforward743
networks with one single hidden layer (with 1024 units) to 512-dimentional space. Then we744
concatenate their two outputs and pass it into another four hidden layer feedforward network (with745

21

Under review for RLC 2025, to be published in RLJ 2025

Algorithm 2 FB-AWARE
1: Inputs Offline dataset D, number of ensemble networks M , randomly initialized network {Fθm}m∈[M],

Bω and πϕ, transition mini-batch size J , latent vector mini-batch size I , number of autoregressive blocks K,
mixing probability τmix,Polyak coefficient ζ, orthonormality regularisation coefficient λ, temperature β.

2: for t = 1, . . . do
3: /* Sampling
4: Sample I latent vectors
5:

6: z ∼
{
N (0, Id) with prob 1− τmix

(z1, . . . , zK) = (B1(s), . . . , BK(s, z1, . . . , zK−1)) where s ∼ D, with prob τmix

7: z ←
√
d z
∥z∥

8: Sample a mini-batch of I × J transitions {(si,j , ai,j , s
′
i,j)}i∈[I],j∈[J] from D

9: Sample a′
i,j ∼ πϕ(s

′
i,j , zi) for all i ∈ [I], j ∈ [J]

10: LFB(θm, ω) = 1
2IJ(J−1)

∑
i

∑
j ̸=k

(
Fθk (si,j , ai,j , zi)

⊤Bω(s
′
i,k, zi)− γ 1

M

∑
m∈[M] Fθ−m

(s′i,j , a
′
i,j , zi)

⊤Bω−(s′i,k, zi)
)2

11: − 1
IJ

∑
i

∑
j Fθk (si,j , ai,j , zi)

⊤Bω(s
′
i,j , zi), ∀m ∈ [M]

12: /* Compute orthonormality regularization loss
13: Lortho(ω) = 1

2IJ(J−1)

∑
i

∑
j ̸=k(Bω(s

′
i,j , zi)

⊤Bω(s
′
i,k, zi)

2 −
1
IJ

∑
i

∑
j Bω(s

′
i,j , zi)

⊤Bω(s
′
i,j , zi)

14: /* Compute actor loss
15: A(si,j , ai,j , zi)←

∑
m Fθm(si,j , ai,j , zi)

T zi − Ea′
i,j∼πϕ(si,j ,zi)

[minm Fθm(si,j , a
′
i,j , zi)

T zi]

16: w(si,j , ai,j , zi)← exp(A(si,j ,ai,j ,zi)/β)∑
i′,j′ exp(A(si′,j′ ,ai′,j′ ,zi′)/β)

17: w′(si,j , ai,j , zi) ∝ w(si,j ,ai,j ,zi)∑
(i′,j′)̸=(i,j) w(si′,j′ ,ai′,j′ ,zj′)

18: Lactor(ϕ) = − 1
IJ

∑
i,j w′(si,j , ai,j , zi) log πϕ(ai,j | si,j , zi)

19: /* Update all networks
20: θm ← θm − ξ∇θm(LFB(θk, ω) for all m ∈ [M]
21: ω ← ω − ξ∇ω(

∑
l∈[m] LFB(θl, ω) + λ ·Lortho(ω))

22: ϕ← ϕ− ξ∇ϕLactor(ϕ)
23: /* Update target networks
24: θ−m ← ζθ−m + (1− ζ)θm for all m ∈ [M]
25: ω− ← ζω− + (1− ζ)ω

1024 units) to output to output a dA-dimensional vector, then we apply a Tanh activation as the746
action space is [−1, 1]dA .747

For all the architectures, we apply a layer normalization and Tanh activation in the first layer in748
order to standardize the states and actions. We use Relu for the rest of layers.749

C.2 Hyperparameters750

Table 2: Hyperparameters used for the backward / features architectures.
Hyperparameter backward / features Autoregressive backward / features
Input variables s (s, z)
Hidden layers 2 2
Hidden units 256 256
Activations ReLU ReLU
First-layer activation layernorm + tanh layernorm + tanh
Input normalization None residuel autoregressive l2-normalization for z
Output normalization l2-normalization autoregressive group l2-normalization

22

Finer Behavioral Foundation Models

Table 3: Hyperparameters used for the forward/ successor features and actor architectures
Hyperparameter forward / successor features actors
Input variables (s, a, z) (s, z)
Embeddings one over (s, a) and one over (s, z) one over (s) and one over (s, z)
Embedding hidden layers 2 2
Embedding hidden units 1024 1024
Embedding output dim 512 512
Hidden layers 3 4
Hidden units 1024 1024
Activations ReLU ReLU
First-layer activation layernorm + tanh layernorm + tanh
Output activation linear tanh
Number of parallel networks 2 1

Table 4: Hyperparameters used for FB pretraining.
Hyperparameter Value
batch-size 1024
z dimension d env-dependant
F network Tab. 3
actor network Tab. 3
B network Tab. 2
Learning rate for F 10−4

Learning rate for actor 10−4

Learning rate for B 10−4

Coefficient for orthonormality loss 100
z distribution

-goals from the online buffer 50%
-uniform on unit sphere 50%

Polyak coefficient for target network update 0.005
z-batch-size (for AR) 1
for AW

- temperature β sweep over {0.1, 1, 10, 100, 300}
-Number of sampled action to estimate Advantage 4
-Number of sampled action for ES 50

C.3 Out-Of-Dataset Tasks for DMC Locomotion751

To evaluate our new unsupervised RL algorithm across a set of diverse unseen problems, we extend752
the DeepMind Control suite with 15 new unseen tasks as defined by the following objectives:753

• cheetah bounce – Simulated cheetah agent is rewarded for advancing while elevating its trunk and754
maximizing vertical velocity.755

• cheetah march – Simulated cheetah agent is rewarded for advancing at a constant pace.756

• cheetah stand – Simulated cheetah agent is rewarded for standing upright on its back leg.757

• cheetah headstand – Simulated cheetah agent is rewarded for standing on its head while raising758
its back leg.759

• quadruped bounce – Simulated quadruped agent is rewarded for advancing while elevating its760
trunk and maximizing vertical velocity.761

• quadruped skip – Simulated quadruped agent is rewarded for moving in a diagonal pattern across762
the environment.763

• quadruped march – Simulated quadruped agent is rewarded for advancing at a constant pace.764

• quadruped trot – Simulated quadruped agent is rewarded for advancing while minimizing feet765
contact with the ground.766

• walker flip – Simulated walker for performing a cartwheel, flipping its body 360 degrees.767

• walker march – Simulated walker agent is rewarded for advancing at a constant pace.768

• walker skyreach – Simulated walker agent is rewarded for pushing either of its legs to maximize769
vertical reach.770

23

Under review for RLC 2025, to be published in RLJ 2025

• walker pullup – Simulated walker agent is rewarded for pushing its upper trunk vertically while771
keeping its feet firmly grounded.772

• humanoid dive – Simulated humanoid agent is rewarded for diving head-first to maximize vertical773
velocity.774

• humanoid march – Simulated humanoid agent is rewarded for advancing at a constant pace.775

• humanoid skip – Simulated humanoid agent is rewarded for moving in a diagonal pattern across776
the environment.777

We hope this new set of problems might facilitate the evaluation of simulated robotics agents for the778
broader RL field, even beyond the unsupervised setting.779

D Full Tables of Results780

D.1 Jaco Arm Results781

Domain Task FB FB-AW FB-AWARE (4) FB-AWARE (8) LAP-AW
jaco reach_bottom_left 49.0±25.5 43.9±8.6 56.3±8.6 63.6±6.4 25.9±5.9

jaco reach_bottom_right 30.8±7.5 71.5±18.2 57.6±16.5 58.6±21.1 34.0±13.9

jaco reach_random1 18.0±8.0 42.9±15.7 64.4±17.0 63.9±10.7 20.4±12.6

jaco reach_random2 23.4±6.4 55.5±5.6 72.8±10.7 63.7±8.1 14.3±5.1

jaco reach_random3 43.2±27.7 39.6±5.9 53.1±6.4 59.0±12.1 14.6±5.6

jaco reach_random4 32.6±23.3 57.4±11.5 68.4±11.0 69.9±10.3 24.1±2.8

jaco reach_top_left 32.6±12.3 41.0±5.4 41.9±8.3 62.7±14.9 10.3±2.2

jaco reach_top_right 21.5±11.6 25.9±9.2 43.6±9.7 48.3±12.1 21.4±5.2

jaco Average 31.4±15.3 47.2±10.0 57.3±11.0 61.2±12.0 20.6±6.7

Table 5: JACO results on RND dataset, with dimension d = 64

Domain Task FB FB-AW FB-AWARE (4) FB-AWARE (8) LAP-AW
jaco reach_bottom_left 33.8±17.3 76.0±12.0 88.1±18.5 64.6±13.4 41.3±10.2

jaco reach_bottom_right 51.3±10.2 86.3±9.4 87.7±15.0 96.8±6.9 47.8±18.1

jaco reach_random1 32.6±18.1 75.3±10.5 85.4±9.2 87.0±13.0 30.9±5.3

jaco reach_random2 22.9±10.0 86.3±9.1 104.1±7.5 95.5±12.7 28.8±6.3

jaco reach_random3 31.2±9.0 68.3±11.3 89.5±17.7 61.9±8.2 24.7±7.2

jaco reach_random4 21.6±6.3 82.2±9.6 101.2±17.6 82.9±10.5 34.7±10.9

jaco reach_top_left 44.4±16.6 59.5±18.3 56.5±9.6 46.0±17.7 32.1±10.2

jaco reach_top_right 28.3±13.0 44.2±12.5 47.5±5.6 39.7±8.4 23.1±7.1

jaco Average 33.3±12.6 72.2±11.6 82.5±12.6 71.8±11.4 32.9±9.4

Table 6: JACO results on RND dataset, with dimension d = 128

24

Finer Behavioral Foundation Models

Domain Task FB FB-AW FB-AWARE (4) FB-AWARE (8) LAP-AW
jaco reach_bottom_left 33.1±23.3 60.2±26.8 101.0±7.5 91.5±16.8 42.7±15.0

jaco reach_bottom_right 10.5±2.4 69.2±32.5 116.9±9.7 90.9±12.9 63.9±13.8

jaco reach_random1 31.9±21.8 49.5±25.5 86.0±19.2 84.7±12.4 45.4±4.8

jaco reach_random2 32.1±16.4 50.9±26.2 99.7±17.6 94.9±14.5 47.2±8.4

jaco reach_random3 43.6±18.4 39.6±22.4 72.4±13.6 81.5±9.9 44.9±9.4

jaco reach_random4 32.8±15.4 58.3±34.5 98.8±15.7 93.1±14.2 51.3±8.2

jaco reach_top_left 29.4±11.2 38.4±18.6 43.6±10.3 65.1±21.1 43.0±6.1

jaco reach_top_right 27.7±6.2 29.8±19.2 44.8±20.1 45.4±13.8 37.0±9.4

jaco Average 30.1±14.4 49.5±25.7 82.9±14.2 80.9±14.4 46.9±9.4

Table 7: JACO results on RND dataset, with dimension d = 256

25

Under review for RLC 2025, to be published in RLJ 2025

D.2 DMC Locomotion Results782

Domain Task LAP LAP-AW FB-AW FB FB-ARE (4) FB-ARE (8)
cheetah walk 641.0±137.7 528.9±22.9 520.8±56.6 780.3±182.7 737.5±204.7 686.1±44.8

cheetah run 156.5±36.8 116.0±6.8 141.2±19.8 306.8±87.3 261.1±95.3 241.8±57.3

cheetah walk_backward 930.9±77.9 452.3±212.6 839.5±49.3 732.5±167.3 769.9±209.9 762.3±205.6

cheetah run_backward 230.7±42.6 109.7±37.2 196.2±22.4 136.5±35.6 174.1±48.6 186.4±66.4

cheetah in_dataset_avg 489.8±73.8 301.7±69.9 424.4±37.0 489.0±118.2 485.7±139.6 469.2±93.5

quadruped walk 509.1±38.9 418.3±42.7 438.2±192.6 608.4±72.0 630.1±96.9 604.0±116.8

quadruped run 457.6±27.7 355.6±86.5 391.2±91.9 392.7±31.4 417.4±30.6 376.1±29.2

quadruped stand 681.6±221.6 731.3±166.6 762.2±152.8 687.9±29.6 761.7±75.9 705.4±58.1

quadruped jump 464.5±167.3 493.4±147.1 563.7±139.1 567.0±10.6 609.2±42.3 580.3±37.1

quadruped in_dataset_avg 528.2±113.9 499.6±110.7 538.9±144.1 564.0±35.9 604.6±61.4 566.4±60.3

walker stand 963.6±15.3 803.3±61.9 452.6±85.8 728.5±83.0 632.7±151.7 516.1±191.0

walker walk 908.8±28.1 605.3±36.4 572.0±25.3 669.9±46.6 607.9±140.2 552.2±268.4

walker run 318.7±15.0 196.6±13.1 181.2±16.5 356.2±20.9 290.4±22.7 240.0±122.7

walker spin 982.9±3.5 627.9±135.1 963.7±5.3 974.9±10.0 983.4±1.3 788.2±391.2

walker in_dataset_avg 793.5±15.5 558.3±61.6 542.4±33.2 682.4±40.1 628.6±79.0 524.1±243.3

cheetah bounce 600.4±23.0 428.2±210.5 539.9±25.8 415.7±119.2 472.8±44.2 462.2±23.8

cheetah march 290.8±63.2 233.6±12.9 279.2±39.0 561.4±183.7 531.5±187.6 460.9±119.2

cheetah stand 790.1±107.9 249.5±131.6 738.7±66.2 780.9±105.7 629.3±49.3 762.9±179.9

cheetah headstand 577.9±145.1 288.9±236.8 728.4±83.3 794.7±9.4 791.1±52.0 765.1±70.3

cheetah out_of_dataset_avg 564.8±84.8 300.0±147.9 571.6±53.6 638.2±104.5 606.2±83.3 612.8±98.3

quadruped bounce 179.5±76.1 123.2±64.4 189.3±192.0 276.1±57.1 196.0±105.6 251.1±47.9

quadruped skip 365.3±108.4 458.0±114.5 559.5±220.3 603.3±30.7 635.2±34.4 615.3±35.2

quadruped march 478.7±14.1 370.4±80.7 396.4±123.7 458.3±20.4 466.0±38.7 419.7±32.0

quadruped trot 310.6±7.0 246.7±54.6 278.3±122.4 357.6±12.1 380.9±47.6 335.3±35.4

quadruped out_of_dataset_avg 333.5±51.4 299.6±78.5 355.9±164.6 423.8±30.1 419.5±56.6 405.4±37.6

walker flip 605.4±42.4 435.0±27.7 293.6±83.8 445.5±77.4 462.0±68.7 322.6±147.7

walker march 695.8±47.8 364.3±29.0 359.9±15.2 518.4±95.9 400.5±178.0 390.3±190.4

walker skyreach 653.8±64.1 423.1±61.6 406.0±13.8 417.0±34.9 331.7±44.4 261.5±151.7

walker pullup 264.8±80.5 58.4±39.2 264.5±60.5 305.9±109.4 463.1±107.5 214.6±155.1

walker out_of_dataset_avg 554.9±58.7 320.2±39.4 331.0±43.3 421.7±79.4 414.3±99.7 297.2±161.2

Table 8: DMC Locomotion results on RND dataset, with dimension 64, averaged over 100 episodes.
Humanoid is not included, as RND produces insufficient exploration for Humanoid: even classical
single-task (non-FB) training fails.

26

Finer Behavioral Foundation Models

Domain Task FB FB-AW FB-AWARE (4) FB-AWARE (8) LAP-AW
cheetah walk 985.3±3.1 983.6±6.6 967.5±28.4 982.0±4.2 978.5±14.0

cheetah run 213.2±123.5 560.2±40.7 525.7±53.6 547.6±20.5 448.9±222.9

cheetah walk_backward 971.0±24.3 979.7±5.1 984.1±0.7 985.1±1.2 982.8±3.5

cheetah run_backward 302.5±58.9 473.9±6.0 454.0±17.9 465.8±9.9 413.8±25.1

cheetah in_dataset_avg 618.0±52.4 749.4±14.6 732.8±25.1 745.1±8.9 706.0±66.4

quadruped walk 389.5±238.2 935.5±6.6 926.8±4.2 919.3±8.4 819.1±132.3

quadruped run 298.1±105.4 580.8±62.5 606.2±33.0 566.0±47.8 610.6±89.3

quadruped stand 615.4±191.0 941.1±6.6 947.9±4.7 940.3±9.4 911.5±27.9

quadruped jump 429.6±134.5 779.1±48.1 841.8±8.2 751.0±75.9 782.8±48.4

quadruped in_dataset_avg 433.2±167.3 809.1±30.9 830.7±12.5 794.2±35.4 781.0±74.5

walker stand 744.0±119.3 962.2±14.7 963.9±3.7 963.4±4.3 961.2±8.2

walker walk 780.0±310.8 943.8±20.8 941.4±7.4 922.4±16.4 934.3±12.7

walker run 422.5±167.4 594.9±12.1 606.5±6.2 600.8±37.8 518.9±39.7

walker spin 481.6±226.3 894.7±84.4 820.9±114.6 894.8±63.6 802.0±180.7

walker in_dataset_avg 607.0±205.9 848.9±33.0 833.2±33.0 845.3±30.5 804.1±60.4

humanoid walk 9.5±11.8 793.5±16.1 789.4±18.0 791.5±7.3 715.4±35.1

humanoid stand 7.7±3.8 720.0±23.5 728.3±30.1 711.6±24.4 587.2±34.0

humanoid run 2.4±1.6 276.5±11.0 266.7±4.8 273.6±5.2 246.4±9.7

humanoid in_dataset_avg 6.5±5.7 596.7±16.9 594.8±17.6 592.3±12.3 516.3±26.3

cheetah bounce 351.8±119.9 479.0±22.3 506.9±18.9 494.6±9.4 338.4±38.3

cheetah march 521.4±161.8 897.8±38.1 903.6±30.6 921.9±8.9 819.7±60.8

cheetah stand 731.5±248.4 419.1±48.7 472.7±49.4 548.7±37.7 184.1±44.9

cheetah headstand 560.4±185.9 849.7±49.9 848.0±33.8 806.0±21.4 7.2±11.4

cheetah out_of_dataset_avg 541.3±179.0 661.4±39.8 682.8±33.2 692.8±19.4 337.3±38.9

quadruped bounce 114.7±98.1 181.2±61.4 284.2±31.7 223.7±20.6 202.8±52.1

quadruped skip 425.0±139.2 654.6±88.0 835.2±86.9 705.4±67.8 769.2±94.6

quadruped march 304.1±133.2 747.1±94.2 791.8±30.6 800.0±7.9 742.5±123.0

quadruped trot 228.3±127.1 573.0±46.9 614.8±15.9 594.6±6.1 509.8±73.1

quadruped out_of_dataset_avg 268.0±124.4 539.0±72.6 631.5±41.3 580.9±25.6 556.1±85.7

walker flip 404.7±234.4 909.9±20.0 913.6±14.5 914.5±18.3 780.2±66.2

walker march 663.3±245.6 826.7±41.3 841.0±45.1 811.8±17.7 725.8±25.7

walker skyreach 396.5±35.2 365.2±42.7 366.7±25.2 404.3±51.5 284.6±52.7

walker pullup 124.1±101.7 334.4±112.7 523.7±31.4 454.8±46.9 113.9±48.8

walker out_of_dataset_avg 397.2±154.2 609.0±54.2 661.3±29.1 646.4±33.6 476.1±48.3

humanoid dive 165.8±7.9 404.1±11.1 409.8±17.9 396.5±16.1 242.6±18.1

humanoid march 6.3±8.4 669.6±23.5 659.5±23.6 661.2±18.3 559.6±53.1

humanoid skip 2.1±0.9 233.7±39.2 234.9±11.4 221.4±15.1 126.0±18.2

humanoid out_of_dataset_avg 58.1±5.7 435.8±24.6 434.7±17.6 426.4±16.5 309.4±29.8

Table 9: DMC locomotion results on MOOD dataset, with dimension = 64 for walker,cheetah,
quadruped, and dimension = 128 for humanoid, averaged over 100 episodes

D.3 Additional reward prompts783

We demonstrate the adaptability of our FB-AWARE model on the DMC humanoid by showcasing its784
behavior in response to various reward functions. In Figure 5, we illustrate the agent’s actions when785
prompted by the following reward functions:786

• LEFT_HAND: the task consists in raising the left hand while standing. Specifically, the reward787
function is defined as having a velocity close to zero (exponential term), having an upright torso,788
and maintaining the height of the left wrist above a certain threshold while keeping the height of789
the right wrist below a different threshold.790

RLEFT_HAND = exp(−(v2x + v2y)) ∗ upright ∗ I{left_wrist_z > 2} ∗ I{right_wrist_z < 0.9}

27

Under review for RLC 2025, to be published in RLJ 2025

S
P

L
IT

R
IG

H
T-

H
A

N
D

L
E

F
T-

H
A

N
D

W
A

L
K

-O
P

E
N

-H
A

N
D

Time −→

Figure 5: Example of behaviors inferred by from reward equations.

• RIGHT_HAND: the task consists in raising the right hand while standing. Specifically, the reward791
function is defined as having a velocity close to zero (exponential term), having an upright torso,792
and maintaining the height of the right wrist above a certain threshold while keeping the height of793
the left wrist below a different threshold.794

RRIGHT_HAND = exp(−(v2x + v2y)) ∗ upright ∗ I{left_wrist_z < 0.9} ∗ I{right_wrist_z > 0.9}

• WALK_OPEN_HAND: the task consists in walking while keeping the two hands open. The reward795
function is defined as having a velocity above some threshold and the absolute distance between796
the y coordinate of the left and right wrist above some threshold.797

RWALK_OPEN_HAND = I{v2x + v2y > 5} ∗ I{|left_wrist_y − right_wrist_y| > 1.2}

• SPLIT: the task consists in doing a split on the ground. The reward can be described as having798
a velocity close to zero, the height of the pelvis below some threshold and the absolute distance799
between the y coordinate of the left and right ankle above some threshold.800

RSPLIT = exp(−(v2x + v2y)) ∗ I{z_pelvis < 0.2} ∗ I{left_ankle_y − right_ankle_y| > 0.5}

28

Finer Behavioral Foundation Models

E Ablations801

Figure 6: Performance on four representative tasks of the DMC when training FB-AW and vanilla
FB (FBv1) either from mixed objective MOOD or pure RND data. The advantage of AW is clear on
the mixed-objective MOOD datasets. The RND dataset does not allow FB to reach top performance.

walker cheetah quadruped humanoid
0

100
200
300
400
500
600
700
800
900

1,000

Cu
m

ul
at

iv
e

Re
tu

rn

FB-AW FB-AW w/o ES

Figure 7: Cumulative reward averaged over all DMC Locomotion tasks, achieved by FB-AW with or
without Evaluation-Sampling, trained on MOOD dataset.

Figure 8: AW improves accuracy of reward prediction by the B model. We plot the bias of estimated
rewards when progressing through a trajectory, namely, the difference between the actual trajectory
return and the return

∑
t B(st)

T z predicted by FB, after offline training on MOOD (averaged across
5 agents, 10 trajectories each). Vanilla FB provides overoptimistic values.

Figure 9: Effect of the z dimension for FB-AW and FB-AWARE on the MOOD mixed objective
datasets

29

Under review for RLC 2025, to be published in RLJ 2025

Figure 10: Effect of the number of autoregressive groups for FB-AWARE on the MOOD mixed
objective datasets

Figure 11: Effect of modifying the z dimension and the number of autoregressive groups for FB-AW
and FB-AWARE, for performance in the Jaco arm environment

Figure 12: Effect of training FB-AW with a single z-per-batch like FB-AWARE (Section B.2)

30

Finer Behavioral Foundation Models

Figure 13: Ablations for Appendix B.2: Effects from training without the B normalization and
without sampling 50% of z from other states in the minibatch for FB-AW (Top) and FB-AWARE
(Bottom)

31

Under review for RLC 2025, to be published in RLJ 2025

Domain Task Vanilla FB FB(fully par. + no min.) FB-AW(no fully par. + min.) FB-AW (WIS) FB-AW
cheetah walk 275.5±343.5 500.2±285.2 987.5±0.6 975.0±23.5 975.6±24.6

cheetah run 77.1±87.3 106.0±50.4 548.3±38.6 548.4±30.0 610.7±49.2

cheetah walk_backward 199.3±209.1 349.7±394.5 984.8±0.4 984.5±1.2 984.7±0.4

cheetah run_backward 49.1±58.6 78.6±118.3 461.0±6.6 477.4±7.8 481.4±4.2

cheetah in_dataset_avg 0.175±0.203 0.295±0.249 0.939±0.019 0.944±0.022 0.971±0.028

quadruped walk 318.3±65.7 763.9±145.2 889.4±80.5 938.8±34.7 958.0±9.1

quadruped run 279.4±45.8 439.8±90.2 446.1±50.6 599.4±70.4 673.4±33.1

quadruped stand 619.6±121.1 831.5±147.8 901.3±84.7 944.9±44.0 975.9±4.5

quadruped jump 435.0±79.8 644.1±127.7 708.2±20.2 767.4±74.9 798.4±55.0

quadruped in_dataset_avg 0.493±0.093 0.800±0.153 0.877±0.070 0.976±0.070 1.026±0.032

walker stand 906.5±80.4 976.2±9.5 964.8±3.5 978.9±3.1 956.1±34.7

walker walk 892.8±102.7 939.9±44.7 946.7±10.3 960.1±7.3 955.4±16.6

walker run 462.2±37.5 487.0±44.1 480.5±52.6 583.3±20.9 579.8±45.8

walker spin 422.1±121.4 464.9±196.4 923.2±30.1 759.2±173.6 789.6±117.7

walker in_dataset_avg 0.749±0.093 0.799±0.081 0.913±0.032 0.918±0.055 0.917±0.061

humanoid walk 3.6±5.0 2.3±1.1 677.6±52.8 779.9±37.1 785.0±20.4

humanoid stand 5.1±1.9 4.8±0.8 481.3±59.5 750.3±43.3 801.7±45.8

humanoid run 1.1±0.8 1.1±0.6 256.8±22.9 274.4±20.4 294.9±17.5

humanoid in_dataset_avg 0.005±0.004 0.004±0.002 0.793±0.074 0.965±0.058 1.014±0.049

cheetah bounce 109.6±83.9 315.4±102.8 436.3±47.1 469.3±39.7 502.5±19.2

cheetah march 135.8±182.5 257.8±110.2 766.9±92.7 892.6±35.0 917.4±13.4

cheetah stand 206.6±383.7 684.7±267.4 426.9±191.6 288.9±162.6 387.6±98.4

cheetah headstand 233.8±369.0 923.7±57.1 488.0±345.1 407.0±369.8 854.5±42.0

cheetah out_dataset_avg 0.214±0.308 0.684±0.166 0.660±0.207 0.642±0.188 0.832±0.053

quadruped bounce 133.6±82.8 248.9±41.0 204.3±61.0 246.6±31.3 231.8±18.4

quadruped skip 478.9±113.2 601.0±72.3 554.0±1.3 722.7±112.4 836.1±104.4

quadruped march 280.8±73.1 517.2±108.0 478.8±41.8 802.1±55.9 860.2±26.7

quadruped trot 178.3±38.0 381.5±82.6 412.1±48.6 605.3±16.9 615.9±13.6

quadruped out_dataset_avg 0.524±0.175 0.897±0.159 0.834±0.105 1.187±0.105 1.245±0.075

walker flip 630.3±111.7 744.4±105.4 771.8±104.5 891.2±24.9 896.5±41.2

walker march 709.4±182.1 744.6±183.3 593.9±12.6 788.3±63.7 797.2±36.8

walker skyreach 321.7±130.0 423.0±70.3 392.7±15.1 364.3±48.0 389.8±6.5

walker pullup 114.7±98.5 101.3±104.1 33.9±8.2 309.7±145.5 376.5±219.5

walker out_dataset_avg 0.645±0.196 0.747±0.163 0.674±0.052 0.849±0.101 0.889±0.101

humanoid dive 159.2±12.2 166.6±29.5 357.1±36.6 387.9±39.8 404.0±5.7

humanoid march 2.9±3.5 2.9±1.8 479.6±48.5 623.1±64.6 645.9±49.7

humanoid skip 2.0±1.2 1.7±0.4 81.3±26.7 254.4±23.8 250.1±24.0

humanoid out_dataset_avg 0.112±0.011 0.117±0.021 0.536±0.072 0.788±0.079 0.805±0.049

Table 10: Ablations regarding the various components from Section 3.2: advantage weighting, using
the average versus the min of the two target networks for representing uncertainty, using fully parallel
architectures for the two target networks, and using improved weighted importance sampling (IWIS)
versus ordinary WIS. As described in the text, FB-AW (right column) has advantage weighting,
uses the average instead of the min, has fully parallel architectures, and uses IWIS. Vanilla FB
(left column) has the opposite settings. We compare other combinations in between. We report
performance on the mixed objective datasets from MOOD, on both in-dataset and out-of-dataset
tasks. The representation dimension is d = 50 for Cheetah, Quadruped, Walker, and d = 100 for
Humanoid.

32

