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Abstract

In the bandits with knapsacks framework (BwK) the learner has m resource-1

consumption (i.e., packing) constraints. We focus on the generalization of BwK in2

which the learner has a set of general long-term constraints. The goal of the learner3

is to maximize their cumulative reward, while at the same time achieving small4

cumulative constraints violations. In this scenario, there exist simple instances5

where conventional methods for BwK fail to yield sublinear violations of constraints.6

We show that it is possible to circumvent this issue by requiring the primal and dual7

algorithm to be weakly adaptive. Indeed, even in absence on any information on8

the Slater’s parameter ρ characterizing the problem, the interplay between weakly9

adaptive primal and dual regret minimizers yields a “self-bounding” property of10

dual variables. In particular, their norm remains suitably upper bounded across11

the entire time horizon even without explicit projection steps. By exploiting this12

property, we provide best-of-both-worlds guarantees for stochastic and adversarial13

inputs. In the first case, we show that the algorithm guarantees sublinear regret. In14

the latter case, we establish a tight competitive ratio of ρ/(1 + ρ). In both settings,15

constraints violations are guaranteed to be sublinear in time. Finally, this results16

allow us to obtain new result for the problem of contextual bandits with linear17

constraints, providing the first no-α-regret guarantees for adversarial contexts.18

1 Introduction19

We consider a problem in which a decision maker tries to maximize their cumulative reward over20

a time horizon T , subject to a set of m long-term constraints. At each round t, the learner chooses21

xt ∈ X and, subsequently, observes a reward ft(xt) ∈ [0, 1] and m constraint functions gt(xt) ∈22

[−1, 1]m. Then, the problem becomes that of finding a sequence of decisions which guarantees a23

reward close to that of the best fixed decision in hindsight, while satisfying long-term constraints24 ∑T
t=1 gt(xt) ≤ 0 up to small sublinear violations. This framework subsumes the bandits with25

knapsacks (BwK) problem, where there are only resource-consumption constraints [10, 5, 30].26

Inputs (ft, gt) may be either stochastic or adversarial. The goal is designing algorithms providing27

guarantees for both input models, without prior knowledge of the specific environment they will28

encounter. Achieving this goal involves addressing two crucial challenges which prevent a direct29

application of primal-dual approaches based on the LagrangeBwK framework in [30].30

1.1 Technical Challenges31

In order to obtain meaningful regret guarantees, primal-dual frameworks based on LagrangeBwK32

need to control the magnitude of dual variables. This is necessary as dual variables appear in the loss33

function of the primal algorithm, and, therefore, influence the no-regret guarantees provided by the34
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primal algorithm. In the context of knapsack constraints, this is usually achieved by exploiting the35

existence of a strictly feasible solution with Slater’s parameter ρ, consisting of a void action which36

yields zero reward and resource consumption. For instance, the frameworks of [14, 17] guarantee37

boundedness of dual multipliers through an explicit projection step on the interval [0, 1/ρ]. However,38

in settings with general constraints beyond resource consumption, it is often unreasonable to assume39

that the learner knows the Slater’s parameter ρ a priori. The problem of operating without knowledge40

of ρ has been already addressed in the stochastic setting [4, 5, 45, 44, 19]. For instance, a simple41

approach for the case of stochastic inputs involves adding an initial estimation phase to calculate42

an estimate of ρ, and subsequently treating this estimate as the true parameter [19]. However, these43

techniques cannot be applied in adversarial environments as estimates of ρ based on the initial rounds44

could be inaccurate about future inputs.45

Primal-dual templates based on LagrangeBwK usually operate under the assumption that the46

primal and dual algorithms have the no-regret property. In the case of standard BwK, the no-regret47

requirement is sufficient to obtain optimal guarantees (see, e.g., [30, 17]). However, in our model,48

there exist simple instances in which the primal and dual algorithms satisfy the no-regret requirement,49

but the overall framework fails to guarantee small constraints violations (see Section 5.1). Moreover,50

known techniques to prevent this problem, such as introducing a recovery phase to prevent excessive51

violations, crucially require a priori knowledge of the Slater’s parameter ρ [19].52

1.2 Contributions53

Our approach is based on a generalization of the technique presented in [18] for online bidding under54

one budget and one return-on-investments constraint. The crux of the approach is requiring that both55

the primal and dual algorithms are weakly adaptive, that is, they guarantee a regret upper bound56

of o(T ) for each sub-interval of the time horizon [29]. We generalize this approach to the case of57

m general constraints, thereby providing the first primal-dual framework for this problem that can58

operate without any knowledge of Slater’s parameter in both stochastic and adversarial environments.59

First, we prove a “self-bounding” lemma for the case of m arbitrary constraints. It shows that, if the60

primal and dual algorithms are weakly adaptive, then boundedness of dual multipliers emerges as a61

byproduct of the interaction between the primal and dual algorithm. Thus, it is possible to guarantee62

a suitable upper bound on the dual multipliers even without any information on Slater’s parameter.63

We use this result to prove best-of-both-worlds no-regret guarantees for primal-dual frameworks64

derived from LagrangeBwK which employ weakly adaptive primal and dual algorithms. Our65

guarantees will be modular with respect to the regret guarantees of the primal and dual algorithms.66

In presence of a suitable primal regret minimizer, we show that our framework yields the following67

no-regret guarantees while attaining sublinear constraints violations: in the stochastic setting, it68

guarantees sublinear regret with respect to the best fixed randomized strategy that is feasible in69

expectation. Remarkably, this result is obtained without having to allocate the initial T 1/2 rounds for70

estimating the unknown parameter as in [19]. In the adversarial setting, our framework guarantees71

a competitive ratio of ρ/(1 + ρ) against the best unconstrained strategy in hindsight. We provide a72

lower bound showing that this cannot be improved if constraint violations have to be o(T ). This is73

the first regret guarantee for our problem in adversarial environments.74

Finally, we show that our model can be used to describe the contextual bandits with linear constraints75

(CBwLC) problem, which was recently studied by [40, 27] in the context of stochastic and non-76

stationary environments. Our framework allows to extend these works in two directions: we establish77

the first no-α-regret guarantees for CBwLC when contexts are generated by an adversary, and we78

provide the first Õ(
√
T ) guarantees for the stochastic setting when the learner does not know an79

estimate of the Slater’s parameter of the problem.80

2 Related Work81

Bandits with Knapsacks. The (stochastic) BwK problem was introduced an optimally solved by82

[9, 10]. Other algorithms with optimal regret guarantees have been proposed by [4, 5], whose83

approach is based on the paradigm of optimism in the face of uncertainty, and in [31, 30]. In the84

latter works, the authors propose the LagrangeBwK framework, which has a natural interpretation:85

arms can be thought of as primal variables, and resources as dual variables. The framework works by86
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setting up a repeated two-player zero-sum game between a primal and a dual player, and by showing87

convergence to a Nash equilibrium of the expected Lagrangian game.88

Adversarial BwK. The adversarial BwK problem was first introduced in [31, 30], where they studied89

the case in which the learner has m knapsack constraints, and inputs are selected by an oblivious90

adversary. Their algorithm is based on a modified analysis of LagrangeBwK, and guarantees a91

O(m log T ) competitive ratio. Subsequently, [32] provided a new analysis obtaining a O(logm log T )92

competitive ratio, which is optimal. In the case in which budgets are Ω(T ), [17] showed that it is93

possible to achieve a constant competitive ratio of 1/ρ where ρ is the per-iteration budget.94

Beyond packing constraints. [17] studies a setting with general constraints analogous to ours, and95

show how to adapt the LagrangeBwK framework to obtain best-of-both-worlds guarantees when96

Slater’s parameter is known a priori. Similar guarantees are also provided, in the stochastic setting,97

by [40], which then extend the results to the CBwLC model. Finally, the work of [18] introduces98

the use of weakly adaptive regret minimizers within the LagrangeBwK framework, and provides99

guarantees in the specific case of one budget constraint and one return-on-investments constraint.100

Contextual bandits (CB). We briefly survey the most relevant works for our paper. Further references101

can be found in [39, Chapter 8]. As in [41], we focus on CB with regression oracles [24, 25, 16, 38].102

The contextual version of BwK was first studied by [11] in the case of classification oracles. A103

regret-optimal and oracle-efficient algorithm for this problem was proposed by [6] by exploiting the104

oracle-efficient algorithm for CB by [2]. The first regression-based approach for constrained BwK105

was proposed by [3] by exploiting the optimistic approach for linear CB [34, 21, 1]. [27] propose a106

regression-based approach for a constrained BwK setup under stochastic inputs. Finally, a notable107

special case of constrained CB is online bidding under constraints [13, 20, 26, 22, 43].108

Other related works. [23] show how to interpolate between the fully stochastic and the fully109

adversarial setting, depending on the magnitude of fluctuations in expected rewards and consumptions110

across rounds. [35] study a non-stationary setting and provide no-regret guarantees against the best111

dynamic policy through a UCB-based algorithm. Some recent works explore the case in which112

resource consumptions in BwK can be non-monotonic [33, 15]. Finally, a related line of works is the113

one on online allocation problems with fixed per-iteration budget, where the input pair of reward and114

costs is observed before the learner makes a decision [14, 12].115

3 Preliminaries116

There are T rounds and m constraints. We denote with X ⊂ RK the decision space of the agent.117

At each round t ∈ JT K, the agent selects an action xt ∈ X and subsequently observes a reward118

ft(xt) and costs function gt(xt) ∈ [−1, 1]m, with ft : X → [0, 1] and gt,i : X → [−1, 1] for119

each i ∈ JmK.1 The reward and cost functions can either be chosen by an oblivious adversary or120

drawn from a distribution. The goal of the decision maker is to maximize the cumulative reward121

Rew(T ) :=
∑

t∈JT K ft(xt), while minimizing the cumulative violation Vi(T ) defined as122

Vi(T ) :=
∑

t∈JT K gt,i(xt)

for each constraint i ∈ JmK. We denote by V (T ) := maxi∈JmK Vi(T ) the maximum cumulative123

violation across the m constraints.124

3.1 Baselines125

We will provide best-of-both-worlds no-regret guarantees for our algorithm, meaning that it achieves126

optimal theoretical guarantees both in the stochastic and adversarial setting. In this section, we127

introduce the baselines used to define the regret in these two scenarios.128

Adversarial Setting In the adversarial setting we employ the strongest baseline possible, i.e., the129

best unconstrained strategy in hindsight:130

OptAdv := supx∈X
∑

t∈JT K ft(x).

1In this work, for any a, b ∈ N, with a < b we denote with JaK the set {1, . . . , a} while Ja, bK the set
{a+ 1, . . . , b}.
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This baseline is more powerful than the best fixed strategy which is feasible on average [30, 17],131

which is the most common baseline in the literature. Our algorithm will yield an optimal competitive132

ratio against this stronger baseline. In this setting, we define ρAdv as the feasibility parameter of the133

problem instance, i.e., the largest reduction of cumulative violations that the agent is guaranteed to134

achieve by playing a “safe” strategy ξ◦ ∈ ∆(X ), where ∆(X ) is the set of all probability measures135

on X . Formally,136

ρAdv := − max
t∈JT K,i∈JmK

Ex∼ξ◦ [gt,i(x)] and ξ◦ := arg inf
ξ∈∆(X )

max
t∈JT K,i∈JmK

Ex∼ξ[gt,i(x)].

Stochastic Setting When the reward and the costs are stochastic we denote by f̄ and ḡ the mean of137

ft and gt, respectively. In particular, we have that the rewards are drawn so that EEnv[ft(x)] = f̄(x)138

(and similarly for the costs), where EEnv denotes expectation over the environment measure. We139

define the baseline for the stochastic setting as the best fixed randomized strategy that satisfies the140

constraints in expectation, which is the standard choice in Stochastic Bandits with Knapsacks settings141

[9, 30]. Formally,142

OptStoc := sup
ξ∈∆(X ):Ex∼ξ[ḡ(x)]≤0

Ex∼ξ[f̄(x)].

Similarly to the adversarial case, we define the feasibility parameter ρStoc as the “most negative”143

cost achievable by randomized strategies in expectation:144

ρStoc := − inf
ξ∈∆(X )

max
i∈JmK

Ex∼ξ[ḡi(x)].

As it is customary in relevant literature (see, e.g., [30, 17, 19]), we make the following natural145

assumption about the existence of a strictly feasible solution. Note that we do not make any146

assumption on the variance of the samples (ft, gt) as we assume that they have bounded support,147

i.e., with probability holds that ft(x) ∈ [0, 1] and gt,i(x) ∈ [−1, 1] for all x ∈ X and i ∈ JmK.148

Assumption 3.1. In the adversarial setting, the sequence of inputs (ft, gt)Tt=1 is such that ρAdv > 0.149

In the stochastic setting, the environment Env is such that ρStoc > 0.150

Remark 3.2. We will describe a best-of-both-worlds type algorithm, that attains optimal guarantees151

both under stochastic and adversarial inputs, without knowledge of the specific setting in which the152

algorithm operates. It should be noted that ρAdv and ρStoc are not known by the algorithm. While153

the algorithm could potentially efficiently estimate ρStoc in stochastic settings, as shown in [19],154

acquiring knowledge of ρAdv in the adversarial setting would necessitate information about future155

inputs. This requirement is generally unfeasible for most instances of interest.156

4 On Best-Of-Both-Worlds Guarantees157

We employ the expression best-of-both-worlds as defined in [14] for the case of online allocation158

problems with resource-consumption constraints. In this context, we expect different types of159

guarantees depending on the input model being considered.160

When inputs are stochastic, a best-of-both-worlds algorithm should guarantee that, given failure161

probability δ > 0, with probability at least 1− δ162

max(OptStoc − Rew(T ), V (T )) = Õ(
√
T ).

The dependency on T is optimal since, in the worst case, it is optimal even without constraints [7].163

In adversarial settings, a best-of-both-worlds algorithm should guarantee that, with probability at164

least 1− δ,165

max (OptAdv − αRew(T ), V (T )) = Õ(
√
T ),

where α > 1 is the competitive ratio. In the BwK scenario with only resource-consumption constraints,166

the optimal competitive ratio attainable is α = 1/ρAdv. In that setting, ρAdv denotes the per-iteration167

budget, which we can assume is equal for each resource without loss of generality. In our set-up,168

considering arbitrary and potentially negative constraints, we will present an algorithm for which the169

above holds for α := 1 + 1/ρAdv. The following result shows that this competitive ratio is optimal.170

In particular, we show that it is not possible to obtain cumulative constraint violations of order o(T )171

and competitive ratio strictly less that 1 + 1/ρAdv (omitted proofs can be found in the Appendix).172
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Figure 1: Reward and costs of each arm of the instance employed in Example 5.2.

Theorem 4.1. [Lower bound adversarial setting] Consider the family of all adversarial instances173

with X = {a1, a2}, each characterized by a parameter ρAdv and optimal reward OptAdv. Then,174

no algorithm can achieve, on all instances, sublinear cumulative violations E[V (T )] = o(T ) and175
OptAdv/E[Rew] > 1 + 1/ρAdv.176

5 Lagrangian Framework177

Algorithm 1 Primal-Dual Algorithm

1: Input: AlgP and AlgD.
2: for t = 1, 2, . . . , T do
3: Primal decision: xt ← AlgP
4: Dual decision: λt ← AlgD
5: Observe: ft(xt) and gt(xt)
6: Primal update: feed uPt (xt) to AlgP,

where
7: uPt (xt)← ft(xt)− ⟨λt, gt(xt)⟩
8: Dual update:
8: Feed uDt : λ 7→ −ft(xt) + ⟨λ, ct(xt)⟩ to

AlgD
9: end for

Given the reward function f : X → [0, 1] and178

the costs functions g : X → [−1, 1]m we define179

the Lagrangian Lf,g : X × Rm
+ → R as:180

Lf,g(x,λ) := f(x)− ⟨λ, g(x)⟩.

We will consider a modular primal-dual ap-181

proach that employs a primal algorithm AlgP,182

producing primal decisions xt, and a dual algo-183

rithm AlgD that produces dual decisions λt for184

all t. We assume that AlgP and AlgD produce185

their decisions in order to maximize their utili-186

ties uPt and uDt , respectively. We define uPt : x 7→187

Lft,gt
(x,λt) and uDt : λ 7→ −Lft,gt

(xt,λ).188

The regret of the primal algorithm AlgP on any189

subset I ⊆ JT K is defined as:190

RP
I (X ) := sup

x∈X

∑
t∈I

[uPt (x)− uPt (xt)].

The regret of the dual algorithm AlgD is defined similarly for any bounded subset D ⊆ R+:191

RD
I (D) := supλ∈D

∑
t∈I [u

D
t (λ)− uDt (λt)].

For ease of notation we write RP
T (X ) and RD

T (D) when I = JT K, instead of RP
JT K(X ) and RD

JT K(D).192

The interaction of AlgP and AlgD with the environment is reported in Algorithm 1. Note that the193

feedback of AlgP is forced to be bandit by the fact that we do not have counterfactual information of194

ft and gt, however AlgD receives full feedback by design.195

Remark 5.1 (The Challenges of the Adversarial Setting). In the stochastic setting, it is not required196

adaptive regret minimization, see e.g., [40], as it is possible to analyze directly the expected zero-sum197

game between AlgP and AlgD. However, in the adversarial setting, the algorithms AlgP and AlgD198

face a different zero-sum game at each time t. Indeed, since ft and gt are adversarial, the zero-sum199

game with payoffs Lft,gt(·, ·) is only seen at time t. This is in contrast to what happens in the200

stochastic setting in which the zero-sum game Lf̄ ,ḡ(·, ·) at each time t is the same for all time t.201

5.1 No-Regret is Not Enough!202

Typically, Lagrangian frameworks for constrained bandit problems are solved by instantiating AlgP203

and AlgD with two regret minimizers, which are algorithms guaranteeing RP
T (X ), RD

T (D) = o(T ),204

respectively [30, 17]. The dual regret minimizer is usually instantiated with D := [0,M ]m, for some205

constant M > 0. Ensuring that D is bounded is crucial to control the magnitude of primal utilities206
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uPt (·), whose scale influences the magnitude of the primal regret. In the following example, we show207

that we cannot rely solely on arguments based on the black-box no-regret property of AlgP and AlgD208

and hence we need stronger guarantees then simple no-regret.209

Example 5.2. We have one constraint, i.e., m = 1 and the set X = {a1, a2, a3} is a discrete set of 3210

actions. The rewards of a1 is always 0, i.e., ft(a1) = 0 for all t ∈ JT K, while its cost is always −ρ,211

i.e., gt,1(a1) = −ρ for all t ∈ t. The rewards for a2 and a3 are defined as follows: for t ∈ JT/3K212

we have ft(a2) = 0 while ft(a3) = 1. On the other hand, for t ∈ JT/3, 2T/3K we have ft(a2) = 1213

while ft(a3) = 0. Finally ft(a2) = ft(a3) = 0 for all t ∈ J2T/3, T K. The costs for a2 and a3 are214

defined as follows: for t ∈ J2T/3K we have gt,1(a2) = gt,1(a3) = 0, while gt,1(a2) = gt,1(a3) = 1215

for all t ∈ J2T/3, T K. The instance is depicted in Figure 1.216

Proposition 5.3. Consider the instance of Example 5.2. Even if AlgP and AlgD suffer regret less217

than or equal then zero, the primal-dual framework fails to achieve sublinear constraint violations.218

Intuitively, the reason for which a standard primal-dual framework fails in Example 5.2 is that the219

primal regret minimizer can accumulate enough negative regret in the first two phases to “absorb”220

large regret suffered in the third phase. This “laziness” of AlgP allows it to play actions in the221

last phase for which it incurs linear violations of the constraint. For more details see the proof of222

Proposition 5.3 in Appendix A. One could solve the problem employing the recovery technique223

proposed in [19], which prescribes to minimize the violations at a prescribed time. However, selecting224

the right time to start the recovery phase crucially requires knowledge of the Slater’s parameter,225

which is not available in our setting. The only approach which does not require knowledge of Slater’s226

parameter is the one proposed in [18] for the case of return-on-investment constraints, whose core227

idea we describe in the next section.228

Remark 5.4. We remark that it is not possible to prove that any choice of AlgP and AlgD satisfying229

the no-regret property fails in our setting. Indeed, we will end up choosing AlgP and AlgD algorithms230

that have a stronger no-regret property (and hence are also no-regret). Proposition 5.3 shows that231

our arguments and algorithms must necessarily rely on a stronger version of regret, specifically232

no-adaptive regret.233

5.2 No-Adaptive Regret234

The reason why generic regret minimizes fail to give satisfactory result on the instance described in235

Example 5.2 is that they fail to adapt to the changing environment, even if the regret of the primal236

is zero on the entire horizon JT K, it fails to “adapt” in the final rounds J2T/3, T K. Indeed, in these237

last rounds, if the primal algorithm’s objective is guaranteeing sublinear regret over JT K, it is not238

required to updated its decision, since it accumulated large negative regret of −2T/3 regret in the239

initial rounds J2T/3K. Therefore, standard no-regret guarantees are not enough.240

A stronger requirement for the primal and dual algorithm is being weakly adaptive [29], that is,241

guaranteeing that in high probability supI=Jt1,t2K R
P,D
I = o(T ). Intuitively, this requirement would242

force AlgP to change its action during the last phase of Example 5.2. This idea was first proposed in243

[18] for the specific case of a learner with one budget and one return-on-investments constraints. In244

the following section, we show how such approach can be extended to the case of general constraints.245

6 Self-Bounding Lemma246

One crucial difference with the previous literature is that the feasibility parameter is not known a247

priori, and thus we cannot directly bound the range of the Lagrange multipliers as in BwK. At a high248

level we want that, regardless of the choices of ft and gt, the ℓ1 norm of the Lagrange multipliers249

is bounded by a quantity that depends on the (unknown) parameters of the instance. However, for250

this to hold we need that the primal algorithm AlgP is (almost) scale free, i.e., that its regret scale251

quadratically in the unknown range of its reward function.2 Formally:252

Definition 6.1. For any c ≥ 1, we say that AlgP is a c-scale-free and weakly-adaptive regret253

minimizer if, for any subset of rounds I = Jt1, t2K ⊆ JT K, with probability at least 1− δ it holds that254

RP
I (X ) ≤ Lc ·RP

T,δ(X ),
2Usually we say that an algorithm is scale-free [37] if its regret scales linearly in the (unknown) range of its

rewards, i.e., 1-scale-free with our definition.
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where the maximum module of the primal utilities is supt∈JT K,x∈X |uPt (x)| =: L, and RP
T,δ(X )255

depends only on T , δ and X , and is non-decreasing in the length of the time horizon T .256

Now, we show that online gradient descent (OGD) [46] with a carefully defined learning rate yields257

the required self-bounding property both in the stochastic and adversarial setting.258

Lemma 6.2 (Self-bounding lemma). Let ηOGD :=
(
800 ·m ·max

{
RP

T,δ(X ), ET,δ

})−1
, then if259

AlgD is OGD on the set D = Rm
≥0, and the primal algorithm AlgP is 2-scale-free and has a260

high-probability weakly adaptive regret bound RP
T,δ(X ), then with probability at least 1− δ:261

maxt∈JT K ∥λt∥1 ≤ 13m
ρ ,

where ρ = ρAdv or ρ = ρStoc depending on the setting and ET,δ :=
√
16T log (2T/δ).262

We remark that the self-bounding lemma shows that, if we take OGD with a carefully defined learning263

rate ηOGD = Õ((mmax{RP
T,δ(X ),

√
T})−1) as AlgP, then the ℓ1-norm of the variables λt is264

automatically bounded by the reciprocal of the feasibility parameter, even if the feasibility parameter265

is unknown to the learner. This is the central result that allows us to build algorithms that work266

without knowing Slater’s parameter. We observe that:267

Remark 6.3. Even in the simplest instances of bandit problems one has RP
T,δ(X ) = Ω̃(

√
T ) and,268

therefore, we can assume that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.269

Remark 6.4. We will work with 2-scale-free algorithms, which suffice to obtain the desired guaran-270

tees for our framework. We observe that scale-free algorithms would yield a tighter bound of 1/ρ in271

the Theorems 7.2 and 7.3 and a simpler analysis of Lemma 6.2. However, scale-free algorithm are272

much more difficult to find and this would limit the extent to which our framework can be applied.273

On the other hand, 2-scale-free algorithm seems to be more abundant (see, e.g., Section 8). Indeed,274

as we show in Section 8, it is usually the case that setting the learning rate independent on the scale275

of the rewards provides 2-scale-freeness. We leave such characterization to future research.276

7 General Guarantees277

First, we exploit Lemma 6.2 to bound the total violations of the framework.278

Theorem 7.1. Let AlgD be OGD with learning rate η as in Lemma 6.2, and let AlgP any 2-279

scale-free algorithm with no-adaptive regret. Then, with probability at least 1 − δ, it holds that280

VT = Õ
(

m2

ρ RP
T,δ(X )

)
, where ρ = ρAdv in the adversarial setting and ρ = ρStoc in the stochastic.281

Moreover, the proof of Theorem 7.1 can be easily adapted to show that the violations of any constraint282

i ∈ JmK is bounded on any interval JtK with t ∈ JT K.283

Now, we prove that the framework, with high probability, yields optimal guarantees in both stochastic284

and adversarial settings. We start with the adversarial setting, for which the following result holds.285

Theorem 7.2. If AlgD is OGD with learning rate ηOGD and domain D := Rm
≥0, and AlgP is 2-scale-286

free, then, in the adversarial setting, with high probability:287

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ

((
m

ρAdv

)2

RP
T,δ(X )

)
.

On the other hand, for the stochastic setting we can prove the following result:288

Theorem 7.3. If AlgD is OGD with learning rate ηOGD and domain D := Rm
≥0, and AlgP is 2-scale-289

free, then in the stochastic setting, in high probability:290

Rew ≥ OptStoc − Õ

((
m

ρStoc

)2

RP
T,δ(X )

)
.

Remark 7.4. Any algorithm with vanishing constraints violations can be employed to handle also291

BwK constraints. In such setting, the learner has resource-consumption constraints with hard stopping292

(i.e., once the budget for a resource is fully depleted the learner must play the void action until the293

end of time horizon). This does not yield any fundamental complication for our framework. Indeed,294

we could introduce an initial phase of o(T ) rounds in which the algorithm collects the extra budget295

needed to cover potential violations, before starting the primal-dual procedure.296
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8 Applications297

In this section, we show how our framework can be instantiated to handle scenarios such as bandits298

with general constraints, as well as contextual bandits with constraints (i.e., CBwLC). Thanks to the299

modularity of the results derived in the previous sections, we only need to provide an algorithm AlgP300

which is 2-scale-free and weakly adaptive for a desired action space X and rewards uPt .301

8.1 Bandits with General Constraints302

In this setting, the action space is X = JKK. [18] showed that the EXP3-SIX algorithm introduced303

by [36] can be used as AlgP, since it guarantees sublinear weakly adaptive regret in high probability,304

and it is 2-scale-free.305

Theorem 8.1 (Theorem 8.1 of [18]). EXP3-SIX instantiated with suitable parameters guarantees306

that, with probability at least 1− δ that supI=Jt1,t2K R
P
I (X ) = O

(√
KT log

(
KTδ−1

))
.307

Thus, by applying Theorem 7.1 on the violations, and Theorem 7.2 and Theorem 7.3 on the adversarial308

and stochastic reward guarantees respectively, we get the following result:309

Corollary 8.2. Consider a multi armed bandit problem with constraints. There exists an algorithm310

that w.h.p. guarantees, in the adversarial setting, violations at most Õ
(

m2

ρAdv

√
KT

)
and Rew ≥311

ρAdv
1+ρAdv

OptAdv − Õ
(

m2

ρ2
Adv

√
KT

)
, while,in the stochastic setting, it guarantees violations at most312

Õ
(

m2

ρStoc

√
KT

)
and reward at least Rew ≥ OptStoc − Õ

(
m2

ρ2
Stoc

√
KT

)
.313

8.2 Contextual Bandits with Constraints314

Following [41], we apply our general framework to contextual bandits with regression oracles. In315

this setting, the decision maker observes a context zt ∈ Z from some context set Z , where zt is316

possibly chosen by an adversary. Then, the decision maker picks its decision at from an action set A.317

Then, the reward is computed as a function of the context and the action, i.e., ft : Z ×A → [0, 1],318

and similarly for the constraints gt : Z × A → [−1, 1]m. At each t, ft and gt are drawn from319

some distribution. More precisely, there exist a class F of functions and f̄ , ḡi ∈ F such that for all320

(z, a) ∈ Z ×A it holds that E[ft(z, a)|z, a] = f̄(z, a) and E[gt,i(z, a)|z, a] = ḡi(z, a) for i ∈ JmK.321

We slightly modify the primal-dual algorithm to handle contexts. In particular, AlgP gets to observe322

a context zt before deciding their action. Formally, we can use the machinery introduced in Section 3323

by taking X as the set of deterministic policies Π := {π : Z → A}. Then, uPt (π) = ft(zt, π(zt))−324

⟨λt, gt(zt, π(zt))⟩, and the action at is computed through πt returned by the primal algorithm.325

Although this choice transforms the contextual framework into an application of the framework326

introduced in Section 3, in practical terms, it is simpler to think of at as the direct output of AlgP327

upon observing the context zt. The extended primal-dual framework is sketched in Algorithm 2.328

We assume to have m + 1 online regression oracles (Of ,O1, . . . ,Om) for the functions f̄ and329

ḡ1, . . . , ḡm, respectively. The regression oracle Of produces, at each t, a regressor f̂t ∈ F that tries330

to approximate the true regressor f̄ . Then, the oracle is feed with a new data point, comprised of a331

context zt ∈ Z and an action at ∈ A, and the performance of the regressor is evaluated on the basis332

of its prediction for the tuple (zt, at). The online regression oracle Of is updated with the labeled333

data point (zt, at, ft(zt, at)). Overall, its performance is measured by its cumulative ℓ2-error:334

Err(Of ) :=
∑

t∈JT K

(
f̂t(zt, at)− f̄(zt, at)

)2
.

Each online regression oracle (Oi)i∈JmK works analogously, and its performance is measured by335

Err(Oi) :=
∑

t∈JT K (ĝt(zt, at)− ḡ(zt, at))
2
.336

By combining the online regression oracles Of and {Oi}i∈JmK we can build an online regression337

oracle OL for the Lagrangian which outputs regressors L̂t : Z ×A → R defined as:338

L̂t(z, a) = Lf̂t,ĝt
((z, a),λt) = f̂t((z, a))− ⟨λt, ĝt(z, a)⟩,
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Algorithm 2 Primal-Dual Algorithm
for Contextual Bandits

1: Input: AlgP and AlgD.
2: for t = 1, 2, . . . , T do
3: Observe context zt
4: Dual decision: λt ← AlgD
5: Primal decision:
6: at ← AlgP(zt,λt)
7: Observe: ft(zt, at) and gt(zt, at)
8: Primal update: feed uPt (at) to AlgP,

where
9: uPt (at)=ft(zt, at)−⟨λt, gt(zt, at)⟩

10: Dual update: feed uDt to AlgD,
where

10: uDt (λ)−ft(zt, at)+⟨λ, ct(zt, at)⟩
11: end for

Algorithm 3 Primal Algorithm for Contextual Bandits

1: Input: Learning rate ηP
2: Get regressors from online regression oracles:
3: f̂t ← Of , and ĝt,i ← Oi for all i ∈ JmK
4: Observe context zt and dual variable λt

5: For all a ∈ A compute L̂t(a) := Lf̂t,ĝt
((zt, a),λt)

6: Compute ξt ∈ ∆(A) as:

ξt(a) =
(
µt + ηP

(
max
a′
L̂t(a

′)− L̂t(a)
))−1

▷ µt is such that ξt ∈ ∆(A)
7: Sample at ∼ ξt and return it.
8: Update online regression oracles:
9: Feed (zt, at, ft(zt, at)) to Of

10: Feed (zt, at, gt,i(zt, at)) to Oi ∀i ∈ JmK

while we define L̄(z, a) := Lf̄ ,ḡ((z, a),λt). The ℓ2-error of OL can be bounded via the following339

extension of [40, Theorem 16].340

Lemma 8.3. The error of OL can be bounded as341

Err(OL) ≤ 2Err(Of ) + 2
(
supt∈JT K ∥λt∥1

)2∑
i∈JmK Err(Oi).

The fundamental idea of [25] is to reduce (unconstrained) contextual bandit problems to online linear342

regression. Recently, this ideas was extended in [41, 27] in order to design a primal algorithm AlgP343

capable of handling stochastic contextual bandits with constraints (see Algorithm 3).344

To apply Algorithm 3 to our framework we need to find an algorithm AlgP which is 2-scale-free and345

weakly adaptive with high probability. We extend the result [25] to prove that their reduction actually346

satisfies the required guarantees.347

Lemma 8.4. Assume that max{Err(Of ),Err(Oi)} ≤ Err. Then, we have that Algorithm 3 with348

ηP :=
√
KT guarantees that supI=Jt1,t2K R

P
I (Π) = Õ

(
m · Err · L2 ·

√
KT

)
with high probability,349

where L := supt∈JT K,π∈Π |uPt (π)|.350

Equipped with a 2-scale free algorithm that suffers no adaptive regret with high probability, we351

can combine AlgP with the results of Theorems 7.1 to 7.3 to prove the first optimal guarantees for352

CBwLC with adversarial contexts.353

Corollary 8.5. Consider a functional class F and an online regression oracle that guarantees ℓ2-354

error Err. There exists an algorithm that w.h.p. guarantees violations at most Õ
(

m3

ρAdv
Err
√
KT

)
355

and reward at least Rew ≥ ρAdv
1+ρAdv

OptAdv − Õ
(
Err m3

ρ2
Adv

√
KT

)
in the adversarial setting, while356

it guarantees violations at most Õ
(

m3

ρStoc
Err
√
KT

)
and reward at least Rew ≥ OptStoc −357

Õ
(
Err m3

ρ2
Stoc

√
KT

)
in the stochastic setting.358

[25] includes many examples of functional classes F that have good online regression oracles,359

meaning that their error is subpolynomial in the time horizon T . We report here some notable360

mentions for completeness.361

IfF is a finite set of functions we have that Err = O(log |F|), which comes from using as regression362

oracles the Vovk forecaster [42]. Another important examples is the case in which F is the class of363

linear functions, i.e., F = {h(z, a) = ⟨za, θ⟩ : θ ∈ Rd, ∥θ∥2 ≤ 1}, i.e., each actions a is associated364

with a known feature vector za ∈ Rd which generates the reward/costs trough a unknown parameter365

θ that characterize the linear function. Here, there exists a online regression oracle which provides366

ℓ2-error Err = O(d log(T/d)) [8].367
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A Omitted Proofs from Section 4 and Section 5483

TT/2
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gB(a)
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−δρ

Figure 2: Lower bound adversarial setting: rewards and costs in the two instances A and B.

Theorem 4.1. [Lower bound adversarial setting] Consider the family of all adversarial instances484

with X = {a1, a2}, each characterized by a parameter ρAdv and optimal reward OptAdv. Then,485

no algorithm can achieve, on all instances, sublinear cumulative violations E[V (T )] = o(T ) and486
OptAdv/E[Rew] > 1 + 1/ρAdv.487

Proof. We show that, for all ϵ > 0 and δ ∈ (0, 1), there exists two instances such that it is impossible488

to obtain E[V (T )] ≤ ϵT and489

OptAdv
E[Rew]

≥ 1 + ρAdv
ρAdv(1 + δ) + 2ϵ

in both instances. The two instances are denoted by A and B respectively, with X = {a1, a2} and490

sequences of inputs of length T . The two instances are identical in the first T/2 rounds. Rewards491

in instance A are, for each t ∈ JT K, fAt (a2) = 0 and fAt (a1) = 1[t ≤ T/2]. On the other hand, in492

instance B we have fBt (a2) = 0, and fBt (a1) = 1 for all t ∈ JT K. Costs for the first instance A are493

define as494

gAt (a1) :=

{
1 if t ≤ T/2
−1 otherwise ,

and gAt (a2) = −ρ for all t ∈ JT K. In the second instance B, costs are gBt (a1) = 1 for all t ∈ JT K, and495

gAt (a2) :=

{
−ρ if t ≤ T/2
−δρ otherwise ,

for some δ > 0. The two instances are depicted in Figure 2.496

Let N be the expected number of times that action a1 is played in rounds JT/2K, that is497

N :=
∑

t∈JT/2K

EA[xt = a1] =
∑

t∈JT/2K

EB[xt = a1],

where expectation is with respect to the algorithm’s randomization. We observe that the algorithm498

plays in the same way in both instances up to time T/2, as they are identical (formally, the KL499

between instance A and B is zero in the first T/2 rounds). Then, we have that the optimal action in500

instance A is to play deterministically action a1. Therefore, OptAAdv = T/2. The expected reward in501

instance A comes only from the number of plays of a1 in the first T/2 rounds: EA[Rew] = N . On the502

other hand, call M the expected number of times an algorithm plays action a1 in the last JT/2, T K503

rounds of instance B, that is504

M :=
∑

t∈JT/2,T K

EB[xt = a1].

We have that, in order to have EB[V (T )] ≤ ϵT violations in the second instance, we need to play a1505

a small number of times:506

M − δρ

(
T

2
−M

)
+N − ρ

(
T

2
−N

)
≤ ϵT,

which yields507

N ≤ T (ρ(δ + 1) + 2ϵ)

2(ρ+ 1)
.

13



Then, we get that508

OptAAdv
EA[Rew]

≥ 1 + ρ

ρ(1 + δ) + 2ϵ
,

which concludes the proof since ρAAdv = ρ.509

Proposition 5.3. Consider the instance of Example 5.2. Even if AlgP and AlgD suffer regret less510

than or equal then zero, the primal-dual framework fails to achieve sublinear constraint violations.511

Proof. Consider the instance described in Example 5.2, and consider an algorithm AlgP for X =512

{a1, a2, a3} such that xt = a3 for t ∈ JT/3K, while xt = a2 for t ∈ JT/3, T K. Moreover, consider513

an algorithm AlgD instantiated on D = [0,M ], with M ≥ 1/ρ, that plays λt = 0 for all t ∈ J2T/3K,514

and λt = M for all t ∈ J2T/3, T K.515

We start by analyzing the primal regret achieved by AlgP:516

RP
T := sup

x∈X

∑
t∈JT K

[ft(x)− ft(xt)− λt(gt,1(x)− gt,1(xt))]

= sup
x∈X

∑
t∈JT K

[ft(x)− λtgt,1(x)]−
2

3
T +

Mρ

3
T

=
∑
t∈JT K

[ft(a1)− λtgt,1(a1)] +
T

3
(Mρ− 2)

= ρM
T

3
+

T

3
(Mρ− 2)

=
T

3
(2Mρ− 2) ≤ 0,

where we replaced the sup with the utility at a1 since M ≥ 1/ρ. Moreover, the dual regret is such517

that518

RD
T := sup

λ∈[0,M ]

∑
t∈J2T/3,T K

(λ−M) gt,1(xt)

= sup
λ∈[0,M ]

T

3
(λ−M) ρ = 0.

However, for a suitable choice of ρ, the violations are linear in T since519

V1(T ) :=
∑
t∈JT K

gt,1(xt) =
ρ

3
T = Ω(T ).

This concludes the proof.520

B Proof of Lemma 6.2521

We start by providing the following auxiliary lemmas.522

Lemma B.1. Let yt ∈ Rm
≥0 be generated by OGD with learning rate η and utilities y 7→ ⟨y, gt⟩,523

where ∥gt∥∞ ≤ 1 for all t ∈ JT K. Then:524

|∥yt+1∥1 − ∥yt∥1| ≤ m · η

Proof. The update of the i-th component of yt+1 can be written as:525

yt+1,i := max(0, yt,i + ηgt,i).

If gt,i ≥ 0 then the update can be simplified to yt+1,i = yt + ηgt,i ≤ yt + η. If gt,i < 0 then526

yt+1,i ≥ yt,i + ηgt,i ≥ yt,i − η. Thus |yt+1,i − yt,i| ≤ η for all i ∈ JmK. By summing over527

all component we have that ∥yt+1 − yt∥1 ≤ m · η. By triangular inequality we have the desired528

statement.529
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Lemma B.2. [[28, Chapter 10]] For any t1, t2 ∈ JT K with t1 < t2, it holds that if λt is generated530

by OGD with learning rate η > 0 on a set D, then:531

RP
Jt1,t2K({λ}) ≤

∥λ− λt1∥22
2η

+
1

2
ηmT.

with probability probability one on the randomization of the algorithm, i.e., δ = 0. Moreover it also532

holds component-wise, i.e., for all λ ≥ 0:533 ∑
t∈Jt1,t2K

(λ− λt)gt(xt) ≤
(λ− λt1)

2

2η
+

1

2
ηT.

Lemma B.3. In the stochastic setting, for any ξ ∈ ∆(X ) and δ ∈ (0, 1], with probability at least534

1− δ, it holds that:535 ∑
t∈I

Ex∼ξ [⟨λt, gt(x)⟩] ≤
∑
t∈I

Ex∼ξ [⟨λt, ḡt(x)⟩] +MET,δ and (1)∑
t∈I

Ex∼ξ [ft(x)] ≥
∑
t∈I

Ex∼ξ

[
f̄(x)

]
− ET,δ, (2)

for any interval I = [t1, t2] ⊆ [T ], where ET,δ :=
√

16T log
(
2T
δ

)
and M = sup

t∈JT K
∥λ∥1.536

Proof. We start by proving that the all the inequalities of Equation (1) holds simultaneously with537

probability 1− δ/2. We have that given a I = [t1, t2] ⊆ [T ], with probability at least 1− δ/(2T 2),538

∑
t∈I

Ex∼ξ [⟨λt, gt(x)⟩]−
∑
t∈I

Ex∼ξ [⟨λt, ḡt(x)⟩] ≤M

√
8|I| log

(
2T 2

δ

)
≤M

√
16T log

(
2T

δ

)
,

where the first inequality holds by Azuma-Hoeffding inequality. By taking a union bound over all539

possible intervals I (which are at most T 2), we obtain that all the first set of equations holdswith540

probability at least 1− δ/2.541

Equation (2) can be proved in a similar way. Indeed, for any fixed interval I = [t1, t2] ⊆ [T ], and for542

any strategy mixture ξ ∈ ∆(X ), by the Azuma-Hoeffding inequality we have that, with probability543

at least 1− δ/(2T 2), the following holds544

∑
t∈I

Ex∼ξ

[
f̄(x)

]
−
∑
t∈I

Ex∼ξ [ft(x)] ≤

√
2|I| log

(
2T 2

δ

)
≤

√
4T log

(
2T

δ

)
.

By taking a union bound over all possible T 2 intervals, we obtain that, for all possible intervals I , the545

equation above holds with probability 1− δ/2.546

The Lemma follows by a union bound on the two sets of equations above.547

These auxiliary technical lemmas are used in proving the following result.548

Lemma 6.2 (Self-bounding lemma). Let ηOGD :=
(
800 ·m ·max

{
RP

T,δ(X ), ET,δ

})−1
, then if549

AlgD is OGD on the set D = Rm
≥0, and the primal algorithm AlgP is 2-scale-free and has a550

high-probability weakly adaptive regret bound RP
T,δ(X ), then with probability at least 1− δ:551

maxt∈JT K ∥λt∥1 ≤ 13m
ρ ,

where ρ = ρAdv or ρ = ρStoc depending on the setting and ET,δ :=
√
16T log (2T/δ).552

Proof. Let c1 := 2 and c2 := 12m and any learning rate η for OGD with η ≤ ηOGD. By contradiction,553

suppose there exists a time such that ∥λt∥1 ≥ c2/ρ, and let t2 ∈ JT K be the smallest t for which this554

happens. We unify the proof of the adversarial and stochastic setting. In particular, let ρ = ρAdv if555

the losses (ft, gt) are adversarial, and let ρ = ρStoc if (ft, gt) are stochastic with mean (f̄ , ḡ). The556

extra stochasticity coming from the environment in the stochastic setting will be handled through557

Lemma B.3. In order to streamline the notation, we define ET,δ :=
√

16T log (2T/δ).558
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Then, let t1 ∈ Jt2K be the largest time for which ∥λt∥1 ∈ [ c1ρ ,
c2
ρ ] for all t ∈ Jt1, t2K.559

Step 1. First, we need to bound ∥λt1∥1 and ∥λt2∥1. To do that, we exploit Lemma B.1. In particular,560

by telescoping the sum in the lemma, we obtain that:561

∥λt2∥1 − ∥λt1∥1 ≤ ηm(t2 − t1).

Moreover, by the definition of λt1 and λt2 , we have:562

c1
ρ
≤ ∥λt1∥1 ≤ ∥λt1−1∥1 +mη ≤ c1

ρ
+mη

and similarly563

c2
ρ
≤ ∥λt2∥1 ≤ ∥λt2−1∥1 +mη ≤ c2

ρ
+mη.

This, together with the inequality above, yields564

c2 − c1
2ηmρ

≤ t2 − t1. (3)

Step 2. The range of the primal utilities in the turns Jt1, t2K can now be bounded as:565

sup
x∈X ,t∈Jt1,t2K

|uPt (x)| ≤ sup
x∈X ,t∈Jt1,t2K

{|ft(x)|+ ∥λt∥1 · ∥gt(x)∥∞}

≤ 1 +
c2
ρ

+mη

≤ 1 +
12m+ 1

ρ

≤ 14m

ρ
=: L.

Now, by the assumption that AlgP is weakly adaptive and 2-scale-free, we obtain:566

RP
Jt1,t2K(X ) ≤ L2 ·RP

T,δ(X ),

which holds with probability at least 1− δ.567

If we apply the primal no-regret condition above for strictly safe strategy ξ◦ ∈ ∆(X ) we have568

∑
t∈Jt1,t2K

Lft,gt
(xt,λt) ≥ Ex∼ξ◦

 ∑
t∈Jt1,t2K

Lft,gt
(x,λt)

− L2RP
T,δ(X ). (4)

Moreover, by definition of safe strategy we have that in the adversarial setting Ex∼ξ◦ [gt,i(x)] ≤569

−ρAdv for all i ∈ JmK and t ∈ Jt1, t2K, while in the stochastic setting by Lemma B.3 it holds570 ∑
t∈Jt1,t2K

Ex∼ξ◦ [⟨λt, gt(x)⟩] ≤
∑

t∈Jt1,t2K

Ex∼ξ◦ [⟨λt, ḡt(x)⟩] +MET,δ

and571

Ex∼ξ◦ [ḡi(ξ)] ≤ −ρStoc ∀i ∈ JmK,

where we recall that ET,δ =
√
16T log (2T/δ) and M = sup

t∈JT K
∥λ∥1.572
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Therefore, we can lower bound the first term of the right-hand side of Equation (4) the stochastic573

setting as:574

Ex∼ξ◦

 ∑
t∈Jt1,t2K

Lft,gt
(x,λt)

 = Ex∼ξ◦

 ∑
t∈Jt1,t2K

ft(x)− ⟨λt, gt(x)⟩


≥ −Ex∼ξ◦ [⟨λt, gt(x)⟩]

≥ −Ex∼ξ◦ [⟨λt, ḡ(x)⟩]−

(
sup
t∈JT K

∥λ∥1

)
ET,δ

≥ ρStoc
∑

t∈Jt1,t2K

∥λt∥1 −

(
sup
t∈JT K

∥λ∥1

)
ET,δ

≥ ρStoc
∑

t∈Jt1,t2K

∥λt∥1 −
(

c2
ρStoc

+mη

)
ET,δ

≥ c1(t2 − t1)−
(

c2
ρStoc

+mη

)
ET,δ

In the adversarial setting we can more easily conclude that Ex∼ξ◦

[ ∑
t∈Jt1,t2K

Lft,gt
(x,λt)

]
≥ c1(t2−575

t1) and thus in both settings it holds that:576

Ex∼ξ◦

 ∑
t∈Jt1,t2K

Lft,gt
(x,λt)

 ≥ c1(t2 − t1)−
(

c2
ρStoc

+mη

)
ET,δ. (5)

Combining the two inequalities of Equation (4) and Equation (5), we can conclude that the overall577

utility of the primal algorithm AlgP can be lower bounded by:578 ∑
t∈Jt1,t2K

uPt (xt) ≥ c1(t2 − t1)− L2RP
T,δ(X )−

(
c2
ρ

+mη

)
ET,δ (6)

Now, we need an auxiliary result that we will use to upper bound the left hand side of the previous579

inequality.580

Claim B.4. It holds that:581 ∑
t∈Jt1,t2K

⟨λt, gt(xt)⟩ ≥
m

2ρ2η
.

Then, we upper bound the left-hand side by using Claim B.4:582 ∑
t∈Jt1,t2K

uPt (xt) =
∑

t∈Jt1,t2K

Lft,gt(xt,λt) =
∑

t∈Jt1,t2K

[ft(xt)− ⟨λt, gt(xt)⟩]

≤ (t2 − t1)−
m

2ρ2η
(7)

Thus, combining Equation (7) and (6)583

t2 − t1 ≤
1

c1 − 1

(
L2RP

T,δ(X )−
m

2ρ2η
+

(
c2
ρ

+mη

)
ET,δ

)
.

Combining it with Equation (3) one obtains that:584

c2 − c1
2ηmρ

≤ 1

c1 − 1

(
L2RP

T,δ(X )−
m

2ρ2η
+

(
c2
ρ

+mη

)
ET,δ

)
,
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which gives as a solution η ≥ m2−2ρ+13mρ

392m3RP
T,δ(X+2mρET,δ(1+13m)

. Which is a contradiction since:585

η ≤ ηOGD :=
1

800 ·m ·max
{
RP

T,δ(X ), ET,δ

} >
m2 − 2ρ+ 13mρ

392m3RP
T,δ(X + 2mρET,δ(1 + 13m)

Thus, we can conclude that ∥λt∥t ≤ c2/ρ for each t ∈ JT K.586

Now, we provide the proof of Claim B.4.587

Proof of Claim B.4. We define t̃i as the last time in Jt1, t2K in which λt̃i,1
= 0, or t̃1,i = t1 if588

λt,i > 0 for all t ∈ Jt1, t2K. Formally:589

t̃1,i = max

{
t1, sup

τ∈Jt2K:λτ,i=0

τ

}
.

We are now going to analyze separately for all i ∈ JmK, the rounds Jt1, t̃1,iK and the rounds Jt̃1,i, t2K.590

Phase 1: First, we analyze the rounds Jt1, t̃1,iK. By definition, it can be either that λt̃1,i
= 0 or591

t̃1,i = t1. In the latter case, Jt1, t̃1,iK = ∅ and the dual algorithm incurs zero regret. In the former592

case, we can use Lemma B.2 and write that the regret over the interval with respect to λ∗
i = 0 is593

0 ≤
∑

t∈Jt1,t̃1,iK

λt,igt,i(xt) +
λ2
t1

2η
+

1

2
ηT ≤

∑
t∈Jt1,t̃1,iK

λt,igt,i(xt) +
λ2
t1

2η
+

1

2
ηT. (8)

Phase 2: Now, we consider the rounds Jt̃1,i, t2K. We take λ∗ defined as follows: λ∗
i = 1

ρ for all594

i ∈ JmK.595

Let ∆̃i := λt2,i − λt̃1,i,i
. Due to the definition of t̃1,i, gradient descent never projects the multiplier596

relative to constraint i, and we can write that597 ∑
t∈Jt̃1,i,t2K

gt,i(xt) =
∆̃i

η

and, therefore,598 ∑
t∈Jt̃1,i,t2K

λ∗
i gt,i(xt) =

∆̃i

ρη
. (9)

Now we can use Lemma B.2 to find that:599 ∑
t∈Jt̃1,i,t2K

λ∗
i gt,i(xt) ≤

∑
t∈Jt̃1,t2K

λt,igt,i(xt) +
(λ∗

i − λt̃1,i,i
)2

2η
+

1

2
ηT.

Combining it with Equation (9) yields the following600 ∑
t∈Jt̃1,i,t2K

λt,igt,i(xt) ≥
∆̃i

ρη
−

(λ∗
i − λt̃1,i,i

)2

2η
− 1

2
ηT. (10)

Combining Equation (10) and Equation (8) we obtain:601 ∑
t∈Jt1,t2K

λt,igt,i(xt) ≥
∆̃i

ρη
−

(λ∗
i − λt̃1,i,i

)2

2η
−

λ2
t1

2η
− ηT

≥ ∆̃i

ρη
−

(λ∗
i )

2 + λ2
t̃1,i,i

2η
−

λ2
t1

2η
− ηT.
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Now, by summing over all i ∈ JmK, and by letting λt̃1
be the vector that has λt̃1,i

as its i-th602

component, we get:603 ∑
t∈Jt1,t2K

⟨λt, gt(xt)⟩ ≥
∥λt2∥1 − ∥λt̃1

∥1
ρη

− 1

2η

(
∥λ∗∥22 + ∥λt̃1

∥22 + ∥λt1∥22
)
− 1

η
(as η ≤ 1/

√
T )

≥ c2
ρ2η
− 1

ρη
∥λt1∥1 −

1

2η

(
∥λ∗∥22 + 2∥λt1∥22

)
− 1

η
(∥λ∥1 ≥ c2/ρ and ∥λt̃1

∥1 ≤ ∥λt1∥1)

≥ c2
ρ2η
− 1

ρη

(
c1
ρ

+mη

)
− 1

2η

(
m

ρ2
+ 2

(
c1
ρ

+mη

)2
)
− 1

η

≥ c2
ρ2η
− c1 + 1

ρ2η
− m

2ρ2η
− 2(c1 + 1)2

2ρ2η
− 1

η
(η ≤ 1/ρm)

≥ 2c2 − 24−m

2ρ2η

≥ m

2ρ2η

where the last two inequalities hold due to the choice of parameters in the proof of Claim B.4, that is604

c1 = 2 and c2 = 13m. This concludes the proof.605

C Omitted Proofs from Section 7606

Theorem 7.1. Let AlgD be OGD with learning rate η as in Lemma 6.2, and let AlgP any 2-607

scale-free algorithm with no-adaptive regret. Then, with probability at least 1 − δ, it holds that608

VT = Õ
(

m2

ρ RP
T,δ(X )

)
, where ρ = ρAdv in the adversarial setting and ρ = ρStoc in the stochastic.609

Proof. The update of OGD for each component i ∈ JmK is λt+1,i := [λt,i + ηgt,i(xt)]
+. Thus:610

λt+1,i ≥ λt,i + ηOGDgt,i(xt),

and by induction:611

λt+1,i ≥ λ0,i + ηOGD

t∑
τ=1

gτ,i(xτ ).

By rearranging and recalling that λ0,i = 0 we obtain:612 ∑
t∈JT K

gt,i(xt) ≤
1

ηOGD
λT+1,i ≤

1

η
∥λT+1∥1

Moreover, by Lemma 6.2 we can bound ∥λT ∥1 ≤ 13m
ρ which holds with probability at least 1− δ.613

Thus, with probability at least 1− δ, it holds:614

VT := max
i∈JmK

Vi(T ) ≤
13m

ηOGDρ
.

The proof is concluded by observing that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.615

Theorem 7.2. If AlgD is OGD with learning rate ηOGD and domain D := Rm
≥0, and AlgP is 2-scale-616

free, then, in the adversarial setting, with high probability:617

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ

((
m

ρAdv

)2

RP
T,δ(X )

)
.
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Proof. Define x∗ ∈ X such that:618 ∑
t∈JT K

ft(x
∗) = OptAdv

Now, consider a randomized strategy ξ that randomized with probability α between x∗ and ξ◦, where619

ξ◦ is any strategy for which Ex∼ξ◦ [gt,i(xt)] ≤ −ρAdv. This strategy exists by assumption. Formally,620

for any x ∈ X the randomized strategy ξ assigns probability to x:621

ξ(x) = αδx∗(x) + (1− α)ξ◦(x).

Then, we compute the component of the primal utility of ξ due to a constraint i ∈ JmK as follows:622

Ex∼ξ

 ∑
t∈JT K

λt,igt,i(x)

 = α
∑
t∈JT K

λt,igt,i(x
∗) + (1− α)Ex∼ξ◦

 ∑
t∈JT K

λt,igt,i(x)


≤ α

∑
t∈JT K

λt,i − (1− α)ρAdv
∑
t∈JT K

λt,i

≤ (α− (1− α)ρAdv)
∑
t∈JT K

λt,i.

Thus, setting α = ρAdv
1+ρAdv

we have that Ex∼ξ

[∑
t∈JT K λt,igt,i(x)

]
≤ 0, and

∑
t∈JT K

⟨λt, gt(xt)⟩ ≤ 0.623

We now compute the reward of ξ for α = ρAdv
1+ρAdv

:624

Ex∼ξ

 ∑
t∈JT K

ft(x)

 = α
∑
t∈JT K

ft(x
∗) + (1− α)Ex∼ξ◦

 ∑
t∈JT K

ft(x)


≥ ρAdv

1 + ρAdv
OptAdv

Now, we consider the regret of AlgP with respect to ξ and we find that:625

∑
t∈JT K

Lft,gt(xt,λt) ≥ Ex∼ξ

 ∑
t∈JT K

Lft,gt(x,λt)

− L2 ·RP
T,δ(X ).

where L is the maximum module of the payoffs of the primal regret minimizer, i.e., L :=626

supt∈JT K,x∈X |uPt (x)|.627

Exploiting the definition of Lft,gt(·, ·) in the inequality above we obtain that:628

∑
t∈JT K

ft(xt)− ⟨λt, gt(xt)⟩ ≥ Ex∼ξ

 ∑
t∈JT K

ft(x)− ⟨λt, gt(x)⟩

− L2 ·RP
T,δ(X )

≥ Ex∼ξ

 ∑
t∈JT K

ft(x)

− L2 ·RP
T,δ(X )

≥ ρAdv
1 + ρAdv

OptAdv − L2 ·RP
T,δ(X ) (11)

Then, we lower bound the term
∑

t∈JT K
⟨λt, gt(xt)⟩ by using the dual regret of AlgD with respect to629

λ∗ = 0. Indeed,630 ∑
t∈JT K

⟨λ∗ − λt, gt(xt)⟩ ≤ RD
T,δ({λ∗})

implies that631 ∑
t∈JT K

⟨λt, gt(xt)⟩ ≥ −RD
T,δ({λ∗}).
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Combining it with Equation (11) gives:632 ∑
t∈JT K

ft(xt) ≥
ρAdv

1 + ρAdv
OptAdv − L2 ·RP

T,δ(X )−RD
T,δ({λ∗}).

Now, we use Lemma 6.2 which bounds L ≤ 2 13m
ρAdv

and Lemma B.1 which we can use to bound633

RD
T,δ({λ∗}).634

In particular, RD
T,δ({λ∗}) can be bounded with:635

RD
T,δ({λ∗}) ≤ 1

2
ηOGDmT,

and thus:636

Rew :=
∑
t∈JT K

ft(xt) ≥
ρAdv

1 + ρAdv
OptAdv − 676

(
m

ρAdv

)2

RP
T,δ(X )− ηOGDmT.

The proof is concluded by noting that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.637

Theorem 7.3. If AlgD is OGD with learning rate ηOGD and domain D := Rm
≥0, and AlgP is 2-scale-638

free, then in the stochastic setting, in high probability:639

Rew ≥ OptStoc − Õ

((
m

ρStoc

)2

RP
T,δ(X )

)
.

Proof. By Lemma 6.2 we have that with probability at least 1−δ we have that supt∈JT K ∥λt∥1 ≤ 13m
ρStoc

640

and in the same way supt∈JT K,x∈X ∥uPt (x)∥1 ≤ 2 13m
ρStoc

.641

Define ξ as the best strategy that satisfies the constraints, i.e., OptStoc := T Ex∼ξ

[
f̄(x)

]
and642

Ex∼ξ[ḡi(x)] ≤ 0. The no-regret property of AlgP with respect to ξ gives that with probability 1− δ643

it holds:644 ∑
t∈JT K

[ft(xt)− ⟨λt, gt(xt)⟩]

≥ Ex∼ξ

 ∑
t∈JT K

[ft(x)− ⟨λt, gt(x)⟩]

− (2 13m

ρStoc

)2

RP
T,δ(X )

≥ Ex∼ξ

 ∑
t∈JT K

[f̄(x)− ⟨λt, ḡ(x)⟩]

− 676

(
m

ρStoc

)2

RP
T,δ(X )− 2

(
13m

ρStoc

)
ET,δ

= T OptStoc − 676

(
m

ρStoc

)2

RP
T,δ(X )−

26m

ρStoc
ET,δ,

where the second inequality follows from Lemma B.3 with M := 13m
ρStoc

.645

Moreover, the no-regret property of the dual regret minimizer AlgD, with respect to λ∗ = 0, gives646

that:647 ∑
t∈JT K

⟨λ∗ − λt, gt(xt)⟩ ≤
1

2
ηOGDmT.

Finally, we can combine everything from which follows that:648

Rew ≥ OptStoc − 676

(
m

ρStoc

)2

RP
T,δ(X )−

26m

ρStoc
ET,δ −

1

2
ηOGDmT.

The proof is concluded by observing that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)

and ET,δ = Õ(
√
T )649
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D Proofs omitted from Section 8650

Lemma 8.3. The error of OL can be bounded as651

Err(OL) ≤ 2Err(Of ) + 2
(
supt∈JT K ∥λt∥1

)2∑
i∈JmK Err(Oi).

Proof. Consider the following inequalities:652

Err(OL) :=
∑
t∈JT K

(
L̂t(zt, at)− L̄(zt, at)

)2
≤ 2

∑
t∈JT K

(
f̂t(zt, at)− f̄(zt, at)

)2
+ 2

∑
t∈JT K

(⟨λt, ĝt(zt, at)⟩ − ⟨λtḡ(zt, at)⟩)2

(By AM-GM inequality: 2ab ≤ a2 + b2 for a, b ≥ 0.)

= 2 · Err(Of ) + 2
∑
t∈JT K

(⟨λt, ĝt(zt, at)− ḡ(zt, at)⟩)2

≤ 2 · Err(Of ) + 2
∑
t∈JT K

∥λt∥21 · ∥ĝt(zt, at)− ḡ(zt, at)∥2∞ (⟨a, b⟩ ≤ ∥a∥1 · ∥b∥∞)

≤ 2 · Err(Of ) + 2

(
sup
t∈JT K

∥λt∥1

)2

·
∑
t∈JT K

∥ĝt(zt, at)− ḡ(zt, at)∥2∞

≤ 2 · Err(Of ) + 2

(
sup
t∈JT K

∥λt∥1

)2

·
∑
t∈JT K

∑
i∈JmK

(ĝt,i(zt, at)− ḡi(zt, at))
2

= 2 · Err(Of ) + 2

(
sup
t∈JT K

∥λt∥1

)2

·
∑

i∈JmK

Err(Oi)

which concludes the proof.653

Lemma 8.4. Assume that max{Err(Of ),Err(Oi)} ≤ Err. Then, we have that Algorithm 3 with654

ηP :=
√
KT guarantees that supI=Jt1,t2K R

P
I (Π) = Õ

(
m · Err · L2 ·

√
KT

)
with high probability,655

where L := supt∈JT K,π∈Π |uPt (π)|.656

Proof. Consider any interval I = Jt1, t2K ⊆ JT K. Since the prediction error at each time t is positive,657

one trivially has that:658 ∑
t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2
≤ Err(OL).

Then, applying Lemma 8.3 we have that:659 ∑
t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2
≤ 2Err(Of ) + 2 sup

t∈JT K
∥λt∥21

∑
i∈JmK

Err(Oi).

Moreover, by the assumption on the errors of the oracles it holds that:660 ∑
t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2
≤ 2m(1 + sup

t∈JT K
∥λt∥21)Err. (12)

Note that we could pretend that the algorithm starts at any time t1 ∈ JT K, and the same analysis of661

[25, Theorem 1] would hold, as their algorithm behavior does not depend on its past behavior. Hence,662
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the following holds:663

RP
Jt1,t2K(Π) := sup

π∈Π

∑
t∈Jt1,t2K

[uPt (π)− uPt (πt)]

:= sup
π∈Π

∑
t∈Jt1,t2K

[Lt(π(zt))− Lt(πt(zt))]

= sup
π∈Π

∑
t∈Jt1,t2K

[Lt(π(zt))− Lt(at)]

≤ ηP
2
Err(OL) + 4ηP log

(
2T 2

δ

)
+ 2K

T

ηP
+

√
2T log

(
2T 2

δ

)
which holds with probability 1− δ/(T 2).664

Thus, by an union bound, and combining it with Equation (12) we obtain that:665

RP
Jt1,t2K(Π) ≤ ηPm(1 + sup

t∈JT K
∥λt∥21)Err+ 4ηP log

(
2T 2

δ

)
+ 2K

T

ηP
+

√
2T log

(
2T 2

δ

)
,

which holds with probability 1− δ/T 2. Finally, by tuning ηP =
√
KT and applying an union bound666

on all the T 2 possible intervals Jt1, t2K, we obtain that with probability 1− δ it holds that:667

sup
I=Jt1,t2K

RP
Jt1,t2K(Π) ≤ 504 ·m Err L2 log(T 2/δ)

√
KT.

668
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