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Abstract

Generalized Category Discovery (GCD) is a001
crucial task that aims to recognize both known002
and novel categories from a set of unlabeled003
data by utilizing a few labeled data with only004
known categories. Due to the lack of supervi-005
sion and category information, current methods006
usually perform poorly on novel categories and007
struggle to reveal semantic meanings of the008
discovered clusters, which limits their appli-009
cations in the real world. To mitigate above010
issues, we propose Loop, an end-to-end active-011
learning framework that introduces Large Lan-012
guage Models (LLMs) 1 into the training loop,013
which can boost model performance and gen-014
erate category names without relying on any015
human efforts. Specifically, we first propose Lo-016
cal Inconsistent Sampling (LIS) to select sam-017
ples that have a higher probability of falling to018
wrong clusters, based on neighborhood predic-019
tion consistency and entropy of cluster assign-020
ment probabilities. Then we propose a Scalable021
Query strategy to allow LLMs to choose true022
neighbors of the selected samples from multi-023
ple candidate samples. Based on the feedback024
from LLMs, we perform Refined Neighborhood025
Contrastive Learning (RNCL) to pull samples026
and their neighbors closer to learn clustering-027
friendly representations. Finally, we select rep-028
resentative samples from clusters correspond-029
ing to novel categories to allow LLMs to gen-030
erate category names for them. Extensive ex-031
periments on three benchmark datasets show032
that Loop outperforms SOTA models by a large033
margin and generates accurate category names034
for the discovered clusters.035

1 Introduction036

Although modern machine learning systems have037

achieved superior performance on many tasks, the038

vast majority of them follow the closed-world set-039

ting that assumes training and test data are from040

1The LLMs can be either locally deployed models or LLM
APIs. In this paper, we use OpenAI’s APIs for simplicity.
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Figure 1: The training loop of our model.

the same set of pre-defined categories (Cao et al., 041

2021). However, in the real world, many practical 042

problems such as intent detection (An et al., 2023a) 043

and image recognition (Zhong et al., 2021a) are 044

open-world, where the well-trained models may 045

encounter data with unseen novel categories. To 046

cope with this limitation, Generalized Category 047

Discovery (GCD) was proposed and widely studied 048

in both NLP (Zhang et al., 2021; An et al., 2023b) 049

and computer vision fields (Vaze et al., 2022; Wen 050

et al., 2022). GCD requires models to recognize 051

both known and novel categories from a set of unla- 052

belled data based on some labeled data containing 053

only known categories, which can adapt models to 054

the emerging categories without any human efforts. 055

Current methods (An et al., 2023b; Wen et al., 056

2022; Vaze et al., 2022) usually first perform 057

supervised pretraining on labeled data and self- 058

supervised learning on unlabeled data to train a 059

base model such as BERT (Devlin et al., 2018), 060

then they perform clustering methods such as 061

KMeans to discover both known and novel cat- 062

egories. Even though these methods often improve 063

performance on known categories, they usually per- 064

form poorly on novel categories due to the lack 065

of supervision. Furthermore, they also struggle to 066

reveal semantic meanings (e.g., category names or 067
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descriptions) of the discovered clusters due to the068

lack of prior knowledge for novel categories. Re-069

cently, Large Language Models (LLMs) such as070

ChatGPT have shown extraordinary capabilities for071

various applications even without any labeled sam-072

ples (Wei et al., 2023). However, LLMs cannot be073

directly applied to GCD which requires to cluster074

thousands of samples. And problems such as data075

privacy, high inference latency and cost also limit076

their applications in the real world.077

To solve above limitations and enjoy the benefits078

of both base models and LLMs, we propose Loop,079

an end-to-end active-learning framework that intro-080

duces LLMs into the training process. By selecting081

a few key samples to query LLM APIs and optimize082

the base model based on the feedback, Loop can083

compensate for the lack of supervision and gener-084

ate category names for the discovered clusters with085

very little query cost. Hence, we only need to train086

and maintain a small base model locally, which087

can reduce the inference cost and protect data pri-088

vacy. Specifically, as shown in Fig. 1, we first pro-089

pose Local Inconsistent Sampling (LIS) to select the090

most informative samples that have a higher prob-091

ability of falling to wrong clusters. Specifically,092

we select samples that have high entropy of clus-093

ter assignment probabilities and whose neighbors094

have the most diverse cluster assignments. Intu-095

itively, samples that have high entropy and diverse096

neighbor predictions seem to violate the clustering097

assumption (Jiang et al., 2022) and locate near de-098

cision boundaries (Fig. 2 dashed circle), so these099

neighbor-chaotic samples with great uncertainty100

would have a high probability of falling to wrong101

clusters (Wang et al., 2023), and correcting them102

can significantly improve the model performance.103

After selecting the key samples, we need to build104

proper prompts to query the LLMs. However, due105

to the lack of information for novel categories, we106

cannot directly query LLMs which category these107

samples belong to as in traditional active learn-108

ing. To solve this issue, we propose a Scalable109

Query strategy that allows LLMs to choose true110

neighbors of the selected samples from multiple111

candidate neighbor samples (Zhang et al., 2023).112

Based on the feedback of LLMs, we can solve113

the local inconsistency problem and decide which114

clusters these key samples truly belong to. Fur-115

thermore, LLMs are more competent at comparing116

semantic similarities between sentences than choos-117

ing from multiple category names. Then based on118

the refined neighbor relationships, we perform Re- 119

fined Neighborhood Contrastive Learning (RNCL) 120

to pull samples closer to their neighbors to learn 121

clustering-friendly representations. In this way, we 122

can correct these samples by pulling them closer 123

to true clusters they belong to and cluster the rest 124

of samples to form more compact clusters. Finally, 125

we decouple the clusters corresponding to novel 126

categories from the discovered clusters (An et al., 127

2023b) and select a few samples closest to each 128

center of the clusters to query LLMs to generate 129

category names for novel categories. 130

Experimental results on three benchmark 131

datasets show that Loop outperforms SOTA models 132

by a large margin and generates accurate category 133

names for the discovered clusters. Furthermore, we 134

also validate that the proposed Local Inconsistent 135

Sampling can select more informative samples and 136

the proposed Scalable Query strategy can help to 137

correct the selected samples effectively with very 138

little query cost. 139

Our contributions can be summarized as follows: 140

• Perspective: we propose to introduce LLMs 141

into the training loop to enjoy the benefits 142

of both base models and LLMs. To the best 143

of our knowledge, we are the first to utilize 144

LLMs to guide the training process of GCD. 145

• Framework: we propose Loop, an end-to- 146

end active-learning framework that can select 147

informative samples with Local Inconsistent 148

Sampling and label these samples with Scal- 149

able Query without any human efforts. 150

• Interpretation: Loop can reveal semantic 151

meanings of the discovered clusters by gener- 152

ating category names, which is infeasible in 153

previous methods. 154

• Experiments: Extensive experiments on three 155

benchmark datasets show that Loop outper- 156

forms SOTA models by a large margin (aver- 157

age 7.67% improvement) and generates accu- 158

rate category names with very little query cost 159

(average $0.4 for each dataset). 160

2 Related Work 161

2.1 Generalized Category Discovery 162

Under the open-world assumption, GCD (Vaze 163

et al., 2022) requires models trained on a few la- 164

beled data with known categories to recognize both 165
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Figure 2: The overall architecture of our model.

known and novel categories from the newly col-166

lected unlabeled data. Previous methods mainly167

performed representation learning on unlabeled168

data with self-supervised learning (Vaze et al.,169

2022; Zhong et al., 2021b; Wen et al., 2022) or170

pseudo-label learning (Han et al., 2019; Ge et al.,171

2020). For example, Lin et al. (2020); An et al.172

(2023a) proposed to generate pseudo labels by clus-173

tering. Zhang et al. (2022) performed contrastive174

learning to learn clustering-friendly representations.175

An et al. (2023b) proposed to decouple known and176

novel categories with a prototypical network.177

2.2 Active Learning178

Active Learning (AL) aims to select informative179

samples for manual labeling to balance model per-180

formance and annotation cost. Previous methods181

are mainly based on Uncertainty-based (e.g., en-182

tropy (Zhang et al., 2023), confidence (Wang and183

Shang, 2014) and margin (Roth and Small, 2006))184

or information (e.g., MHPL (Wang et al., 2023) and185

CAL (Margatina et al., 2021)). Recently, Zhang186

et al. (2023); Cheng et al. (2023) also utilized187

LLMs to replace human experts to save annota-188

tion cost. However, how to employ active learning189

with LLMs for the open-world setting has not yet190

been explored.191

3 Method192

Problem Setup. Under the open-world assump-193

tion, models trained on a labeled dataset Dl =194

{(xi, yi)|yi ∈ Yk} containing only known cate-195

gories Yk may encounter newly collected unlabeled196

data Du = {xi|yi ∈ {Yk,Yn}} with both known197

categories Yk and novel categories Yn, which can 198

make a model fail. To cope with this challenge, 199

Generalized Category Discovery (GCD) requires 200

a model to recognize both known and novel cate- 201

gories based onDall = Dl∪Du, without any anno- 202

tation or category information for novel categories. 203

Finally, model performance will be measured on a 204

testing set Dt = {(xi, yi)|yi ∈ {Yk,Yn}}. 205

Framework Overview. As shown in Fig. 2, 206

there are two stages in the proposed Loop frame- 207

work. In the first stage, we introduce LLMs to 208

guide the base model to learn better representa- 209

tions. Specifically, we first pre-train the base model 210

for warm up (Sec. 3.1). Then we select informa- 211

tive samples for annotation based on Local Incon- 212

sistent Sampling (Sec. 3.2). Next, we construct 213

prompt with the Scalable Query strategy to query 214

LLMs to acquire correct neighborhood relation- 215

ships between samples (Sec. 3.3). Finally, we per- 216

form Refined Neighborhood Contrastive Learning 217

to learn clustering-friendly representations based 218

on the feedback of LLMs (Sec. 3.4). In the second 219

stage, we interpret the discovered clusters by de- 220

coupling and generating category names for novel 221

categories (Sec. 3.5). 222

3.1 Multi-task Pre-training 223

We use the lightweight language model BERT (De- 224

vlin et al., 2018) as the base model to extract fea- 225

tures zi = Fθ(xi) for the input sentence xi. To 226

quickly adapt the base model to current tasks, we 227

pre-train Fθ on both labeled and unlabeled data 228

in a multi-task manner (Zhang et al., 2022) with 229

Cross-Entropy (CE) loss and Masked Language 230
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Modeling (MLM) loss (Devlin et al., 2018):231

Lpre = Lce(Dl) + Lmlm(Dall) (1)232

Through pretraining, Fθ can acquire both category-233

specific knowledge and general knowledge from234

data, which can provide a good representation ini-235

tialization for subsequent training.236

3.2 Local Inconsistent Sampling237

To select informative samples that have a higher238

probability of falling to wrong clusters, we propose239

Local Inconsistent Sampling (LIS) to select samples240

that make different predictions from their neighbors241

and have high prediction entropy.242

Specifically, we first perform Kmeans clustering243

on Dall to calculate cluster centers {µi}Ki=1 and244

get pseudo labels {ŷj}Nj=1 for all data based on245

cluster assignments, where K = |Yk|+ |Yn| is the246

number of categories andN = |Dall| is the number247

of samples. We assume K is known for a fair248

comparison and estimate it in Sec. 5.5. Then for249

each feature zi, we search its k-nearest neighbors250

in the feature space and denote Ni as the index set251

of the retrieved neighbors:252

Ni = argtopk
j
{sim(zi, zj)|j = 1, ..., N} (2)253

where sim() is the cosine similarity function254

sim(zi, zj) =
zTi zj
‖zi‖·‖zj‖ . According to the clus-255

tering assumption (Jiang et al., 2022), samples that256

are close to each other in the feature space should257

have the same predictions, so samples with local in-258

consistent predictions are near decision boundaries259

and have a higher probability of falling to wrong260

clusters (dashed circle in Fig. 2). We calculate the261

local inconsistency degree Ci by counting the num-262

ber of neighbors that have different pseudo labels263

from the query:264

Ci =
k∑
j=1

|ŷi 6= ŷN ji
| (3)265

where N j
i is the index of the j-th neighbor of xi.266

To further select uncertain samples that are far267

away from cluster centers and near decision bound-268

aries, we also restrict that the selected samples269

should have high prediction entropy. Specifically,270

we model the probability that samples belong to271

different clusters with Student’s t-distribution (Xie272

et al., 2016):273

qij =
(1 + ‖zi − µj‖2/α)−

α+1
2∑

j′(1 + ‖zi − µj′‖2/α)
−α+1

2

(4)274

where α is the degree of freedom. The entropy can 275

be calculated as: 276

Hi = −
∑
j

qijlog(qij) (5) 277

Then we can select a set of informative samples 278

that have both high local inconsistency degree and 279

prediction entropy. 280

S = {zi | Ci ∈ topm(C) ∧Hi ∈ topm(H)} (6) 281

where C = {Cj}Nj=1 and H = {Hj}Nj=1 are the 282

set of local inconsistency degree and the set of 283

prediction entropy for each sample, respectively. 284

m is a hyperparameter that determines the number 285

of samples to be selected. 286

Discussion. The proposed LIS is effective in two 287

aspects. First, the local inconsistency degree can 288

help to select samples whose neighbors have the 289

most diverse cluster assignments. Since these 290

neighbor-chaotic samples may locate near decision 291

boundaries and violate the clustering assumption 292

(Jiang et al., 2022), it will be hard for the model to 293

decide which clusters they truly belong to. Second, 294

the prediction entropy can select samples that are 295

distributed uniformly among several clusters. Since 296

these samples are far away from cluster centers 297

and distributed near decision boundaries, they can 298

be easily assigned into wrong clusters. By comb- 299

ing the two scores together, our model can select 300

samples that are assigned to wrong clusters, and 301

correcting these samples can provide more gains in 302

improving model performance (Sec. 5.2.2). 303

3.3 Scalable Query Strategy 304

Given the selected samples, the next step is how 305

to query LLMs to get proper supervision informa- 306

tion. However, we cannot directly query LLMs 307

for categories because there is no label information 308

for novel categories and the returned categories are 309

hard to be aligned with the cluster assignments. So 310

inspired by recent work (Zhang et al., 2023), we 311

propose a Scalable Query strategy to mitigate the 312

local inconsistent issue by querying LLMs which 313

samples are the true neighbors of the selected sam- 314

ples. In this way, we can find the true cluster as- 315

signments of the selected samples by determining 316

the neighborhood relationship between samples. 317

This query strategy is scalable since we can set a 318

different number of neighbor options for LLMs to 319

choose from. Taking the query with |q| options as 320

an example, the prompt can be designed as: “Select 321

4



the sentence that better corresponds with the query322

sentence. Query: [S]. Sentence 1: [S1]; Sentence323

2: [S2]; ...; Sentence |q|: [S|q|].”, where [S] is the324

selected query sample and [S1], [S2] ... [S|q|] are325

neighbor sentences of [S] from the top |q| clusters326

that have the most neighbors of the query sample.327

Discussion. The proposed query strategy can328

help to correct the local inconsistent samples by se-329

lecting their true neighbors from the chaotic neigh-330

borhood. This strategy is scalable since we can add331

different number of options to query LLMs. Al-332

though adding more options will provide a higher333

probability to select the sample that is from the334

same category as the query, it will increase the335

query cost by adding more query tokens (Sec.336

5.2.3). Even if we do not find the true neighbor337

samples, our model can still learn semantic knowl-338

edge by pulling similar samples closer.339

3.4 Refined Neighborhood Contrastive340

Learning341

Based on the feedback of LLMs, we can refine the342

neighborhood relationships between samples. For343

the unselected samples, we randomly select a sam-344

ple from their neighbors to enhance generalization345

of our model. Then we can correct the selected346

samples and learn clustering-friendly representa-347

tions by pulling samples closer to their neighbor348

samples with neighborhood contrastive learning349

(Zhong et al., 2021b):350

L = − 1

N

N∑
i=1

log
exp(AT (zi)A(zN si )/τ)∑

zj∈B
exp(AT (zi)A(zj)/τ)

(7)

351

where A is a data augmentation method, N s
i is the352

index of the selected neighbor of zi, τ is a hyper-353

parameter and B is the current batch. We also add354

cross-entropy loss Lce(Dl) for training to enhance355

our model performance on known categories.356

3.5 Cluster Interpretation357

Different from previous work that only performed358

clustering to discover clusters without any semantic359

information, we propose to interpret the discovered360

clusters with the help of LLMs. Specifically, we361

first utilize the ‘Alignment and Decoupling’ strat-362

egy (An et al., 2023b) to decouple clusters that363

correspond to novel categories from the discovered364

clusters. Then for each decoupled cluster, we select365

a few samples that are closest to the center of the 366

clusters as representative samples. Next we make 367

LLMs to summarize these samples to generate la- 368

bel names for these novel categories. Experimental 369

results show that this strategy can select represen- 370

tative samples and generate accurate label names 371

for the discovered novel categories (Sec. 5.3). 372

3.6 Resource Saving 373

By selecting the most informative samples and re- 374

ducing the query options, our framework can re- 375

duce query cost. To further reduce the computing 376

and query cost, we propose two strategies for our 377

model training. 378

Interval Update. Since the neighborhood rela- 379

tionships between samples will not change dramati- 380

cally, we query LLMs and update the neighborhood 381

relationships every a few epochs (5 in our exper- 382

iments). In this way, we can save the computing 383

resource of neighborhood retrieval and the cost of 384

querying LLMs. 385

Query Result Storage. Since we may query 386

LLMs for the same sample repeatedly in differ- 387

ent epochs, we maintain a dictionary to store the 388

query results to avoid duplicated queries. In this 389

way, we can reuse the query results and reduce the 390

cost of queries. 391

4 Experiments 392

4.1 Experimental Setup 393

4.1.1 Datasets 394

We perform experiments on three benchmark 395

datasets. BANKING (Casanueva et al., 2020) is an 396

intent detection dataset in the bank domain. Stack- 397

Overflow Xu et al. (2015) is a question classifi- 398

cation dataset. CLINC (Larson et al., 2019) is an 399

intent detection dataset from multiple domains. For 400

each dataset, we randomly select 25% categories 401

as novel categories and 10% data as labeled data. 402

More details are listed in Appendix A.1. 403

4.1.2 Comparison with SOTA Methods 404

We compare our model with various baselines and 405

SOTA methods. 406

Unsupervised Models. (1) DeepCluster (Caron 407

et al., 2018). (2) DCN (Yang et al., 2017). (3) DEC 408

(Xie et al., 2016). (4) KM-BERT (Devlin et al., 409

2018). (5) AG-GloVe (Gowda and Krishna, 1978). 410

(6) SAE (Liu et al., 2018). 411

Semi-supervised Models. (1) Simple (Wen et al., 412

2022). (2) Semi-DC (Caron et al., 2018). (3) Self- 413
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Method
BANKING StackOverflow CLINC

H-score Known Novel H-score Known Novel H-score Known Novel

DeepCluster 13.97 13.94 13.99 19.10 18.22 14.80 26.48 27.34 25.67
DCN 16.33 18.94 14.35 29.22 28.94 29.51 29.20 30.00 28.45
DEC 17.82 20.36 15.84 25.99 26.20 25.78 19.78 20.18 19.40
KM-BERT 21.08 21.48 20.70 16.93 16.67 17.20 34.05 34.98 33.16
AG-GloVe 30.47 29.69 31.29 29.95 28.49 31.56 44.16 45.17 43.20
SAE 37.77 38.29 37.27 62.65 57.36 69.02 45.74 47.35 44.24

Simple 40.52 49.96 34.08 57.53 57.87 57.20 62.76 70.60 56.49
Semi-DC 47.40 53.37 42.63 64.90 63.57 61.20 73.41 75.60 71.34
Self-Label 48.19 61.64 39.56 59.99 78.53 48.53 61.29 80.06 49.65
CDAC+ 50.28 55.42 46.01 75.78 77.51 74.13 69.42 70.08 68.77
DTC 52.13 59.98 46.10 63.22 80.93 51.87 68.71 82.34 58.95
Semi-KM 54.83 73.62 43.68 61.43 81.02 49.47 70.98 89.03 59.01
DAC 54.98 69.60 45.44 63.64 76.13 54.67 78.77 89.10 70.59
GCD 55.78 75.16 44.34 64.63 82.00 53.33 63.08 89.64 48.66
PTJN 60.69 77.20 50.00 77.48 72.80 82.80 83.34 91.79 76.32
DPN 60.73 80.93 48.60 83.13 85.29 81.07 84.56 92.97 77.54
MTP 61.59 80.08 50.04 77.23 84.75 70.93 80.32 91.69 71.46

Loop (Ours) 74.60 83.99 67.10 91.57 87.56 90.53 90.74 94.45 87.31
Improvement +13.01 +3.06 +17.06 +8.44 +2.27 +7.73 +6.18 +1.48 +9.77

Table 1: Model comparison results (%) on testing sets. Average results over 3 runs are reported. Some results are
cited from An et al. (2023b).

Labeling: (Yu et al., 2022). (4) CDAC+ (Lin et al.,414

2020). (5) DTC (Han et al., 2019). (6) Semi-KM415

(Devlin et al., 2018) (7) DAC (Zhang et al., 2021).416

(8) GCD (Vaze et al., 2022). (9) PTJN (An et al.,417

2023a). (10) DPN (An et al., 2023b). (11) MTP418

(Zhang et al., 2022).419

4.1.3 Evaluation Metrics420

We measure model performance with clustering421

accuracy with Hungarian algorithm (Kuhn, 1955).422

(1) H-score: harmonic mean of the accuracy of423

known and novel categories (Saito and Saenko,424

2021). (2) Known: accuracy of known categories.425

(3) Novel: accuracy of novel categories.426

4.1.4 Implementation Details427

We use the pre-trained Bert-base-uncased model428

(Wolf et al., 2019) as the base model and the GPT-429

3.5 Turbo API as the LLM. For hyper-parameters,430

k is set to {50, 50, 500} for BANKING, CLINC431

and StackOverflow, respectively. α is set to 1, m is432

set to 500, |q| is set to 2 and τ is set to 0.07. The433

pre-training epoch is set to 100 and the training434

epoch is set to 50 on an NVIDIA 3090 GPU. The435

learning rate for pretraining and training is set to436

5e−5 and 1e−5, respectively. For masked language 437

modeling, the mask probability is set to 0.15 fol- 438

lowing previous works. Random Token Replace 439

(Zhang et al., 2022) is used for data augmentation. 440

5 Experimental Analysis 441

5.1 Main Results 442

We show the comparison results in Table 1. From 443

the results we can see that our model gets the best 444

performance on all datasets and evaluation metrics 445

(average 7.67% improvement), which can show 446

the effectiveness of our model. Specifically, our 447

model gains average 9.21% improvement in H- 448

score, which means that our model can better bal- 449

ance model performance on known and novel cat- 450

egories and alleviate the effects of model bias to- 451

wards known categories. Average 2.27% improve- 452

ment in accuracy of known categories shows that 453

our model can acquire semantic knowledge from 454

both labeled and unlabeled data to enhance our 455

model performance. Last but not least, our model 456

gains average 11.52% improvement in accuracy 457

of novel categories. We attribute the remarkable 458

improvement to following reasons. First, Local In- 459
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Model H-score Known Novel

Loop (Ours) 74.60 83.99 67.10

w/o Lce 72.77 82.43 65.13
w/o LLMs 70.02 78.15 63.42

w/ Entropy 74.06 84.07 66.18
w/ Margin 72.88 82.73 65.13
w/ Random 72.33 82.23 64.56
w/ Confidence 72.08 82.44 64.03

|q| = 3 75.91 84.25 69.08
|q| = 4 77.30 83.84 71.71

OverClustering 74.07 80.54 68.56

Table 2: Ablation study with different model variants.

consistent Sampling can help to select samples that460

have a higher probability of falling to the wrong461

clusters. And correct them can provide more infor-462

mation gain for the model training. Second, Scal-463

able Query can provide supervision by choosing464

the true neighbors, which can help to mitigate the465

local inconsistency problem. Last, Neighborhood466

Contrastive Learning with the refined neighbors467

can help to pull samples from the same category468

closer and learn clustering-friendly representations.469

5.2 Ablation Study470

We validate the effectiveness of different compo-471

nents of our model on the BANKING dataset in472

Table 2.473

5.2.1 Main Components474

From the results we can see that removing cross-475

entropy loss Lce can lead to slight performance476

degradation since it is responsible for providing477

accurate supervision for known categories. And478

removing feedback from LLMs will lead to se-479

vere performance decline on both known and novel480

categories, which can reflect the importance of in-481

troducing LLMs to the training loop to provide482

supervision information.483

5.2.2 Analysis of LIS484

To validate the proposed Local Inconsistent Sam-485

pling (LIS) strategy, we compare the model per-486

formance with different sampling strategies. As487

shown in Table 2, LIS outperforms other sampling488

strategies, which demonstrates the effectiveness489

of our LIS strategy. To further validate the pro-490

posed LIS strategy, we also compare the accuracy491

Strategy BANK. Stack. CLINC

Random 33.00 20.50 17.50
Margin 77.00 68.50 68.50
Entropy 80.00 84.50 61.00
Confidence 81.00 78.00 66.50

LIS (Ours) 88.48 90.97 72.25
Improvement +7.48 +6.47 +3.75

Table 3: Proportion of the selected 200 samples that fall
into wrong clusters.

|q| 2 3 4

Cost ($) 0.39 0.47 0.55

Table 4: Query cost with different number of options.

of different strategies for selecting samples that fall 492

into wrong clusters. From Table 3 we can see that 493

LIS outperforms other strategies by a large margin, 494

which means that LIS can select more informative 495

samples to boost our model performance. 496

5.2.3 Analysis of Scalable Query 497

To validate the Scalable Query strategy, we com- 498

pare the model performance with different number 499

of options |q|. As shown in Table 2, Increasing |q| 500

can improve our model performance because we 501

can select more accurate neighbors as |q| grows. 502

As shown in Fig. 3(a), our scalable query strategy 503

can correct many samples compared to the method 504

without LLM queries, which shows the effective- 505

ness of our query strategy. And with |q| increasing, 506

our model can correct more samples and get better 507

model performance, which shows the scalability of 508

our query method. However, the query cost will 509

increase with the growth of |q| due to the growth of 510

query tokens (Table 4), so the Scalable Query strat- 511

egy provides users with options to balance query 512

cost and model performance. 513

5.3 Cluster Interpretation 514

In addition to the improved model performance, 515

our model can also interpret the discovered clus- 516

ters by generating category names for them. As 517

shown in Table 5, our model can select representa- 518

tive samples for novel categories and generate accu- 519

rate names for them, which can provide more con- 520

venience for real-world applications of our model. 521

More results are listed in Appendix A.7. 522
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Figure 3: Analysis of the quality of representation learning and neighborhood retrieval.

Selected Sentences Ground Truth Prediction

Can I change my PIN if I want to?
Change PIN Change PINCan I change my PIN?

Do I have to change my PIN at a bank?

What will the weather be this weekend?
Weather Weather forecastTell me what the weather is like.

What’s the weather like?

Table 5: Examples of the selected sentences, ground-truth category names and predicted category names.

5.4 Influence of the Number of Samples523

We investigate the influence of the number of se-524

lected samples for query in Fig. 3(b). From the525

results we can see that increasing the number of526

samples can improve our model performance. How-527

ever, the growth rate gradually slows down because528

it becomes increasingly difficult to select informa-529

tive samples as the number of samples increases.530

5.5 Real-world Applications531

In the real world, the number of categories K is532

usually unknown. To solve this issue, we utilize the533

filtering strategy (Zhang et al., 2021) to estimate534

K. As shown in Table 6, our model obtains the535

most accurate estimation with only a little error,536

which shows the effectiveness of our model. To537

further investigate the influence of K, we perform538

OverClustering by over-estimating K used for in-539

ference by a factor of 1.2. Results in Table 2 show540

that our model gets close performance even with-541

out knowing the ground-truth K, which validates542

the robustness of our model.543

5.6 Visualization544

We visualize the learned embeddings of our model545

on the Stack. dataset with t-SNE in Fig. 3(c).546

From the figure we can see that our model can547

learn separable clusters and decision boundaries for548

Method BANK. Stack. CLINC

Ground Truth 77 20 150

DAC 66 15 130
DPN 67 18 137

Ours 78 19 145

Table 6: Estimation of the number of categories.

different categories, which indicates that our model 549

can learn discriminative features for clustering. 550

6 Conclusion 551

In this paper, we propose Loop, an active-learning 552

framework that introduces LLMs to the training 553

loop for GCD, which can boost our model per- 554

formance without any human efforts. We further 555

propose Local Inconsistent Sampling to select in- 556

formative samples and utilize Scalable Query to 557

correct these samples with the feedback of LLMs. 558

By pulling samples closer to their refined neigh- 559

bors, our model can learn clustering-friendly repre- 560

sentations. Finally, we generate label names for the 561

discovered clusters to facilitate real-world applica- 562

tions. Experiments show that Loop outperforms 563

SOTA models by a large margin and generates ac- 564

curate category names for the discovered clusters. 565

8



Limitations566

Even though the proposed Loop framework567

achieves superior performance on the GCD task,568

it still faces the following limitations. First, when569

increasing the number of samples to query LLMs,570

the performance of Loop improves slowly, which571

is because it becomes harder to select informative572

samples. So how to revise the sample selection573

strategy to select more informative samples is a key574

question. Second, the Scalable Query can only pro-575

vide neighborhood information, which is relatively576

weak supervision compared to category supervi-577

sion in traditional active learning. So how to design578

query strategy to acquire more accurate supervision579

is another key question. Last, Loop relies on the580

feedback of LLM APIs, which is uncontrollable,581

and uploading data to query LLMs may be risky582

for some sensitive industries.583
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A Appendix 733

A.1 Datasets 734

To validate the effectiveness of our Loop frame- 735

work, we perform experiments on three bench- 736

mark datasets BANKING (Casanueva et al., 2020), 737

StackOverflow (Xu et al., 2015) and CLINC (Lar- 738

son et al., 2019). For each dataset, we randomly 739

select 25% categories as novel categories and then 740

select 10% data from each known category as la- 741

beled data. After training, we test model perfor- 742

mance on the testing set in an inductive manner. We 743

also perform experiments with different known cat- 744

egory ratios in Sec. A.3. Statistics of the datasets 745

are listed in Table 7. 746

A.2 Prompt Design 747

Query Prompt. Following Zhang et al. (2023), 748

we design the query prompt as follows: 749

“Select the sentence that better corresponds with 750

the query sentence in terms of intents or categories. 751

Please respond with ’Sentence 1’ or ’Sentence 2’ ... 752

or ’Sentence |q|’ without explanation. 753

Query: [S]. Sentence 1: [S1]; Sentence 2: [S2]; 754

...; Sentence |q|: [S|q|].” 755

Interpretation Prompt. To generate category 756

names for the discovered clusters that correspond 757

to novel categories, we select three samples that are 758

closest to the center of the clusters as representative 759

samples. And we design the interpretation prompt 760

as follows: 761

“Given the following sentences, return a word 762

or a phrase to summarize the common intent or 763

category of these sentences without explanation. 764
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Figure 4: Model performance with different known category ratios.

Sentence 1: [S1]; Sentence 2: [S2]; Sentence 3:765

[S3].”766

A.3 Influence of the Known Category Ratio767

In the real world, the ratio of known categories768

may vary in different applications and the num-769

ber of novel categories may exceed the number770

of known ones. To validate the robustness of our771

model towards the changing known category ratios,772

we perform experiments with known category ra-773

tios in the set {25%, 50%, 75%} on the BANKING774

dataset. As shown in Fig. 4, our model gets the775

best performance on all known category ratios and776

evaluation metrics, which can show the effective-777

ness and robustness of our model towards different778

known category ratios. Furthermore, our model out-779

performs other methods by a large margin on the780

accuracy of novel categories and H-score, which781

can further validate that our Loop framework can782

learn better representations based on the feedback783

of LLMs.784

A.4 Influence of the Number of Neighbors785

To investigate the influence of the number of neigh-786

bors k, we perform experiments with k in the set787

{25, 50, 100, 150, 200} on the BANKING dataset.788

As shown in Fig. 5, our model gets the similar per-789

formance when k is less than 100. However, when790

k exceeds 100 by a lot, our model performance791

drops quickly. This is because when k exceeds the792

average number of samples for each category by793

a lot (e.g., approximately 110 for the BANKING794

dataset), there is a higher probability for neigh-795

borhood contrastive learning to randomly select796

samples from other categories as the positive key,797

which can introduce much noise for model training798
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Figure 5: Model performance with different number of
neighbors.

and degrade the model performance. 799

A.5 More Results of Feature Visualization 800

We also visualize the learned embeddings by previ- 801

ous SOTA methods (MTP and DPN) on the Stack- 802

Overflow dataset in Fig. 6. Compared to the vi- 803

sualization results of our model in Fig. 3(c), we 804

can see that some clusters are mixed together for 805

the compared methods, which can indicate that our 806

model can learn more discriminative features and 807

form more separatable decision boundaries for dif- 808

ferent categories. Furthermore, if we remove the 809

feedback of LLMs from our model (Loop w/o LLM 810

query), clusters corresponding to novel categories 811

will be mixed together due to the lack of supervi- 812

sion, which can further validate the effectiveness 813

of our active-learning framework. 814
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(a) MTP. (b) DPN. (c) Loop w/o LLM query.

Figure 6: t-SNE Visualization for the compared methods.

A.6 Visualization for Confusion Matrix815

To investigate the performance of our model on dif-816

ferent categories, we illustrate the confusion matrix817

of our model on the three datasets in Fig. 7. From818

the figure we can see that our model can make good819

distinctions for most of categories. However, our820

model still needs to be improved for some fine-821

grained categories that can be easily confused and822

misclassified (e.g., some categories of the BANK-823

ING dataset).824

A.7 More Results of Cluster Interpretation825

We provide more examples of the selected sen-826

tences and generated category names on the three827

datasets in Table 8. The results can further validate828

that our model can select representative samples829

and generate accurate names for the discovered830

novel categories, which can validate the effective-831

ness of our interpretation strategy.832
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Figure 7: Confusion matrix on different datasets.
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Selected Sentences Ground Truth Prediction

Can I top up with check?
Top up by cash

or check
Top up with a checkWhere do I find how to top off with a check?

Can I top up my account with a check?

Why is my cash withdrawal still showing as pending?
Pending cash
withdrawal

Pending cash
withdrawal

My cash withdrawal is showing as pending, why?
My cash withdrawal shows as pending still.

When can I expect a transfer from Europe to go through?
Transfer timing

Transfer timing
from Europe

When will my transfer arrive from Europe?
When will I receive a transfer from Europe?

Look up the calories in an apple.
Calories

Calorie information
for food

What’s the amount of calories in a cheesy omelette?
Look up the calories in Cheetos.

Tell me how much my state taxes amount to.
Taxes Tax amountWhat is the amount of my state taxes?

What is the amount of my federal taxes?

Has my recent order shipped?
Order status Order statusIs my order already here?

What is the status of my delivery order?

How to convert excel sheet column names?
Excel

Excel functionalities
and operations

Setup an excel template.
How do you prevent printing dialog of excel?

How to pass URL variables into a WordPress page?
WordPress

WordPress
Customization

Get three posts before a certain date in WordPress.
Where to place a query to show posts in wordpress?

Get order increment id in magento.
Magento

Magento
functionality

How to get the attribute group in magento?
How to get store information in magento?

Table 8: Examples of the selected sentences, ground-truth category names and predicted category names.
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