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ABSTRACT

More efforts are being put into improving Large Language Models’ (LLM) ca-
pabilities than into dealing with their implications. Current LLMs are able to
generate texts that are seemingly indistinguishable from those written by human
experts. While offering great quality of life, such breakthroughs also pose new
challenges in education, science, and a multitude of other areas. To add up, cur-
rent approaches in LLM text detection are either computationally expensive or
need accesses to the LLMs’ internal computations, both of which hinder their
public accessibility. With such motivation, this paper presents a new paradigm
of metric-based detection for LLM-generated texts that is able to balance among
computational costs, accessibility, and performances. Specifically, the detection is
performed through evaluating the similarity between a given text to an equivalent
example generated by LLMs and through that determining the former’s origina-
tion. In terms of architecture, the detection framework includes a text embedding
model and a metric model. Currently, the embedding component is a pretrained
language model. We focus on designing the metric component which is trained
with triplets of same-context instances to signify distances between human re-
sponses and LLM ones while reducing that among LLM texts. Additionally, we
develop and publish four datasets totalling over 85,000 prompts and triplets of
responses in which one from human and two from GPT-3.5 TURBO for bench-
marking and uses by the public. Experiment studies show that our best architec-
tures maintain F1 scores in between 0.87 to 0.95 across the tested corpora in both
same-corpus and out-of-corpus settings, either with or without paraphrasing.

1 INTRODUCTION

The advancement in computing technologies has enabled deep neural networks (LeCun et al., 2015)
to grow enormous in scales, attributed to the breakthrough of the so-called large language models
(LLMs) (Zhao et al., 2023). LLMs are typically deep neural networks that consist of hundreds of
millions to hundreds of billions of parameters. Examples of recent LLMs are GPT-3 (Brown et al.,
2020) at 175 billion parameters, PaML (Chowdhery et al., 2022), 540 billion parameters, and GPT-4,
(OpenAI, 2023) 170 trillion parameters. These gigantic scales provide LLMs with the capabilities
of generating significantly high quality expert texts in any domains. Recently, LLMs have become
highly accessible to the public with ChatGPT (OpenAI, 2022) using GPT-3.5 TURBO which is
renowned for its ease of use and high quality responses in terms of correctness and writing.

ChatGPT-like services have tremendous potentials in aiding societies and improve quality-of-life in
a multitude of areas. However, LLMs also come with major challenges. Due to their high levels
of sophistication and qualities, it is increasingly more difficult to determine if texts are written by
human or LLMs. This poses a major issue in education, science, and any areas that need original
writing contents. Coupling with this issue, the literature in detecting synthetic texts seems lagging
behind new generative models. Up until mid-2022, studies in detecting LLM-generated texts were
relatively limited (Guerrero & Alsmadi, 2022) and rely on training or finetuning computationally
expensive supervised classifiers. Furthermore, they were before the breakthrough of major LLMs
like GPT or PaML, and therefore the adaptability of such technologies is questionable. The more
recent line of synthetic text detection algorithms like DetectGPT (Mitchell et al., 2023) or water-
marking (Kirchenbauer et al., 2023) needs access to the LLMs’ internal computations, which is not
always available to the public and hinder their accessibility.
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With such motivation, in this paper, we propose a metric-based approach for LLM content de-
tection that is balanced among computational costs, accessibility, and performances. Due to the
generation technologies, LLMs tend to produce similar phrases in texts when receiving the same
contexts. Exploiting this, the detection methods will rely on comparing a given text to an AI-
generated reference from LLMs. Having the assistance from the generative models, a large part of
the computational burdens will be relieved from the detection models. In terms of architectures,
the detection framework consists of a pretrained embedding language model and an empirically-
designed deep metric network. The metric network is trained to signify the similarity between LLM
responses while decreasing that between LLM and human responses of with a same-context triplet
training algorithm adapted from the triplet loss function (Schroff et al., 2015). During the decision
making phase, the context of a given text is first prompted to a LLM to obtain a LLM-reference. The
text and the LLM-equivalence are then fed to a metric framework to obtain their similarity metric.
Finally, the metric is compared against a selected threshold to determine the text origination.

To benchmark the proposed models, we further develop four text datasets in the form of context
- triplets of responses (one from human and two from GPT 3.5-TURBO). Contexts and human
responses are extracted from the Natural Questions (NQ) dataset (Kwiatkowski et al., 2019), Stan-
ford Question-Answering Database (SQUAD) (Rajpurkar et al., 2016), Scientific Questions (SciQ)
dataset (Johannes Welbl, 2017), and Wikipedia Scientific Glossary (Wiki) (Wikipedia, 2017). Each
context is then used to requested two independent responses from ChatGPT to form the triplet in-
stances. By the end, we obtain 59, 945 entries from the NQ data, 18, 813 from the SQUAD data,
4, 419, SciQ data, and 2, 071, the Wiki data. Experiment studies show that our beset architectures
maintain F1 scores mostly in between 0.87 to 0.95 across the tested corpora in both same-corpus
and out-of-corpus settings, either with or without paraphrasing.

The current scope of our work is on short responses, i.e., within a paragraph averaging five sentences
but no less than three. We are also focusing on training the metric network and keep the pretrained
embedding model frozen. To sum up, our contributions are as follows.

1. An metric-based approach that detects LLM responses for known contexts. Unlike others
in the current literature, our method is more light-weighted and does not require access to
any LLMs’ internal computations. Instead, a response is compared to a LLM-generated
one of the same context. The similarity of the two responses decides if the former was
written by LLM or a human.

2. Empirically designed end-to-end deep architectures that transform text data into embedding
vectors of which distances between LLM texts are minimized and that between LLM and
human-written texts are maximized. The architecture is trained using a same-context triplet
algorithm adapted to the problem of detecting LLM texts.

3. Four text datasets totaling over 85,000 instances of contexts and triplet of responses in
topics ranging from daily lives to sciences for benchmarking. All datasets will be available
for the community after the publication of this paper.

The rest of the paper is organized as follows. Section §2 discusses the studies related to our work.
In Section §3, we present the developed methodologies in details, including the detection algorithm,
definite triplet training, and the framework architecture. Our experiment study is discussed in Sec-
tion §5. Finally, we conclude our paper in Section §6.

2 RELATED WORKS

Up until the middle of 2022, detecting AI generated texts is not a very active research area (Guerrero
& Alsmadi, 2022). The typical works in this period attempt to use supervised detection models
on top of deep embedding representations (Bakhtin et al., 2019; Solaiman et al., 2019; Ippolito
et al., 2019; Fagni et al., 2021). There are two drawbacks to these types of models. First, due to
the complexity of text data, supervised classifiers tend to require a large number of parameters to
perform well, making them very computationally expensive or difficult to train. In our experiments,
a deep classifier of 20 layers and over 12 million parameters could not converge when using MPNet
embeddings (Song et al., 2020) as inputs. Additionally, finetuning pretrained LLMs takes hours per
epoch, while our approach takes tens of seconds to below three minutes. Second, these works were
tested before the emergence of multi-billions of parameters LLMs that ChatGPT used. This make
their adaptability to data from such models questionable. Furthermore, as the synthetic texts become
more sophisticated than ever, the first issue is amplified and more difficult to address.
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Another branch to verify the origination of texts is to assess the probabilities of words in texts
being generated by a given model (Solaiman et al., 2019; Mitchell et al., 2023). The most recent
work in this direction is DetectGPT (Mitchell et al., 2023) which has obtained very good detection
accuracy. These approaches, however, are hindered by the fact that they require accesses to the
underlying output distributions of the generative language models. In closed or commercial LLMs,
such distributions either require purchases or are not available at all. Ultimately, this issue also
makes it difficult for the general community to utilize these technologies.

Watermarking is the third method to detect AI-synthesized texts (Kirchenbauer et al., 2023). This
method mainly involves modifying a language model so that it injects signature patterns into the
output texts. The signatures are indistinguishable by human, but make it much easier for a detection
model to recognize traces of AIs. While being proved to be highly accurate, the assumption that a
LLM in the wild has been implemented with any watermark mechanisms is fairly strong and cannot
be guaranteed or enforced.

Addressing these gaps in the related literature, the proposed framework will be without the needs of
expensive resources or accesses to internal computations of the generative LLMs. Instead, decisions
are made by comparing the given text to an equivalent sample that is known to be from LLMs. This
approach partially shifts the computation burdens, specifically, in generating a LLM reference, to
the generative LLMs. The detection model will only focus on contrasting a given text and the LLM
reference to determine the former’s origination. Accordingly, this family of algorithms will be able
to maintain a lower complexity and computational demands while keeping good accuracy rates. To
our knowledge, this is the first work that utilizes metric learning in detecting LLM-synthesized
contents. Our experiments show that the model can be trained very quickly, a few minutes per
epoch, on a corpus of approximately 60,000 questions and triplets of responses, and adapt well to
paraphrased data as well as out-of-corpus data with F1 in between [0.87, 0.95].

3 METHODOLOGIES

Texts that are generated by LLMs tend to be repetitive to some degrees when coming from the
similar initial context. This observation has inspired the authors to explore detection frameworks
that compare a given text to a LLM one from an equivalent context. In this section, we describe our
methodology in details, including the justification for the method, the triplet sampling strategy, and
the complete detection architecture.

3.1 JUSTIFICATION

Current LLM-based assistants generate contents starting from a context which can be a question,
a query, or a conversation starter. Due to the probabilistic models that LLMs use to create their
contents, the same context will result in repeated patterns in the generated texts. More specifically,
key technologies such as autoregressive generation (Graves, 2013; Sutskever et al., 2014), beam
search (Wiseman & Rush, 2016), and next-token sampling (Fan et al., 2018; Holtzman et al., 2019),
focus on exploring and selecting outputs based on probabilities of each tokens in the vocabulary
becoming the next for the current sequence. As the next-token probabilities are computed using
a given context then autoregressed, the same contexts will result in similar pools of tokens for
selection which leads to repetitions of patterns. This phenomenon has also been observed previously
(Welleck et al., 2019; 2020). As an illustration, Figure 1(a) shows an example of responses from
GPT-3.5 TURBO for the prompt ”briefly explain machine learning within three sentences” in four
separate sessions; with similar phrases across the responses being bold and highlighted with the same
colors. We can observe that there are multiple patterns that get repeated across the four responses.
Furthermore, besides the highlighted phrases, there is also a strong resemblance in the flows of ideas
and writing styles in the texts.

With this observation, the detection framework will base on the core mechanism of learning sim-
ilarities among LLM responses and dissimilarities between LLM and human responses. To make
decision, a given text is compared to a LLM-generated one for similar contexts. If the similarity is
over a selected threshold, the text is classified as originated from LLM, otherwise, a person. This
process is illustrated in Figure 1(b).
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Figure 1: The metric-based detection framework and examples of justification

3.2 METRIC LEARNING WITH SAME-CONTEXT TRIPLETS

Among state-of-the-art metric learning approaches is the triplet loss training (Schroff et al., 2015).
In brief, this method utilizes triplets of data instances, two having the same labels, and one with
a different label, as training units. The training goal is for each instance in the triplets to undergo
the same transformation to an embedding space where pairs of the same labels (positive pairs) are
spatially closer than the pairs having different labels (negative pairs). Mathematically, the loss of
one triplet is as L = max(∥f(A)− f(P )∥2 − ∥f(A)− f(N)∥2 + α, 0) where A, P , and N are
instances in the triplet, A and P have the same label, and N has a different one; f(·) represents the
transformation to the embedding space which is parameterized with a deep neural network; and α is
a margin hyper-parameter. f(·) is trained to minimize the total loss

∑
L across all training triplets.

However, modeling the problem as a classification task, i.e., having the model directly generate the
labels ”LLM” or ”human” is demanding in terms of both data and computational resources. The
reason is that the original triplet loss optimization has to model similarities among responses from
very different topics which increases the complexity of the training and in turns makes the models
more complex and/or difficult to converge. Therefore, instead of labeling all the responses ”LLM”
or ”human” and let the model randomly sample positive and negative pairs, we strictly constrain the
instances in each triplet to come from the same contexts. Furthermore, the positive pairs, A and P ,
come from LLMs, and negative instances, N , are from human. Overall, the ultimate goal of metric
learning in identifying LLM generated contents is to increase similarity among LLM texts from
similar contexts, and decrease that between LLM texts and human texts, under the same condition.
The similarity among human texts is not trained in this framework as it is not necessary. Figure 2
illustrates the process of same-context triplet sampling and the training objective of the framework.

3.3 THE DETECTION FRAMEWORK ARCHITECTURE

We design the transformation neural network f(·) as a combination of an embedding model and a
metric model. More specifically, the embedding language model vectorizes raw text data, and the
metric model takes the vectorized texts then outputing their distance values. Decision making is
performed based on the final output distances.
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Figure 2: Same-context triplet sampling and training objective of the detection framework

To save computational resources as well as utilize knowledge from external domains, we use a public
pretrained language model for the embedding task. At the moment, the selected embedding model is
the pretrained MPNet version 2 (Song et al., 2020) available in the SentenceTransformer (Reimers &
Gurevych, 2019) Python library. This model has 110 million parameters and was originally trained
on 160GB of text data for various language tasks. It was then finetuned for the task of sentence
embeddings on over a billion pairs of sentences and is current having the highest benchmark among
pretrained models for this task. MPNet takes raw text data and outputs a 768-dimensional vectors.
The outputs of MPNet are then fed to a deep metric model. As MPNet can operate at different levels
of text granularity, i.e., at the token, sentence, or full-text, we design different metric architectures
for each type. However, to keep the model complexity low, we only consider embedding models at
the sentence or full-text levels.

The first metric model at the full-text level takes two input embeddings from MPNet and transforms
them to higher-level vector representations. Then, the Euclidean distance of the two vectors is
computed and used as the metric of the two original inputs. Architecture-wise, the full-text model
consists of stacked residual blocks similar to that in the transformer model (Vaswani et al., 2017).
More specifically, each residual block consists of two consecutive fully-connected layers, the first
using Rectified Linear Unit (ReLU) activation, and the second layer, linear activation. The output of
the linear layer is then added with the original block input and normalized to the final block output.

On the other hand, the sentence-level metric network receives an array of sentence embeddings from
each input. Therefore, we design this model similar to the transformer architecture. Specifically,
the model has two towers that take MPNet sentence embeddings from the input text and its LLM
reference. Each set of embeddings undergoes a set of self-attention and feed-forward blocks. The
outputs from the feed-forward blocks of the two towers are then merged in a cross-attention block
where the LLM’s outputs act as Key and Query, and the input text, V alue. Like in transformers, the
block of self-attention, feed-forward, and cross-attention, is stackable as needed. Lastly, the output
of the final cross-attention block is fed to a feed-forward architecture, flattened, and go through a
single-output Sigmoid layer to generate the metric of the two original inputs. An illustration of the
two metric frameworks is as in Figure 3.

To keep the problem complexity low, we freeze MPNet from any updates during training. Conse-
quently, only the metric network component is trained using the same-context triplet training algo-
rithm that is described previously. More specifically, each training instance is formed by a triplet
of two LLM texts and one human from the same context. One of the LLM texts acts as the LLM
reference, while the remaining one and the human text act as the second input to the metric network.
Finally, a loss value is computed for each triplet of texts, summed over the training batch, and used
to update parameters in the network using ADAM optimization (Kingma & Ba, 2014).

It should be noted that the triplet data is only required during the training phase. During the decision
making process, only the context-text pair is needed. First, the context will be used as prompt to
generate a LLM response. Then, both the text and the LLM response are input into the trained
deep framework to generate their metric which is compared to a pre-selected threshold to determine
whether the answer was generated by ChatGPT. In this paper, we tune the distance threshold in the
validation data during model training.
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Figure 3: Metric neural network architectures

4 BENCHMARKING DATA

To our knowledge, text datasets consisting of contexts and texts from both human and LLM have
yet existed. Therefore, we construct four of such collections for the purpose of developing and
benchmarking our approach, as well as the general public to use. We focus on the most publicly
accessible LLM currently which is GPT-3.5 TURBO through ChatGPT. The generation temperature
is kept at 0.7 which is the default value in the free version of ChatGPT. In terms of data sources,
we utilize four public datasets, namely Natural Questions dataset (NQ) (Kwiatkowski et al., 2019),
Stanford Question Answering data (SQUAD) (Rajpurkar et al., 2016), Scientific Questions dataset
(SciQ) (Johannes Welbl, 2017), and the Wikipedia Scientific Glossary (Wikipedia, 2017).

First, NQ is a database of questions and annotated answers from Wikipedia pages on numerous
topics. We use the simplified version of the data which consists of over 150, 000 questions, each
comes with the complete content of the Wikipedia page that has the answer as well as the locations
of the long answer and short answer as token indexes. For our usage, we extract the long answer
for each question, remove all HTML tags, and filter to questions of which answers have at least five
sentences and no more than 300 words. To generate ChatGPT answers, we use the prompt ”please
answer the following question using at least five sentences”, follow by the actual questions in data.
Each prompt is requested twice in two different API calls. The data is further filtered to exclude
questions with ChatGPT responses of less than three sentences. The final data has 56, 845 instances.

Second, SQUAD is a dataset focusing on the question-answering task with over 100, 000 questions
on contents from Wikipedia. This data is organized differently from the NQ data in that there are
multiple questions for each paragraph in a Wikipedia article. To select the best question to represent
a paragraph, first, all questions are sent to ChatGPT to obtain its responses. Then, we feed all Chat-
GPT responses as well as the original paragraphs through MPNet to obtain their embeddings. Next,
the distances between each paragraph and their questions’ LLM responses are calculated. Finally,
the questions of which LLM answers yield the lowest distance to their corresponding paragraphs are
selected. Like the NQ data, too short and too long texts are excluded from the result. Finally, in two
different sessions, we feed the selected questions to ChatGPT to obtain the two LLM responses for
this data. At the end, there are 18, 813 contexts and triplets of responses in this corpus.

Third, SciQ is a dataset consists of 13,679 scientific exam questions in topics like Physics, Chem-
istry, Biology, etc. All questions are multiple-choices, however, many come with a paragraph ex-
plaining the correct answer. For this dataset, we first filter to questions that have an explanation
paragraph with at least three sentences. The questions are further constrained to those that are in the
forms ”what”, ”when”, ”where”, ”who”, ”which”, and ”how”, to ensure the quality of the answer
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explanations. Similar to the NQ data, we use the prompt ”please answer the following question
using at least five sentences” concatenated with the actual questions to obtain two responses from
ChatGPT. Same questions are prompted in different API calls to make sure the two responses are
unrelated. Another filter on removing ChatGPT responses of below three sentences is applied. The
final SciQ data consists of 4, 419 instances of questions and their triplets of responses.

Finally, we extract data from the Wikipedia scientific glossary to build the last dataset (Wiki) on
concepts in areas such as artificial intelligence, computer science, physics, biology, chemistry,
economics, etc. First, the pages are cleaned of HTML tags then processed into the data format
{concept, explanation}. The concepts are then filtered to those having explanations of at least two
sentences. To generate ChatGPT responses, we use the prompt ”in at least three sentences, explain
the concept of ”, followed by the actual concepts in data. Like the previous datasets, responses for
the same prompt are requested in different API calls to ensure their independence, and the resulted
data is filtered to exclude questions with ChatGPT responses below three sentences. The final Wiki
glossary data consists of 2, 071 triplet entries.

We conclude this section by emphasizing that the minimum answers’ lengths in prompts cannot
enforce that in responses from ChatGPT. For examples, prompts with ”at least five sentences” may
result in answers of shorter lengths but usually capped at five. This part of the prompt is to mainly
to limit the chances of one-sentence answers from ChatGPT. Furthermore, the human responses in
the Wiki data are shorter than in the NQ, SQUAD, and SciQ datasets, on average. Therefore, the
minimum answer lengths for prompts from this data is smaller (three for Wiki vs. five for the others).
We aim for the response lengths to be approximately similar between human and ChatGPT.

5 EXPERIMENT STUDY

We test our models in three experiment settings: same-corpus, same-corpus with paraphraser, and
out-of-corpus. In the two same-corpus settings, the datasets are tested independently. Each is split
into 80% training, 10% validation, and 10% testing. In the same-corpus with paraphraser experi-
ment, we feed all responses from both human and ChatGPT through the Parrot model (Damodaran,
2021) which is a finetuned T5 language model (Raffel et al., 2020) for text paraphrasing. Then, the
original version and paraphrased version of the training and validation data are merged, whereas the
testing data only comes from the paraphraser. Lastly, in the out-of-corpus setting, we perform three
tests: 1) training and validation with NQ, testing with SQUAD; 2) training and validation with SciQ,
testing with Wiki; and 3) training and validation with NQ merged SciQ, and testing with SQUAD
merged Wiki. In all cases, the ratio of training-validation is 90%− 10%.

For the full-text-level framework (denoted full-text), we finetune the number of feed-forward blocks
in the metric network in [1, 12]. The α margin in triplet loss is finetuned within the values of {0.01,
0.02, 0.05, 0.1, 0.25, 0.5}. The final architecture consists of three residual blocks, with α = 0.1, and
is trained in 50 epochs using ADAM optimization learning rate of 10−5 with a batch size of 2048.
On the other hand, due to its more complex architecture, the sentence-level framework (denoted
sentence) is finetuned with feed-forward blocks in [1, 3] and attention blocks in [1, 3]. α is finetuned
in similar range with the full-text-level framework and is 0.25 at the end. The final sentence metric
model consists of one attention block and one feed-forward block, is trained in 100 epochs with
learning rate of 5∗10−5 epochs, and batch sizes of 1024. In all architectures, the number of neurons
in all blocks’ hidden layers are fixed at 768 which is the dimensionality of embeddings output by
the pretrained MPNet.

To evaluate our model, we use two metrics, triplet accuracy, and F1 score. Triplet accuracy is
computed as the ratio of triplets where the output embeddings of negative pairs (human response
and ChatGPT response) do have longer distances than the that of positive pairs (two ChatGPT re-
sponses). We utilized this metric since it directly reflects the quality of the triplet training process.
To measure the actual detection quality, we utilize F1 score. Unlike during training when data comes
as triplets, the prediction phase uses data as pairs: a given answer and its corresponding ChatGPT
response. Therefore, each triplet is broken down into two pairs to form the prediction data. As
discussed, to make prediction, a distance threshold is selected. If a response’s distance to its corre-
sponding ChatGPT counterpart is above the threshold, the response is labeled as human generated,
otherwise, it is ChatGPT generated. We finetune the distance threshold separately each test run by
optimize thing F1 in the validation data. This value is typically around 0.3.
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(a) Same corpus (b) Same corpus with paraphraser (c) Out of corpus

(d) Same corpus (e) Same corpus with paraphraser (f) Out of corpus

Figure 4: Models’ F1 (a)(b)(c) and triplet accuracy (d)(e)(f) in experiment study

As a baseline, we apply the distance threshold approach on the embedding generated by the stan-
dalone pretrained MPNet (denoted MPNet). We also attempted to train classifiers on the responses’
MPNet embeddings, however, these supervised classifiers failed to converge even at much higher
numbers of parameters compared to the triplet trained models (up to 20 layers - 12 million pa-
rameters). Furthermore, we deem finetuning large language models by updating all weights too
computationally expensive which is then excluded in our experiments. For illustration, using a T4
graphical unit, the full-text model uses 8 seconds for one epoch in the NQ data (about 51, 250
triplets in training and validation) at batch size 2, 048, and the sentence model needs about three
minutes, batch size 1, 024. In contrast, one epoch of finetuning DistilBERT (Sanh et al., 2019) on
the NQ data split takes 70 minutes, and RoBERTa (Liu et al., 2019), 125 minutes, both at the high-
est batch size allowable of 16. Lastly, the probabilistic models and watermarking are not considered
as they need accesses to internal computations of LLMs and do not fit our accessibility criterion.

To measure performance, all models, full-text, sentence, and base, are tested in 10 runs. Hyper-
parameters are fixed across runs of the same experiment settings, except for the detection distance
threshold which is tuned separately by runs using validation F1. In terms of result, the model
performances are illustrated as bar charts in Figure 4. Figure 4 (a)(b)(c) show F1 scores of the models
in each dataset for the same-corpus, same-corpus with paraphraser, and out-of-corpus experiments,
respectively. Figure 4 (d)(e)(f) present the triplet accuracy of the models in the same order. First,
we can observe that, the baseline MPNet models actually perform very well in all experiments. It
achieves over 96% triplet accuracy and 0.84− 0.96 F1 in all experiments. Next, the full-text model
outperforms the base model in almost all experiments, especially in the NQ and SQUAD data. In the
SciQ and Wiki data, the two models are relatively similar in both F1 and triplet accuracy. Finally,
the sentence model is the best one in the NQ and SQUAD data in the same-corpus settings, while
being the worst in the rest of the experiments. This result is explainable as its higher complexity
leading to more data required to generalize well, especially to out-of-corpus data. More specifically,
in the same corpus settings, with the NQ data having sufficient size, the sentence model largely
outperforms others. Its performance then drops to similar to the full-text model in SQUAD, and
becomes the lowest in SciQ and Wiki. In the out-of-corpus setting, it seem that none of the tested
training data is large enough for the sentence model to generalize well.
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(a) MPNet (b) Full-text (c) Sentence

Figure 5: Histograms of texts’ distances in NQ test data

Finally, we investigate the distributions of trained distance metrics in Figure 5. The histograms are
constructed from the testing portion of the NQ data in the same-corpus setting. Again, we can see
that the base models are powerful by themselves and can form two clear distributions of ChatGPT-
ChatGPT and ChatGPT-human texts. In the full-text model, distances between ChatGPT responses
are further reduced, whereas that of ChatGPT and human responses are stretched further to the
right. Its distribution shape still resembles the base model, overall. The sentence model, on the
other hand, transform the distance distribution totally – two distance clusters are clearly presenting
with minimal overlapping. This shows its potentials when the training corpus is large enough to
maintain its generalization capability. Regardless, based on the experiment results, we consider the
full-text model as the most balance among the three in terms of performance and complexity.

6 CONCLUSION

The recent breakthrough in large language models, while offering tremendous potentials to society,
also brought forefront the needs of effective methods to identify if contents are generated by human
or artificial intelligence. However, there are currently two gaps in this research area, 1) identifica-
tion technologies developed before 2022 require expensive computational resources and also have
not been tested with the current flagship LLMs; and 2) current approaches, while offer very good
detection accuracy, rely on internal computations of the LLMs. In education, science, or any areas
where original contents are critical to have accurate assessments on teaching and learning quality,
this issue only becomes more critical.

With such motivation, in this paper, we focus on the task of identifying whether texts are originated
by human or LLM with a light-weighted and accessible approach. First, we observe that responses
from LLM usually contains repeated patterns for the same prompts. Exploiting that observation,
our detection framework is trained to signify the similarities among LLM responses while boost-
ing their dissimilarities to human-generated ones. More specifically, the framework consists of an
embedding component and metric component. The embedding component is pretrained to output
vector representations for raw text data. The metric neural network then further take the embedding
vectors to generate their distances. Architecture-wise, we propose two metric models, one at the
full-text level, and one at the sentence level. The full-text model consists of stacked feed-forward
blocks, whereas the sentence model follows the transformer architecture. Both models are trained
using the same-context triplet algorithm designed for LLM text detection. Experiments show that
our best models obtain F1 in between 0.85− 0.95 in multiple settings, while can converge very fast,
typically 50-100 epochs each of which is at tens of seconds on training data of 51, 250 triplets.

For future works, we will explore the following directions. First, we will explore more architectures
for the metric components, as they are the core of this detection paradigm. Second, we will develop
methods that can effectively reconstruct contexts from any texts, as this information is not always
available. Besides using questions, some works have utilize a start portion of the texts themselves,
which limit the use cases to longer inputs. Finally, we will adapt this work to the general cases such
as modeling longer texts in the form of essays or documents, or where the generative LLMs are not
known at decision-making times.
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