
Human-Inspired Multi-Level Reinforcement Learning

Mingkang Wu
The University of Texas at San Antonio

Devin White
Army Educational Outreach Program

Vernon Lawhern
DEVCOM Army Research Lab

Nicholas Waytowich
DEVCOM Army Research Lab

Yongcan Cao
The University of Texas at San Antonio

Abstract

Reinforcement learning (RL), a common tool in decision making, learns con-
trol policies from various experiences based on the associated cumulative re-
turn/rewards without treating them differently. Humans, on the contrary, often
learn to distinguish from discrete levels of performance and extract the underlying
insights/information (beyond reward signals) towards their decision optimization.
For instance, when learning to play tennis, a human player does not treat all unsuc-
cessful attempts equally. Missing the ball completely signals a more severe mistake
than hitting it out of bounds (although the cumulative rewards can be similar for
both cases). Learning effectively from multi-level experiences is essential in human
decision making. This motivates us to develop a novel multi-level RL method
that learns from multi-level experiences via extracting multi-level information.
At the low level of information extraction, we utilized the existing rating-based
reinforcement learning [White et al., 2024] to infer inherent reward signals that
illustrate the value of states or state-action pairs accordingly. At the high level of
information extraction, we propose to extract important directional information
from different-level experiences so that policies can be updated towards desired
deviation from these different levels of experiences. Specifically, we propose a
new policy loss function that penalizes distribution similarities between the current
policy and different-level experiences, and assigns different weights to the penalty
terms based on the performance levels. Furthermore, the integration of the two
levels towards multi-level RL guides the agent toward policy improvements that
benefit both reward improvement and policy improvement, hence yielding a similar
learning mechanism as humans. To evaluate the effectiveness of the proposed
method, we present results for experiments on a few typical environments that
show its advantages over the existing rating-based reinforcement learning [White
et al., 2024], where a single reward learning was used.

1 Introduction

Recent advancements in reinforcement learning (RL) [Sutton and Barto, 1998] have shown promising
results in solving complex robotics tasks under the assumption that proper reward functions have been
designed [Tang et al., 2024]. However, in many real world cases, it is often difficult and challenging
to define reward functions properly. In these situations, it is often required to include humans users
who either provide demonstrations in an offline setting, called learning from demonstrations (LfD), or
provide feedback in an online or offline setting, called reinforcement learning from human feedback

2nd Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2025).

(RLHF). Popular LfD methods include inverse reinforcement learning (IRL) [Argall et al., 2009] and
behavior cloning (BC) [Torabi et al., 2018], which take human expert demonstrations as the input
and learn policies that mimic the demonstrations without learning the reward functions. In contrast,
RLHF takes short video clips or segments and asks humans to provide feedback. The typical form
of feedback can take the form of preferences over segment pairs, also known as preference-based
reinforcement learning (PbRL) [Christiano et al., 2017], or ratings for individual segments, also
known as rating-based reinforcement learning (RbRL) [White et al., 2024]. Variants of the PbRL
methods include ranking-based RL and crowd-sourcing PbRL [Brown et al., 2020, Chhan et al.,
2024]. RLHF methods focus on learning reward functions from the human feedback and then training
policies from the learned rewards.

Recent studies in the fields of LfD and RLHF have shown promising capabilities individually.
However, jointly learning reward learning and policy learning is challenging in the preference setting
since preferences are provided in the relative sense without indicating if a segment is “optimal" or
“sub-optimal". As a contrary, RbRL utilizes ratings as the feedback and hence allows the evaluation
of individual samples based on their multi-level performance. For example, if a sample is labeled
“Very Good” (or “Very Bad” respectively) which means “desired” (or “undesired” respectively) that
the policy learning should mimic (or distinguish respectively). Meanwhile, the additional ratings of
“Good”, “Average”, “Bad”, indicate that the policy learning should deviate it from the three classes in
a descending order from humans’ cognitive perspective. In other words, the learned policy should be
closest to the samples in the “Very Good” rating, while less closer to the samples in the “Good” rating,
and follow a similar trend to be most different from samples in the “Very Bad” rating class. Although
such a concept is intuitive in humans’ decision making process, the current RbRL approach [White
et al., 2024] only used ratings to learn reward without utilizing different levels of performance behind
different rating classes in high-level policy direction learning, which is the focus of the current work.

In this paper, we propose a novel multi-level reinforcement learning algorithm that leverages human
ratings in two levels, namely, low-level reward learning and high-level policy direction learning that
guides the agent to systematically deviate from experiences of different rating levels in a human-
inspired way. More precisely, the differences from different ratings, or equivalently performance
levels, are inverse proportional to their rating classes. Namely, a higher rating class means a lower
difference, vice versa. Towards this objective, we first propose a novel Kullback–Leibler (KL)
divergence based loss function for different rating classes that penalizes the distribution similarities
between the current policy and the segments in different classes. In particular, we classify trajectories
not in the highest rating class as failed segments and apply the new loss function with different
weights based on their rating labels. For example, when rating class is set to 4 (rating class “0”, “1”,
“2” and “3”), the new loss function calculates three distinct KL divergencies between the current
policy and trajectories in rating class “0”, “1”and “2” with different weights. Second, we design this
loss function in a modular and flexible manner, allowing it to operate across all rating classes while
preserving the original RbRL framework [White et al., 2024], so that the multi-level information
derived from the rated data can be applied seamlessly without altering existing training procedures.
Third, we conduct experimental studies to evaluate the proposed approach in several environments
with different complexity levels and show that the proposed algorithm can yield better performance
than the existing RbRL approach.

2 Related Work

Learning from demonstrations (LfD) has shown as an effective method to improve RL in dense-reward,
sparse-reward and reward-free environments [Schaal, 1996, Subramanian et al., 2016]. Methods,
such as DQfD [Hester et al., 2018], DDPGfD [Vecerik et al., 2017] and work in [Nair et al., 2018],
have shown significant improvement in RL by employing expert demonstrations to guide the policy
searching. Specifically, DQfD and DDPGfD use pre-collected expert demonstrations as replay
experiences participating in the policy updating process for Deep Q Network (DQN) and Deep
Deterministic Policy Gradient (DDPG) [Mnih et al., 2013, Lillicrap et al., 2015]. In [Nair et al., 2018],
a separate buffer is created to store pre-collect demonstrations which are then used with behavior
cloning by penalizing the dissimilarity between the current agent’s behavior and the demonstrations.
However, expert demonstrations are costly available in practical, which leaves a space for researchers
to explore the potential of suboptimal demonstrations or failed experiences in optimizing RL. Noisy
demonstrations, with both expert and suboptimal demonstrations, are used as pre-trained data in NAC

2

to initialize a policy and then refine this policy by interacting with environmental rewards [Gao et al.,
2018].

Failed experiences are used as negative examples to guide the agent’s exploration direction in [Wu
et al., 2024]. By penalizing the similarity between the current agent’s behaviors and those from failed
experiences, this method significantly improves offline RL method via overcoming the difficulty in
exploration under sparse reward settings. However, failed experiences can differ from each other
as they are defined as behaviors that are not optimal Wu and Cao [2025]. Equally treating all of
these experiences could lead to unstable exploration. Existing works such as PbRL [Christiano et al.,
2017] and RbRL [White et al., 2024] label the on-policy segments to indicate their different levels
of performance. In reward-free environments, these labels are used to infer reward functions for
optimizing RL policies. However, in both PbRL and RbRL, unpreferred segments or those with lower
ratings are often abundant, leading to an underutilization of the potential value in failed experiences.
To address this, our approach aims to optimize the policy by effectively leveraging failed experiences
at different levels.

3 Preliminaries and Background

3.1 Problem Formulation

In the context of this paper, we consider a Markov Decision Process (MDP) without reward associated
but with ratings, which is defined by a tuple (S,A, P, γ, n), where S is the state space, A the action
space, P the state transition probability distribution, γ ∈ [0, 1) is the discount factor that limits the
influence of infinite future rewards, and n represents the number of rating classes. At each state
s ∈ S, the RL agent takes an action a ∈ A, moves to the next state s′ determined by P (s′|s, a),
where a length-k trajectory (s0, a0, ..., sk−1, ak−1) is collected to be rated.

In standard RL setting, the environment provides a reward r : S×A → R at each interaction between
itself and the RL agent. The goal is to learn a policy π that maps states to actions to maximize the
expected discounted cumulative rewards. This can be formulated by the state-action value function

Q(s, a) = Eat∼π

[∞∑
t=0

γtR(st, at)

]
, (1)

where t represents the tth timestep in the training process. The performance of a policy π is normally
evaluated by the discounted cumulative rewards

J(θ) = Es∼µ [Q(s, π(s|θ))] , (2)

where µ represents the initial state distribution and θ is the policy network parameter. The policy π
defines the agent’s behavior by specifying the probability distribution over actions given the current
state. The goal of an RL agent is to find an optimal policy π∗ that maximizes the expected cumulative
reward over time, i.e., π∗ = argmaxπ Eπ

[∑T
t=0 γ

trt

]
, where rt is the reward received at time step

t and T is the time horizon.

Note that the update of policy relies much on the cumulative rewards, which implies the existence of
rewards in each state-action pair, also referred to dense reward environments. However, in reward-free
environments where rewards are not present, the standard RL methods fail to work due to the lack of
(reward) knowledge to guide the policy search.

3.2 Rating-Based Reinforcement Learning

Due to the lack of rewards, the rating-based reinforcement learning (RbRL) [White et al., 2024]
learns a reward model r̂ : S ×A → R that predicts reward r̂(s, a) for each state-action pair during
interaction. Given a length-j segment σ = (s1, a1, ..., sj , aj), the cumulative discounted reward
R̂(σ) :=

∑j
t = 1γt−1r̂(st, at) based on r̂ provides an estimated cumulative reward.

The key idea of RbRL is to train a reward model r̂ : (s, a) 7→ R that can explain why the existing
samples were given their corresponding ratings. First, the cumulative predicted reward is normalized

across a batch R̃(σ) =
R̂(σ)−minσ′∈X R̂(σ′)

maxσ′∈X R̂(σ′)−minσ′∈X R̂(σ′)
. Then, the probability of each sample in each

3

Environment

RL Agent

Rating

Reward

Learning

O
b

serv
atio

n

A
ctio

n

Bad

Good

Segments

Buffer 0

Buffer 1

Distribution 0

Distribution 1

RbRL
Rating-induced Policy Loss

Policy Loss to Push

Away from

Distributions with

Low Ratings

Figure 1: A schematic illustration of the proposed algorithm and its relationship with RbRL.

rating class was computed as

Qσ(i) =
e−k(R̃(σ)−R̄i)(R̃(σ)−R̄i+1)∑n−1

j=0 e−k(R̃(σ)−R̄j)(R̃(σ)−R̄j+1)
, (3)

where R̄i and R̄i+1 are the lower and upper bound value for the ith class respectively. The reward
predictor r̂ was trained by minimizing the cross-entropy loss given by

L(r̂) = −
∑
σ∈X

(
n−1∑
i=0

µσ(i) log
(
Qσ(i)

))
, (4)

where X is the set containing all samples, and µσ(i) = 1 if the sample is labeled in the class i and
µσ(i) = 0 otherwise.

Once the reward model r̂ was learned, one can use any existing RL algorithm, such as PPO, DDPG,
SAC, to train a control policy. Note that the rated samples in this method were only used in reward
learning without investigating their value on policy learning directly. For example, it is intuitive that
a good policy should deviate more from samples with lower ratings while less from samples with
higher ratings. Hence, the rated samples can provide additional values in direct policy shaping via
designing an appropriate loss function, which is the focus of the next section.

4 Multi-Level Reinforcement Learning

Figure 1 shows the schematic structure of the new multi-level reinforcement learning approach. Its
loss function can be divided into two components. The first component is the classic loss function
for gradient-based RL algorithms based on the learned reward from the rating-based reinforcement
learning algorithm [White et al., 2024]. The second component is a new loss that penalizes the
similarities between the samples from the current policies and the samples from different rating
classes. Since different rating classes contain samples with different performance levels, the weights
used in the penalty should be different for different rating classes. The main idea of the new loss
component is to use the Kullback–Leibler (KL) divergence to quantify the similarities (equivalently,
differences) with an descending weight for rating classes from low to high, which ensures more
difference from low rating classes, namely, low performance levels, and less difference from high
rating classes, namely, high performance levels. It is worth emphasizing that samples with high
performance levels are still undesired but show better performance than those with low performance
levels. Hence, all samples used in the new loss are considered failure, but with different performance
levels characterized by different rating classes.

4

4.1 Overall Loss Function

The proposed new loss function is given by

∇θJ(πθ) = Eπθ
[∇θ log(πθ)R̂(σθ)]−∇θ

n−2∑
i=0

ωiDKL(Di ∥ Dπθ
), (5)

where the first component is the classic loss based on the learned reward and the second component
is the new loss, σθ includes the trajectories sampled from the current policy at each training batch,
DKL denotes the KL divergence between two different distributions (please refer to Definition 4.1
below), ωi is the weight applied to the KL divergence in a descending order as rating level moves
from lowest to highest, while Di and Dπθ

represent the trajectory distributions of rating class i and
the current policy, respectively. This new policy gradient loss effectively penalizes the similarities
between the current policy and different rating levels of the failed experiences such that the policy is
updated in the direction of continuously improving the performance thanks to the descending order
for the weight ωi.

To facilitate the understanding of this new loss, we will now provide some details. In the context of
the new loss function, we utilize all, except the highest, rating classes. For example, consider the
case of 4 rating classes, namely “very bad", “bad", “good" and “very good", whose ratings are “0",
“1", “2" and “3", respectively. The segments rated as “very bad" are stored in buffer “0", namely, R0.
The segments rated as “bad" in buffer “1", namely, R1. The segments rated as “good" in buffer “2",
namely R2. Finally, the segments rated as “very good" in buffer “3", namely, R3. All trajectories in
R0, R1 and R2 are used in (5). In other words, the rating classes used in (5) include class 0 to class
n− 2, which is reflected in the second term of (5) with the summation computed for i = 0 to i = 2.

In RL, a policy is initialized with a probability density function, also referred to as a distribution,
mapping from the states input and the actions output. The main goal of the RL agent is to learn an
optimal policy that maximizes the cumulative rewards. In the context of rating-based reinforcement
learning, the cumulative rewards are based on the estimated rewards since the reward is unknown
or does not exist. Besides the class loss term, the proposed new loss term penalizes the deviation
between the current policy and different rating levels of failed examples. To this end, we employ the
multivariate Gaussian distribution [Goodman, 1963] to represent trajectories in each rating class, and
use KL divergence [Hershey and Olsen, 2007] to measure the distribution-wise difference between
the current policy and each failure distribution. The main motivation behind this new loss term is to
provide a direct policy shaping mechanism towards exploring areas that are different from various
rating levels of the failed samples at different penalty weights. In other words, the RL agent will be
pushed away from samples and its neighboring regions at different performance levels. The lower the
performance level is, the larger the push-away force will be applied.

4.2 Policy Loss Based on KL divergence

Since the purpose of our approach is to quantify the deviation between the current policy and
different rating levels of failed samples via computing their KL divergencies, we employ multivariate
Gaussian distribution to represent the distributions by computing the essential components, including
covariance matrix and mean values, of trajectories in low rating classes and those sampled from the
current policy. Specifically, we propose to compute the KL divergence between the current policy
and the samples in different rating levels of failed samples as follows.
Definition 4.1. For any two distributions, P and Q, parameterized by their means µp and µq and
covariance Σp and Σq . Mathematically, the KL divergence between P (µp,Σp) and Q(µq,Σq) is

DKL(P ∥ Q) =
1

2
(Tr(Σ−1

q Σp) + (µp − µq)
TΣ−1

q (µq − µp)− k + ln(
det(Σq)

det(Σp)
)), (6)

where, Tr(·) is the trace of a given matrix, det(·) represents the determination of a given matrix, and
k is the number of features.

Definition 4.1 provides a measure of how different the two distributions P and Q are. For example,
we have a set of failed trajectories σi = ((s0i0 , a

0
i0
, s1i0 , a

1
i0
, ...), ..., (s0im , a0im , s1im , a1im , ...)) in rating

class i containing m trajectories, where i is not the highest rating class. Another set of trajectories
σπθ

= ((s0π, a
0
π, s

1
π, a

1
π, ...), ..., (s

0
π, a

0
π, s

1
π, a

1
π, ...)) sampled from the current policy π parameterized

5

Algorithm 1
Input: rating classes n, rating buffers R1, ..., Rn, initial reward predictor r̂, KL divergency weight
ωi, total training cycles T , total training cycle M for r̂
Initialize RL policy πθ0
for i = 1 to M do

Sample trajectories σ from πθ0
Rate σ by humans
Update r̂ based on human ratings

end for
for i = 1 to T do

Extract trajectories σ1, .., σn from rating buffers R1, ..., Rn

Update policy with r̂

∇θJ(πθ) = Eπθ
[∇θ log(πθ)R̂(σθ)]−∇θ

n−2∑
i=0

ωiDKL(Di ∥ Dπθ
)

Update policy parameter θi

θi+1 ← θi + α∇θiJ(πθi)

end for

by θ represents the behaviors of the RL agent in the current training batch. According to Definition
4.1, the KL divergency between the distribution of rating class i and the distribution of the current
policy can be formulated as

DKL(Di ∥ Dπ) =
1

2
(Tr(Σ−1

Dπ
ΣDi) + (µDi − µDπ)

TΣ−1
π (µπ − µDi) + ln(

det(ΣDπ
)

det(ΣDi)
)). (7)

Since DKL(Di ∥ Dπ) is used to compute the policy gradient in (5), the constant k in (6) can be
omitted here.

Consider the case of 4 different rating classes (“0", “1", “2" and “3"). Following the computation of
the KL divergence between the current policy and the samples in rating classes 0, 1, and 2 (except
class 3, which is the highest rating class and hence not included as explained in the Subsection
“Overall Loss Function”), the overall loss function can be written as

∇θJ(πθ) =Eπθ
[∇θ log(πθ)R̂(σθ)] (8)

− [ω0DKL(D0 ∥ Dπθ
) + ω1DKL(D1 ∥ Dπθ

) + ω2DKL(D2 ∥ Dπθ
)] ,

where R̂(σθ) represents the cumulative predicted rewards of the trajectories sampled by the current
policy πθ, ω0, ω1 and ω2 represents the weights for KL divergencies between rating classes “0”, “1”
and “2” and the current policy πθ, respectively. The weights are assigned in the descending order,
namely ω0 > ω1 > ω2, such that current policy πθ is pushed away from the distribution of rating
class “0" more than distributions of rating classes “1” and “2”. The pseudocode of the proposed new
approach is given in Algorithm 1.

5 Experiments and Results

To evaluate the effectiveness of our proposed method, we compare the new method, labeled as
RbRL-KL, with RbRL across 6 DeepMind Control environments [Tassa et al., 2018], namely,
Cartpole-balance, Ball-in-cup, Finger-spin, HalfCheetah, Walker and Quadruped. These environ-
ments are characterized with continuous state and action spaces, and each vary in complexity.
Specifically, Cartpole-balance is characterized by a simple 5-dimensional state space for cart and pole
dynamics, and a 1-dimensional action space, representing discrete control forces. Ball-in-cup has
an 8-dimensional state space capturing the relative positions and velocities of the involved objects,
and a 2-dimensional action space controlling the cup’s motion. Finger-spin is characterized with
a 12-dimensional state space representing the finger and object dynamics, and a 2-dimensional
action space controlling the finger’s movement. HalfCheetah has a 17-dimensional state space,

6

capturing joint positions, velocities, and body orientation, and a 6-dimensional action space, which
corresponds to the torques applied to each joint. Walker has a 24-dimensional state space repre-
senting joint angles, velocities, and torso orientation, and a 6-dimensional action space, controlling
forces applied to each limb. Quadruped is a more complex environment which characterized with
a 78-dimensional state space, including joint positions, velocities, and full body orientation, along
with a 12-dimensional action space, enabling torque-based control over each leg joint. Among these
environments, Cartpole-balance is the simplest environment while Quadruped is the most complex
one. We focus on evaluating and understanding how RbRL-KL performs across different levels of
complexity. While these environments include built-in reward functions, we deliberately avoid using
them to preserve a reward-free testing setup. Instead, the original reward functions are used to purely
evaluate the performance of the trained policies.

0 800k 1.6e6 2.4e6 3.2e6 4e6
Timesteps

200

300

400

500

600

M
ea

n
Re

wa
rd

RbRL (n=3)
RbRL (n=4)
RbRL (n=5)
RbRL (n=6)

RbRL_KL (n=3, 2KL)
RbRL_KL (n=4, 3KL)
RbRL_KL (n=5, 4KL)
RbRL_KL (n=6, 5KL)

(a) Cartpole-balance

0 800k 1.6e6 2.4e6 3.2e6 4e6
Timesteps

0

200

400

600

800

1000

M
ea

n
Re

wa
rd

RbRL (n=3)
RbRL (n=4)
RbRL (n=5)
RbRL (n=6)

RbRL_KL (n=3, 2KL)
RbRL_KL (n=4, 3KL)
RbRL_KL (n=5, 4KL)
RbRL_KL (n=6, 5KL)

(b) Ball-in-cup

0 800k 1.6e6 2.4e6 3.2e6 4e6
Timesteps

0

100

200

300

400

500

600

700

M
ea

n
Re

wa
rd

RbRL (n=3)
RbRL (n=4)
RbRL (n=5)
RbRL (n=6)

RbRL_KL (n=3, 2KL)
RbRL_KL (n=4, 3KL)
RbRL_KL (n=5, 4KL)
RbRL_KL (n=6, 5KL)

(c) Finger-spin

0 800k 1.6e6 2.4e6 3.2e6 4e6
Timesteps

50

100

150

200

250

300

350

400

M
ea

n
Re

wa
rd

RbRL (n=3)
RbRL (n=4)
RbRL (n=5)
RbRL (n=6)

RbRL_KL (n=3, 2KL)
RbRL_KL (n=4, 3KL)
RbRL_KL (n=5, 4KL)
RbRL_KL (n=6, 5KL)

(d) HalfCheetah

0 800k 1.6e6 2.4e6 3.2e6 4e6
Timesteps

100

200

300

400

500

600

700

800

900

M
ea

n
Re

wa
rd

RbRL (n=3)
RbRL (n=4)
RbRL (n=5)
RbRL (n=6)

RbRL_KL (n=3, 2KL)
RbRL_KL (n=4, 3KL)
RbRL_KL (n=5, 4KL)
RbRL_KL (n=6, 5KL)

(e) Walker

0 800k 1.6e6 2.4e6 3.2e6 4e6
Timesteps

0

200

400

600

800

M
ea

n
Re

wa
rd

RbRL (n=3)
RbRL (n=4)
RbRL (n=5)
RbRL (n=6)

RbRL_KL (n=3, 2KL)
RbRL_KL (n=4, 3KL)
RbRL_KL (n=5, 4KL)
RbRL_KL (n=6, 5KL)

(f) Quadruped

Figure 2: Learning curves of different algorithms across six environments. The plots show the mean
(solid line) with the standard error (shaded area) over 10 runs.

Table 1: Hyperparameters used in experiments.

Environment Clip Param ϵ Learning Rate α Batch Size Hidden Layers ω0 ω1 ω2 ω3 ω4

Cartpole-balance 0.4 0.00005 128 3 1.0 0.5 0.25 0.125 0.06
Ball-in-cup 0.4 0.00005 128 3 1.0 0.5 0.25 0.125 0.06
Finger-spin 0.4 0.00005 128 3 1.0 0.5 0.25 0.125 0.06
HalfCheetah 0.4 0.00005 128 3 1.0 0.5 0.25 0.125 0.06

Walker 0.4 0.00005 128 3 1.0 0.5 0.25 0.125 0.06
Quadruped 0.4 0.00005 128 3 1.0 0.5 0.25 0.125 0.06

To further evaluate the effectiveness of our proposed method, we compare RbRL-KL against RbRL
across rating classes of 3, 4, 5, and 6, corresponding to training with 2, 3, 4, and 5 KL divergence
terms, respectively. The hyperparameters used in our experiments are provided in Table 1. To ensure
reproducibility, each setting is run 10 times using different random seeds. Table 2 presents the average
cumulative rewards with standard errors over 10 runs, and Figure 2 compares the learning curves
of both algorithms across different rating classes. The results show that RbRL-KL outperforms
RbRL in most environments. In particular, RbRL-KL consistently achieves better performance on
Cartpole-balance, Ball-in-cup, HalfCheetah, and Walker, while it only underperforms in Finger-spin
and Quadruped when n = 3. It is worth noting that RbRL outperforms RbRL-KL under the lower
rating class because the lower-rated segments form a broad, undifferentiated group. As a result,
the KL-divergence terms in RbRL-KL apply a more uniform deviation across all these segments,
reducing their impact on policy learning. Therefore, the trained policy is more likely to achieve the
local optima. Instead, a more refined rating system will provide better sample separation, allowing

7

the KL-based policy loss in RbRL-KL to learn more effectively. Apart from these specific cases, the
proposed RbRL-KL consistently outperforms RbRL, demonstrating its superior performance. To
provide a clearer view of the algorithm’s advantages, Table 3 illustrates the percentage improvement
achieved by RbRL-KL over conventional reward learning from human ratings. Positive values
indicate performance enhancement, showing that RbRL-KL generally improves learning, while minor
decreases appear only in Finger-Spin and Quadruped under the low rating class.

Table 2: Empirical return comparison among different algorithms.

Environment
(↑ complexity)

Empirical Return
RbRL (n=3) RbRL (n=4) RbRL (n=5) RbRL (n=6)

Cartpole-balance 341.50± 47.77 402.55± 60.65 349.84± 39.95 306.92± 39.55
Ball-in-cup 706.20± 104.26 789.30± 84.62 698.15± 104.55 828.62± 57.98
Finger-spin 530.79± 31.15 511.55± 24.25 557.88± 44.52 559.73± 20.49
HalfCheetah 163.02± 42.49 238.99± 34.81 204.59± 16.37 235.46± 46.10

Walker 633.34± 49.35 606.14± 44.10 722.94± 40.81 797.90± 28.94
Quadruped 454.39± 89.44 308.48± 62.29 227.52± 39.92 199.83± 45.71

RbRL-KL (n=3) RbRL-KL (n=4) RbRL-KL (n=5) RbRL-KL (n=6)
Cartpole-balance 394.62± 41.30 417.54± 58.89 428.64± 43.10 381.79± 33.91

Ball-in-cup 856.25± 77.26 861.47± 33.34 790.94± 78.00 873.92± 16.03
Finger-spin 518.51± 29.03 579.27± 42.62 635.18± 22.44 646.37± 20.13
HalfCheetah 260.93± 47.89 337.04± 48.27 297.11± 29.02 303.88± 38.07

Walker 724.21± 31.04 742.05± 50.99 754.35± 32.79 825.18± 26.44
Quadruped 420.27± 44.00 477.29± 69.89 742.05± 50.99 306.78± 75.69

Table 3: Percentage improvement of RbRL-KL over RbRL across different environments and values
of n.

Environment n=3 (%) n=4 (%) n=5 (%) n=6 (%)
Cartpole-balance 15.54 3.72 22.50 24.37
Ball-in-cup 21.27 9.14 13.30 5.47
Finger-spin −2.32 13.24 13.85 15.47
HalfCheetah 60.03 40.99 45.24 29.06
Walker 14.35 22.39 4.34 3.42
Quadruped −7.51 54.74 225.98 53.46

6 Limitations and Future Work

One of the limitations of the proposed approach is the variability in individual rating standards, which
may be noisy due to differences in how participants interpret and evaluate the environment. Since
RbRL relies on users having a basic understanding of the task and environment, these inconsistencies
may reduce the reliability of the collected individual ratings. To address this, future work will
involve designing a crowdsourcing framework to gather a diverse range of ratings from various
participants. Developing effective noise filtering methods is important to ensure the collected data is
more representative and robust, improving the reliability and accuracy of the learned models.

Although ωi should be selected in a descending order with respect to the rating level, it remains an
open question how to select the specific value of ωi. Ablation studies will be needed to optimize the
performance by selecting the best ωi. Another interesting future research is to integrate the new KL
loss terms with other RL methods in dense-reward, sparse-reward, and reward-free settings to further
evaluate its effectiveness since the KL loss terms can be implemented with/without rewards. Finally,
it is important to develop a systematic approach that uncovers the right number of rating classes for a
given environment since a larger number of rating classes may not always lead to better performance.
One potential idea is to bring the idea of Just Noticeable Difference, which quantifies the smallest
change in a stimulus to be observed by humans, in psychology to determine the boundaries between
different ratings. We will explore these directions as parts of our future work.

8

References
Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning

from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on robot learning, pages 330–359. PMLR,
2020.

David Chhan, Ellen Novoseller, and Vernon J Lawhern. Crowd-prefrl: Preference-based reward
learning from crowds. arXiv preprint arXiv:2401.10941, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Nathaniel R Goodman. Statistical analysis based on a certain multivariate complex gaussian distribu-
tion (an introduction). The Annals of mathematical statistics, 34(1):152–177, 1963.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between
gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep Q-learning from demonstrations. In AAAI
Conference on Artificial Intelligence, pages 3223–3230, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcom-
ing exploration in reinforcement learning with demonstrations. In International Conference on
Robotics and Automation, pages 6292–6299, 2018.

Stefan Schaal. Learning from demonstration. In Advances in Neural Information Processing Systems,
pages 1040–1046, 1996.

Kaushik Subramanian, Charles L Isbell Jr, and Andrea L Thomaz. Exploration from demonstration
for interactive reinforcement learning. In International Conference on Autonomous Agents &
Multiagent Systems, pages 447–456, 2016.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, 1998.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes, 2024. URL
https://arxiv.org/abs/2408.03539.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

9

https://arxiv.org/abs/2408.03539

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

Devin White, Mingkang Wu, Ellen Novoseller, Vernon J Lawhern, Nicholas Waytowich, and Yongcan
Cao. Rating-based reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 10207–10215, 2024.

Mingkang Wu and Yongcan Cao. Robust human-machine teaming through reinforcement learning
from failure via sparse reward densification. IEEE Control Systems Letters, 2025.

Mingkang Wu, Umer Siddique, Abhinav Sinha, and Yongcan Cao. Offline reinforcement learning
with failure under sparse reward environments. In 2024 IEEE 3rd International Conference on
Computing and Machine Intelligence (ICMI), pages 1–5. IEEE, 2024.

10

	Introduction
	Related Work
	Preliminaries and Background
	Problem Formulation
	Rating-Based Reinforcement Learning

	Multi-Level Reinforcement Learning
	Overall Loss Function
	Policy Loss Based on KL divergence

	Experiments and Results
	Limitations and Future Work

