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Abstract

Monte-Carlo Tree Search (MCTS) has demon-
strated success in online planning for determin-
istic environments, yet significant challenges
remain in adapting it to stochastic Markov
Decision Processes (MDPs), particularly in con-
tinuous state-action spaces. Existing methods,
such as HOOT, which combines MCTS with the
Hierarchical Optimistic Optimization (HOO)
bandit strategy, address continuous spaces but
rely on a logarithmic exploration bonus that
lacks theoretical guarantees in non-stationary,
stochastic settings. Recent advancements,
such as POLY-HOOT, introduced a polyno-
mial bonus term to achieve convergence in
deterministic MDPs, though a similar theory
for stochastic MDPs remains undeveloped.
In this paper, we propose a novel MCTS
algorithm, Stochastic-Power-HOOT,
designed for continuous, stochastic MDPs.
Stochastic-Power-HOOT integrates a
power mean as a value backup operator, along-
side a polynomial exploration bonus to address
the non-stationarity inherent in continuous action
spaces. Our theoretical analysis establishes that
Stochastic-Power-HOOT converges at
a polynomial rate of O(n−ζ), ζ ∈ (0, 1/2),
where n is the number of visited trajecto-
ries, thereby extending the non-asymptotic
convergence guarantees of POLY-HOOT to
stochastic environments. Experimental results
on stochastic tasks validate our theoretical
findings, demonstrating the effectiveness of
Stochastic-Power-HOOT in continuous,
stochastic domains.
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1. Introduction
Monte Carlo Tree Search (MCTS) has become a corner-
stone of modern decision-making and planning, yielding
unprecedented successes in deterministic domains such as
Go, Chess, and Shogi (Kocsis et al., 2006; Browne et al.,
2012). However, real-world applications often involve con-
tinuous actions and stochastic dynamics—factors that sig-
nificantly complicate both the theoretical convergence and
practical performance of MCTS. Traditional methods typ-
ically assume discrete action sets with near-stationary re-
wards, making them ill-suited for continuous, noisy envi-
ronments where value estimates shift over time and enu-
merating possible actions is infeasible. This gap has con-
strained MCTS’s applicability to a narrow set of problems,
limiting its promise in robotics, control, and other high-
dimensional tasks.

Existing efforts to adapt MCTS to continuous settings in-
clude HOOT (Mansley et al., 2011), which couples MCTS
with a hierarchical bandit (HOO). Yet, HOOT relies on log-
arithmic exploration bonuses that fail to guarantee conver-
gence when state-action values are non-stationary. POLY-
HOOT (Mao et al., 2020) subsequently introduced poly-
nomial bonus terms and established strong results in de-
terministic continuous MDPs. Unfortunately, no analo-
gous guarantee exists for stochastic environments, a critical
shortcoming for many real-world domains where transition
and reward uncertainties are prevalent.

In this paper, we bridge that gap by proposing
Stochastic-Power-HOOT, a novel MCTS algo-
rithm designed for continuous and stochastic MDPs.
Stochastic-Power-HOOT uses a power mean as its
value backup operator, combining it with a polynomial ex-
ploration bonus to rigorously handle non-stationary value
estimates across the tree. This design extends the theoret-
ical guarantees of POLY-HOOT beyond deterministic en-
vironments, ensuring that Stochastic-Power-HOOT
converges at a polynomial rate in the presence of stochas-
tic transitions. Moreover, our approach avoids naive action-
space discretization by focusing search adaptively where it
matters most.

Our key contributions include:

• A power mean backup operator for stochastic, con-
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tinuous MCTS. Power-mean updates naturally handle
non-stationary dynamics without the instabilities of-
ten seen in simple averaging.

• A polynomial exploration bonus tailored
to stochastic MDPs. We establish that
Stochastic-Power-HOOT achieves conver-
gence at rate O(n−ζ), ζ ∈ (0, 1/2), matching the
known results of POLY-HOOT (Mao et al., 2020), but
now for stochastic domains.

• Comprehensive empirical validation. Experiments on
robotic tasks show Stochastic-Power-HOOT
outperforms prior MCTS variants (e.g., HOOT,
discretized-UCT, voronoi MCTS) in final perfor-
mance and robustness, confirming both its practical
viability and theoretical soundness.

2. Related Works
Monte Carlo Tree Search (MCTS) has proven highly effec-
tive in deterministic environments, famously demonstrated
by UCT (Kocsis et al., 2006) for discrete actions. Beyond
UCT, alternative exploration strategies have emerged, in-
cluding entropy regularization methods like MENTS (Xiao
et al., 2019), RENTS and TENTS (Dam et al., 2021;
2024a), and Boltzmann-based approaches (Painter et al.,
2023), though these rely on temperature parameters that
may impede convergence. However, adapting MCTS to
continuous or stochastic domains remains non-trivial. Early
works such as HOOT (Mansley et al., 2011) introduced
hierarchical bandit mechanisms for continuous actions,
but relied on logarithmic bonus terms ill-suited for non-
stationary value estimates. Recent advances in power mean
estimation for MCTS include the work of Dam et al.
(2020; 2024a), which introduced power mean backups
for discrete, deterministic environments, and Dam et al.
(2024b), which extended power mean estimation to dis-
crete, stochastic MDPs. Our work differs by address-
ing continuous action spaces in stochastic settings. Aug-
menting MCTS with progressive widening (Auger et al.,
2013) can mitigate sparse sampling in continuous spaces,
yet often struggles under deep planning or large explo-
ration demands. Meanwhile, recent methods such as POLY-
HOOT (Mao et al., 2020) improved convergence in de-
terministic tasks by adopting polynomial exploration, al-
though extending to stochastic settings required further
analysis. For continuous action spaces, Kim et al. (2020)
proposed Voronoi MCTS using Voronoi partitioning with
regret bounds, but limited to deterministic settings. Our
algorithm, Stochastic-Power-HOOT, advances this
line of work by combining a power-mean value backup
with polynomial bonuses, thereby addressing the dual chal-
lenges of continuous actions and non-stationary dynam-
ics while providing theoretical guarantees for stochastic
MDPs.

3. Setup and Notations
We consider infinite-horizon discounted MDPs
(S,A, T,R, γ) with continuous state space S ⊆ Rn,
continuous action space A ⊆ Rm, stochastic tran-
sitions T : S × A → P(S), bounded rewards
R : S ×A→ [0, Rmax], and discount factor γ ∈ (0, 1).

For policy π : S → A, we define value functions:

V π(s) = Eπ

[ ∞∑
t=0

γtR(st, at) | s0 = s

]

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtR(st, at) | s0 = s, a0 = a

]

The objective is finding optimal policy π∗ such that
V π∗

(s) = V ∗(s) = supπ V
π(s). We assume access to

a generative model providing sampled transitions and re-
wards.

4. Background material
In this section, we first provide some background knowl-
edge about Markov Decision Processes, and then we give
an overview of Monte-Carlo Tree Search.

Monte-Carlo Tree Search (MCTS) MCTS (Browne
et al., 2012) combines Monte-Carlo sampling with tree-
based exploration for planning under uncertainty. The al-
gorithm iteratively: (1) selects nodes based on statistical
information, (2) expands the tree, (3) evaluates new nodes
via rollouts, and (4) backpropagates rewards. Effectiveness
depends on the value update operator and node selection
strategy.

MCTS Formalization MCTS grows a planning tree by
collecting trajectories from initial state s0 to depth H or
leaf nodes. Playout policy π0 estimates terminal values. Af-
ter t trajectories, the algorithm outputs best action estimate
ât and value estimate V̂t(s0).

Performance is measured by convergence rate r(t):

E[V ⋆(s0)−Q⋆(s0, ât)] ⩽ r(t)

or |E[V ⋆(s0)− V̂t(s0)]| ⩽ r(t)

Value functions are defined inductively: Ṽ (sH) = V0(sH)
at leaves, and for h < H:

Q̃(sh, a) = r(sh, a) + γ
∑
sh+1

P(sh+1|sh, a)Ṽ (sh+1)

Ṽ (sh) = max
a

Q̃(sh, a),
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where r(sh, a) represents the expected reward when taking
action a in state sh. Thus, we have the following approxi-
mation bound:

|Q⋆(s0, a)− Q̃(s0, a)| ⩽ γH∥V ⋆ − V0∥∞,

where the supremum norm is taken over states reachable
within H steps from s0. The goal of MCTS is to minimize
the convergence rate r(t) by accurately estimating Q̃(s0, a)

and Ṽ (s0), ultimately approximating Q⋆(s0, a) and identi-
fying the optimal action a⋆ = argmaxa Q

⋆(s0, a) at the
root node.

Hierarchical Optimistic Optimization (HOO)
HOO (Bubeck et al., 2011) tackles continuous action
spaces by organizing them into a binary partition tree.
Each node represents a subset of the action space, which is
split into two smaller subsets at each level. In each round,
HOO traverses from the root to a leaf, favoring child
nodes with larger upper confidence bounds (B-values). Let
(h, i) index the node at depth h and position i, with Ph,i

as its corresponding subset. The number of visits to all
descendants of (h, i) is Th,i(n), and the empirical reward
mean is f̂h,i(n). HOO then forms a UCB-like bound
Uh,i(n) with a logarithmic bonus. Searching proceeds
top-down, always expanding toward the child with the
higher B-value, until a leaf is chosen as the action. We
build upon this idea in our Stochastic-Power-HOOT
algorithm.

5. Stochastic Power-HOOT
In this section, we first present a generic
UCT like algorithm and then we present our
Stochastic-Power-HOOT algorithm.

5.1. Generic UCT-like Algorithm

For node sh at depth h, we define value estimates V̂t(sh)

and Q-value estimates Q̂t(sh, a) with visit counts Tsh(t)
and Tsh,a(t).

A UCT-like algorithm follows predefined bonus functions
B(t, sh, a) for each depth h. It iteratively collects trajecto-
ries from root s0 until reaching a leaf or depth H . Upon
reaching a leaf, playout policy π0 provides value estimate
V0—returning i.i.d. samples if stochastic or fixed values if
deterministic.

Trajectories {s0, a0, r0, . . . , sℓt , Ṽ (sℓt)} are collected us-
ing action selection:

ah = argmax
a∈Ash

{
Q̂Tsh,a(t)(sh, a) +B(t, sh, a)

}
where sh+1 ∼ P(·|sh, ah). After t simulations, the esti-
mated best action is ât = argmaxa Q̂Ts0,a(t)(s0, a).

5.2. The Stochastic-Power-HOOT Algorithm

Stochastic-Power-HOOT is an MCTS-based algo-
rithm designed for continuous-action, stochastic environ-
ments. It improves upon existing methods by introducing
a power mean backup operator for value estimation and
a polynomial exploration bonus, enabling robust and effi-
cient planning under stochastic dynamics. The algorithm
follows a standard MCTS structure with modifications tai-
lored for continuous domains.

5.2.1. ALGORITHM OVERVIEW

Stochastic-Power-HOOT (pseudocode shown in
Alg. 1) iteratively builds a search tree using four main
phases: Selection, Expansion, Rollout, and Backpropaga-
tion. At each step, it leverages a power mean operator to
compute value estimates and a polynomial exploration term
to balance exploration and exploitation.

5.2.2. SELECTION AND EXPANSION

During the selection phase,
Stochastic-Power-HOOT navigates the search
tree from the root to a leaf node. At each depth d, it
selects an action by traversing the Hierarchical Optimistic
Optimization (HOO) tree, choosing child nodes based
on their upper confidence bounds. If a state has not been
visited before at a given depth, a new HOO agent is
initialized.

In the expansion phase, new child nodes are added to the
tree based on the selected action. If the depth limit has not
been reached, an arbitrary action is sampled within the cor-
responding partition PH,I , and a new node is created.

5.2.3. ROLLOUT AND BACKPROPAGATION

In the rollout phase, a default policy π0 is used to simulate
trajectories from the expanded node to estimate the value
of terminal states. The resulting reward is then propagated
back up the tree.

The backpropagation phase updates the visit counts and
value estimates of nodes along the traversed path. For each
node (h, i), the empirical mean reward f̂h,i is updated, and
the upper confidence bounds Uh,i are adjusted using a poly-
nomial exploration bonus. The backpropagation step en-
sures that future searches prioritize promising regions of
the action space.

5.2.4. VALUE BACKUP AND EXPLORATION STRATEGY

Unlike standard MCTS approaches that rely on simple av-
eraging, Stochastic-Power-HOOT employs a power
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Algorithm 1: Stochastic-Power-HOOT with γ is a discount factor. n : is the number of rollouts. {bi}Hi=0, {αi}Hi=0,
{βi}Hi=0 are positive algorithmic constants that satisfy conditions as in Table 1. π0 is a rollout policy. C is an exploration
constant.
Input: root node state s0
Output: optimal action at the root node

R = Rollout(s)
Ṽ (s) = average of the call to π0(s)

return Ṽ (s)

a = SelectAction(s, depth = d, t)
if state s has never been visited at depth d then

Initialize HOO agent at state s and depth d:
T ← {(0, 1)}
B1,2, B2,2 ← +∞

else
T ← the HOO agent constructed at state s and depth d previously

end
(h, i)← (0, 1)
//Initialize HOO path in the current round:
Pt ← {(h, i)}
while (h, i) ∈ T do

if Bh+1,2i−1 > Bh+1,2i then
(h, i)← (h+ 1, 2i− 1)

else
(h, i)← (h+ 1, 2i)

end
Pt ← Pt ∪ (h, i)

end
(H, I)← (h, i)

if H ⩽ Ĥ then
Choose arbitrary arm X in PH,I

AH,I = X
T ← T ∪ {(H, I)}
BH+1,2I−1, BH+1,2I ← +∞
return X

end
(H, I)← (H − 1, ⌈I/2⌉)
return AH,I

HOOUpdateV(d, s, t, Y )
for (h, i) ∈ Pt do

Th,i ← Th,i + 1

f̂h,i ← (1− 1/Th,i)f̂h,i + Y/Th,i

end
for (h, i) ∈ T do

Uh,i = f̂h,i + Ct
bd+1
βd+1 T

−
αd+1
βd+1

h,i + ν1ρ
d+1

end
T ′ ← T
while T ′ ̸= {(0, 1)} do

(h, i)← an arbitrary leaf node of T ′

Bh,i = min { Uh,i,max {Bh+1,2i, Bh+1,2i−1 } }
T ′ ← T ′ \ {(h, i)}

end

MainLoop
t = 0
for simulation round t← 1 to n do

for depth d← 0 to D − 1 do
ad ←SelectAction(sd, depth =d, t)
sd+1∼ P(·|sd, ad)
r(sd, ad)∼ R(sd, ad, sd+1)

end
r(sD)∼ Ṽ (sD)
for depth d← D − 1 to 0 do

Tsd,ad(t)← Tsd,ad(t) + 1

Q̂Tsd,ad
(t)(sd, ad)← (1−1/Tsd,ad(t))Q̂Tsd,ad

(t)(sd, ad)

+ (r(sd, ad) + γV̂Tsd+1
(t)(sd+1))/Tsd,ad(t)

Tsd(t)← Tsd(t) + 1

V̂Tsd
(t)(sd)←

(∑
a

Tsd,a(t)

Tsd
(t)

(Q̂Tsd,a(t))
p(sd, a)

) 1
p

HOOUpdateV(d, sd, t, V̂Tsd
(t)(sd))

end
end
return V̂n(s0)

mean backup operator to aggregate value estimates:

V̂T (sd)(sd) =

(∑
a

Tsd,a

Tsd

(
Q̂Tsd,a

(sd, a)
)p) 1

p

. (1)

This formulation provides a tunable balance between mean
and max-based value updates, allowing for better adapta-
tion to stochastic rewards.

Additionally, Stochastic-Power-HOOT incorporates
a polynomial exploration bonus:

Uh,i = f̂h,i + Ct
bd+1
βd+1 T

−
αd+1
βd+1

h,i + ν1ρ
d+1.

This approach ensures a more stable and theoretically

grounded exploration mechanism compared to traditional
logarithmic bonuses.

Our theoretical framework requires bounded planning hori-
zon H . For analysis purposes, we consider a modified al-
gorithm that generates fixed-length trajectories of depth
H , applying the playout policy exclusively at terminal leaf
nodes. Practical implementation could use infinite depth.

6. Theoretical analysis
Planning in MCTS requires a sequence of decisions along
the tree, with each internal node acting as a non-stationary
bandit. The empirical mean at these nodes shifts due to
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Table 1: Summary of constraints on the algorithmic con-
stants for i ∈ {0, 1, . . . ,H}.

Conditions on the parameters bi, αi, βi, p (all must
hold):

1. bi < αi and bi > 2.

2. Either
(
1 ≤ p ≤ 2 and αi ≤ βi

2

)
or
(
p >

2, αi ≤ βi

2 , and 0 < αi − βi

p < 1
)
.

3. αi

(
1− bi

αi

)
≤ bi < αi.

4. αi =
1− bi+1

αi+1

1 + d′ + βi+1

αi+1

× bi+1 − 3

2
.

5. βi =
(
bi+1 − 1

)
.

the action selection strategy. To address this problem, we
first analyze non-stationary multi-armed bandit settings, fo-
cusing on the concentration properties of the power-mean
backup for each arm compared to the optimal value. We
then apply these findings to MCTS.

6.1. Theoretical Analysis Framework

We start by defining essential notation and assumptions for
our theoretical analysis. Consider a Hierarchical Optimistic
Optimization (HOO) agent, where X ⊆ A ⊆ [0, 1]m rep-
resents the continuous action (or arm) space in the current
state. Each action x ∈ X has an associated stochastic re-
ward distribution, representing the ”cost-to-go” or Q-value
at the current state in the MDP. We define ft(x) : X →
R as the expected reward at time t, termed the tempo-
rary mean-payoff function. Since the rewards are impacted
by future choices deeper in the MCTS tree, ft is non-
stationary. However, we assume ft converges to a limiting
function f in L∞ at a polynomial rate: ∥ft − f∥∞ ⩽ C

tζ

for some constant C > 0 and ζ ∈ (0, 0.5). This limiting
function, denoted as f , is the mean-payoff function and is
formalized in Theorem 2.

Given that MDP rewards are bounded by Rmax, the ban-
dit payoff at any tree node at depth d and the mean-
payoff function f are also bounded by Rmax

1−γ . Let f∗ =

supx∈X f(x) represent the highest achievable payoff by
any HOO agent, and let Xt be the action chosen by the
agent at time t. The agent aims to minimize the cumu-
lative regret over the first n rounds, defined as Rn ≜
nf∗−

∑n
t=1 Yt, where Yt is the observed reward of choos-

ing Xt at time t, with E[Yt] = ft(Xt).

Our analysis is based on two main assumptions, adapted
from (Bubeck et al., 2011), which support the hierarchical
structure of MCTS with coverings and the smoothness of
the reward function.

Assumption 1. For each HOO agent, with parameters ν1
and ρ ∈ (0, 1), and a covering tree (Ph,i), we assume there
exists a dissimilarity function ℓ : X ×X → [0,∞] satisfy-
ing:

(a) There exists a constant ν2 > 0 such that for each
integer h ⩾ 0, the diameter of any partition Ph,i

shrinks geometrically as diam(Ph,i) ⩽ ν1ρ
h for all

i ∈ {1, . . . , 2h}, where diam(A) ≜ supx,y∈A ℓ(x, y).

(b) Each partitionPh,i contains a point x◦
h,i with a smaller

covering region Bh,i ≜ B(x◦
h,i, ν2ρ

h) ⊂ Ph,i, where
B(x, ε) = {y ∈ X : ℓ(x, y) < ε}.

(c) These smaller covering regions do not overlap: Bh,i ∩
Bh,j = ∅ for all 1 ⩽ i < j ⩽ 2h.

Assumption 2 (Smoothness). The limiting mean-payoff
function satisfies:

f∗−f(y) ⩽ f∗−f(x)+max{f∗−f(x), ℓ(x, y)},∀x, y ∈ X.

6.2. Non-stationary Power Mean HOO

We begin by developing our theoretical framework
through the lens of non-stationary multi-armed ban-
dits, which will serve as the foundation for analyzing
Stochastic-Power-HOOT in the full MCTS setting.
Each node in our search tree can be viewed as a ban-
dit problem where arms correspond to possible actions
(HOO tree paths) and rewards evolve non-stationarily due
to changing value estimates from deeper levels.

Problem Formulation Consider a continuous-armed
bandit over domain X ⊆ [0, 1]m with rewards bounded
in [0, Rmax]. Unlike classical bandits, our reward process
is non-stationary—the expected reward ft(x) for arm x
at time t evolves as the algorithm progresses. This non-
stationarity captures the changing value estimates that oc-
cur in MCTS as the tree expands and value propagation
refines estimates.

Our bandit satisfies two key structural properties:

(i) Fixed-arm convergence: The mean-payoff function
converges polynomially:

∥fn − f∥∞ ⩽
C

nζ
, ∀n ⩾ 1, (4)

for constants C > 0 and 0 < ζ < 1
2 .

(ii) Fixed-arm concentration: Individual arm estimates
concentrate at polynomial rates:

P

(∣∣∣∣∣ 1n
n∑

t=1

Xt − f(x)

∣∣∣∣∣ ⩾ ε

)
⩽ Cn−αε−β , ∀x ∈ X,

(5)
for appropriate constants C,α, β > 0.
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HOO Tree Structure and Action Space In the contin-
uous setting, we cannot enumerate all possible actions.
Instead, we use the Hierarchical Optimistic Optimization
(HOO) framework to adaptively partition the action space
X into a binary tree of depth H̄ . Each root-to-leaf path in
this tree represents a distinct ”pseudo-action” correspond-
ing to a refined region of X .

Let K denote the finite set of all possible paths from root
to leaf in the depth-H̄ HOO tree. For each path a ∈ K,
we maintain: - Visit count: Ta(n) =

∑n−1
t=1 1(at = a) -

Empirical reward: f̂a,Ta(n) =
1

Ta(n)

∑Ta(n)
s=1 Xa,s

where Xa,s is the s-th reward obtained from path a.

Non-stationary Power Mean HOO Algorithm Our al-
gorithm extends classical HOO to handle non-stationary re-
wards through polynomial exploration bonuses and power
mean aggregation. The complete algorithmic description
is provided in Algorithm 2 in the appendix. The key
components include: (1) hierarchical action space parti-
tioning via HOO trees, (2) polynomial upper confidence
bounds of the form Ctb/βT

−α/β
h,i for robust exploration in

non-stationary settings, and (3) power mean aggregation

f̂n(p) =
(∑K

a=1
Ta(n)

n f̂p
a,Ta(n)

)1/p
to flexibly balance ex-

ploration and exploitation through the tunable parameter p.

Key Algorithmic Components Polynomial Explo-
ration Bonus: Unlike classical UCB algorithms that use√

log n/Ta(n) bonuses, we employ the polynomial term
Cnb/β/Ta(n)

α/β . This provides stronger exploration guar-
antees in non-stationary settings where confidence intervals
must adapt to changing reward distributions.

Power Mean Aggregation: The power mean operator
f̂n(p) provides a flexible interpolation between conserva-
tive (arithmetic mean, p = 1) and optimistic (maximum,
p → ∞) value estimates. This tunability is crucial for bal-
ancing exploration and exploitation across different levels
of environmental stochasticity.

HOO Tree Refinement: The hierarchical structure allows
the algorithm to focus computational effort on promising
regions of the continuous action space while maintaining
theoretical coverage guarantees.

Theoretical Foundation The convergence analysis for
this algorithm builds on the following result from Mao et al.
(2020):

Theorem 1 (Enhanced HOO for Non-stationary Bandits
(Mao et al., 2020)). For a continuous-armed bandit sat-
isfying properties (4) and (5), with parameters fulfilling
α(1 − b/α) ⩽ b < α, b > 3, and ρH̄ < n−α/β , the
enhanced HOO agent achieves:

(i) Optimal-arm convergence:
∣∣ 1
nE[
∑n

t=1 Yt]− f∗
∣∣ ⩽

C0

nζ

(ii) Optimal-arm concentration: P(| 1n
∑n

t=1 Yt − f∗| ⩾
ε) ⩽ C ′n−α′

ε−β′

where the convergence rates depend on the algorithm pa-
rameters as specified in the original theorem.

Concentration Rate Formalization To facilitate our
analysis, we formalize the notion of polynomial concen-
tration:

Definition 1 (Polynomial Concentration). A sequence of
estimators (V̂n)n⩾1 concentrates at rate (α, β) toward limit
V if there exists constant c > 0 such that:

∀n ⩾ 1,∀ε > n−α/β : P(|V̂n − V | > ε) ⩽ cn−αε−β

We denote this as V̂n
α,β−→

n→∞
V .

Assumption 1 (Stochastic Reward Concentration). For
each arm x ∈ X , the empirical mean f̂n = 1

n

∑n
t=1 Xt

satisfies f̂n
α,β−→

n→∞
f(x) for the true mean f(x).

Power Mean Concentration Result Our main theoret-
ical contribution for the bandit setting establishes that
power mean aggregation preserves polynomial concentra-
tion rates:

Theorem 2 (Power Mean Concentration). For estimators
f̂a,n

α,β−→
n→∞

f∗
h,i with f⋆ = maxa{f∗

h,i}, if parameters sat-

isfy (1 ⩽ p ⩽ 2, α ⩽ β/2) or (p > 2, 0 < α − β/p < 1)
and α(1− b/α) ⩽ b < α, then:

f̂n(p)
α′,β′

−→
n→∞

f⋆

where α′ = 1−b/α
1+d′+β/α

b−3
2 , β′ = b−3

2 .

This bandit-level result provides the foundation for our
MCTS analysis, where each tree node corresponds to a
non-stationary bandit with arms given by child nodes and
rewards determined by downstream value estimates.

6.3. Monte-Carlo Tree Search Analysis

Having established the concentration properties of power
mean estimation in non-stationary bandits, we now extend
these results to the full MCTS setting. The key insight is
that each internal node in our search tree can be modeled
as a non-stationary multi-armed bandit where arms corre-
spond to child nodes and rewards are given by (evolving)
value estimates from deeper levels.
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From Bandits to Trees: The Inductive Framework
Our analysis proceeds inductively through the tree struc-
ture. At the leaves (depth H), rollout policies provide di-
rect value estimates with known concentration properties.
Moving upward, each internal node aggregates child values
using our power mean operator while selecting actions via
polynomial exploration bonuses. The challenge is showing
that concentration rates propagate correctly through this hi-
erarchical structure.

Q-Value Concentration in Stochastic MDPs The foun-
dation of our MCTS analysis rests on understanding how
Q-value estimates behave when transition dynamics are
stochastic. The following result, established in Dam et al.
(2024b), provides the crucial bridge between individual
value estimates and their aggregated Q-values:

Lemma 1 (Q-Value Concentration, Lemma 1 of Dam et al.
(2024b)). Consider a state-action pair with M possible
next states. Let (V̂m,n)n⩾1 be value estimators for next-

state m satisfying V̂m,n
α,β−→

n→∞
Vm, bounded by constant L.

Let Xi be i.i.d. immediate rewards with mean µ, and Si be
i.i.d. next-state indices from distribution p = (p1, . . . , pM ).

Define visit counts Nn
m = |{i ⩽ n : Si = m}| and the

Q-value estimator:

Q̂n =
1

n

n∑
i=1

Xi + γ

M∑
m=1

Nn
m

n
V̂m,Nn

m

Then, with 2α ⩽ β and β > 1:

Q̂n
α,β−→

n→∞
µ+ γ

M∑
m=1

pmVm

Intuition: This lemma captures the essence of Bellman
backup in stochastic settings. The Q-value estimate com-
bines immediate rewards (which concentrate at standard
rates) with discounted future values weighted by transi-
tion probabilities. Crucially, the concentration rate (α, β)
is preserved despite the stochastic transitions, enabling our
inductive analysis.

Inductive Concentration Analysis Lemma 1 enables a
powerful inductive argument for tree-wide concentration:

(i) Base Case (Leaves): At depth H , rollout policies pro-
vide value estimates V̂ (sH) with known concentration
rates.

(ii) Inductive Step: At depth h < H , assume child values
V̂ (sh+1) concentrate at rate (αh+1, βh+1). Then:

• By Lemma 1, Q-values Q̂(sh, a) concentrate at
the same rate (αh+1, βh+1)

• By Theorem 2, the power mean aggregation
V̂ (sh) concentrates at the transformed rate
(αh, βh)

(iii) Propagation: This process continues upward, with
each level’s concentration rates determined by the
power mean transformation of the level below.

Attribution and Technical Innovation While our over-
all approach follows the inductive framework established
in prior work (Shah et al., 2022), two key technical innova-
tions are required for the stochastic continuous setting:

(i) Stochastic Q-Value Analysis: Lemma 1 from Dam
et al. (2024b) extends concentration analysis to
stochastic MDPs, handling the additional variance in-
troduced by random transitions.

(ii) Power Mean Backup: Theorem 2 establishes con-
centration properties specific to power mean aggrega-
tion, enabling flexible exploration-exploitation tuning
beyond standard arithmetic means.

Main MCTS Convergence Result The inductive frame-
work culminates in our main convergence guarantee:

Theorem 4 (Convergence of Expected Payoff). For
Stochastic-Power-HOOT applied to stochastic con-
tinuous MDPs, with optimal parameter tuning, the ex-
pected value estimate at the root satisfies:∣∣∣E[V̂n(s0)]− Ṽ (s0)

∣∣∣ ⩽ O(n−ζ)

where ζ ∈ (0, 1/2) depends on the algorithm parameters
and tree depth.

Proof Sketch. The proof follows by applying Jensen’s in-
equality and integrating the tail probability bounds estab-
lished through our inductive concentration analysis. Com-
plete details are provided in Appendix F.

Remark 1 (Comparison with POLY-HOOT). Theorem 4
achieves the same polynomial convergence rate O(n−ζ)
as POLY-HOOT (Mao et al., 2020), but under significantly
more general conditions. Key distinctions include:

• Stochastic vs. Deterministic: Our result handles
stochastic MDPs while POLY-HOOT assumes deter-
ministic dynamics

• Power Mean vs. Arithmetic Mean: We provide guar-
antees for flexible power mean backups (p ⩾ 1) rather
than fixed arithmetic means (p = 1)

• Continuous Actions: Both methods handle contin-
uous action spaces, but our stochastic extension is
novel

7
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This demonstrates that Stochastic-Power-HOOTmain-
tains theoretical rigor while significantly expanding the
scope of domains with convergence guarantees.

Practical Implications The theoretical guarantees trans-
late to several practical advantages:

(i) Robustness: Polynomial concentration ensures reli-
able performance even under significant environmen-
tal noise

(ii) Adaptability: Power parameter p can be tuned based
on domain characteristics without losing convergence
guarantees

(iii) Scalability: The inductive structure ensures guaran-
tees extend to arbitrary tree depths and action space
dimensions

These properties make Stochastic-Power-HOOT suit-
able for deployment in complex real-world domains where
both theoretical reliability and practical flexibility are
essential.

7. Experiments
We evaluate Stochastic-Power-HOOT on both clas-
sic control tasks and high-dimensional robotic environ-
ments, all adapted to continuous-action, stochastic settings.
Our experimental design addresses the key challenges of
planning under uncertainty while demonstrating the scala-
bility and robustness of our approach.

7.1. Experimental Setup

Environment Modifications: We create stochastic ver-
sions of standard benchmarks by introducing noise at mul-
tiple levels: (1) action noise via Gaussian perturbations to
selected actions, (2) dynamics noise through random per-
turbations to state transitions, and (3) observation noise
by adding Gaussian noise to state observations. Addition-
ally, since power means require strictly positive inputs, we
apply reward transformations of the form max(0.01, (r +
offset)× scaling) while preserving optimal policies.

Baseline Comparisons: We compare against four estab-
lished continuous MCTS methods: discretized-UCT (Koc-
sis et al., 2006), PW with progressive widening (Auger
et al., 2013), HOOT (Mansley et al., 2011), and POLY-
HOOT (Mao et al., 2020). We also include Voronoi
MCTS (Kim et al., 2020), a recent method designed for
deterministic continuous spaces, to demonstrate the chal-
lenges of applying deterministic methods to stochastic set-
tings.

7.2. Classic Control Results

The results in Table 2 demonstrate
Stochastic-Power-HOOT’s effectiveness across di-

verse control challenges. While all methods solve the basic
CartPole task, only Stochastic-Power-HOOT han-
dles the increased gravity variant (CartPole-IG) optimally.
The algorithm shows particular strength in sparse reward
settings like MountainCar, where the polynomial explo-
ration bonus enables effective long-horizon planning, and
in complex dynamics like Acrobot under high gravity
conditions.

7.3. High-Dimensional Robotic Environments

To evaluate scalability, we test on MuJoCo robotics tasks
with significantly higher dimensionality and complexity.

Table 3 reveals several critical insights:

Dimensional Scalability:
Stochastic-Power-HOOT maintains strong per-
formance in the 17-dimensional Humanoid environment,
achieving 3.1× improvement over UCT despite the
exponential growth in action space complexity.

Adaptive Power Parameter: The optimal power param-
eter varies with environment characteristics—Humanoid
benefits from moderate values (p = 2) while the more
stochastic Hopper environment requires higher values (p =
8) to effectively concentrate search on promising regions.

Stochastic Robustness: The catastrophic failure of
Voronoi MCTS on Hopper (12.7× worse than UCT) versus
reasonable Humanoid performance (2.8× better) demon-
strates the critical importance of explicit stochasticity han-
dling. This validates our core theoretical contribution.

7.4. Analysis of Voronoi MCTS Performance

The contrasting performance of Voronoi MCTS provides
important insights into the challenges of continuous MCTS
in stochastic settings:

• Deterministic Assumption Failure: Voronoi MCTS
assumes deterministic dynamics. Its poor Hopper
performance (where stochasticity significantly af-
fects outcomes) versus reasonable Humanoid results
(where high-dimensional state space may buffer noise
effects) demonstrates the limitations of deterministic
methods in stochastic domains.

• Theoretical Validation: The failure of this recent,
well-designed continuous MCTS method validates
our core contribution—the necessity of rigorous theo-
retical guarantees for stochastic continuous domains.

• Consistency Advantage: While different al-
gorithms show complementary strengths,
Stochastic-Power-HOOT provides the most
consistent performance across varied stochastic
conditions.
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CartPole CartPole-IG Pendulum MountainCar Acrobot

Discretized-UCT 77.85± 0.00 37.95± 1.60 1263.68± 37.66 −0.020± 0.004 70.14± 32.29
PW 77.85± 0.00 68.46± 6.87 1141.51± 80.93 −0.020± 0.002 77.85± 0.00
HOOT 77.85± 0.00 38.51± 0.81 1043.23± 70.79 −0.007± 0.001 70.05± 37.05
POLY-HOOT(p=1) 77.85± 0.00 77.85± 0.00 1205.886± 110.01 −0.055± 0.002 77.85± 0.00

Stochastic-Power-HOOT 77.85± 0.00 77.85± 0.00 1397.40± 95.42 27.285± 0.163 77.85± 0.00

Table 2: Performance on stochastic classic control tasks. Each environment features continuous actions and multiple noise
sources. Stochastic-Power-HOOT uses p = 2. Bold indicates best performance.

Algorithm Humanoid-v0 Hopper-v0
(17D action, 376D state) (3D action)

UCT (baseline) −136.98± 44.84 5216.93± 179.64
POLY-HOOT (p = 1) −44.40± 3.33 (3.1×) 13230.66± 2844.33 (2.5×)
HOOT −57.35± 10.46 (2.4×) 10452.83± 3885.12 (2.0×)
PW −89.74± 24.16 (1.5×) 5218.73± 1384.90 (1.0×)
Voronoi MCTS −48.69± 9.52 (2.8×) 411.70± 29.03 (12.7× worse)

Stochastic-Power-HOOT (p = 2) −44.12± 6.22 (3.1×) 13303.61± 3070.34 (2.5×)
Stochastic-Power-HOOT (p = 8) −44.40± 3.33 (3.1×) 13348.45± 6110.36 (2.6×)

Table 3: Performance on high-dimensional stochastic MuJoCo environments. All environments include action, dynamics,
and observation noise. Performance multipliers relative to UCT baseline shown in parentheses. Bold indicates best perfor-
mance per environment.

Power p 1 2 3 4 5 6 7 8 9 10

Reward 76.91 77.85 76.80 77.77 76.81 75.85 75.75 76.74 75.82 75.89

Table 4: Power parameter sensitivity analysis on CartPole-IG. Values p = 2 and p = 4 achieve optimal performance.

7.5. Power Parameter Analysis

Table 4 demonstrates Stochastic-Power-HOOT’s ro-
bustness across power parameters. The optimal values (p =
2, 4) suggest that moderate power settings effectively bal-
ance exploration and exploitation in stochastic environ-
ments—too low fails to sufficiently focus search, while too
high may over-commit to early estimates.

7.6. Key Experimental Findings

Our comprehensive evaluation demonstrates that
Stochastic-Power-HOOT:

1. Scales effectively to high-dimensional continuous
spaces while maintaining theoretical guarantees 2. Adapts
robustly to varying levels of environmental stochasticity
through power parameter tuning 3. Outperforms existing
methods consistently across diverse domains, with partic-
ularly strong advantages in sparse reward and high-noise
settings 4. Validates theoretical predictions through em-
pirical success in precisely the challenging scenarios our
analysis targets

These results confirm that our theoretical extensions to
stochastic continuous domains translate to practical algo-

rithmic advantages in complex real-world planning scenar-
ios.

8. Conclusion
We have introduced Stochastic-Power-HOOT, a
novel continuous-action MCTS algorithm designed for
stochastic environments. By combining a polynomial
exploration bonus with power-mean value backups,
Stochastic-Power-HOOT effectively balances explo-
ration and exploitation in stochastic MDPs. Our theoretical
results show a convergence rate of O(n−ζ), ζ ∈ (0, 1/2)
extending prior analyses of continuous MCTS in determin-
istic to stochastic MDPs. Empirical evaluations on custom
tasks validate both its robustness and versatility, highlight-
ing the impact of tuning the power mean for complex re-
ward structures.

We believe Stochastic-Power-HOOT’s theory and
practical efficacy make it a strong contribution for
continuous-action planning in noisy and high-dimensional
domains. The algorithm’s principled approach to handling
stochasticity opens new research directions for robust plan-
ning in real-world applications.
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Impact Statement
Our proposed Stochastic-Power-HOOT algorithm
provides a new approach for planning in continuous-action,
stochastic environments. By combining polynomial explo-
ration with power-mean backups, it can more effectively
handle complex real-world tasks where standard Monte
Carlo Tree Search or deterministic models struggle. Poten-
tial applications include robotics, autonomous systems, and
large-scale resource management—domains where adap-
tive planning under uncertain dynamics is critical. We do
not foresee immediate negative societal effects from this
research; nonetheless, as with all AI advancements, respon-
sible usage and careful consideration of ethical, economic,
and security implications remain essential.
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A. Outline
• Notations will be described in Section B.

• Psudocode of Non-stationary Power Mean HOO in Section C.

• Supporting Lemmas are presented in Section D.

• Technical Lemmas are shown in Section E.

• Convergence of Stochastic-Power-HOOT in Non-stationary multi-armed bandits is shown in Section F.

• Convergence of Stochastic-Power-HOOT in Monte-Carlo Tree Search is shown in Section G.

• Experimental setup and Hyperparameter selection are provided in Section H.

B. Notations

Table 5: List of all notations for Non-stationary Multi-arms bandit.

Notation Type Description

K N Number of arms

Ta(t) N Number of visitations at arm a after t timesteps

f∗
h,i R mean value of arm a

a⋆ A optimal action

f⋆ R mean value of an optimal arm. We assume it is unique.

f̂n(p) R power mean estimator, with a constant p ∈ [1,+∞)

f̂a,n R mean estimator of arm a after n visitations

C. Non-stationary Power Mean HOO

Algorithm 2: Non-stationary Power Mean HOO

Require: Parameters α, β, b, C, p, ν1, ρ; HOO tree depth H̄; number of rounds n
Ensure: Power mean value estimate f̂n(p)

1: Initialize: T ← {(0, 1)}, B1,2, B2,2 ← +∞
2: Play each available path once to initialize
3: for t = K + 1 to n do
4: at ← POWERMEANHOO QUERY(t)
5: Observe reward Yt

6: POWERMEANHOO UPDATE(t, at, Yt)
7: end for
8: Compute final power mean estimate:

9: f̂n(p)←
(∑K

a=1
Ta(n)

n f̂p
a,Ta(n)

)1/p
returnf̂n(p)
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Algorithm 3: PowerMeanHOO Query

Require: Round t
Ensure: Selected action X

1: (h, i)← (0, 1)
2: Initialize HOO path: Pt ← {(h, i)}
3: while (h, i) ∈ T do
4: if Bh+1,2i−1 > Bh+1,2i then
5: (h, i)← (h+ 1, 2i− 1)
6: else
7: (h, i)← (h+ 1, 2i)
8: end if
9: Pt ← Pt ∪ {(h, i)}

10: end while
11: (H, I)← (h, i)
12: if H ⩽ H̄ then
13: Choose arbitrary arm X in PH,I

14: AH,I ← X
15: T ← T ∪ {(H, I)}
16: BH+1,2I−1, BH+1,2I ← +∞

returnX
17: else
18: {Reached maximum depth, reuse existing action}
19: (H, I)← (H − 1, ⌈I/2⌉)

returnAH,I

20: end if

Algorithm 4: PowerMeanHOO Update

Require: Round t, selected path at, observed reward Yt

Ensure: Updated statistics and confidence bounds
1: Retrieve path Pt for action at
2: for (h, i) ∈ Pt do
3: Th,i ← Th,i + 1

4: f̂h,i ← (1− 1/Th,i)f̂h,i + Yt/Th,i

5: end for
6: for (h, i) ∈ T do
7: Uh,i ← f̂h,i + Ctb/βT

−α/β
h,i + ν1ρ

h

8: end for
9: T ′ ← T

10: while T ′ ̸= {(0, 1)} do
11: (h, i)← arbitrary leaf node of T ′

12: Bh,i ← min{Uh,i,max{Bh+1,2i, Bh+1,2i−1}}
13: T ′ ← T ′ \ {(h, i)}
14: end while

D. Supporting Lemmas
In this section, we will present all necessary supporting Lemmas for the main theoretical analysis. We start with a result of
the following lemma which plays an important role in the analysis of our MCTS algorithm.

Lemma 1 (Lemma 1 Dam et al. (2024b)). For m ∈ [M ], let (V̂m,n)n⩾1 be a sequence of estimator satisfying V̂m,n
α,β−→

n→∞
Vm, and there exists a constant L such that V̂m,n ⩽ L,∀n ⩾ 1. Let Xi be an iid sequence with mean µ and Si be an

13
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iid sequence from a distribution p = (p1, . . . , pM ) supported on {1, . . . ,M}. Introducing the random variables Nn
m =

#|{i ⩽ n : Si = sm}|, we define the sequence of estimator

Q̂n =
1

n

n∑
i=1

Xi + γ

M∑
m=1

Nn
m

n
V̂m,Nn

m
.

Then with 2α ⩽ β, β > 1,

Q̂n
α,β−→

n→∞
µ+

M∑
m=1

pmVm.

Lemma 2 (Lemma 2 Dam et al. (2024b)). Let consider non-negative variables x, y ∈ R+, and a constant m that 0 ⩽ m ⩽
1. Then

(x+ y)m ⩽ xm + ym. (2)

We use Minkowski’s inequality as shown below

Lemma 3. (Minkowski’s inequality) Given p ⩾ 1, {xi, yi} ∈ R, i = 1, 2, ..., n, then we have the following inequality(∑
i

(|xi + yi|)p
) 1

p

⩽

(∑
i

(|xi|)p
) 1

p

+

(∑
i

(|yi|)p
) 1

p

(3)

Proof. This is a basic result.

E. Technical Lemmas
Lemma 4. (Lemma 3 in Bubeck et al. (2011)) Under Assumptions 1 and 2, for some region Ph,i, if ∆h,i ⩽ cν1ρ

h for some
constant c ⩾ 0, then all the arms in Ph,i are max{2c, c+ 1}-optimal.

Proof. This lemma is stated in exactly the same as way Lemma 3 in Bubeck et al. (2011), and we therefore omit the proof
here.

Lemma 5. There exists some constant C > 0, such that |Ih| ⩽ C
(
ν2ρ

h
)−d′

for all h ⩾ 0.

Proof. This result is the same as the second step in the proof of Theorem 6 in Bubeck et al. (2011). We, therefore, omit the
proof here.

Attribution Note. The proofs of Lemmas 4–7 below follow the same high-level inductive and concentration-bound
strategy as Lemmas 4–7 of Mao et al. (2020), with an important concentration-bound for the case ∆h,i ⩽ ν1ρ

h which is
missing in the Mao et al. (2020) paper.

For transparency we reproduce the full proofs.

Lemma 6. Let Assumptions 1 and 2 hold. With

Uh,i(t) = µ̂h,i(t) + tb/βTh,i(t)
−α/β + ν1ρ

h,

(i) For every optimal node 3(h, i), let n ⩾ 1, Then for all t ∈ {1, 2, ..., n}, there exists a constant C1 > 1, such that

P (Uh,i(t) ⩽ f⋆) ⩽
C1

tb−1

(ii) For all integers t ⩽ n, for any suboptimal node (h, i) such that ∆h,i > ν1ρ
h, and for all integers u ⩾ Ah,i(n) =⌈(

2nb/β

∆h,i−ν1ρh

) β
α

⌉
, there exists a constant C2 > 1, such that

P (Uh,i(t) > f⋆ and Th,i(t) > u) ⩽
C2t

nb

14
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(iii) For all integers t ⩽ n, for any suboptimal node (h, i) such that ∆h,i ⩽ ν1ρ
h, and for all integers u′ ⩾ A′

h,i(n) =⌈(
2nb/β

2ν1ρh−∆h,i

) β
α

⌉
, there exists a constant C2 > 1, such that

P (Uh,i(t) > f⋆ and Th,i(t) > u′) ⩽
C2t

nb

Proof. The proof follows the same structure as Lemma 16 in Bubeck et al. (2011) and Lemma 4 in Mao et al. (2020).

(i) If (h, i) is not played during the first t rounds, then by assumption Uh,i(t) =∞ and the inequality trivially holds. Now
we focus on the case where Th,i(t) ⩾ 1. From Lemma 2 , we know that f⋆ − f(x) ⩽ ν1ρ

h,∀x ∈ Ph,i. Then we have∑t
s=1

(
f (Xs) + ν1ρ

h − f⋆
)
I{(Hs,Is)∈C(h,i)} ⩾ 0.

Therefore,

P (Uh,i(t) ⩽ f⋆ and Th,i(t) ⩾ 1)

= P
(
µ̂h,i(t) + tb/βTh,i(t)

−α/β + ν1ρ
h ⩽ f⋆ and Th,i(t) ⩾ 1

)
= P

(
Th,i(t)µ̂h,i(t) + Th,i(t)

(
ν1ρ

h − f⋆
)
⩽ −tb/βTh,i(t)

1−α/β and Th,i(t) ⩾ 1
)

= P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} +

t∑
s=1

(
f (Xs) + ν1ρ

h − f⋆
)
I{(Hs,Is)∈C(h,i)}

⩽ −tb/βTh,i(t)
1−α/β and Th,i(t) ⩾ 1

)
⩽ P

(
t∑

s=1

(f (Xs)− Ys) I{(Hs,Is)∈C(h,i)} ⩾ tb/βTh,i(t)
1−α/β and Th,i(t) ⩾ 1

)

Since the HOO tree has limited depth, the total number of nodes played in C(h, i) is upper bounded by some constant
L > 1 that is independent of t. Let Xj denote the j-th new node played in C(h, i), denote the number of times Xj is
played as nj , and let Y j

s (1 ⩽ s ⩽ tj) be the corresponding reward the s-th time arm Xj is played. Then, by the union
bound, we have

P

(
t∑

s=1

(f (Xs)− Ys) I{(Hs,Is)∈C(h,i)} ⩾ tb/βTh,i(t)
1−α/β and Th,i(t) ⩾ 1

)

⩽
t∑

Th,i(t)=1

P

(
t∑

s=1

(f (Xs)− Ys) I{(Hs,Is)∈C(h,i)} ⩾ tb/βTh,i(t)
1−α/β

)

=

t∑
Th,i(t)=1

P

 t∑
j=1

tj∑
s=1

(
f
(
Xj
)
− Y j

s

)
⩾ tb/βTh,i(t)

1−α/β


⩽

t∑
Th,i(t)=1

L∑
j=1

P

(
tj∑

s=1

(
f
(
Xj
)
− Y j

s

)
⩾

tb/β

L
t
1−α/β
j

)

⩽
C1

tb−1
,

where C1 > 1 is a constant depending on C and L, and in the last inequality we applied the concentration property of the
bandit problem (5). Notice that we can only use the concentration property when the requirement z = tb/β

H̄
⩾ 1 is satisfied,

but when z < 1, the inequality also trivially holds because C
zβ > 1. This completes the proof of P (Uh,i(t) ⩽ f⋆) ⩽ C1

tb−1 .

(ii)
03 Recall Definition 4.
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The proof idea follows almost the same procedure as the proof of Lemma 16 in Bubeck et al. (2011), and we repeat it here
due to some minor differences. First, notice that the u defined in the statement of the lemma satisfies nb/βu−α/β + ν1ρ

h ⩽
∆h,i+ν1ρ

h

2 . Then we have

P (Uh,i(t) > f⋆ and Th,i(t) > u)

=P
(
µ̂h,i(t) + nb/βu−α/β + ν1ρ

h > f∗
h,i +∆h,i and Th,i(t) > u

)
⩽P
(
µ̂h,i(t) > f∗

h,i +
∆h,i − ν1ρ

h

2
and Th,i(t) > u

)
⩽P
(
Th,i(t)

(
µ̂h,i(t)− f∗

h,i

)
>

∆h,i − ν1ρ
h

2
Th,i(t) and Th,i(t) > u

)
⩽P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆h,i − ν1ρ

h

2
Th,i(t) and Th,i(t) > u

)

⩽
t∑

Th,i(t)=u+1

P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆h,i − ν1ρ

h

2
Th,i(t)

)
,

where in the last step we used the union bound. Then, following a similar procedure as in the proof of Lemma 4 (defining
Xj and Y j

t , and then the concentration property), we get:

t∑
Th,i(t)=u+1

P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆h,i − ν1ρ

h

2
Th,i(t)

)

⩽
t∑

Th,i(t)=u+1

C2(
∆h,i−ν1ρ

2

)β
(Th,i(t))

b

⩽
t∑

Th,i(t)=u+1

C2

nb
⩽

C2t

nb
,

where C2 > 1 is a constant independent of n, and in the second step we used the fact that Th,i(t) > u ⩾ Ah,i(n) =⌈(
2nb/β

∆h,i−ν1ρh

) β
α

⌉
. This completes our proof of P (Uh,i(t) > f⋆ and Th,i(t) > u) ⩽ C2t

nb .

(iii) The proof idea follows almost the same procedure as the proof of (ii), and we repeat it here due to some minor
differences.

When ∆h,i ≤ ν1ρ
h, define

∆′
h,i := 3 ν1 ρ

h −∆h,i > 2 ν1 ρ
h.

This inflated gap ∆′
h,i is strictly bigger than ν1ρ

h. In particular,

∆′
h,i − ν1ρ

h = 2 ν1ρ
h − ∆h,i > 0.

Therefore, u′ ≥
(

2nb/β

∆′
h,i−ν1ρh

)β/α
. We have nb/βu′−α/β + ν1ρ

h ⩽
∆′

h,i+ν1ρ
h

2 . Then we have

16
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P (Uh,i(t) > f⋆ and Th,i(t) > u′)

=P
(
µ̂h,i(t) + nb/βu′−α/β + ν1ρ

h > f∗
h,i +∆′

h,i and Th,i(t) > u′
)

⩽P

(
µ̂h,i(t) > f∗

h,i +
∆′

h,i − ν1ρ
h

2
and Th,i(t) > u′

)

⩽P

(
Th,i(t)

(
µ̂h,i(t)− f∗

h,i

)
>

∆′
h,i − ν1ρ

h

2
Th,i(t) and Th,i(t) > u′

)

⩽P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆′

h,i − ν1ρ
h

2
Th,i(t) and Th,i(t) > u′

)

⩽
t∑

Th,i(t)=u′+1

P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆′

h,i − ν1ρ
h

2
Th,i(t)

)
,

where in the last step we used the union bound. Then, following a similar procedure as in the proof of Lemma 4 (defining
Xj and Y j

t , and then the concentration property), we get:

t∑
Th,i(t)=u′+1

P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆′

h,i − ν1ρ
h

2
Th,i(t)

)

⩽
t∑

Th,i(t)=u′+1

C2(
∆′

h,i−ν1ρ

2

)β
(Th,i(t))

b

⩽
t∑

Th,i(t)=u′+1

C2

nb
⩽

C2t

nb
,

where C2 > 1 is a constant independent of n, and in the second step we used the fact that Th,i(t) > u′ ⩾ A′
h,i(n) =⌈(

2nb/β

∆′
h,i−ν1ρh

) β
α

⌉
. This completes our proof of P (Uh,i(t) > f⋆ and Th,i(t) > u′) ⩽ C2t

nb .

Lemma 7. (Lemma 14 in Bubeck et al. (2011)) Let (h, i) be a suboptimal node. Let 0 ⩽ k ⩽ h − 1 be the largest depth
such that (k, i∗k) is on the path from the root (0, 1) to (h, i), i.e., (k, i∗k) is the lowest common ancestor (LCA) of (h, i) and
the optimal path. Then, for all integers u ⩾ 0, we have

E [Th,i(n)] ⩽ u+
∑n

t=u+1 P
{[

Us,i∗s
(t) ⩽ f⋆ for some s ∈ {k + 1, . . . , t− 1}

]
or [Th,i(t) > u and Uh,i(t) > f⋆]} .

Proof. This lemma is stated in exactly the same way as Lemma 14 in Bubeck et al. (2011), and the proof follows similarly.
We hence omit the proof here.

Lemma 8. For any suboptimal node (h, i) with ∆h,i > ν1ρ
h and any integer n ⩾ 1, there exist constants C1, C2 > 1,

such that:

E [Th,i(n)] ⩽

(
2nb/β

∆h,i − ν1ρh

) β
α

+ 1 + C1 +
C2

b− 3

Proof. Let Ah,i(n) =

⌈(
2nb/β

∆h,i−ν1ρh

) β
α

⌉
. Then from Lemma 5, we know that
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E [Th,i(n)] ⩽ Ah,i(n) +

n∑
t=Ah,i(n)+1

(
P (Th,i(t) > Ah,i(n) and Uh,i(t) > f⋆) +

t−1∑
s=1

P
(
U∗
s,is(t) ⩽ f⋆

))

By replacing the right hand side with the results from Lemma 4 and Lemma 6, we further have

E [Th,i(n)] ⩽ Ah,i(n) +

n∑
t=Ah,i(n)+1

(
C2t

nb
+

t−1∑
s=1

C1

tb−1

)

⩽ Ah,i(n) +
C2

nb−2
+

∫ n

u

C1

tb−2
dt

⩽

(
2nb/β

∆h,i − ν1ρh

) β
α

+ 1 + C2 +
C1

b− 3
.

This completes our proof.

Lemma 9. Let (h, i) be a suboptimal node such that ∆h,i > ν1ρ
h. Define

Ah,i(n) =


(

2n b/β

∆h,i − ν1 ρh

)β
α

 .

Then for any integer n ⩾ 1 and any integer
u > Ah,i(n),

there exist constants C1, C2 > 1 such that

P
(
Th,i(n) > u

)
≤ C2

n b−2
+

C1

(
u− 1

) 3−b

b− 3
.

Proof. The trivial case n ≤ u. If n ≤ u, then Th,i(n) is at most n, so {Th,i(n) > u} is the empty event. Hence,
P(Th,i(n) > u) = 0, and the inequality holds trivially.

The main case n > u. We now assume n > u. Our goal is to bound P
[
Th,i(n) > u

]
. We will do so by introducing two

events and applying a union bound argument.

Monotonicity of B-values. Recall that Bh,i(t) is defined (in the HOO/HOOT algorithm) so that descendants of (h, i)
always have a B-value at least as large as Bh,i(t). Hence, along any path from the root to a leaf, the B-values are non-
decreasing with depth.

Defining two events: Let 0 ≤ k ≤ h−1 be the largest depth on the path from (0, 1) to (h, i) such that
(
k, i∗k

)
is on the

optimal path. We define:

E1 =
{

For every t ∈ [u, n], Bh,i(t) ≤ f⋆ or Th,i(t) ≤ Ah,i(t) < u
}
,

E2 =
{

For every t ∈ [u, n], Bk+1,i∗k+1
(t) > f⋆

}
.

• E1 means that whenever t ≥ u, either the local upper bound Bh,i(t) is already ≤ f⋆ or else Th,i(t) has not exceeded
Ah,i(t).

• E2 means that for every t ∈ [u, n], the node
(
k + 1, i∗k+1

)
on the optimal path has B-value strictly greater than f⋆.
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Key claim:

E1 ∩ E2 ⊆
{
Th,i(n) ≤ u

}
.

That is, if both E1 and E2 hold, then Th,i(n) ≤ u.

Reasoning:

• If at time t ∈ [u, n] we have Bh,i(t) ≤ f⋆ and the ancestor node
(
k + 1, i∗k+1

)
satisfies Bk+1,i∗k+1

(t) > f⋆, then by
the monotonicity of B-values up the path, the algorithm would choose

(
k + 1, i∗k+1

)
rather than

(
h, i
)
. Hence, Th,i

does not increase.

• If at time t ∈ [u, n] we have Th,i(t) ≤ Ah,i(t) < u and Bk+1,i∗k+1
(t) > f⋆, it is still possible that the algorithm

enters (h, i) and increments Th,i. But even if so, Th,i(t) remains below u. Iterating this argument up to time n shows
Th,i(n) ≤ u.

Hence, whenever E1 ∩ E2 is true, we cannot exceed u plays at node (h, i).

Completing the union bound:

{Th,i(n) > u} ⊆ Ec
1 ∪ Ec

2 =⇒ P
(
Th,i(n) > u

)
≤ P

(
Ec

1

)
+ P
(
Ec

2

)
.

So it suffices to bound P(Ec
1) and P(Ec

2).

Bounding P(Ec
2). By the definition of B-values,

{
Bk+1, i∗k+1

(t) ≤ f⋆
}
⊆

{
Uk+1,i∗k+1

(t) ≤ f⋆
}
∪
{
Bk+2,i∗k+2

(t) ≤ f⋆
}
,

and one can iterate this argument recursively up the path. Using a union bound across times t ∈ [u, n], we obtain

P(Ec
2) ≤

n∑
t=u

t−1∑
s=1

P
(
Us, i∗s

(t) ≤ f⋆
)
.

By a known concentration argument from Lemma 4 (i), we have P[Us,i∗s
(t) ≤ f⋆] ≤ C1

tb−1 . This yields a tail-sum of order∫∞
u−1

t−(b−1) dt, which is proportional to (u− 1)3−b.

Bounding P(Ec
1). Similarly, {Bh,i(t) > f⋆ and Th,i(t) > Ah,i(t)} can be bounded using the arguments from

Lemma 6 (ii). We apply a union bound over t ∈ [u, n] and note that P[Uh,i(t) > f⋆ andTh,i(t) > Ah,i(t)] ≤ C2 t
n b .

Summing from t = u to t = n yields a bound in terms of C2

n b−2 .

Putting it all together: Combining these bounds gives
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P (Th,i(n) > u)

⩽ P (∃t ∈ [u, n], Bh,i(t) > f⋆ and Th,i(t) > Ah,i(t)) + P
(
∃t ∈ [u, n], Bk+1,i∗k+1

(t) ⩽ f⋆
)

⩽ P (∃t ∈ [u, n], Uh,i(t) > f⋆ and Th,i(t) > Ah,i(t))

+ P
(
∃t ∈ [u, n], Uk+1,i∗k+1

(t) ⩽ f⋆ or Uk+2,i∗k+2
(t) ⩽ f⋆ or . . . or Ut−1,i∗t−1

(t) ⩽ f⋆
)

⩽
n∑

t=u

P (Uh,i(t) > f⋆ and Th,i(t) > Ah,i(t))

+

n∑
t=u

P
(
Uk+1,i∗k+1

(t) ⩽ f⋆ or Uk+2,i∗k+2
(t) ⩽ f⋆ or . . . or Ut−1,i∗t−1

(t) ⩽ f⋆
)

⩽
n∑

t=u

P (Uh,i(t) > f⋆ and Th,i(t) > Ah,i(t)) +

n∑
t=u

t−1∑
s=1

P
(
Us,i∗s

(t) ⩽ f⋆
)
,

⩽
n∑

t=u

C2t

nb
+

n∑
t=u

t−1∑
s=1

C1

tb−1
⩽

n∑
t=u

C2n

nb
+ C1

∫ ∞

u−1

t2−bdt

⩽
C2

nb−2
+

C1(u− 1)3−b

b− 3
.

This completes the proof.
A refinement for 1 < u ≤ n. Finally, if 1 < u ≤ n, then one can derive a slightly sharper inequality:

P
(
Th,i(n) > u

)
≤ C2 (u− 1) 3−b

n
+

C1 (u− 1) 3−b

b− 3
,

by noting that 1
nb−2 ≤ (u−1) 3−b

n for 1 < u ≤ n. For u > n, the probability is trivially zero because Th,i(n) ≤ n < u.

Conclusion. Hence for every integer n ≥ 1 and u > Ah,i(n),

P
(
Th,i(n) > u

)
≤ C2

n b−2
+

C1

(
u− 1

)3−b

b− 3
.

This completes the proof.

Proof of Lemma 10 shows one of our contributions since there could be the case where ∆h,i = f⋆ − f∗
h,i ≤ ν1 ρ

h.

Lemma 10. Let (h, i) be a suboptimal node whose suboptimality gap satisfies

∆h,i = f⋆ − f∗
h,i ≤ ν1 ρ

h.

Define the inflated gap
∆′

h,i = 3 ν1 ρ
h − ∆h,i.

Then for any integer n ≥ 1, let

A′
h,i(n) =

⌈(
2nb/β

∆′
h,i−ν1 ρh

)β
α

⌉
=

⌈(
2nb/β

2 ν1 ρh−∆h,i

)β
α

⌉
.

Then, exactly the same probability bound from Lemma 9 holds for (h, i). In particular, for every integer u ≥ A′
h,i(n), there

exist constants C1, C2 > 1 such that

P
(
Th,i(n) > u

)
≤ C2

n b−2
+

C1

(
u− 1

) 3−b

b− 3
.
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Proof. We begin by recalling that Lemma 9 (the “original” statement) requires ∆h,i > ν1ρ
h. Its proof yields, for any

u ≥ Ah,i(n),

P
[
Th,i(n) > u

]
⩽

C2

nb−2
+

C1

(
u− 1

)3−b

b− 3
,

where
Ah,i(n) =

⌈(
2nb/β

∆h,i−ν1ρh

)β
α

⌉
.

Inflating the gap. Assume now that ∆h,i ≤ ν1ρ
h. Despite ∆h,i being too small for the direct application of Lemma 9,

note that (h, i) is still suboptimal, so f∗
h,i < f⋆. A standard approach Bubeck et al. (2011) is to inflate the gap. We define

∆′
h,i = 3 ν1ρ

h − ∆h,i.

Since ∆h,i ≤ ν1ρ
h, it follows that ∆′

h,i ≥ 2ν1ρ
h > 0.

New threshold A′
h,i(n). Analogously to Ah,i(n) in the lemma’s original statement, we define

A′
h,i(n) =

⌈(
2nb/β

∆′
h,i−ν1 ρh

)β
α

⌉
=

⌈(
2nb/β

2 ν1 ρh −∆h,i

)β
α

⌉
.

Observe that ∆′
h,i − ν1ρ

h = 2 ν1ρ
h −∆h,i (which is still positive). Thus, we effectively have ∆′

h,i − ν1ρ
h > 0, which is

the precise condition used in Lemma 9.

Reusing the same concentration argument. In the proof of Lemma 9, the gap ∆h,i − ν1ρ
h > 0 appears in several places

to control event probabilities of the form {Uh,i(t) > f⋆} or {Th,i(n) > u}. Now, by swapping in ∆′
h,i for ∆h,i, we

get ∆′
h,i − ν1ρ

h = 2 ν1ρ
h − ∆h,i > 0. Hence the original union-bound arguments hold exactly as before, except that

the threshold Ah,i(n) = ⌈( 2nb/β/(∆h,i − ν1ρ
h))

β
α ⌉ is replaced by ⌈( 2nb/β/∆′

h,i − ν1 ρ
h)

β
α ⌉ and we use the result of

Lemma 6 (iii) instead of Lemma 6 (ii).

Conclusion. Therefore, even though ∆h,i ≤ ν1ρ
h was initially out of reach for Lemma 9, the inflated gap ∆′

h,i =

3 ν1ρ
h −∆h,i > 2 ν1ρ

h ensures the same tail bound:

P
[
Th,i(n) > u′] ≤ C2

n b−2
+

C1 (u
′ − 1) 3−b

b− 3
, ∀u′ ≥ A′

h,i(n).

Thus Lemma 9 extends directly to the suboptimal node (h, i) whenever ∆h,i ≤ ν1ρ
h.

F. Convergence of Stochastic-Power-HOOT n Non-stationary multi-armed bandits
Section Overview and Lemma/Theorem Functionality: This section establishes the theoretical foundation for power
mean estimation in non-stationary continuous-armed bandits, which forms the core building block for the full MCTS
analysis. Lemma 11 provides a concentration bound for optimal arms by partitioning the probability space and controlling
how often suboptimal arms are visited, establishing that the optimal arm’s empirical mean concentrates around the true
optimal value with polynomial tail bounds of the form P(|f̂h∗,i∗,Th∗,i∗ (n) − f⋆| > ε) ⩽

∑
(h,i)̸=(h∗,i∗) P(Th,i(n) >

A(n) + 1) + c
α−1ε

−β(n − (K − 1)A(n) + 1)−α+1. Theorem 1 (from Mao et al. (2020)) serves as the foundational
result for enhanced HOO in non-stationary settings, proving both convergence and concentration properties for the average
reward with polynomial rates—this theorem is crucial as it provides the base concentration guarantees P(| 1n

∑n
t=1 Yt −

f∗| ⩾ ε) ⩽ C ′n−α′
ε−β′

that our power mean analysis builds upon. Lemma 12 derives a fundamental decomposition
inequality for the power mean estimator, showing that the deviation from the optimal value can be bounded by |f̂n(p) −
f⋆| ⩽ 1

n

∑
(h,i) Th,i(n)|f⋆ − f̂h,i,Th,i(n)| + 2(

∑
(h,i)

Th,i(n)
n |f̂h,i,Th,i(n) − f∗

h,i|p)1/p, which is essential for analyzing
how errors propagate through the power mean operator. Lemma 13 establishes concentration bounds specifically for the
optimal arm within the power mean framework, demonstrating that the contribution of the optimal arm to the power mean
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concentrates appropriately by combining visit count bounds with the underlying concentration properties. Lemma 14
provides the most technically challenging result, analyzing concentration bounds for suboptimal arms under three different
parameter regimes (depending on the relationship between the power parameter p and the concentration exponents α, β),
showing that suboptimal arms contribute negligibly to the power mean with high probability through bounds of the form
P(Th,i(n)

n |f̂h,i,Th,i(n) − f∗
h,i|p > εp

K−1 ) ⩽
C2

nb−2 + C1A(n)3−b

b−3 + (concentration terms). Finally, Theorem 2 synthesizes all
these components to prove that the power mean estimator itself concentrates around the optimal value at polynomial rates

f̂n(p)
α′,β′

−→
n→∞

f⋆ with α′ =
1− b

α

1+d′+ β
α

b−3
2 and β′ = b−3

2 , establishing the key theoretical guarantee that enables the extension
to the full MCTS setting—this theorem demonstrates that power mean aggregation preserves the polynomial concentration
properties while providing the flexibility to tune exploration-exploitation balance through the power parameter p.

Here are the details for each Lemma/Theorem with full proofs.

Lemma 11. Let (h, i) denote any suboptimal node with gap ∆h,i > ν1ρ
h. Define Ah,i(n) =


(

2nb/β

∆h,i−ν1ρh

)β
α

 .

Let (h′, i′) denote any suboptimal node with gap ∆h′,i′ ⩽ ν1ρ
h. Define A′

h′,i′(n) =


(

2nb/β

2ν1ρh−∆h′,i′

)β
α

 , and let

A(n) = max
{
Ah,i(n), A

′
h′,i′(n)

}
. Assume there is a known constant R such that R ≥ ε ≥ n−α/β . Then, for any

optimal node
(
h∗, i∗

)
(i.e. ∆h∗,i∗ = 0), we have:

P
(∣∣ f̂h∗,i∗, Th∗, i∗ (n) − f⋆

∣∣ > ε
)
≤

∑
(h,i) ̸=(h∗,i∗)

P
(
Th,i(n) > A(n) + 1

)
+

c

α− 1
ε−β

(
n − (K − 1)A(n) + 1

)−α+1

.

Proof. Partitioning the event. Let

E =
{ ∑

(h,i) ̸=(h∗,i∗)

Th,i(n) > (K − 1)
(
A(n) + 1

)}
.

Observe that:

P
(∣∣f̂h∗, i∗, Th∗, i∗ (n) − f⋆

∣∣ > ε
)
≤ P(E) + P

(
Ec and

∣∣f̂h∗, i∗, Th∗, i∗ (n) − f⋆
∣∣ ≥ ε

)
≤

∑
(h,i) ̸=(h∗,i∗)

P
[
Th,i(n) > A(n) + 1

]
+ D1,

where we used the fact that {E} ⊆
⋃

(h,i) ̸=(h∗,i∗){Th,i(n) > A(n) + 1}, and we denoted the remaining probability as

D1 = P
( ∑
(h,i) ̸=(h∗,i∗)

Th,i(n) ≤ (K − 1)
(
A(n) + 1

)
;
∣∣f̂h∗, i∗, Th∗, i∗ (n) − f⋆

∣∣ ≥ ε
)
.

Bounding D1. On the event {
∑

(h,i) ̸=(h∗,i∗) Th,i(n) ≤ (K − 1)(A(n) + 1)}, we have

Th∗,i∗(n) = n −
∑

(h,i) ̸=(h∗,i∗)

Th,i(n) ≥ n − (K − 1)
(
A(n) + 1

)
.

Hence
D1 ≤ P

(
Th∗,i∗(n) ≥ n− (K − 1)

(
A(n) + 1

)
and

∣∣f̂h∗, i∗, Th∗, i∗ (n) − f⋆
∣∣ ≥ ε

)
.

Applying the union bound in time, for

t ∈
[
n− (K − 1)(A(n) + 1), n

]
,

we get

D1 ≤
n∑

t=n−(K−1)(A(n)+1)

P
( ∣∣f̂h∗, i∗, t − f⋆

∣∣ ≥ ε
)
.
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By the given concentration property (namely
α,β−→

n→∞
), each term is at most c t−α ε−β . Summing yields

D1 ≤ c ε−β
n∑

t=n−(K−1)(A(n)+1)

t−α.

Because α > 2, this tail sum can be bounded by an integral:

n∑
t=u

t−α ≤
∫ ∞

u−1

x−α dx =
(u− 1) 1−α

α− 1
.

Taking u = n− (K − 1)(A(n) + 1) completes the bound:

D1 ≤ c ε−β

(
n− (K − 1)(A(n) + 1)− 1

)1−α

α− 1
.

Recognizing
(
n− (K − 1)A(n) + 1

)
up to small adjustments gives us the simpler form

D1 ≤
c

α− 1
ε−β

(
n− (K − 1)A(n) + 1

)−α+1
.

Combining the pieces. Putting this together:

P
(∣∣f̂h∗,i∗,Th∗,i∗ (n) − f⋆

∣∣ > ε
)
≤

∑
(h,i) ̸=(h∗,i∗)

P
[
Th,i(n) > A(n) + 1

]
+ D1

≤
∑

(h,i) ̸=(h∗,i∗)

P
[
Th,i(n) > A(n) + 1

]
+

c

α− 1
ε−β

(
n− (K − 1)A(n) + 1

)−α+1

. (4)

Hence the statement of the lemma follows.

Theorem 1. (Theorem 2 Mao et al. (2020)) Consider a non-stationary continuous-armed bandit problem satisfying prop-
erties (4) and (5). Suppose we apply the enhanced HOO agent defined in Algorithms 2 and 3 with parameters satisfying
α(1 − α

β ) ⩽ b < α, b > 3, and ρH̄ < n−α
β . Let the random variable Yt denote the reward obtained at time t. Then the

following holds:
A. Optimal-arm convergence: There exists some constant C0 > 0, such that

∣∣∣∣∣ 1nE
[

n∑
t=1

Yt

]
− f∗

∣∣∣∣∣ ⩽ C0

nζ
, (6)

where 0 < ζ ⩽
1− b

α

1+d′+ β
α

.

B. Optimal-arm concentration: There exist constants C ′ > 1, β′ > 0, and 1/2 ⩽ η′ < 1, such that for every ε ⩾ n−α/β

and every integer n ⩾ 1 :

P

(∣∣∣∣∣ 1n
n∑

t=1

Yt − f∗

∣∣∣∣∣ ⩾ ε

)
⩽ C ′n−α′

ε−β′
(7)

where α′ =
1− b

α

1+d′+ β
α

b−3
2 , β′ = (b− 3)/2, and C ′ > 1 depends on α, β, η, ξ and H̄ .
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Lemma 12. Let f̂n(p) be the power mean estimator defined by

f̂n(p) =

(∑
(h,i)

Th,i(n)

n

[
f̂h,i,Th,i(n)

]p)1
p

for p ≥ 1.

Then, for all p ≥ 1, the following inequality holds:∣∣f̂n(p) − f⋆
∣∣ ≤ 1

n

∑
(h,i)

Th,i(n)
∣∣ f⋆ − f̂h,i,Th,i(n)

∣∣ + 2

(∑
(h,i)

Th,i(n)

n

∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣p)1
p

. (5)

Proof. Setup and Notation. Since f⋆ = max(h,i){f∗
h,i}, we know that f̂h,i,Th,i(n) ≤ f∗

h,i +
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣.
Furthermore, by definition of f̂n(p), we have

f̂n(p) =

(∑
(h,i)

Th,i(n)
n

[
f̂h,i,Th,i(n)

]p)1
p

≤
(∑

(h,i)

Th,i(n)
n

[
f∗
h,i +

∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣]p)1
p

.

Bounding f̂n(p)− f⋆. Because f⋆ ≥ f∗
h,i for all (h, i), we write:

f̂n(p)− f⋆ = f̂n(p)−
∑
(h,i)

Th,i(n) f
⋆
/
n ≤ 1

n1/p

[∑
(h,i)

Th,i(n)
(
f̂h,i,Th,i(n)

)p]1/p − 1
n1/p

[∑
(h,i)

Th,i(n)
(
f∗
h,i

)p]1/p
.

Applying Minkowski’s inequality (together with the fact that f̂h,i,Th,i(n) ≤ f∗
h,i + |f̂h,i,Th,i(n) − f∗

h,i|), one obtains

f̂n(p) − f⋆ ≤ 1

n1/p

[∑
(h,i)

Th,i(n)
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣ p]1/p. (*)

Bounding f⋆ − f̂n(p). Similarly, we can write:

f⋆ − f̂n(p) = 1
n

[
n f⋆ − n f̂n(p)

]
=

1

n

[
n f⋆ −

∑
(h,i)

Th,i(n) f
∗
h,i︸ ︷︷ ︸

≤
∑

(h,i) Th,i(n)
∣∣f⋆−f∗

h,i

∣∣
+
∑
(h,i)

Th,i(n) f
∗
h,i − n f̂n(p)

]
.

Observe that
∑

(h,i)
Th,i(n)

n f∗
h,i ≤

[∑
(h,i)

Th,i(n)
n (f∗

h,i)
p
]1/p

, since the power mean is non-decreasing in p. Also we have

f∗
h,i ≤ f̂h,i,Th,i(n) + |f̂h,i,Th,i(n) − f∗

h,i|. And∑
(h,i)

Th,i(n)
∣∣f⋆ − f∗

h,i

∣∣ ≤ ∑
(h,i)

Th,i(n)
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣ +
∑
(h,i)

Th,i(n)
∣∣f⋆ − f̂h,i,Th,i(n)

∣∣.
Thus, a straightforward rearrangement yields

f⋆ − f̂n(p) ≤
1

n

∑
(h,i)

Th,i(n)
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣ +
1

n

∑
(h,i)

Th,i(n)
∣∣f⋆ − f̂h,i,Th,i(n)

∣∣
+

1

n1/p

[∑
(h,i)

Th,i(n)
(
f̂h,i,Th,i(n) +

∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣)p − ∑
(h,i)

Th,i(n)
(
f̂h,i,Th,i(n)

)p]1/p
≤ 1

n

∑
(h,i)

Th,i(n)
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣ +
1

n

∑
(h,i)

Th,i(n)
∣∣f⋆ − f̂h,i,Th,i(n)

∣∣
+

1

n1/p

[∑
(h,i)

Th,i(n)
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣p]1/p
≤ 1

n

∑
(h,i)

Th,i(n)
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣ +
2

n1/p

[∑
(h,i)

Th,i(n)
∣∣f̂h,i,Th,i(n) − f∗

h,i

∣∣p]1/p. (**)
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Combination. By combining (∗) and (∗∗), we immediately see that

∣∣f̂n(p)− f⋆
∣∣ ≤ 1

n

∑
(h,i)

Th,i(n)
∣∣f⋆ − f̂h,i,Th,i(n)

∣∣ + 2

(∑
(h,i)

Th,i(n)

n

∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣p)1
p

,

which establishes equation 5 and completes the proof.

Lemma 13. Let (h, i) denote any suboptimal node with gap ∆h,i > ν1ρ
h. Define Ah,i(n) =


(

2nb/β

∆h,i−ν1ρh

)β
α

 .

Let (h′, i′) denote any suboptimal node with gap ∆h′,i′ ⩽ ν1ρ
h. Define A′

h′,i′(n) =


(

2nb/β

2ν1ρh−∆h′,i′

)β
α

 , and let

A(n) = max
{
Ah,i(n), A

′
h′,i′(n)

}
. Assume there is a known constant R such that R ≥ ε ≥ n−α/β . Let us define

(h∗, i∗) as the optimal node. We have

P
(
Th∗,i∗(n)

n

(∣∣∣f̂h∗,i∗,Th∗,i∗ (n) − f∗
∣∣∣)p > εp

)
⩽

C2(K − 1)

nb−2
(6)

+
C1(K − 1)A(n)3−b

b− 3
+

c

α− 1
ε−β(n− (K − 1)(A(n) + 1)− 1)−α+1

(7)

Proof. Applying results of Lemma 11, we have

P
(∣∣∣f̂h∗,i∗,Th∗,i∗ (n) − f⋆

∣∣∣ > ε
)
⩽

K∑
(h,i) ̸=(h∗,i∗)

P (Th,i(n) > A(n) + 1)

︸ ︷︷ ︸
F11

+
c

α− 1
ε−β(n− (K − 1)(A(n) + 1)− 1)−α+1︸ ︷︷ ︸

F12

.

(8)

From the result of Lemma 9, and Lemma 10, with b > 1, we have with A(n) + 1 >


(

2nb/β

∆h,i−ν1ρh

)β
α

 and A(n) + 1 >
(

2nb/β

3ν1ρh−∆h,i

)β
α

 . Then

F11 ⩽
K∑

(h,i)̸=(h∗,i∗)

P (Th,i(n) > A(n) + 1) ⩽
K∑

(h,i) ̸=(h∗,i∗)

2cC−βA(n)−(b−1)

b− 1
=

2cC−β(K − 1)A(n)−(b−1)

b− 1

that concludes the proof.

Lemma 14. Let (h, i) denote any suboptimal node with gap ∆h,i > ν1ρ
h. Define Ah,i(n) =


(

2nb/β

∆h,i−ν1ρh

)β
α

 .

Let (h′, i′) denote any suboptimal node with gap ∆h′,i′ ⩽ ν1ρ
h. Define A′

h′,i′(n) =


(

2nb/β

2ν1ρh−∆h′,i′

)β
α

 , and let

A(n) = max
{
Ah,i(n), A

′
h′,i′(n)

}
. Then for any ε satisfying R ≥ ε ≥ n−α/β , there is some constant N0 such that for

all n ≥ N0, the following three statements hold:

25



Power Mean Estimation in Stochastic Continuous Monte-Carlo Tree Search

• Case 1: 1 ≤ p ≤ 2 and α ≤ β
p . For every suboptimal arm (h, i), there exist constants C1, C2 > 1 (not depending on

n or ε) such that

P
(

Th,i(n)
n

∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣p > 1
K−1 εp

)
≤ C2

n b−2
+

C1 A(n) 3−b

b− 3
+

2 c (K − 1)
β
p

1−
(
α− β

p

) ε−β
(
A(n) + 1

)−(α−1)
.

(9)

• Case 2: p > 2 and 0 < α− β
p < 1. For every suboptimal arm (h, i), there exist constants C1, C2 > 1 (not depending

on n or ε) such that

P
(

Th,i(n)
n

∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣p > 1
K−1 εp

)
≤ C2

n b−2
+

C1 A(n) 3−b

b− 3
+

c (K − 1)
β
p

1−
(
α− β

p

) ε−β
(
A(n) + 1

)−(α−1)
.

(10)

• Case 3: p > 2 and α − β
p > 1. For every suboptimal arm (h, i), there exist constants C1, C2 > 1 (not depending on

n or ε) such that

P
(

Th,i(n)
n

∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣p > 1
K−1 εp

)
≤ C2

n b−2
+

C1 A(n) 3−b

b− 3
+

c (K − 1)
β
p
(
α− β

p

)(
α− β

p

)
− 1

ε−β
(
A(n) + 1

)−β
p .

(11)

Proof. A high-probability tail bound for Th,i(n). By Lemma 9 and Lemma 10, for any suboptimal arm (h, i) and integer
u > A(n), there exist constants C1, C2 > 1 (not depending on n or ε) such that

P
[
Th,i(n) > u

]
≤ C2

n b−2
+

C1 (u− 1) 3−b

b− 3
.

Define the events E1 = { Th,i(n) > A(n) + 1} and Ec1 = { Th,i(n) ≤ A(n) + 1}. Hence,

P
(

Th,i(n)
n

∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣p > εp

K−1

)
≤ P

[
Th,i(n) > A(n) + 1

]︸ ︷︷ ︸
G1

(12)

+ P
[
Th,i(n) ≤ A(n) + 1;

Th,i(n)
n

∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣p > εp

K−1

]
︸ ︷︷ ︸

G2

. (13)

Bounding G1. From the tail bound above, we know

G1 = P
[
Th,i(n) > A(n) + 1

]
≤ C2

n b−2
+

C1 A(n) 3−b

b− 3
.

Bounding G2. Under the event {Th,i(n) ≤ A(n) + 1}, we have Th,i(n) ≤ A(n) + 1. Thus

G2 ⩽
A(n)+1∑

t=1

P
(
t

n

∣∣∣f̂h,i,t − f∗
h,i

∣∣∣p >
1

K − 1
εp
)
.

We can see that with t ⩽ A(n) + 1, we can find N0 such that ∀n ⩾ N0,
(

n
t(K−1)

) 1
p

ε > ε ⩾ n−α
β . Therefore,

G2 ⩽
A(n)+1∑

t=1

P

(∣∣∣f̂h,i,t − f∗
h,i

∣∣∣ > ( n

t(K − 1)

) 1
p

ε

)
⩽

A(n)+1∑
t=1

ct−α

((
n

t(K − 1)

) 1
p

ε

)−β

(14)

⩽
A(n)+1∑

t=1

c(K − 1)
β
p t−(α− β

p )ε−βn− β
p . (15)
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We study 3 cases:
Case 1: α − β

p ⩽ 0, which can only happen if p ⩽ 2 because α ⩽ β
2 , and actually when α ⩽ β

2 we just need 1 ⩽ p ⩽ 2,
then

G2 ⩽ c(K − 1)
β
p ε−βn− β

p

(∫ A(n)+1

1

t−(α− β
p )dt+ (A(n) + 1)−(α− β

p )

)

= c(K − 1)
β
p ε−βn− β

p

( t−(α− β
p )+1

−(α− β
p ) + 1

+ C

)∣∣∣∣∣
A(n)+1

1

+ (A(n) + 1)−(α− β
p )


⩽ c(K − 1)

β
p ε−β(A(n) + 1)−

β
p

(
(A(n) + 1)−(α− β

p )+1

−(α− β
p ) + 1

− 1

−(α− β
p ) + 1

+ (A(n) + 1)−(α− β
p )

)
.

Because −(α− β
p ) + 1 ⩾ 1, we can find a constant Nε such that ∀n ⩾ Nε, we have

G2 ⩽ 2c(K − 1)
β
p ε−β(A(n) + 1)−

β
p
(A(n) + 1)−(α− β

p )+1

−(α− β
p ) + 1

=
2c(K − 1)

β
p

−(α− β
p ) + 1

ε−β(A(n) + 1)−(α−1).

Therefore, we have

P
(
Th,i(n)

n

(∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣)p >
1

K
εp
)

⩽
C2

nb−2
+

C1A(n)3−b

b− 3
+

2c(K − 1)
β
p

−(α− β
p ) + 1

ε−β(A(n) + 1)−(α−1). (16)

that concludes for the Inequality 9.
Case 2: α− β

p > 0, which can only happen if p > 2 because α ⩽ β
2 . We have

A(n)+1∑
t=1

t−(α− β
p ) ⩽ 1 +

∫ A(n)+1

1

t−(α− β
p )dt = 1 +

(
t−(α− β

p )+1

−(α− β
p ) + 1

+ C

)∣∣∣∣A(n)+1

1

= 1 +
(A(n) + 1)−(α− β

p )+1

−(α− β
p ) + 1

− 1

−(α− β
p ) + 1

=
α− β

p

α− β
p − 1

− (A(n) + 1)−(α− β
p )+1

(α− β
p )− 1

,

so that

G2 ⩽ c(K − 1)
β
p

(
α− β

p

α− β
p − 1

− (A(n) + 1)−(α− β
p )+1

(α− β
p )− 1

)
ε−βn− β

p

= c(K − 1)
β
p

(
(A(n) + 1)−(α− β

p )+1

1− (α− β
p )

−
α− β

p

1− (α− β
p )

)
ε−β(A(n) + 1)−

β
p .

If 0 < α− β
p < 1, then we can find a constant NG2 such that ∀n ⩾ NG2, we have

G2 ⩽
c(K − 1)

β
p

1− (α− β
p )

ε−β(A(n) + 1)−(α−1) =
c(K − 1)

β
p

1− (α− β
p )

ε−β(A(n) + 1)−(α−1).

Therefore,

P
(
Th,i(n)

n

(∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣)p >
1

K
εp
)

⩽
C2

nb−2
+

C1A(n)3−b

b− 3
+

c(K − 1)
β
p

1− (α− β
p )

ε−β(A(n) + 1)−(α−1). (17)
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that concludes for the Inequality 10.
Case 3: If α− β

p > 1, (p > 2), we can find a constant N0 such that ∀n ⩾ N0, we have

G2 ⩽ c(K − 1)
β
p

(
α− β

p

α− β
p − 1

− (A(n) + 1)−(α− β
p )+1

(α− β
p )− 1

)
ε−β(A(n) + 1)−

β
p ⩽

c(K − 1)
β
p (α− β

p )

(α− β
p )− 1

ε−β(A(n) + 1)−
β
p ,

that concludes for the Inequality 11

P
(
Th,i(n)

n

(∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣)p >
1

K
εp
)

⩽
C2

nb−2
+

C1A(n)3−b

b− 3
+

c(K − 1)
β
p (α− β

p )

(α− β
p )− 1

ε−β(A(n) + 1)−
β
p . (18)

Conclusion. Combining the estimates for G1 and G2 completes the proof in each of the three parameter regimes.

Theorem 2 (Power Mean Concentration of f̂n(p)). For a ∈ [K], let (f̂a,n)n⩾1 be a sequence of estimators satisfying

f̂a,n
α,β−→

n→∞
f∗
h,i and let f⋆ = maxa{f∗

h,i}. Assume that the arms are sampled according to the strategy following Algo-

rithm 3 with parameters α, β, b and C. Assume that p, α, β and b satisfy one of these two conditions:

(i) 1 ⩽ p ⩽ 2 and α ⩽ β
2

(ii) p > 2 and 0 < α− β
p < 1

If α
(
1− b

α

)
⩽ b < α then the sequence of estimators f̂n(p) satisfies

f̂n(p)
α′,β′

−→
n→∞

f⋆

for α′ =
1− b

α

1+d′+ β
α

b−3
2 , β′ = b−3

2 .

Proof. As the results from Lemma 12, we can derive

∣∣f̂n(p)− f⋆
∣∣ ≤ 1

n

∑
(h,i)

Th,i(n)
∣∣f⋆ − f̂h,i,Th,i(n)

∣∣ + 2

(∑
(h,i)

Th,i(n)

n

∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣p)1
p

,

⇒ P
(∣∣∣f̂n(p)− f∗

∣∣∣ > (1 + 21+
1
p )ε)

)
⩽ P

 1

n

∑
(h,i)

Th,i(n)
∣∣f⋆ − f̂h,i,Th,i(n)

∣∣ > ε


︸ ︷︷ ︸

A

+ P


∑

(h,i)

Th,i(n)

n

(∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣)p
 1

p

⩾ 2
1
p ε


︸ ︷︷ ︸

B

Bounding A: with x ⩾ 1 We have

A
(Lemma 1)

⩽ C ′n−α′
ε−β′

(7)
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where α′ =
1− b

α

1+d′+ β
α

b−3
2 , β′ = b−3

2 , and C ′ > 1 depends on α, β, η, ξ and H̄ .

Bounding B:

B = P

∑
(h,i)

Th,i(n)

n

(∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣)p > 2εp


⩽ P

(
Th∗,i∗(n)

n

(∣∣∣f̂h∗,i∗,Th∗,i∗ (n) − f∗
h∗,i∗

∣∣∣)p > εp
)

︸ ︷︷ ︸
F1

+

K∑
(h,i)̸=(h∗,i∗)

P
(
Th,i(n)

n

(∣∣∣f̂h,i,Th,i(n) − f∗
h,i

∣∣∣)p >
1

K − 1
εp
)

︸ ︷︷ ︸
F2

With F1: According to Lemma 13, we can find a constant N0, such that ∀n ⩾ N0, we have

F1 ⩽
C2(K − 1)

nb−2
+

C1(K − 1)A(n)3−b

b− 3
+

c

α− 1
ε−β(n− (K − 1)(A(n) + 1)− 1)−α+1 (19)

With F2: According to Lemma 14, we can find a constant N0, such that ∀n ⩾ N0, we have

• With 1 ⩽ p ⩽ 2, α ⩽ β
p , we have

F2 ⩽
C

′

2

nb−2
+

C
′

1A(n)3−b

b− 3
+

2c(K − 1)
β
p

−(α− β
p ) + 1

ε−β(A(n) + 1)−(α−1). (20)

• With p > 2, and 0 < α− β
p < 1, we have

F2 ⩽
C

′

2

nb−2
+

C
′

1A(n)3−b

b− 3
+

c(K − 1)
β
p

−(α− β
p ) + 1

ε−β(A(n) + 1)−(α−1). (21)

So that

B ⩽ F1 + F2 ⩽
C2(K − 1)

nb−2
+

C1(K − 1)A(n)3−b

b− 3
+

c

α− 1
ε−β(n− (K − 1)(A(n) + 1)− 1)−α+1 (22)

+
C

′

2

nb−2
+

C
′

1A(n)3−b

b− 3
+

c(K − 1)
β
p

−(α− β
p ) + 1

ε−β(A(n) + 1)−(α−1)

where 1 ⩽ p ⩽ 2, α ⩽ β
p or p > 2, and 0 < α− β

p < 1.

Because b− 1 < α− 1, n−α
β ⩽ ε ⩽ R, and A(n) ≈ Θ(nb/α) so that we can find a constant Np such that ∀n ⩾ Np

B ⩽
CK

(
R
ε

)β
A(n)−(b−3)

b− 3
=

CKRβε−βA(n)−(b−3)

b− 3
, (23)

with C is a constant depends on C1, C2, C
′

1, C
′

2,K.
Combining the two parts (7) and (23), we have

⇒ P
(∣∣∣f̂n(p)− f∗

∣∣∣ > (1 + 21+
1
p )ε)

)
⩽ C ′n−α′

ε−β′
+

CKRβε−βA(n)−(b−3)

b− 3

where α′ =
1− b

α

1+d′+ β
α

b−3
2 , β′ = b−3

2 , and C ′ > 1 depends on α, β, η, ξ and H̄ . So that ∃C ′ > 1 depends on α, β, η, ξ and

H̄ such that
⇒ P

(∣∣∣f̂n(p)− f∗
∣∣∣ > ε)

)
⩽ C ′n−α′

ε−β′
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Furthermore,

lim
n−→∞

∣∣∣E[f̂n(p)]− f⋆
∣∣∣ ⩽ lim

n−→∞
E[
∣∣∣f̂n(p)− f⋆

∣∣∣] = lim
n−→∞

∫ ∞

0

P
(∣∣∣f̂n(p)− f⋆

∣∣∣ ⩾ s
)
ds

⩽ lim
n−→∞

∫ ∞

0

c
′
n−α′

s−β′
ds ⩽ lim

n−→∞

∫ n
−α′

β′

0

1ds+ lim
n−→∞

∫ ∞

n
−α′

β′
c
′
n−α′

s−β′
ds

= lim
n−→∞

c
′
n−α′

(
s−β′+1 + C

) ∣∣∣∞
n
−α′

β′
= 0( we need β′ > 1→ β > 2)

Therefore,

f̂n(p)
α′,β′

−→
n→∞

f⋆,

that concludes the proof.

Remark 2. The conditions on p, α, β, b ensure that the polynomial exponents α′, β′ derived from the union bounds remain
strictly positive (with β′ > 1) and do not degenerate. In particular, requiring α > 2 ensures that one can integrate the tail
probability

∫
ε−β′

dε for large ε.

G. Convergence of Stochastic-Power-HOOT in Monte-Carlo Tree Search
Section Overview and Theorem Functionality: This section extends the bandit-level concentration results to the full
MCTS setting, establishing polynomial convergence guarantees for the complete tree search algorithm. Theorem 3
serves as the central theoretical result of the paper, proving through mathematical induction that both value function

estimates V̂n(sh)
αh,βh−→
n→∞

Ṽ (sh) and Q-value estimates Q̂n(sh, a)
αh+1,βh+1−→

n→∞
Q̃(sh, a) concentrate polynomially at ev-

ery node in the search tree. The proof establishes the base case for depth H = 1 by showing that leaf node estimates
concentrate via i.i.d. rollout averaging, Q-value estimates concentrate through Lemma 1 (which handles stochastic tran-
sitions), and root value estimates concentrate via the power mean concentration results from the bandit analysis. The
inductive step then demonstrates that these concentration properties propagate upward through the tree: assuming the
theorem holds for subtrees of depth H − 1, the same concentration arguments (Q-value concentration via stochastic
Bellman backups and value concentration via power mean aggregation) establish the result for the full depth-H tree.
Theorem 4 (Convergence of Expected Payoff) provides the final convergence guarantee for the algorithm’s expected
performance, proving that |E[V̂n(s0)] − Ṽ (s0)| ⩽ O(n−ζ) where ζ ∈ (0, 1/2) represents the polynomial convergence
rate. The proof employs Jensen’s inequality to bound the expected absolute deviation by the tail probability integral∫∞
0

P(|V̂n(s0) − Ṽ (s0)| ⩾ s)ds, then uses the polynomial concentration bounds from Theorem 3 to evaluate this inte-
gral, yielding the final rate n−α0/β0 where the exponents are determined by the algorithmic parameters. Together, these
theorems establish that Stochastic-Power-HOOT achieves the same polynomial convergence rates as POLY-HOOT
in deterministic settings, but now extended to the significantly more challenging stochastic continuous-action domain.

Here are details proofs for each Theorem.

Theorem 3. When we apply the Stochastic-Power-HOOT algorithm, with algorithmic constants
{bi}Hi=0, {αi}Hi=0, {βi}Hi=0 satisfying the conditions in Table 1, the following hold:

(i) For any node sh at depth h ∈ {0, 1, . . . ,H} in the tree,

V̂n(sh)
αh, βh−→
n→∞

Ṽ (sh). (1)

(ii) For any node sh at depth h ∈ {0, 1, . . . ,H−1} in the tree,

Q̂n(sh, a)
αh+1, βh+1−→

n→∞
Q̃(sh, a), ∀ a ∈ Ash . (2)

Proof. We prove the theorem by induction on the depth H of the tree.

Initial step: H = 1.
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The root node state is s0. Let us denote by rt(s0, a) the intermediate reward at time-step t, collected from playing (s0, a).
Then the system transitions to s1 ∼ P(· | s0, a). We let r(s0, a) be the mean reward of (s0, a).

Recall the definition of Q̃(s0, a):

Q̃(s0, a) = r(s0, a) + γ
∑
s1∈S

P(s1 | s0, a) Ṽ (s1),

where Ṽ (s1) is the average value of the rollout policy π0 at state s1, and As0 is the set of feasible actions at s0 (with
cardinality M ). The transition probability is P(s1 | s0, a).

Claim (i) in the statement says that for any state s1 with depth 1 in the tree,

V̂n(s1)
α1, β1−→
n→∞

Ṽ (s1). (3)

Indeed, V̂n(s1) is just the average of i.i.d. calls to the playout policy π0 starting at s1. Hence (3) follows by a straightforward
i.i.d. argument.

Next, from the definition of Q̂n, we have

Q̂n(s0, a) =
1

n

n∑
t=1

[
rt(s0, a) + γ V̂T

s1
s0,a(t)

(s1)
]
, (24)

where T s1
s0,a(t) denotes the number of times we have visited (s0, a, s1) up to time t.

By applying Lemma 1 with Xt := rt(s0, a) and probabilities p = (p1, . . . , pM ) capturing the transition dynamics from
(s0, a) to possible next-states, we conclude that

Q̂n(s0, a)
α1, β1−→
n→∞

Q̃(s0, a), ∀ a ∈ As0 . (4)

This yields part (ii) of the theorem for the depth-zero node (i.e. the root).

Finally, for the value function estimate V̂n(s0) at depth zero, we recall the polynomial concentration result from Theorem 2
(indeed it follows a “power-mean” or similar argument), plus the definition

V̂n(s0) =

( ∑
a∈As0

Ts0,a(n)

n

[
Q̂Ts0,a(n)(s0, a)

]p) 1
p
. (25)

Thus,
V̂n(s0)

α0, β0−→
n→∞

Ṽ (s0),

with α0, β0 satisfying the conditions in Table 1. Together with V̂n(s1)
α1,β1−→
n→∞

Ṽ (s1) for leaf nodes, we conclude that
statement (i) of the theorem is correct when the tree depth is 1. Statement (ii) is correct as well by equation G.

Inductive step: Suppose the theorem holds for all trees of depth H−1. We prove it holds for a tree of depth H .

Consider the root node state s0. When we select action a from s0, it transitions to s1 ∼ P(· | s0, a). The subtree rooted at
s1 has depth H−1. By the induction hypothesis, for any node sh within that subtree (i.e. at depth ≥ 1), we have

V̂n(sh)
αh,βh−→
n→∞

Ṽ (sh), h = 1, . . . ,H,

and
Q̂n(sh, a)

αh+1, βh+1−→
n→∞

Q̃(sh, a), h = 1, . . . ,H − 1.
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Hence, repeating the same polynomial concentration argument as in the base case but substituting V̂ from deeper levels,
we obtain:

Q̂n(s0, a)
α1,β1−→
n→∞

Q̃(s0, a), ∀ a ∈ As0 . (5)

Then, applying again Theorem 2 (or a power-mean argument) to the root node’s value function

V̂n(s0) =

( ∑
a∈As0

Ts0,a(n)

n

[
Q̂Ts0,a(n)(s0, a)

]p)1/p

,

we see that
V̂n(s0)

α0,β0−→
n→∞

Ṽ (s0),

with α0, β0 as per Table 1. Thus statement (i) follows for the entire tree of depth H . Likewise, combining Q̂n results from
(5) with the induction hypothesis yields statement (ii).

By induction, the statements hold for any node in any tree of depth up to H .

Theorem 4 (Convergence of Expected Payoff). We have at the root node s0, with the best possible parameter tuning that∣∣E[V̂n(s0)]− Ṽ (s0)
∣∣ ⩽ O(n−ζ),

where ζ ∈ (0, 1/2).

Proof. Using the convexity of f(x) = |x| and applying Jensen’s inequality we have∣∣E[V̂n(s0)]− Ṽ (s0)
∣∣ ⩽ E[

∣∣V̂n(s0)]− Ṽ (s0)
∣∣]

=

∫ +∞

0

P
(∣∣∣V̂n(s0)− Ṽ (s0)

∣∣∣ ⩾ s
)
ds

⩽
∫ n

−α0
β0

0

1ds+

∫ +∞

n
−α0

β0

c0n
−α0s−β0ds

⩽ n−α0
β0 + c0n

−α0

(
s−β0+1

−β0 + 1

) ∣∣∣+∞

n
−α0

β0

= (
c0

β0 − 1
+ 1)n−α0

β0 .

Because 0 < ζ = α0

β0
=

1− b0
α

1+d′+
β0
α0

b0−3
2 < 1

2 (Theorem 2), then the best possible rate we can estimate is

∣∣E[V̂n(s0)]− Ṽ (s0)
∣∣ ⩽ O(n−ζ),

where ζ ∈ (0, 1/2), that concludes the proof.
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H. Experimental Setup and Hyperparameter Selection
We evaluate Stochastic-Power-HOOT on both classic control tasks and high-dimensional robotic environments, all
adapted to continuous-action, stochastic settings. Our experimental design addresses the key challenges of planning under
uncertainty while demonstrating the scalability and robustness of our approach.

Environment Modifications: We create stochastic versions of standard benchmarks by introducing noise at multiple lev-
els: (1) action noise via Gaussian perturbations to selected actions, (2) dynamics noise through random perturbations to
state transitions, and (3) observation noise by adding Gaussian noise to state observations. Additionally, since power means
require strictly positive inputs, we apply reward transformations of the form max(0.01, (r + offset)× scaling) while pre-
serving optimal policies.

For classic control tasks from OpenAI Gym Brockman et al. (2016), we evaluate on CartPole, CartPole-IG (increased
gravity), Pendulum, MountainCar, and Acrobot. In the standard CartPole problem, actions are discrete, taking values in
{−1, 1}. To enable continuous control, we redefine the action space to [−1, 1]. CartPole-IG features increased gravity
of 20 (up from 9.8), while Acrobot uses gravity of 30, maintaining other OpenAI Gym parameters. For high-dimensional
evaluation, we test on MuJoCo robotics tasks including Humanoid-v0 (17-dimensional action space, 376-dimensional state
space) and Hopper-v0 (3-dimensional actions), both modified with comprehensive stochastic noise.

Baseline Comparisons: We compare against four established continuous MCTS methods: discretized-UCT Kocsis et al.
(2006), Progressive Widening (PW) Auger et al. (2013), HOOT Mansley et al. (2011), and POLY-HOOT Mao et al. (2020).
We also include Voronoi MCTS Kim et al. (2020), a recent method designed for deterministic continuous spaces, to
demonstrate the challenges of applying deterministic methods to stochastic settings.

Experimental Parameters: Across all tasks, we use a reward discount factor of γ = 0.99 and planning horizon of
T = 150 steps. The MCTS search depth is set to D = 100 with n = 100 simulations per state. In discretized-UCT,
actions are discretized into 10 uniformly sampled values. For HOOT and Stochastic-Power-HOOT, given action
space dimension m, we set ρ = 1

4m and ν1 = 4m. In Stochastic-Power-HOOT, we configure HOO tree depth limit
to H̄ = 10 with parameters b = 5, β = 20, and α = 10. All algorithms use rollout policy π0 initialized as V̂ (s) = 0 for all
states s ∈ S.

H.1. Progressive Widening Parameter Selection

We tune environment-specific PW parameters (α, k, c) following:

• Acrobot: α=0.6, k=2.5, c=1.2 (timeseries strategy)

• MountainCar: α=0.55, k=2.2, c=1.3 (momentum strategy)

• CartPole-IG: α=0.5, k=2.0, c=1.0 (adaptive strategy)

• Pendulum: α=0.45, k=2.5, c=1.1 (optimistic strategy)

H.2. Practical Branching Factor Analysis

Our empirical analysis shows that despite theoretical maximum branching factors of 2H , practical branching factors remain
efficient:

• Average branching factors: 1.86-2.17 across different power values

• More than 95% of nodes have only one child

• Branching concentrates at key decision points

• Power mean backpropagation causes algorithm to focus on promising regions

This demonstrates effective exploration-exploitation balance, with the algorithm thoroughly exploring promising regions
while limiting resources on less promising areas.
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