
Stabilizing Transformer Training by Preventing Attention Entropy Collapse

Shuangfei Zhai * 1 Tatiana Likhomanenko * 1 Etai Littwin * 1 Dan Busbridge * 1 Jason Ramapuram * 1

Yizhe Zhang 1 Jiatao Gu 1 Josh Susskind 1

Abstract
Training stability is of great importance to Trans-
formers. In this work, we investigate the training
dynamics of Transformers by examining the evo-
lution of the attention layers. In particular, we
track the attention entropy for each attention head
during the course of training, which is a proxy for
model sharpness. We identify a common pattern
across different architectures and tasks, where low
attention entropy is accompanied by high training
instability, which can take the form of oscillating
loss or divergence. We denote the pathologically
low attention entropy, corresponding to highly
concentrated attention scores, as entropy collapse.
As a remedy, we propose σReparam, a simple
and efficient solution where we reparametrize all
linear layers with spectral normalization and an
additional learned scalar. We demonstrate that
σReparam successfully prevents entropy collapse
in the attention layers, promoting more stable
training. Additionally, we prove a tight lower
bound of the attention entropy, which decreases
exponentially fast with the spectral norm of the
attention logits, providing additional motivation
for our approach. We conduct experiments with
σReparam on image classification, image self-
supervised learning, machine translation, speech
recognition, and language modeling tasks. We
show that σReparam provides stability and ro-
bustness with respect to the choice of hyperpa-
rameters, going so far as enabling training (a) a
Vision Transformer to competitive performance
without warmup, weight decay, layer normaliza-
tion or adaptive optimizers; (b) deep architectures
in machine translation and (c) speech recognition
to competitive performance without warmup and
adaptive optimizers. Code is available at https:
//github.com/apple/ml-sigma-reparam.
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Figure 1: Transformers are sensitive to hyperparameters. Increas-
ing the learning rate easily causes attention entropy collapse and
training divergence. Left: baseline Vision Transformer with default
hyperparameters from Touvron et al. (2021); right: 2× learning
rate (5× 10−4 7→ 1× 10−3).
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Figure 2: Training can become unstable due to rapid change in
attention logit magnitude. We train a Vision Transformer, sharply
reducing its temperature in the attention logits by 10× at different
intervention epochs. (Blue) Intervention during warmup – at epoch
10 – induces a sharp drop in the attention entropy of the first
Transformer block. This is accompanied by an increase in the
sharpness, the largest singular value of the Hessian, and exceeds
the stability threshold (Cohen et al., 2021) (black dashed), resulting
in training instability. (Orange) Reduction after warmup – at
epoch 50 – induces a less severe drop in attention entropy. The
model recovers from this intervention as the sharpness does not
exceed the stability threshold, although the resulting performance
is lower performance than the model that did not experience any
intervention (black solid).
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1. Introduction
Transformers (Vaswani et al., 2017) are state-of-the-art mod-
els in many application domains. Despite their empirical
success and wide adoption, great care often needs to be taken
in order to achieve good training stability and convergence.
In the original paper (Vaswani et al., 2017), residual connec-
tions and Layer Normalizations (LNs) (Ba et al., 2016) are
extensively used for each attention and MLP block (specifi-
cally, in the post-LN fashion). There has since been various
works attempting to promote better training stability and
robustness. For example, the pre-LN (Radford et al., 2019)
scheme has gained wide popularity, where one moves the
placement of LNs to the beginning of each residual block.
Others have argued that it is important to properly condition
the residual connections. Bachlechner et al. (2021) proposes
to initialize the residual connections to zero to promote bet-
ter signal propagation. Zhang et al. (2019); Huang et al.
(2020) remove LNs with carefully designed initializations.

In this work, we study the training instability of Trans-
formers through the lens of training dynamics. We start by
monitoring the entropy of the attention maps averaged over
all query positions, heads and examples. We have found that
the attention entropy is tightly correlated with the model’s
stability and convergence. In particular, small attention
entropy is often accompanied with slow convergence, fluc-
tuations in training loss and, in the worst case, divergence.
As a motivator, we plot the attention entropy curves of a
highly optimized Vision Transformer (ViT) (Dosovitskiy
et al., 2021; Touvron et al., 2021) in Figure 1. We observe
an initial loss oscillation happening at the same time with
sharp dips of the attention entropy curves. When doubling
the default learning rate, all attention entropy collapses to
near zero and training diverges. In addition, we show in
Figures 4 and 7 two sets of experiments of baseline Trans-
formers models with training instability occurring at the
same time of entropy collapse. And more generally, similar
observations can be made in a wide range of model/task
settings if hyperparameters such as learning rate, warmup,
initialization are not carefully tuned.

To further demonstrate this connection, we modify the Trans-
former to have a global temperature by dividing the pre-
softmax (logits) matrix of each attention mechanism by a
scalar quantity whose default value is 1. Modifying the
temperature gives direct control over the attention entropy,
enabling the investigation of a causal connection between
entropy collapse and training instability (see Figure 2 and
Figures 8 and 9 in Appendix B). Here we train a ViT-B/16
on ImageNet1k. At an intervention epoch we modify the
temperature from its default value to 0.1. We see that when
performing this intervention during warmup, attention en-
tropy drops to near zero and training becomes unstable. A
late intervention also causes a drop in entropy and accuracy

curves, however, the model is able to recover to a higher at-
tention entropy regime, although yielding a lower accuracy
than non-intervened training.

To further understand these phenomena, we computed the
sharpness – the largest singular value of the Hessian (the
second order derivative of the loss with respect to the model
parameters), as its magnitude has implications for training
stability (Ghorbani et al., 2019; Yao et al., 2020; Cohen
et al., 2021; 2022; Gilmer et al., 2021). When sharpness
exceeds an algorithm-dependent stability threshold, training
iterations diverge (Cohen et al., 2021; 2022). We see that
interventions inducing the largest drop in attention entropy
result in the sharpness exceeding the stability threshold,
whereas the later interventions do not cause the threshold to
be crossed, explaining how they can recover. For details on
the empirical setup and additional results see Appendix B.

The empirical correlation of entropy collapse and training
instability leads to the following questions: 1) How do we
prevent entropy collapse? 2) Can we improve training stabil-
ity by doing so? We answer these by showing that entropy
collapse can be effectively prevented by controlling the spec-
tral norms of the query and key projections. In particular,
we prove a tight lower bound on the attention entropy, which
decreases exponentially fast with the growth of the spectral
norm of the attention matrix logits. This bound suggests that
entropy collapse can occur swiftly when letting the spec-
tral norm of the weights increase uncontrollably. We then
provide a simple fix, σReparam, which reparameterizes all
weight matrices by sequentially applying Spectral Normal-
ization (Miyato et al., 2018) and a learned multiplicative
scalar. Intuitively, σReparam decouples the update of the
spectral norms of weights from their dimensionality, which
allows them to update smoothly and in a controlled way.
Also note that σReparam does not change the model space,
which allows one to learn an equally expressive model.

We evaluate five tasks: image classification, self-supervised
learning (SSL), machine translation, automatic speech
recognition (Appendix E), and language modeling (Ap-
pendix G). We highlight the empirical results as follows:

1. We show that entropy collapse is commonly observed in
the baseline models of various benchmarks.

2. Image classification: σReparam enables a drastically
simplified ViT training recipe by removing pre-LN, learning
rate warmup, weight decay and not requiring adaptive opti-
mizers. This recipe leads to equivalent (or slightly better)
model performance against baseline training strategies, all
the while reducing training duration by 16% .

3. Self-supervised learning: σReparam helps to drastically
improve the stability and robustness of the SimCLR training,
improving upon existing baselines.
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4. Machine translation: σReparam allows us to stabilize
very deep post-LN architectures up to 100L-100L encoder-
decoder layers.

5. Speech recognition: σReparam allows us to improve
training stability and simplify the training recipe for post-
LN Transformer by removing learning rate warmup and
adaptive optimization.

6. Language modeling: σReparam is compatible with causal
Transformer architectures, and achieves results competitive
with state-of-the-art without using post-LN.

2. Related Works
Transformers have relied heavily on LNs to achieve training
stability. Besides the popular post-LN and pre-LN config-
urations, other variants have been proposed (Wang et al.,
2022; Shleifer et al., 2021; Liu et al., 2020a). On the one
hand, we show empirically that entropy collapse (and its ac-
companied training instability) happens even equipped with
extensive use of normalization layers. On the other hand,
σReparam does not rely on specific normalization layers
and can even work in the absence of it, while effectively
smoothing the attention entropy curves.

There have also been numerous attempts to design better
Transformer initialization schemes, including Zhang et al.
(2019); Huang et al. (2020); Yang et al. (2022); Bachlech-
ner et al. (2021). While proper initializations are indeed
crucial to stable and fast training, we argue that the training
dynamics (affected by the optimizer and training hyperpa-
rameters) is equally important. σReparam in this sense is
an orthogonal approach that specifically targets the entropy
collapse problem, which makes it compatible with standard
initialization methods and provides robust performance.

σReparam is a special case of weight reparameterization,
which has found wide adoption in deep learning. Weight-
Norm (WN) (Salimans & Kingma, 2016) is a well known
example of such methods, but its effectiveness in Transform-
ers is limited. In ConvNets, simple additive weight reparam-
eterization (Ding et al., 2021) has been demonstrated useful
in speeding up training convergence. To the best of our
knowledge, σReparam is the first simple reparameterization
technique that provides competitive performance with well
optimized baseline models. Normalizing weights by its spec-
tral norm is also inspired by SpectralNorm (Miyato et al.,
2018), with the key difference that SpectralNorm explicitly
constrains the model’s capacity, which brings significant
performance loss.

Another related line of work is the rank collapse of Trans-
former training, first identified by (Dong et al., 2021). Rank
collapse refers to the degenerate state of attention where its
output converges to a rank 1 matrix, where all tokens share

the same representation. This analysis is further followed up
by (Anagnostidis et al., 2022) suggesting that rank collapse
causes vanishing gradient of the attention query and keys.
Entropy collapse, on the other hand, characterizes a differ-
ent failure pattern, where the attention matrix remains high
rank, and it tends to introduce high gradient norms rather
than vanishing gradients (see Figure 4).

3. Method
3.1. Attention Entropy

At the core of Transformers is dot-product attention. Let
X ∈ RT×d denote an input sequence to an attention layer
(we assume self-attention for simplicity of presentation),
where T, d are the number of tokens and the token di-
mension, respectively; and let WK ,WQ ∈ Rd×na ,WV ∈
Rd×nv denote the key, query and value matrices. A simple
attention layer then computes Att(X) = AXWV where
A = ψ(a), a = XWKW

⊤
QX

⊤ and ψ is the row-wise
softmax function. We define the attention entropy of a
row i of A by Ent(Ai) = −∑T

j=1Ai,j log(Ai,j). Let

Ent(A) = 1
T

∑T
i=1 Ent(Ai) denote the average attention

entropy of A. Our goal is to alleviate the entropy collapse
problem and achieve a smooth evolution of the attention
entropy through training.

We next investigate the properties of attention entropy. We
show in the next theorem that Ent(A) is directly connected
to the spectral norm (the largest singular value) of WKW

⊤
Q .

Theorem 3.1 (Attention entropy lower bound). Let σ =
∥WKW

⊤
Q ∥2, σx = ∥XX⊤∥2, σ = σσx and β =

exp
(
−σ

√
T

T−1

)
. Then it holds that:

Ent(Ai) ≥ log (1 + (T − 1)β) +
σ
√
T (T − 1)β

1 + (T − 1)β
. (1)

Moreover, there exist inputs X and weights WK ,WQ for
which the lower bound in Equation (1) is tight.

Therefore, for large σ, T , the minimum attainable entropy
behaves like Ω(Tσe−σ), hence decreasing exponentially
fast with σ. We note that the bound on the entropy in
Theorem 3.1 is tight in a sense that it is achievable for
some inputs X . Proofs for Theorem 3.1 and the following
Proposition are provided in Appendix A.

Entropy collapse and training stability. Transformers
are hard to train, requiring a careful tuning of a variety of
hyperparameters. Notably, transformers can exhibit stages
of training instability, with loss values oscillating uncon-
trollably, to the point of divergence. From a loss geometry
perspective, we hypothesize that these regions of instability
are caused when the weights enter a region of high curva-
ture, a hypothesis supported by (Chen et al., 2022), which
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showed that transformer models tend to converge to ex-
tremely sharp local minima. In this paper however, we step
away from the loss geometry perspective and identify a
novel empirical observation unique to the Transformer ar-
chitecture. We observe that training instability and attention
entropy collapse appear in tandem. Moreover, this obser-
vation is consistent across multiple settings and modalities
(see Figures 4, 7, 12, 15 and 17). Equipped with this obser-
vation, we might ask whether preventing attention collapse
might in turn prevent training instability. We highlight that
the affirmative answer provided in this paper could prove
extremely practical, as attention entropy is easier to com-
pute and potentially manipulate then directly tackling the
loss geometry, which typically involves computing second
derivatives, as in (Foret et al., 2021). We next describe out
method for preventing entropy collapse through a simple
reparameterization scheme.

3.2. σReparam

σReparam is a method to reparameterize the weights of a
linear layer with:

Ŵ =
γ

σ(W )
W, (2)

where σ(W ) ∈ R is the spectral norm of W and γ ∈ R is
a learnable parameter, initialized to 1. In practice, σ(W )
can be computed via power iteration (Mises & Pollaczek-
Geiringer, 1929) as in SpectralNorm (SN) (Miyato et al.,
2018), see Algorithm 1 in Appendix C for a sketch imple-
mentation. Note that σReparam brings little extra overhead
as the power iteration mainly consists of two matrix vector
products and is only performed on the parameters rather
than activations. During inference, one can compute Ŵ
once and freeze it, which has the same cost of a regular
linear layer.

σReparam decouples the update rate of spectral norm
from the dimensionality of weights. As is the case with
other reparameterization techniques, σReparam leaves the
representational capacity of the network intact, however
forces a different optimization dynamic. This property
makes it distinct from SN, which explicitly constrains the
model space. By absorbing the spectral norm σ into a single
parameter γ, σReparam effectively forces the updates for γ
to be dimensionality independent. This property is in con-
trast to the naive parameterization, where the spectral norm
of weight matrices grows rapidly for large weight matrices
when equipped with adaptive optimizers. To illustrate this,
we adopt common assumptions in stochastic optimization,
and model the stochastic gradients at some point in the opti-
mization by g = µ+ ϵ ∈ Rw×w, where µ is the mean and ϵ
is a random variable with E[ϵ] = 0,E[ϵ2] = n2 ∈ Rw×w. A
typical Adam optimizer update attempts to approximate the
following ideal update: ∆ = E[g]√

E[g2]
. The following propo-

sition lower bounds the spectral norm of the ideal update
σ(∆):
Proposition 3.2. It holds that:

σ(∆) ≥ √
w

√√√√1− 1

w2

w∑
i,j=1

n2i,j
µ2
i,j + n2i,j

. (3)

The noise second moment n2 is typically in the order of
µ2, hence Equation (3) indicates that the spectral norm of
the ideal update should be large, growing linearly with

√
w.

Moreover, for large batch sizes we would have n2 ≪ 1,
resulting in σ(∆) ∼ √

w 1. While such a large spectral
norm could be offset by a proper learning rate adjustment,
this would be counterproductive since 1) a small learning
rate typically induces inferior performance, and 2) archi-
tectures with layers of varying sizes, such as the case in
Transformers, would require a per layer learning rate tuning.
In contrast, σReparam avoids this issue since the spectral
norm of each layer is controlled by a single parameter γ,
hence the size of its update does not scale with w and is uni-
form across layers. This indicates σReparam should provide
the models of improved robustness with respect to learning
rate and other related hyperparameters, by maintaining the
spectral norm of the weights (and as a result the attention
entropy) in a healthy regime.

4. Experiments
4.1. Supervised Image Classification

Improved robustness. We first start from a well tuned
recipe with ViT-B on ImageNet1k (Deng et al., 2009; Tou-
vron et al., 2021), and vary its hyperparameters in the
grid

[
baseLR ∈ {5 × 10−4, 10−3}, batchSize ∈

{1024, 2048}, warmupEpochs ∈ {0, 5}
]
. 7/8 configu-

rations lead to divergence except for the default
[
5× 10−4,

2048, 5
]

hyperparameter. We next apply σReparam to all
the linear layers (including the initial patch embedding), and
remove all the pre-LNs instances. All configurations in the
same grid search converge with an average top-1 accuracy of
81.4% (±0.52%) demonstrating improved robustness with
respect to hyperparameters.

Simplified recipe. σReparam also enables a simplified
framework for training ViT-B, ViT-L and ViT-H models,
in contrast to state-of-the art ImageNet1k ViT training pro-
tocols such as the fully supervised MAE recipe (He et al.,
2022) and DeiT (Touvron et al., 2021), see Table 1. In the
case of ViT-B models, we are able to train for a shorter dura-
tion, remove all pre-LNs layers, remove learning rate (LR)

1This estimation would be exact for full batch optimization.
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Table 1: Supervised image classification on ImageNet1k. The B/L/H refer to ViT-B/16, ViT-L/16 and ViT-H/14 variants respectively. The
H and L variants have a known overfitting trend on this dataset (He et al., 2022). SN corresponds to the spectral normalization baseline
without the learnable scalar, while WN refers to the WeightNorm baseline. The WN configuration leads to immediate divergence without
using pre-LN; we thus only report the result with WN + pre-LN.

DeiT (B) σReparam (B) SN (B) WN (B) MAE (B/L/H) σReparam (B/L/H)

Top-1 (%) 81.8 82.2 69.81 77.51 82.1 / 81.5 / 80.90 81.88 / 82.41 / 81.09
Training Epochs 300 300 250 250 300 / 200 / 200 250 / 300 / 170
pre-LN Yes No No Yes Yes No
SGD No No Yes (LARS) No No Yes (LARS)
Cosine Schedule Yes Yes No No Yes No
LR Warmup Yes Yes No No Yes No
Weight Decay Yes Yes No No Yes No
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Table 2: Finetuned supervised image classification on ImageNet1k after
pretraining on ImageNet21k (11M samples) or larger data. We compare
σReparam, trained for 90 epochs against DeiT3 (Touvron et al., 2022)
(trained for 90 [-90E] and 240 [-240E] epochs), an optimized finetuned
CLIP (Dong et al., 2022), and a scaled supervised ViT-B trained on JFT-
3B (Zhai et al., 2022). All models compared use the ViT-B/16 architecture.
σReparam presents competitive results and sits in between the DeiT3-
90E and DeiT3-240E runs, while not using pre-LN, LR warmup and only
requiring a small weight-decay of 10−5.

DeiT3-240E DeiT3-90E CLIP FT ViT-B σReparam

Test Top-1 (%) 86.7 85.2 86.6 86.6 85.84
EMA Top-1 (%) - - - - 85.87
Dataset size 11M 11M 400M 3B 11M
Finetuning res 384 224 384 384 384
pre-LN Yes Yes Yes Yes No
Optimizer LAMB LAMB AdamW Adafactor LAMB
LR Schedule Cos Cos Cos r-sqrt step
LR Warmup Yes Yes Yes Yes No
Weight Decay Yes Yes Yes Yes Yes

Figure 3: ImageNet1k test performance, attention entropy, and largest singular value of attention weights of a supervised σReparam
ViT-B/16 alongside supervised MAE ViT-B/16 and spectral normalization (SN) baselines. Best (solid line) and worst (dashed line) trials
of each method are presented. The MAE ViT-B/16 presents a more constrained attention entropy in contrast to the DeiT formulation from
Figure 1 due to the longer warmup, lower learning rate and stronger weight decay. While the SN baseline presents stable training, the
model substantially under performs σReparam.

warmup, remove cosine scheduling (requiring only a sim-
ple step schedule at 210 epochs) and use no weight decay.
Furthermore, σReparam enables SGD training via LARS
(You et al., 2017) (with momentum 0.9) – something not
possible with traditional ViT training protocols (Touvron
et al., 2021; He et al., 2022). These simplifications also have
the added benefit of reducing GPU memory overhead2. For
the ViT-L model we relax the LR schedule back to cosine
and slightly increase the training interval to 300 epochs. All
models use FP32 precision on the attention and σReparam
operands and keep mixed precision training for the rest of
the network. The full set of hyperparameters is available in
Appendix H. We note that for larger models like the ViT-
L/16 and ViT-H/14 a slight weight decay cosine schedule

2We observe a 8.2% memory reduction in full fp32 precision
(for a 1:1 comparison) with a batch size of 86 per GPU.

from 0.0 to 10−5 enables easier training.

To further understand the effect of σReparam, we track both
the attention entropy, and the largest singular value of the
attention weight matrix over the course of training. In Fig-
ure 3, σReparam maintains lower spectral norms for the
attention weight matrices and presents a higher, but mono-
tonically decreasing attention entropy throughout training.
The benefit of such smooth and bounded attention entropy
curves is reinforced by the accelerated performance ob-
served in Test Top 1 and the 50 epoch reduction in training
time for the σReparam ViT-B/16 shown in Figure 3.

Finally, we extend σReparam to a much larger 11M sample
training dataset, ImageNet21k (Ridnik et al., 2021), and
train a ViT-B/16. We then finetune this model with Ima-
geNet1k and report the performance in Table 2. We observe
that σReparam presents competitive results against ViT-
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B/16’s trained on drastically larger datasets such as JFT3B
(Zhai et al., 2022) and the 400M sample CLIP pre-training
dataset (Dong et al., 2022), all the while presenting stable
training and not requiring LayerNorm or LR warmup.

4.2. Self-Supervised Training of Visual Representations

In computer vision, SSL has been effective in enabling ef-
ficient training on downstream tasks (Assran et al., 2022).
Most of this progress has been made using convolutional
architectures, while works using ViTs often require special-
ized training recipes (Caron et al., 2021).
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Figure 4: The best (solid line) and worst (dashed line) trials of each
method from 10 trials of SimCLR for each method on ImageNet1k
with 40 epochs of learning rate warmup. We show classification
performance alongside relevant metrics from the first attention
layer (top to bottom): attention entropy, the spectral norm of the at-
tention weights, and the ℓ∞–gradient norm of the attention weights.
We see that the Frozen Patcher method functions as intended, reg-
ulating its gradient norm, and protecting it from the large gradient
norms inducing instability in Baseline. We also observe a second
form of instability during training: the growing spectral norm leads
to a poorly behaved attention mechanism, entropy collapse, and a
drop in performance as described in Section 3. This affects Base-
line, as well as Frozen Patcher, as neither method gives specific
protection against this second type of instability (solid and dashed
red, and dashed green lines). Finally, we see that σReparam with
and without pre-LN regulate both the gradient norms, as well as
the spectral norms, giving defense against both types of instability.

Recently, it was found that ViTs suffer from training insta-
bilities in SSL tasks (Chen et al., 2021). These instabilities

can be remedied through a combination of frozen patch
embedders, initialization schemes, and longer learning rate
warmups; however, there is an open question whether a gen-
eral solution providing stable SSL ViT training exists (Chen
et al., 2021).

Here, we demonstrate that σReparam is a ViT SSL stabilizer.
Taking SimCLR as our SSL method, we investigate four
variants. Baseline and Frozen Patcher were studied in Chen
et al. (2021), whereas σReparam and σReparam + pre-LN
are our solution.

These methods are detailed in Table 3, and their full hyper-
parameters are given in Table 6 of Appendix D.1.
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Figure 5: Linear probe performance of each of the 10 trials of
SimCLR for each stabilization method. We see that σReparam is
the most stable method. σReparam + pre-LN is also quite stable.
In the case where it experiences instabilities, we see that it is able
to recover much quicker than Baseline and Frozen Patcher. This is
due to the regularization of the spectral norm which 1) prevents
any arising instability pushing the model too far away from the
current solution, and 2) keeps the attention mechanism useful, such
that gradients are available for any required correction.

We observe two types of instability. The first, as observed
in Chen et al. (2021), is induced by large gradient norms
in early layers. The second, described in Section 3, relates
to entropy collapse. We find that Frozen Patcher protects
against the first type, but is still susceptible to the second.
σReparam, however, can protect against both types of insta-
bility, yielding more reliable training (see Figures 4 and 5).
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Table 3: (Top) Best SimCLR ImageNet1k trial top 1 linear probe performance training for 300 epochs. σReparam + pre-LN yields
the highest performing run, with Frozen Patcher performing competitively. (Bottom) Configuration of the variants used in our stability
analysis. The MoCo v3 weight initialization and patch initialization scheme are described in Chen et al. (2021). For full hyperparameters,
see Table 6 of Appendix D.1.

Baseline Frozen Patcher σReparam σReparam + pre-LN

Top 1 @ 300 (ours) 72.4 74.4 73.7 74.5

Weight Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)
Patcher Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)
Frozen Patcher No Yes No No
σReparam No No Yes Yes
pre-LN Yes Yes No Yes

1 2 3 4 5 6 7 8 9 10
Run rank
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Figure 6: Linear probe performance on ImageNet1k at the end
of training over 10 trials for each method. Trials are ordered by
decreasing performance, with run rank 1 (10) corresponding to
the best (worst) trial. Frozen Patcher and σReparam + pre-LN
produce the best individual runs, with σReparam marginally lower.
σReparam + pre-LN and σReparam are the methods most reliably
giving good performance, with Baseline and Frozen Patcher each
susceptible to at least one instability type.

As noted in Chen et al. (2021), instabilities reduce final per-
formance. We show the instability impact on performance
below. in Figure 6. The methods with the best performing
individual runs are Frozen Patcher and σReparam + pre-LN,
whereas the most stable methods are σReparam + pre-LN
and σReparam.

Our main stability experiments use 40 epochs of learning
rate warmup, matching the setting of Chen et al. (2021).
Using σReparam, as in the supervised setting, gives training
stability even at the lower learning rate warmup of 10 epochs.
For more details, see Appendix D.2.

Finally, we look at the performance attainable when training
for a longer duration of 300 epochs in Table 3. The best
performing method run is given by σReparam + pre-LN,
with Frozen Patcher performing almost as well, and both
outperforming the reference SimCLR result (Chen et al.,
2021).

Ultimately, we see while σReparam produces the lowest de-
gree of instability, the best overall method for stable training
of SimCLR ViTs is σReparam + pre-LN, producing both
the highest ImageNet1k linear probe performance at 100
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Figure 7: MT training on WMT’17 for 100L-100L DeepNorm and
DeepNorm with injected σReparam across 3 runs with different
seeds: training loss (bottom), encoder self-attention entropy (top)
and encoder-decoder cross-attention entropy (middle) for 95th
layers. Attention entropy collapse with further model divergence
is observed for DeepNorm, while σReparam is bounding entropy
and provides stable training.

epochs (69.6 %) and 300 epochs (74.5 %) epochs, as well as
very stable training over many trials, both at long and short
learning rate warmup.

4.3. Machine Translation

In machine translation (MT) stable training of deep
encoder-decoder post-LN Transformers is an active research
area (Wang et al., 2022; Liu et al., 2020a). Vanishing gradi-
ents problem has been reported by many works, leading to
different solutions including rescaling residual connections:
e.g., Wang et al. (2022) trained a 1000-layer Transformer by
properly rescaling residual connections and initialization de-
pending on model depth, dubbed DeepNorm. We examined
attention entropy collapse for the deep Transformers in MT
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Table 4: Results for MT on WMT’17 English-German data for post-LN, with or without additional σReparam, with or without residual
rescaling (‘DeepNorm’ from Wang et al. (2022)). We report average BLEU score and its std across 3 runs with different seeds for a variety
of encoder-decoder architectures: 6L-6L, 18L-18L, 50L-50L, and 100L-100L. ‘DV’ states for how many times a model diverges / is not
training across runs. With red block we mark unstable baseline training while with blue block – training stabilized by σReparam.

Models 6L-6L 18L-18L 50L-50L 100L-100L

DV Valid BLEU Test BLEU DV Valid BLEU Test BLEU DV Valid BLEU Test BLEU DV Valid BLEU Test BLEU

post-LN 0/3 34.20.2 27.80.2 1/3 35.20.2 29.00.2 3/3 - - 3/3 - -
+ σReparam 0/3 34.30.3 27.80.2 0/3 35.20.2 28.70.2 0/3 34.90.3 28.50.6 3/3 - -

DeepNorm 0/3 34.20.2 27.90.2 0/3 35.70.4 29.20.2 0/3 35.70.2 29.20.1 2/3 35.20.0 29.20.0

+ σReparam 0/3 34.40.4 27.70.2 0/3 35.20.2 28.60.1 0/3 34.80.4 28.30.3 0/3 34.40.1 28.00.1

and found that they suffer not only from vanishing gradients
but also from entropy collapse, both for vanilla post-LN
and DeepNorm. By injecting σReparam alongside post-
LN/DeepNorm, we empirically show that it is able to bound
attention entropy and stabilize training without any diver-
gent training loss growth issues. Details on experiments and
all findings are in Appendix F.

Empirical setup. We use standard WMT’17 English-
German benchmark with newstest2016 as a validation and
newstest2017 as test sets. We consider NL-NL encoder-
decoder models with N encoder and N decoder layers,
where N = 6, 18, 50, 100, for both post-LN and DeepNorm
configurations. For all models we report BLEU score on
validation and test sets across 3 runs with different seeds.

Attention entropy collapse occurs in deep models. While
we reproduced stable results for 6L-6L post-LN and ob-
served nicely bounded attention entropy behaviour, for 18L-
18L configurations, divergence is observed when varying
the random seed. By close inspection we observe no van-
ishing gradients problem, but attention entropy collapse
clearly occurs during training. Deeper models, namely 50L-
50L and 100L-100L, are unable to train due to vanishing
gradients as well as attention entropy collapse for some of
the deep layers (Figure 17). For DeepNorm while we are
able to reproduce results for 6L-6L, 18L-18L and 50L-50L
depths observing stable training (no any models diverged
and training behaved well), yet we observe instability in
training of the 100L-100L model, resulting in only 1 over 3
(different seeds) successful run. By closer inspection of the
training behaviour we do not see any drastic issue of van-
ishing gradients, however we see attention entropy collapse,
see Figures 7 and 18.

σReparam resolves entropy collapse in deep models. To
alleviate attention entropy collapse and confirm σReparam
effectiveness for deep models we inject σReparam into post-
LN and DeepNorm models. As a result, σReparam nicely
bounds attention entropy for 18L-18L and 50L-50L post-LN
models (Figure 19), resolving any divergence issues as well
as vanishing gradients in the 50L-50L model. σReparam
also nicely bounds attention entropy for 18L-18L, 50L-50L,

100L-100L DeepNorm models (Figure 20), resolving any
divergence issues for 100L-100L, see Figure 7 (vanishing
gradients are not observed as DeepNorm targets it). In
terms of performance (Table 4), σReparam with post-LN
or DeepNorm matches their baselines for 6L-6L and in the
same ballpark for 18L-18L. However, σReparam is inferior
to DeepNorm for 50L-50L and 100L-100L.

4.4. Speech Recognition and Language Modeling

We also conduct empirical analysis of speech recognition
in Appendix E and observe attention entropy collapse for
different configurations. σReparam alongside with post-
LN (a) stabilizes training of post-LN (b) improves robust-
ness with respect to hyperparameters and (c) to the best
of our knowledge, for the first time allows model training
without an adaptive optimizer achieving stable training and
comparable performance. For language modeling, see Ap-
pendix G, σReparam simplifies training recipe by removing
all LayerNorms and achieves comparable performance to
state-of-the-art.

5. Conclusion
Transformer training stability is a well acknowledged, but
still unsolved problem. This problem comes with many
facets, and there are multiple necessary conditions that need
to be met in order to guarantee stable and robust train-
ing. Our work identifies attention entropy collapse as a
unique failure pattern that seems to be commonly observed
in a wide range of settings and tasks. We also show that
σReparam as a simple reparameterization of the weights
can effectively address the entropy collapse problem, which
often leads to improved training stability and robustness.

There are also limitations of our work. First of all, it is
unclear if there is a causal relationship between entropy col-
lapse and training instability of Transformers. We believe
that establishing such a connection will enable a deeper un-
derstanding of the challenges of Transformer training from
the optimization perspective. Second, σReparam, while ef-
fective, is not a panacea. In the practical sense, one might
still benefit from combining σReparam with many other
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useful techniques, including initialization, feature normal-
ization, advanced optimizers, etc. We hope that our work
opens new perspectives towards inventing new design and
training principles in the future.
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A. Proof of Theorem 3.1 and Proposition 3.2

Theorem 3.1 (Attention entropy lower bound). Let σ = ∥WKW
⊤
Q ∥2, σx = ∥XX⊤∥2, σ = σσx and β = exp

(
−σ

√
T

T−1

)
.

Then it holds that:

Ent(Ai) ≥ log (1 + (T − 1)β) +
σ
√
T (T − 1)β

1 + (T − 1)β
. (1)

Moreover, there exist inputs X and weights WK ,WQ for which the lower bound in Equation (1) is tight.

Proof. Without loss of generality let u ∈ RT denote the i’th row of A, u = Ai. From the assumptions it holds that ∥u∥ ≤ σ.
Let p = p(u) denote the softmax probabilities given by:

pj =
euj

Z
, (4)

where Z =
∑T

k=1 e
uk is the partition function. The entropy given p(u) is then:

Ent(u) = −
T∑

j=1

euj

Z
log

(
euj

Z

)
= −

T∑
j=1

uje
uj

Z
+ log(Z). (5)

We wish to solve the following minimization problem:

min
u

Ent(u) s.t ∥u∥2 ≤ σ2, (6)

Define the Lagrangian:

L(u, λ) = Ent(u) +
1

2
λ(∥u∥2 − σ2). (7)

To find all saddle points, we solve the system of equations:

∂L(u, λ)
∂u

= 0,
∂L(u, λ)
∂λ

= 0. (8)

Giving rise to the following set of equations:

∀1≤k≤T , λuk =

T∑
j=1

euj

Z

[
δj,k − euk

Z

] [
1 + log

(
euj

Z

)]
(9)

= pk[log(pk) + Ent(u)] (10)

∥u∥2 = σ2. (11)

As a first step, assume that for the minimizer u⋆ of Equation (6) there exists an index k⋆ such that u⋆k⋆ = 0. Using
Equation (10):

0 = log(p⋆k) + Ent(u) = −
T∑

j=1

pj log

(
pj
pk⋆

)
= −

T∑
j=1

pj log(e
uj ) = −

T∑
j=1

pjuj = −Eu. (12)

From the first set of equations we arrive at the condition:

∀uj1
̸=0,uj2

̸=0, pj1
log(pj1) + Ent(u)

uj1
= pj2

log(pj2) + Ent(u)
uj2

(13)

−→ pj1 +
Eu
uj1

= pj2 +
Eu
uj2

(14)

−→ pj1 = pj2 . (15)

13



Stabilizing Transformer Training by Preventing Attention Entropy Collapse

This however implies that u1 = u2 = ... = uT = 0, hence a contradiction to Equation (11).
Now, assuming ∀k uk ̸= 0, we have using Equation (10):

∀uj1
̸=uj2

,
pj1
uj1

[log(pj1) + Ent(u)] =
pj2
uj2

[log(pj2) + Ent(u)] (16)

−→ euj1

(
1− Eu

uj1

)
= euj2

(
1− Eu

uj2

)
. (17)

We now make the following observation: we may assume a solution u to Equation (6) must contain at least one negative
component. To see this, consider u such that u > 0 component wise, and ∥u∥ ≤ σ. We can always move u by some vector
v|∀i,j vi = vj such that ∥u− v∥ ≤ σ where u− v has at least one negative component. Since all components in v are equal,
we have that Ent(u) = Ent(u− v). Moreover, without loss of generality we may assume that Eu > 0 due to the same logic.

Let uj1 , uj2 < 0, then according to Equation (17):

euj1

(
1− Eu

uj1

)
= euj2

(
1− Eu

uj2

)
> 0 (18)

Note that f(x) = ex(1− γ
x ) is monotonously increasing in x ∈ (−∞, 0) and x ∈ [γ,∞) for γ > 0, implying that uj1 = uj2 .

Similarly, if uj1 < 0 and uj2 > 0, then euj2

(
1− Eu

uj2

)
> 0 hence uj2 > Euj2 . Since f(x) = ex(1− γ

x ) is monotonous in
x for both x < 0 and x > γ, we conclude that a solution u must contain 2 unique values, one positive and one negative. Let
the different components be α, β such that α > 0, β < 0. A minimizer of the entropy would correspond to a u with T − 1
components equal to β, and 1 component equal to α, such that:

α = σ

√
1− 1

T
, β = −σ

√
1

T (T − 1)
, (19)

with the corresponding entropy:

Ent(u⋆) = log

(
1 + (T − 1)e

−σ
√

T
T−1

)
+

σ
√
T (T − 1)e

−σ
√

T
T−1

1 + (T − 1)e
−σ

√
T

T−1

. (20)

Proposition A.1. It holds that:

σ(∆) ≥ √
w

√√√√1− 1

w2

w∑
i,j=1

n2i,j
µ2
i,j + n2i,j

. (3)

Proof. We have that:

σ(∆) ≥ 1√
w

√
Trace(∆⊤∆) =

1√
w

√√√√ w∑
i,j=1

µ2
i,j

µ2
i,j + n2i,j

=
√
w

√√√√1− 1

w2

w∑
i,j=1

n2i,j
µ2
i,j + n2i,j

. (21)
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B. Relationship Between Entropy Collapse and Training Instability
B.1. Experimental Outline

Here we will investigate the interplay between entropy collapse and training stability by asking: would a model with stable
training but not exhibiting entropy collapse have been stable if entropy collapse was induced, all other factors held constant?
In do-calculus (Pearl, 2009), this roughly corresponds to checking

P (stable = True| stable = True, collapse = False, do(collapse = True)) < 1.

Inducing entropy collapse Note that logits u ∈ Rd and temperature τ give rise to the temperature normalized softmax

pi(u, τ) =
exp(ui/τ)∑d
j=1 exp(uj/τ)

(22)

and corresponding entropy

Hp(u, τ) = −1

d

d∑
i=1

pi(u, τ) log pi(u, τ). (23)

Holding u constant, the entropy is low when τ → 0, and is high when τ → ∞. As entropy collapse is observed in
experiments when Hp(u, τ) → 0, we will attempt to induce entropy collapse by sending τ → τtarget, where τtarget ≪ 1.

Concretely, for a Transformer model, we normalize the logits of the attention matrix by temperature. We use the same
temperature normalization for every layer, i.e. the Transformer has a global temperature. We start the temperature τ = 1
which corresponds to the default Transformer model without temperature normalization. At a prescribed epoch during
training, we perform a temperature intervention, where we change the temperature from τ = 1 to a target temperature τtarget.
The transition is sharp, and happens at the start of the prescribed epoch, which we refer to as the intervention epoch.

We use the MAE ViT-B/16 recipe (see Appendix H) for these experiments, and train for a total of 100 epochs on ImageNet1k.
To simplify the analysis, we only use ImageNet1k training augmentations, and use no learning rate decay schedule (i.e. the
learning rate is flat after warmup).

Eigenvalues of the Hessian As properties of the Hessian have been successfully used to gain an understanding of stability
of the learning process (Ghorbani et al., 2019; Yao et al., 2020; Cohen et al., 2021; 2022; Gilmer et al., 2021), we will also
use them in our analysis. Specifically, we will analyze the magnitude |λi| of the largest magnitude eigenvalues λi of the
Hessian H

Ha,b =
∂2L

∂θa∂θb
, H ∈ RP×P , Hvi = viλi, ||vi|| = 1, (24)

where θa is the a–th parameter, L is the scalar loss, P is the number of model parameters, and vi is the normalized
eigenvector corresponding to the eigenvalue λi. We take |λ1| > |λ2| > . . . > |λP |, and call the largest eigenvalue |λ1| the
sharpness, in line with the stability literature.

Computing and storing the Hessian explicitly is problematic, as it is O(P 2) in time and memory. Instead, noting that the
Hessian Vector Product (HVP) Hv for any vector v can be computed using the Vector Jacobian Product (VJP) or Jacobian
Vector Product (JVP), avoiding explicit computation of H . Treating the HVP as a linear operator then allows the use of
numerical methods for computing the spectrum (Yao et al., 2020; Ghorbani et al., 2019). For our iterative method we use
the implementation of Lanczos from CuPy (Okuta et al., 2017). We compute the 5 largest eigenvalues of H using 32,768
samples from the ImageNet1k training set, and perform this computation at the end of each training epoch.

The Stability Threshold Different optimization algorithms have a stability threshold; under a local quadratic assumption,
if any Hessian eigenvalue of the loss exceeds this threshold, iterations of the optimization procedure will diverge (Cohen
et al., 2021; 2022). For AdamW, the stability threshold Γ is derived in the case of a short time-horizon frozen (i.e. non-fully
adaptive) approximation of AdamW, has been shown empirically as a suitable stability threshold for the full algorithm
(Cohen et al., 2022), and is given by

Γ =
2 + 2β1
1− β1

1

η
=

38

η
, (25)

where β1 = 0.9 is the Adam momentum of the gradient moving average (Kingma & Ba, 2015). We include this threshold in
our analysis.
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B.2. Results
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Figure 8: Training stability of a Vision Transformer under sharp reductions of its temperature by 10×, varying at what epoch in training
the intervention occurs. We plot (left, top to bottom) training performance, the spectral norm of the first attention projection matrix, the
attention entropy of the first attention block, the learning rate and the temperature, (right, top to bottom) the largest to fifth largest singular
values of the Hessian by magnitude. We see that interventions in the warmup period – at epochs 10 and 20 – induce a sharp drop in the
entropy α(1) of the attention mechanism in the first Transformer block. This is accompanied by an increase in the sharpness |λ1| beyond
the stability threshold (Cohen et al., 2021; 2022) (black dashed), resulting in training instability. Interventions afterwards, at epochs 20,
30, 50 and 80 all induce a drop in attention entropy, but no entropy collapse. These models also recover as the sharpness does not exceed
the stability threshold. We also show the performance of an unintervened Transformer (None).
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Figure 9: Training stability of a Vision Transformer under modifications of its temperature at epoch 10 in training. We plot (left, top to
bottom) training performance, the spectral norm of the first attention projection matrix, the attention entropy of the first attention block,
the learning rate and the temperature, (right, top to bottom) the largest to fifth largest singular values of the Hessian by magnitude. We see
that reducing the temperature to below 0.15 causes a sharp drop in the entropy α(1) of the attention mechanism in the first Transformer
block and an increase in the sharpness |λ1| beyond the stability threshold (Cohen et al., 2021; 2022) (black dashed), resulting in training
instability. Temperatures larger than 0.16 but lower than 1 do not induce training as they do not cross the stability threshold, although
these interventions cause a moderate drop in attention entropy before recovery. We also investigated increasing the temperature, to ensure
we were not just “shocking” the system, and in fact it is a drop in temperature that is particularly problematic. Setting the temperature
to 100 increases the entropy as expected, but also induces a drop in performance. These models also recover as the sharpness does not
exceed the stability threshold.
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C. Implementation of σReparam
To compute the spectral norm of the current matrix we use the power method as an approximation method to speed up
computations. See Algorithm 1 for a sketch implementation3. Note that in practice fp32 precision is typically required for
numerical stability. We have experimented with various configurations applying σReparam to key and query weights, and/or
in other parts (e.g., all other linear layers in the model). While we found that the performance is robust to the configurations,
applying it to all the layers amounts to the simplest implementation and also works well in practice, e.g., allowing the
removal of LN layers. σReparam does not bring any overhead compared to pre-LN or post-LN configurations, see Table 5.

Algorithm 1 Pseudo code of σReparam in a PyTorch-like style.

# Parameters. W: weight matrix, shape (d, c); gamma: the learned spectral norm, shape (1,)
# Buffers. u: shape (d,), v: shape (c,), the left and right singular vectors of W
if init: # initialize u, v as random unit vectors and gamma to 1

u = randn(d)
u = u / u.norm(dim=0)
v = randn(c)
v = v / v.norm(dim=0)
gamma = ones(1)

if training: # if in the training mode, perform one step of power iteration first
with torch.no_grad():

u = W.mv(v)
u = u / u.norm(dim=0)
v = W.T.mv(u)
v = v / v.norm(dim=0)

sigma = einsum(’d,dc,c->’, u, W, v)
W_hat = gamma / sigma * W # the effective spectral norm of W_hat would be gamma

Table 5: Time for one training step for different normalizations in different domains.

Model ASR (ms) MT 8L-18L (ms)

post-LN 450 1700
pre-LN 450 1800
σReparam 450 2200

+ post-LN 510 2300

3By default we use one step of power iteration per gradient update step, similar to (Miyato et al., 2018). Empirically we found no
difference in performance when using multiple power iteration steps.
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Table 6: Default hyperparameters of the variants of SimCLR used in our stability analysis. The MoCo v3 weight initialization and patch
initialization scheme are described in Chen et al. (2021). SinCos refers to stacked 2D SinCos positional encodings (Vaswani et al., 2017).
The table is divided vertically into hyperparameters that differ across methods (top) and hyperparameters shared across methods (bottom).

Baseline Frozen Patcher σReparam σReparam + pre-LN

σReparam No No Yes Yes
Frozen Patcher No Yes No No
Layer Norm Yes Yes No Yes
Patcher Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)
Weight Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)

Architecture ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16
Batch Size 4096 4096 4096 4096
ColorJitter Strength 0.5 0.5 0.5 0.5
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Learning Rate Sched Cosine Cosine Cosine Cosine
Learning Rate Warmup 40 Epochs 40 Epochs 40 Epochs 40 Epochs
Optimizer AdamW AdamW AdamW AdamW
Positional Encoding SinCos SinCos SinCos SinCos
Weight Decay 0.1 0.1 0.1 0.1

D. Self-Supervised Training of Visual Representations
D.1. Hyperparameters

Here we outline the hyperparameters of our experimental setup for SimCLR+ViT stability. For the variations, alongside
their default hyperparameters see Table 6. These hyperparameters are used in all SimCLR runs unless stated otherwise.

Augmentations We use SimCLR augmentations throughout, however, we run at half ColorJitter strength, equal to the
ColorJitter strength of MoCo v3. For completeness, we provide our training augmentation here, our testing augmentation is
the standard resize, center crop and normalize. Half color strength corresponds to color jitter strength = 0.5.
Setting color jitter strength = 1.0 recovers the base SimCLR training augmentations.
[

transforms.RandomResizedCrop(
image_size_override, scale=crop_scale, interpolation=Image.BICUBIC

),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(

[
transforms.ColorJitter(

brightness=0.8 * color_jitter_strength,
contrast=0.8 * color_jitter_strength,
saturation=0.8 * color_jitter_strength,
hue=0.2 * color_jitter_strength,

)
],
p=0.8,

),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([M.GaussianBlur([0.1, 2.0])], p=0.5),
transforms.ToTensor(),
IMAGENET_NORMALIZE,

]

D.2. Reduced Learning Rate Warmup

In Chen et al. (2021) the authors noted that the learning rate warmup period needed extending from its typical ImageNet1k
default of 10 epochs to 40 epochs, enhancing the stability of the method. We observe that using σReparam, either with or
without pre-LN, we are able to achieve stable SimCLR+ViT training at the original warmup period of 10 epochs. As with
our analysis at the longer warmup period, we also investigate the performance distribution across the trials, giving a sense of
how instability impacts the final model (see Figures 10 and 11).
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Figure 10: Eight trials of SimCLR for each method on ImageNet1k with 10 epochs of learning rate warmup. (a) Linear probe performance
for the best (solid line) and worst (dashed line) trials of each method, against relevant metrics from the first attention layer (top to bottom):
attention entropy, the spectral norm of the attention weights, and the ℓ∞–gradient norm of the attention weights. Our observations are
consistent with those of the longer warmup of 40 epochs investigated in Figure 5, except that here, Frozen Patcher is less able to tame
early layer gradient norms than it was in the longer warmup (dashed green line). (b) Linear probe performance of every trial. Observations
are again consistent with the longer warmup; σReparam with and without pre-LN are the most stable methods. σReparam (0.01) refers
to a σReparam with an initialization scheme of trunc normal(.01) instead of trunc normal(.02), with the former showing
some signs of instability. Understanding the source of this instability will be the subject of future work. σReparam + pre-LN uses the
default trunc normal(.02).
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Figure 11: Linear probe performance on ImageNet1k at the end of training over 8 trials for each method. Trials are ordered by decreasing
performance, with run rank 1 (8) corresponding to the best (worst) trial. Frozen Patcher produces the best individual, with all other
methods marginally lower. σReparam + pre-LN and σReparam are the methods most reliably giving good performance, with Baseline
and Frozen Patcher each susceptible to at least one instability type.

20



Stabilizing Transformer Training by Preventing Attention Entropy Collapse

E. Automatic Speech Recognition (ASR)
In this section we focus on empirical investigation of Transformer training stability and attention entropy collapse phe-
nomenon for automatic speech recognition (ASR) task.

E.1. Experimental Outline

Data All experiments are performed on the LibriSpeech dataset (Panayotov et al., 2015) where audio paired with
transcriptions is available. The standard LibriSpeech validation sets (dev-clean and dev-other) are used to tune all
hyperparameters, as well as to select the best models. Test sets (test-clean and test-other) are used only to report final word
error rate (WER) performance without an external language model. We keep the original 16kHz sampling rate and compute
log-mel filterbanks with 80 coefficients for a 25ms sliding window, strided by 10ms, later normalized to zero mean and unit
variance per input sequence.

Acoustic Model We stick to a vanilla Transformer model trained with Connectionist Temporal Classification (Graves et al.,
2006) loss for simplicity of analysis where only encoder is used (no decoder). We use current, to the best of our knowledge,
state-of-the-art vanilla Transformer model configuration and training recipe from Likhomanenko et al. (2021a;b): the model
consists of (a) 1D convolution to perform striding (kernel of 7 with stride of 3), (b) Transformer encoder with 36 layers,
post-LayerNorm (post-LN), 4 heads, embedding dimension of 768 and MLP dimension of 3072, and (c) a final linear layer
to map to the output number of tokens4. To speed up the model training (2-3x) and decrease memory usage we are using
CAPE positional embedding (Likhomanenko et al., 2021c) instead of relative one (Shaw et al., 2018): both models perform
in the same ballpark.

Training We follow a training recipe from Likhomanenko et al. (2021a;b). As they, we use SpecAugment (Park et al.,
2019) which is activated right at the beginning of the training (no difference is found if it is used after 5k training steps):
two frequency masks with frequency mask parameter F = 30, ten time masks with maximum time-mask ratio p = 0.1
and time mask parameter T = 50 are used; time warping is not used. We also use Adagrad (Duchi et al., 2011) if not
specified otherwise, and learning rate (LR) decaying by 2 each time the WER reaches a plateau on the validation set. We use
dynamic batching of 240s audio per GPU and train with tensor cores fp32 on 8 Ampere A100 (40GB) GPUs for 350-500k
updates. No weight decay is used. Default warmup is set to 64k and can be varied if stated so. The default LR is 0.03 and is
optimized across models. We also apply gradient clipping of 1.

E.2. Training Stability, Robustness and Generalization

We start with exploring training stability of the baseline model described above using both pre-LayerNorm (pre-LN) and
post-LayerNorm (post-LN) configurations trained on small-scale data, namely 100h of LibriSpeech (train-clean-100). By
varying different hyperparameters, such as learning rate, warmup, and gradient clipping, post-LN models fail to train. By
inspecting the gradient norms per layer and per each parameters’ matrix we find a similar vanishing gradients problem as
reported, e.g., by Liu et al. (2020b;a); Wang et al. (2022) for deep Transformers (> 12 layers) in machine translation domain.
At the same time, pre-LN is stable as reported by, e.g., Nguyen & Salazar (2019); Wang et al. (2022); Liu et al. (2020a): we
are able to reduce warmup from 64k to 16k, increase learning rate from 0.03 to 0.5, and obtain better results than the training
setting from the post-LN baseline. However, stable training of pre-LN leads to a degradation in performance compared to
post-LN in ASR, similarly as reported in the aforementioned works: validation WER is worse while training loss is lower,
see top of Table 7. By varying, e.g., learning rate and warmup hyperparameters and deeper inspecting training stability of
pre-LN models we observe that attention entropy is not bounded and can collapse leading to the model divergence with
training loss growing, see Figure 12.

As discussed above in Section 3, we now investigate how σReparam affects the training stability and controls the attention
entropy bound. First, by removing all LayerNorms (pre-LN or post-LN) and switching to σReparam for all linear layers
in Transformer blocks and in the final linear layer, we observe (a) stable training similar to pre-LN with no vanishing
gradients issue; (b) accepting a wider range of hyperparameters (Figure 13) than pre-LN; (c) no attention entropy collapse
phenomenon. While σReparam significantly outperforms a pre-LN model with the baseline hyperparameters used for
post-LN, it performs worse than an optimized version of a pre-LN model as well as an unstable post-LN model (see top of
Table 7). However, combining σReparam with post-LN brings two worlds together: stable training similar to pre-LN and
generalization similar to post-LN. In summary, σReparam with post-LN achieves (a) similar performance on the validation

4The token set consists of the 26 English alphabet letters augmented with the apostrophe and a word boundary token.
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Figure 12: Attention entropy collapse is observed for pre-LN ASR models trained on 100h of LibriSpeech when hyperparameters, learning
rate and warmup, are varied. For every hyperparameters configuration we plot training loss (dashed, green) and attention entropy for every
of 36 layers (solid): a lighter color corresponds to a deeper layer. The right plot (LR 0.5, warmup 64k) gives stable training and the best
performance while left (LR 1, warmup 64k) and middle (LR 1 and warmup 32k) have attention entropy collapse phenomenon.
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Figure 13: Robustness of σReparam with respect to different hyperparameters for ASR models trained on 100h of LibriSpeech: learning
rate (left), warmup (middle), and initialization std value (right). We report word error rate (WER, x-axis) on the validation dev-other set.

Table 7: Results for ASR training on 100h of LibriSpeech with σReparam and/or different normalizations: post-layer (post-LN), pre-layer
(pre-LN), spectral (SN), weight (WN). We report training loss and word error rate (WER, % ↓) for the best models for each configuration:
with warmup and Adagrad optimizer (top), and with no warmup and LARS optimizer (bottom). DV states for model divergence. For
bottom part: σReparam performs reparametrization for joint matrix for key, queries and values in self-attention, and we are not able to
train SN with post-LN configuration.

post-LN pre-LN pre-LN SN SN WN WN σReparam σReparam
(same) (optimized) +post-LN +post-LN +post-LN

Training loss 37.7 35.3 37.2 160.4 120.3 35.6 35.4 37.5 34.9

dev-clean WER 5.9 6.9 6.2 42.6 20.3 7.0 6.3 6.4 6.1
dev-other WER 17.7 21.3 19.1 62.9 42.7 22.3 19.4 20.5 17.8
test-clean WER 6.2 7.1 6.3 42.4 20.4 7.3 6.7 6.8 6.4
test-other WER 17.8 21.6 19.3 63.6 43.6 22.6 19.5 21.0 18.0

Training loss 64.5 - 29.4 160.0 DV 59.1 63.2 51.1 34.2

dev-clean WER 8.1 - 5.9 49.8 DV 8.3 7.1 7.2 5.8
dev-other WER 25.0 - 18.9 69.6 DV 25.9 22.0 22.8 18.1
test-clean WER 8.6 - 6.4 49.4 DV 8.7 7.5 7.5 6.2
test-other WER 25.6 - 19.2 70.9 DV 26.4 22.1 23.2 18.7

and test sets and lower training loss (Table 7); (b) no vanishing gradients are observed as for post-LN; (c) the model accepts
a wide range of hyperparameters (Figure 13) compared to unstable post-LN and stable pre-LN.

To demonstrate the necessity of σReparam in the form presented in Section 3, we compare it with spectral normalization
(SN) where γ is set to 1 and is not learnable, and WeightNorm (Salimans & Kingma, 2016) baselines. Both SN and WN
perform poorly compared to σReparam (with or without post-LN), see Table 7.
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Figure 14: Deep, 72 layers, ASR models trained on 100h of LibriSpeech with different normalizations (from left to right): with post-LN,
pre-LN, σReparam, σReparam with post-LN. We plot training loss (dashed, green) and attention entropy for every of 72 layers (solid): a
lighter color corresponds to a deeper layer.
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Figure 15: ASR models trained on 100h of LibriSpeech with different normalizations (from left to right: with post-LN, pre-LN, σReparam)
and LARS optimizer. We plot training loss (dashed, green) and attention entropy for every of 36 layers (solid): a lighter color corresponds
to a deeper layer. Post-LN and pre-LN models have attention entropy collapse when learning rate is increased to 0.5 and 1, correspondingly,
while σReparam has no issue.

We further investigate training behaviour if we increase the model depth by 2x resulting in 72 encoder layers5. In such
setting we are unable to train a post-LN model (vanishing gradients are observed) while pre-LN, σReparam and σReparam
with post-LN are training out of the box6 and have bounded attention entropy throughout the training with no vanishing
gradients problem, see Figure 14.

E.3. Training with SGD

Vanishing gradients and unbalanced gradients can be one of the reasons why the standard SGD fails in training Transformers,
especially for deeper architectures, and one needs adaptive optimizers. E.g., Li et al. (2022) report also another issue with
SGD – ability for generalization, and propose Transformer components modification to improve generalization with SGD
training.

To confirm prior findings, we first experiment with baseline models, pre-LN and post-LN, and SGD optimizer. While
post-LN is not training, a pre-LN model can be trained but has a poor generalization. The same holds for σReparam and
σReparam with post-LN: the gradient magnitude between the first and last layers can differ not drastically as in post-LN,
but generalization is still poor. Similarly to vision experiments, we switch to the LARS (You et al., 2017) (with momentum
0.9) optimizer which normalizes gradients by their magnitudes and thus provides balanced gradients. By carefully tuning
only the learning rate from 0.1 to 1.5 (the rest stays the same as for the adaptive optimizer except warmup which is set to 0k)
we are able to train pre-LN and post-LN, see bottom of Table 7.

In our experiments post-LN is more unstable (many learning rates are diverging or not training) and gives significantly
worse results than pre-LN. Furthermore, pre-LN is still behind the baseline that uses an adaptive optimizer. However, if
we switch to σReparam (key, queries and values are represented as one matrix) we observe stable training with respect to
learning rate changes, and combined together with post-LN it achieves similar performance to the best results from top of

5The total batch size is reduced by 2x to use the same amount of computational resources.
6Deeper models perform worse compared to smaller ones, however we did not optimize deep models and this is out of scope of the

current work.
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Table 7 while keeping the training loss low7. To the best of our knowledge, this is the first ASR Transformer model trained
without an adaptive optimizer achieving stable training and comparable performance. Regarding attention entropy collapse,
we observe it with LARS training also, see Figure 15: σReparam controls the bound resulting in wider range of accepted
hyperparameters for stable training (models can be trained with learning rate up to 1, while pre-LN and post-LN result in
model divergence).

E.4. Hyperparameters

We present hyperparameters for our ASR experiments on 100h of LibriSpeech in Table 8.

Table 8: Hyperparameters comparison for ASR training on 100h of LibriSpeech for models from Table 7.

post-LN pre-LN σReparam σReparam + post-LN

dev-clean 5.9 6.2 6.4 6.1
dev-other 17.7 19.1 20.5 17.8

Weight Init uniform(.036) uniform(.036) trunc normal(.1) trunc normal(.1)
σReparam No No Yes Yes
LayerNorm Yes Yes No Yes
Base LR 0.03 0.5 1 1
Optimizer Adagrad
LR schedule step(330k, 0.5)
Batch size 240s x 8
Weight decay none
Warmup steps 64k
Training steps 500k
Dropout 0.3
Stoch. Depth 0.3
SpecAugment F = 30, T = 50, p = 0.1, fmask = 2, tmask = 10
Grad. clip 1

dev-clean 8.1 5.9 7.2 5.8
dev-other 25 18.9 22.8 18.1

Weight Init uniform(.036) uniform(.036) trunc normal(.1) trunc normal(.1)
σReparam No No Yes Yes
LayerNorm Yes Yes No Yes
Base LR 0.1 0.5 1 0.3
Optimizer LARS
Momentum 0.9
LR schedule step(300k, 0.5)
Batch size 240s x 8
Weight decay none
Warmup steps 0k
Training steps 500k
Dropout 0.3
Stoch. Depth 0.3
SpecAugment F = 30, T = 50, p = 0.1, fmask = 2, tmask = 10
Grad. clip 1

E.5. Large-Scale Experiments: 1k Hours of LibriSpeech

We also evaluate σReparam for large-scale data: for further experiments we take all ∼1k hours of LibriSpeech as the
training data. We consider again the Adagrad optimizer with two schedules on learning rate: cosine (with 1 phase of 500k
iterations) and step-wise decaying as before for train-clean-100 experiments. We use exactly the same architecture and
hyperparameters as for small-scale experiments from top of Table 8 except dropout and layer drop which are decreased to 0.1
to decrease model regularization effect. For all models we tune only the learning rate. As before, spectral reparametrization
of keys and queries is done separately from values. We also use the learning rate on gamma to be twice bigger than the

7For the separate reparametrization for (keys, queries) and values, we observe less stable training with LARS and no warmup relative
to reparametrizing them together.
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Table 9: Results for ASR training on full LibriSpeech with σReparam and/or different normalizations: post-layer (post-LN), pre-layer
(pre-LN). We report word error rate (WER, % ↓) for the best models for each configuration: with step-wise (top) and cosine (bottom)
learning rate schedules.

post-LN post-LN pre-LN pre-LN σReparam σReparam
(Likhomanenko et al., 2021b) (same) (optimized) +post-LN

dev-clean WER 2.6 2.6 2.9 2.6 2.7 2.8
dev-other WER 7.0 6.9 7.7 6.8 7.2 7.1
test-clean WER 2.7 2.7 3.0 2.8 2.9 2.9
test-other WER 6.9 6.9 7.8 6.8 7.3 7.0

dev-clean WER - 2.6 2.6 - 2.8 2.7
dev-other WER - 7.1 6.9 - 7.6 7.3
test-clean WER - 2.9 2.8 - 3.0 2.9
test-other WER - 7.2 7.0 - 7.7 7.2

main learning rate. Similarly to small-scale experiments, training on LibriSpeech shows (see Table 9) that σReparam
accompanied with post-LN can match the post-LN baseline, while having robustness to the hyperparameter changes (e.g. it
allows larger learning rate values without any stability issues).
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F. Machine Translation (MT)
In this section we focus on empirical investigation of training stability and attention entropy collapse in deep Transformers
for machine translation (MT) with an encoder-decoder architecture. We track attention entropy for the encoder self-attention,
the decoder cross-attention and the encoder-decoder self-attention separately to study the entropy collapse phenomenon.
The goal of this section is to understand how varying the model depth for the well-established recipes affects the training
stability.

F.1. Experimental Outline

We build our experiments on top of the open-sourced code8 and baseline recipes provided by Wang et al. (2022). We follow
their instructions9 and hyperparameters given in Wang et al. (2022).

Data Following Wang et al. (2022) we perform all experiments on standard WMT’17 English-German benchmark10: we
use all provided training data for English-German pair, newstest2016 set as a validation set and newstest2017 as a test set for
final evaluation purpose only. We use Fairseq (Ott et al., 2019) script to preprocess data: it uses Byte Pair Encoding (BPE)
vocabulary jointly for source and target language resulting in 41k subword tokens.

Models We consider both regular and deep configurations for a vanilla encoder-decoder Transformer model with N
encoder and N decoder layers where N is taken as 6 (6L-6L), 18 (18L-18L), 50 (50L-50L), and 100 (100L-100L). Every
Transformer layer in each configuration has an embedding dimension of 512, MLP dim of 2048, and 8 heads. Sinusoidal
absolute positional embedding (Vaswani et al., 2017) is used for both encoder and decoder.

Training We strictly follow the same training recipe from Wang et al. (2022) (without using back-translation or other
domain-specific augmentations) with detailed hyperparameters in Table 10. All models are trained on 8 GPUs of A100
80GB with mixed precision computations and dynamic batching resulting in total batch size of 524288 tokens: for each
architecture we pack maximum tokens per GPU and use gradient accumulation (4 for 6L-6L and 18L-18L, 8 for 50L-50L
and 16 for 100L-100L).

Table 10: Hyperparameters comparison for MT training on WMT’17 for models from Table 11.

pre-LN/post-LN/DeepNorm σReparam + post-LN σReparam + deepnorm

Weight Init Fairseq trunc normal(.1/.01) trunc normal(.1/.01)
σReparam No Yes Yes
LayerNorm Yes Yes Yes
Base LR 1.4e-3 4.5e-3 4.5e-3
Optimizer Adam
LR schedule inverse sqrt
Batch size 4096 tokens x 8 GPUs x 16 gradient accumulation
Weight decay 0.0001
Warmup steps 4k
Warmup init LR 1e-7
Training steps 100k
Dropout 0.4
Grad. clip 0
Adam ϵ 1e-8
Adam β (0.9, 0.98)
Label smoothing 0.1

Evaluation As it is not specified in Wang et al. (2022) how the best checkpoint is selected on the validation set, we
decided to stick to simple rule: checkpoint with best perplexity on the validation set is selected and further evaluated on both
validation and test sets for BLEU score computation which is reported throughout the paper. BLEU is computed by in-built
BLEU scripts of Fairseq with the beam size of 5. As reported in prior works we also observe a strong correlation between
perplexity and BLEU score: improved perplexity leads to better BLEU score. However BLEU scores on validation and

8https://github.com/microsoft/torchscale
9https://github.com/microsoft/torchscale/tree/main/examples/fairseq#

example-machine-translation
10https://www.statmt.org/wmt17/translation-task.html
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Table 11: Results for MT on WMT’17 English-German data for post-LN, with or without additional σReparam, with or without residual
rescaling (‘DeepNorm’ from Wang et al. (2022)). We report average BLEU score and its std across 3 runs with different seeds for a variety
of encoder-decoder architectures: 6L-6L, 18L-18L, 50L-50L, and 100L-100L. ‘DV’ states for how many times a model diverges / is not
training across runs. With red block we mark unstable baseline training while with blue block – training stabilized by σReparam.

Models 6L-6L 18L-18L 50L-50L 100L-100L

DV Valid BLEU Test BLEU DV Valid BLEU Test BLEU DV Valid BLEU Test BLEU DV Valid BLEU Test BLEU

pre-LN 0/3 34.20.1 27.40.1 0/3 35.30.1 28.80.1 0/3 34.90.1 28.50.1 0/3 34.70.1 28.30.1

post-LN 0/3 34.20.2 27.80.2 1/3 35.20.2 29.00.2 3/3 - - 3/3 - -
+ σReparam 0/3 34.30.3 27.80.2 0/3 35.20.2 28.70.2 0/3 34.90.3 28.50.6 3/3 - -

DeepNorm 0/3 34.20.2 27.90.2 0/3 35.70.4 29.20.2 0/3 35.70.2 29.20.1 2/3 35.20.0 29.20.0

+ σReparam 0/3 34.40.4 27.70.2 0/3 35.20.2 28.60.1 0/3 34.80.4 28.30.3 0/3 34.40.1 28.00.1

test sets are less correlated and high variation is observed. For that reason we often perform 3 runs with different seeds to
estimate standard deviation (std) of the BLEU score.

F.2. Training Stability of Deep Models

We start with exploring training stability of the baseline model described in Wang et al. (2022) with pre-LayerNorm (pre-LN)
and post-LayerNorm (post-LN) across different depths (all hyperparameters stay the same except depth is varied). Note that
post-LN is a popular design choice for MT tasks due to its good generalization properties.

For pre-LN models, we reproduced stable results and convergence, however the BLEU score we get is better (Table 11) than
reported by Wang et al. (2022). We also observed the same trend of decreasing model performance with increasing the
model depth. Attention entropy is nicely bounded across all depths similarly to ASR11, see Figure 16.
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Figure 16: Attention entropy behaviour for MT models trained on WMT’17 with pre-LN for 18L-18L (top) and 100L-100L (bottom):
encoder self-attention (left), encoder-decoder cross-attention (middle) and decoder self-attention (right). We plot training (dashed, green)
and validation (dot-dashed, blue) losses and attention entropy across all Transformer layers (solid): a lighter color corresponds to a deeper
layer. Both deep and shallow pre-LN models have nicely bounded attention entropy and no instability issues are observed across runs with
different seeds.

For post-LN models, we reproduced stable results for 6L-6L depth and observe nicely bounded attention entropy behaviour.
However for 18L-18L configurations, divergence is observed when varying the random seed. By close inspection we
observe no vanishing gradients problem while attention entropy collapse clearly occurs during training (compare top and
middle in Figure 17) in the encoder attention and the encoder-decoder cross-attention. Deeper models, namely 50L-50L and
100L-100L, are unable to train and we observe the same vanishing gradients problem as reported by Wang et al. (2022); Liu

11Note, we did not do any hyperparameters search to investigate how models behave with, e.g., wider range of learning rates as we did
for ASR models.
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et al. (2020a) as well as attention entropy collapse for some of the deep layers across the board, see bottom plot in Figure 17.
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Figure 17: Attention entropy behaviour for MT models trained on WMT’17 with post-LN for 18L-18L (top, middle) with two seeds and
50L-50L (bottom): encoder self-attention (left), encoder-decoder cross-attention (middle) and decoder self-attention (right). We plot
training (dashed, green) and validation (dot-dashed, blue) losses and attention entropy across all Transformer layers (solid): a lighter
color corresponds to a deeper layer. While 6L-6L (not shown in Figure) has stable training, deeper models experience different issues in
training: 18L-18L can be stable (top) or can diverge with attention entropy collapse phenomenon (middle) for the same hyperparameters
but different seed, while 50L-50L has vanishing gradients and layers are not training resulting in constant attention entropy.

Wang et al. (2022); Liu et al. (2020a) are recent works that proposed to rescale residual connections. To stabilize training
and resolve vanishing gradients problem in deep post-LN models to preserve post-LN generalization properties. We focus
in this paper on Wang et al. (2022), DeepNorm, solution (it uses post-LN and rescale residual connections depending on
the initial model depth) as they reported ability to train up to 1000-depth Transformer models. We are able to reproduce
DeepNorm results for 6L-6L, 18L-18L and 50L-50L depths observing stable training (no any models diverged and training
went nicely). However we see no performance gain of a 50L-50L depth model over a 18L-18L model. Furthermore, we
observe instability in training of the 100L-100L model resulting in only 1 successful run among 3 (only seed is varied) while
2 others are diverging after some time (training loss is growing). By close inspection of the training behaviour we do not see
any drastic issue of vanishing gradients, however we see the attention entropy collapse happening, see Figure 18. First of all,
attention entropy is not bounded for DeepNorm even in 18L-18L and 50L-50L similarly to what we observed in post-LN
models. Also a tiny attention entropy collapse happens in 50L-50L (see top plot in Figure 18) though it does not lead to
any divergence. Second, attention entropy collapse is clearly pronounced for 100L-100L models (second, third, and forth
rows of Figure 18) leading to 2/3 seeds divergence and one with worse performance than 50L-50L models12. Finally, it is
interesting to note that attention entropy collapse in 100L-100L can happen for different layers, first and / or last, and with
different regimes for the encoder/decoder self-attention and the encoder-decoder cross-attention.

All models performance on validation and test sets across depths as well as the number of successful runs are reported in
Table 11.

12From our empirical observations in other domains it could be that deeper models are worse as any attention entropy collapse degrades
optimization process resulting in worse generalization.

28



Stabilizing Transformer Training by Preventing Attention Entropy Collapse

0 20000 40000 60000
Training step

0

1

2

3

4

A
tte

nt
io

n
E

nt
ro

py
encoder-1 encoder-50

4

6

8

10

12

0 20000 40000 60000
Training step

0

1

2

3

4 cross-1 cross-50

4

6

8

10

12

0 20000 40000 60000
Training step

0

1

2

3

4 decoder-1 decoder-50

4

6

8

10

12

Tr
ai

ni
ng

L
os

s

0 2000 4000 6000 8000 10000 12000
Training step

0

1

2

3

4

A
tte

nt
io

n
E

nt
ro

py

encoder-1 encoder-100

5.0

7.5

10.0

12.5

15.0

0 2000 4000 6000 8000 10000 12000
Training step

0

1

2

3

4 cross-1 cross-100

5.0

7.5

10.0

12.5

15.0

0 2000 4000 6000 8000 10000 12000
Training step

0

1

2

3

4 decoder-1 decoder-100

5.0

7.5

10.0

12.5

15.0

Tr
ai

ni
ng

L
os

s

0 5000 10000 15000 20000 25000
Training step

0

1

2

3

4

A
tte

nt
io

n
E

nt
ro

py

encoder-1 encoder-100

4

6

8

10

12

0 5000 10000 15000 20000 25000
Training step

0

1

2

3

4 cross-1 cross-100

4

6

8

10

12

0 5000 10000 15000 20000 25000
Training step

0

1

2

3

4 decoder-1 decoder-100

4

6

8

10

12

Tr
ai

ni
ng

L
os

s

0 5000 10000 15000 20000
Training step

0

1

2

3

4

A
tte

nt
io

n
E

nt
ro

py

encoder-1 encoder-100

5.0

7.5

10.0

12.5

15.0

0 5000 10000 15000 20000
Training step

0

1

2

3

4 cross-1 cross-100

5.0

7.5

10.0

12.5

15.0

0 5000 10000 15000 20000
Training step

0

1

2

3

4 decoder-1 decoder-100

5.0

7.5

10.0

12.5

15.0

Tr
ai

ni
ng

L
os

s

Figure 18: Attention entropy behaviour for MT models trained on WMT’17 with DeepNorm (Wang et al., 2022) (residual rescaling and
post-LN) for 50L-50L (row 1) and 100L-100L with three seeds (2-4 rows): encoder self-attention (left), encoder-decoder cross-attention
(middle) and decoder self-attention (right). We plot training (dashed, green) and validation (dot-dashed, blue) losses and attention entropy
across all Transformer layers (solid): a lighter color corresponds to a deeper layer. While DeepNorm solves vanishing gradient problem
for deep models we observe attention entropy collapse phenomenon in both 50L-50L and 100L-100L models. While the 50L-50L model
can recover from attention entropy collapse (happens in encoder layers) and nicely converge, 100L-100L suffers from it and can diverge.
While Wang et al. (2022) reported stable training for 100L-100L we are unable to reproduce their results and observe 2/3 runs with
different seeds (the rest of hyperparameters are the same as reported in the paper) diverge with attention entropy collapse.

F.3. σReparam for Deep Models

We now experiment with injection of σReparam into post-LN and DeepNorm models to alleviate attention entropy collapse
and confirm σReparam effectiveness for deep models. σReparam is used for every linear layer in the encoder and decoder
Transformer blocks alongside with post-LN. With DeepNorm we also apply its rescaling of initialization and residual
connections.

σReparam nicely bounds attention entropy for 18L-18L and 50L-50L post-LN models, resolving any divergence issues
as well as vanishing gradient in the 50L-50L model, see Figure 19. However, 100L-100L is still experiencing a vanishing
gradient problem and only careful initialization of std for σReparam can resolve it: for that reason we report that model
training is not stable. In terms of performance, σReparam with post-LN matches post-LN for 6L-6L, in the same ballpark
for 18L-18L and performs the same as 18L-18L for 50L-50L. Note, that we did not do any hyperparameters search except
tuning learning rate as σReparam has different learning rate scales.

σReparam also nicely bounds attention entropy for 18L-18L, 50L-50L, 100L-100L DeepNorm models, resolving any
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Figure 19: Attention entropy behaviour for MT models trained on WMT’17 with post-LN and σReparam together for 18L-18L (top) and
50L-50L (bottom): encoder self-attention (left), encoder-decoder cross-attention (middle) and decoder self-attention (right). We plot
training (dashed, green) and validation (dot-dashed, blue) losses and attention entropy across all Transformer layers (solid): a lighter
color corresponds to a deeper layer. While 18L-18L is unstable for post-LN models (see top and middle in Figure 17), adding σReparam
nicely bounds attention entropy and stabilize training across different seeds and hyperparameters (we did not observe any instability or
model divergence for > 10 runs) allowing training with larger learning rates. While 50L-50L experiences vanishing gradients problem
for post-LN models (see bottom in Figure 17), adding σReparam balances gradients across layers and nicely bounds attention entropy:
training is stable across different seeds and hyperparameters accepting larger learning rates.
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Figure 20: Attention entropy behaviour for MT models trained on WMT’17 with DeepNorm (Wang et al., 2022) (residual rescaling
and post-LN) and σReparam together for 50L-50L (top) and 100L-100L (bottom): encoder self-attention (left), encoder-decoder cross-
attention (middle) and decoder self-attention (right). We plot training (dashed, green) and validation (dot-dashed, blue) losses and attention
entropy across all Transformer layers (solid): a lighter color corresponds to a deeper layer. Usage of σReparam allows to nicely bound
attention entropy (across encoder, decoder and cross-attention) for both 50L-50L and 100L-100L and fully stabilize training (across
> 10 runs with different hyperparameters and seeds we did not observe any instability and model divergence) of DeepNorm alone for
100L-100L allowing even larger learning rate values.

divergence issues for 100L-100L (vanishing gradient is not observed as DeepNorm targets it), see Figure 19. In terms of
performance σReparam with DeepNorm matches DeepNorm for 6L-6L, in the same ballpark as DeepNorm for 18L-18L
and inferior to DeepNorm for 50L-50L and 100L-100L.
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G. Language Modeling (LM)
As we discussed above encoder Transformer for vision and speech domains and encoder-decoder for machine translation, in
this section we focus on the pure decoder architecture in language model task to verify if σReparam is effective for stable
training and can simplify a training recipe there too.

G.1. Experimental Outline

We use the WikiText-103 language model (LM) benchmark, which consists of 103M tokens sampled from English Wikipedia
(Merity et al., 2017). Our baseline is a highly optimized Transformer (Baevski & Auli, 2019) with 32 layers, 8 heads, 128
head dimensions, 1024 model dimensions, 4096 fully connected dimensions and post-LayerNorm (post-LN). The word
embedding and softmax matrices are tied (Press & Wolf, 2017). We partition the training data into non-overlapping blocks
of 512 contiguous tokens and train the model to autoregressively predict each token (Baevski & Auli, 2019). Validation and
test perplexity is measured by predicting the last 256 words out of the input of 512 consecutive words to avoid evaluating
tokens in the beginning with limited context (early token curse, Press et al., 2021). We integrate σReparam implementation
into the open-sourced code and recipe for the baseline13. All models are trained in full precision on 8 GPUs of A100 40GB.

G.2. Results

We do not experience training instability with the baseline Transformer, likely because the masked attention in autoregressive
models makes entropy collapse less likely to occur. This is consistent and in line with observations in machine translation
where entropy collapse is observed in the encoder and cross-attention. Nonetheless, we experimented with σReparam
to test its generality on a different modality/problem. We apply σReparam to all linear layers of the Transformer while
removing all post-LNs, and search for learning rate in a grid [1, 1.5, 2, 2.5] and weight decay in the grid [1e-3, 1e-4, 0].
All other hyperparameters are kept the same as the baseline, including Nesterov SGD optimizer14. The results are shown
in Table 12. We see that even in the absence of LayerNorm, σReparam shows strong performance in convergence and
validation/test performance. With a mild weight decay, σReparam also outperforms the baseline wrt the validation/test PPL.
In summary, while there is no observed entropy collapse in language model training, σReparam can simplify a training
recipe by removing all post-LNs.

Table 12: WikiText-103 language modeling results in perplexity.

Model PPL↓
train valid test

σReparam w/ weight decay 16.5 17.9 18.6
σReparam w/o weight decay 12.9 18.5 19.3

post-LN Baevski & Auli (2019) 15.4 18.1 18.7

13https://github.com/facebookresearch/fairseq/blob/main/examples/language_model/README.
adaptive_inputs.md

14Note, this is different from other domains where a standard recipe includes only adaptive optimizers.
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H. Hyperparameters for Supervised Vision
As mentioned in Section 4.1 we compare σReparam against DeiT (Touvron et al., 2021) and MAE (He et al., 2022)
supervised training recipes for vision Transformers. In Table 13 we highlight the differences between DeiT, MAE supervised
and σReparam. σReparam presents a simplified and stable training objective for ViT-B variants. In Table 14 we present the
same comparing the ViT-L variants. There is no exact 1:1 comparison for a ViT-L with the DeiT training framework so we
only compare against the MAE supervised model.

Table 13: Training hyperparameters comparison for supervised ViT-B/16.

DeiT MAE σReparam

Top-1 81.8% 82.1% 81.88%
EMA Top-1 - 82.3% 82.37%

Weight Init trunc normal(.02) trunc normal(.02) trunc normal(.02)
Patcher Init trunc normal(.02) trunc normal(.02) trunc normal(.02)
σReparam No No Yes
Layer Norm Yes Yes No
Optimizer AdamW(β1=0.9, β2=0.95) AdamW(β1=0.9, β2=0.95) LARS(mom=0.9)
Base LR 5× 10−4 1× 10−4 0.1
LR schedule cosine cosine step(210, 0.1)
Batch size 1024 4096 4096
Weight decay 0.05 0.3 0.0
Warmup epochs 5 20 0
Training epochs 300 300 250
Label smoothing 0.1 0.1 0.1
Stoch. Depth 0.1 0.1 0.1
Repeated Aug. 2 2 2
RandAug 9/0.5 9/0.5 9/0.5
Mixup prob. 0.8 0.8 0.8
Cutmix prob. 1.0 1.0 1.0
Erasing prob. 0.25 0.25 0.25

Table 14: Training hyperparameters comparison for supervised ViT-L/16.

MAE σReparam

Top-1 81.5% 82.41%
EMA Top-1 82.6% 82.48%

Weight Init trunc normal(.02) trunc normal(.01)
Patcher Init trunc normal(.02) trunc normal(.0025)
σReparam No Yes
Layer Norm Yes No
Optimizer AdamW(β1=0.9, β2=0.95) LARS(mom=0.9)
Base LR 1× 10−4 0.15
LR schedule cosine cosine
Batch size 4096 4096
Weight decay 0.3 0.0
Warmup epochs 20 0
Training epochs 300 300
Label smoothing 0.1 0.1
Stoch. Depth 0.2 0.2
Repeated Aug. 2 2
RandAug 9/0.5 9/0.5
Mixup prob. 0.8 0.8
Cutmix prob. 1.0 1.0
Erasing prob. 0.25 0.25
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I. Ablations
Initialization for σReparam First, we found that it is better to initialize γ as 1 and not compute it from the initialized
kernel as there could be different values for spectral norm depending on the initialization of the kernel. In this case
we observed values greater than 1 for the spectral norm which cause divergence / no training. We compared different
initializations for the kernel and we did not see any differences in initialization (e.g. uniform, normal). The only factor
that influences training behavior is the standard deviation (std) of the initialization pdf, which also influences effective
learning rate. In speech recognition we found that training is robust with respect to changes of std (Figure 13), however
larger std performs better and sweet spot is 0.2-0.3. In machine translation models are also robust to the choice of std,
however some architectures perform better with std of 0.01 while others with 0.1 std. In language modeling we observed
robust performance with respect to initialization, and we use the default initialization from the Transformer baseline for all
experiments.

In vision we initialize the σReparam γ term using the first singular value, computed with the SVD at weight initialization.
We then use one power iteration for all further updates. We provide weight and patcher initializations for the ViT-B/16 in
Table 13 and the ViT-L/16 and ViT-H/14 in Table 14.

Separate σReparam for key, queries and values We found that they behave more or less similar while separate
normalization allows to achieve lower training loss due to larger capacity ability which provides potential to scale. However,
for ASR training with LARS it is better to have joint reparametrization to achieve stable training and comparable results
with adaptive optimizers, see Section E.3.

J. Discussion
We believe that our experiments have covered representative domains, architectures and training losses for typical Trans-
former applications. The key factors that affect training stability are the initial token embedding layer (where for vision and
speech tasks they are based on convolution projections, and for MT and language modeling are with word embeddings),
topology of architecture (encoder mode for vision and speech, encoder-decoder for MT and decoder for language modeling),
and the training loss (cross-entropy loss, contrastive and CTC loss). While each of these design choices may bring their own
challenges for training, we show that entropy collapse is a common symptom accompanying instability and σReparam is a
general fix compatible with all settings.

K. Contributions
All authors contributed into writing the manuscript, designing experiments and discussion of all results at every stage of the
project.

Attention Entropy Collapse Observations All initial experiments and findings of the attention entropy collapse phe-
nomenon for ViT models on ImageNet are done by Shuangfei Zhai. Preliminary theoretical analysis and proposal to use
σReparam as a solution is also done by Shuangfei Zhai.

Theory All theoretical results, Appendix A, are done by Etai Littwin. Review of proofs is done by Tatiana Likhomanenko.

Causality Analysis Simulated case-control study investigation and all related experimental work done by Dan Busbridge.
Tatiana Likhomanenko, Etai Littwin, Jason Ramapuram, Russ Webb and Shuangfei Zhai helped with designing the
experimental setting for intervention methodology.

Supervised Learning in Vision Shuangfei Zhai conducted the initial σReparam vision experiments with DeiT and made
the initial observations of relaxing / removing weight decay from σReparam. Jason Ramapuram scaled and conducted the
remaining supervised vision experiments and analysis (including the MAE, weight-norm and spectral-norm baselines) over
ImageNet1k (Table 1) and Imagenet21k (Table 2) and enabled the drastically simplified σReparam vision transformer recipe
from Table 1. This simplified σReparam recipe enables SGD (LARS) training over fewer epochs and completely removes
{weight-decay, pre-LN layers, LR warmup and the LR cosine schedule}.
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Self-Supervised Learning in Vision Known issues with SimCLR (Chen et al., 2020) stability that were observed in Chen
et al. (2021) pointed out by Vimal Thilak. All investigations, experiments and related analysis done by Dan Busbridge.

Automatic Speech Recognition All speech recognition experiments are done by Tatiana Likhomanenko. Shuangfei Zhai
and Jason Ramapuram advised to have also large scale results.

Machine Translation Initial implementation and experiments of σReparam applicability to MT were done on WMT’14 by
Jiatao Gu. Later, Tatiana Likhomanenko pushed to investigate deep transformer models and their stability. Jason Ramapuram
pointed to the deepnorm (Wang et al., 2022) results to probe for entropy collapse phenomenon. All later experiments,
Section 4.3 and Appendix F, with deep transformers and deepnorm are done by Tatiana Likhomanenko.

Language Modeling Initial implementation and preliminary results on applicability of σReparam to the language
modeling, Appendix G, are done by Yizhe Zhang with help from Jiatao Gu. Shuangfei Zhai contributed to the experiments
and obtained the final results.

Implementation Details and Ablations Investigation into how initialization influences σReparam is done in parallel
in different domains and experiments by Jason Ramapuram, Shuangfei Zhai and Tatiana Likhomanenko. Investigation
of different variants (with stop gradient, with different matrices) of σReparam was done by Shuangfei Zhai, Tatiana
Likhomanenko and Jason Ramapuram. Investigation of full precision training vs mixed precision training was done by
Tatiana Likhomanenko, Dan Busbridge and Jason Ramapuram.

Implementation is done in 2 frameworks (PyTorch and Jax) and in 5 codebases. The initial implementation of σReparam
module is done in PyTorch by Shuangfei Zhai, with further reimplementation in Jax by Tatiana Likhomanenko. Later the
implementation was integrated and adopted into other baseline toolboxes by Jason Ramapuram, Dan Busbridge, Yizhe
Zhang, Tatiana Likhomanenko and Jiatao Gu.
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