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Abstract001

Vision-language models (VLMs) achieve im-002
pressive zero-shot performance on multimodal003
reasoning tasks. Typically, best reported per-004
formance is achieved with a zero- or a few-005
shot prompt. We observe that asking the model006
to take other routes of solving the same task,007
such as through code generation, hurts perfor-008
mance. Furthermore, training sets are typically009
no longer useful for improving model perfor-010
mance through few-shot learning, due to their011
use in training. Indeed, we observe that auto-012
prompting techniques such as DSPy (Khattab013
et al., 2023), when applied on training sets, do014
not produce few-shot examples that further im-015
prove validation performance. Further, when016
used in conjunction with program-of-thought,017
performance becomes even worse.018

Our work overcomes these limitations by in-019
troducing a novel self-play programming inter-020
face which leverages the ability of VLMs to021
first generate code to decompose a complex vi-022
sual reasoning task in sub-tasks, then use itself,023
or other models, as a tool to solve decomposed024
tasks. Our approach enables DSPy to not suf-025
fer from performance drops, when applied it-026
eratively on training sets. Furthermore, it out-027
performs zero-shot baselines on difficult chart028
reasoning benchmarks. We report the perfor-029
mance of our approach on ChartQA, PlotQA030
and ChartFC. This enables large models, such031
as Gemini or GPT to autonomously learn how032
to use themselves as tools and iteratively im-033
prove without the need for additional data.034

1 Introduction035

The ability of vision-language models (VLMs) to036

understand scientific charts is key to enable auto-037

mated and efficient data analysis. The diversity038

and complexity of these charts make this a chal-039

lenging problem, as evidenced by the emergence040

of several benchmarks such as ChartQA (Masry041

et al., 2022), PlotQA (Methani et al., 2020), and042

ChartFC (Akhtar et al., 2023).043

Most recent breakthroughs have been obtained 044

through pre-training and fine-tuning using carefully 045

constructed data mixtures and scalable model ar- 046

chitectures (Anil et al., 2023; OpenAI et al., 2024; 047

McKinzie et al., 2024). We posit that the bene- 048

fits for downstream users of these models stem 049

more from the ability and flexibility to perform vi- 050

sual in-context learning (ICL) on any given task, 051

rather than the performance on the specific down- 052

stream task. Not only the task of interest may not be 053

present in the data mixture, but the various training 054

stages may inadvertently degrade performance be- 055

cause of the large number of tasks involved. There- 056

fore, an emerging class of approaches leverages vi- 057

sual ICL capabilities (Alayrac et al., 2022) for solv- 058

ing such tasks without modifying the base model; 059

an LLM orchestrates tools (Hu et al., 2023), writes 060

code (Surís et al., 2023; Stanić et al., 2024; Gupta 061

and Kembhavi, 2023) or a mix of both (Castrejon 062

et al., 2024; Yang et al., 2023; Yao et al., 2023; 063

Khattab et al., 2023). Beyond a certain scale (McK- 064

inzie et al., 2024), ICL successfully enables com- 065

bining image understanding with code generation. 066

Our work introduces a technique for perform- 067

ing iterative few-shot example mining, through an 068

approach that improves upon performance of exist- 069

ing methods such as DSPy (Khattab et al., 2023) 070

by extracting additional learning signals from ex- 071

isting training sets. We focus our method devel- 072

opment on some of the most difficult benchmarks 073

available today for chart understanding, specifically 074

ChartQA (Masry et al., 2022), PlotQA (Methani 075

et al., 2020), and ChartFC (Akhtar et al., 2023). 076

We leverage a self-refinement approach (Madaan 077

et al., 2023) to overcome trivial execution errors 078

and the task metric using the golden labels from the 079

training set (Stanić et al., 2024). Our method, visu- 080

alized in Figure 1, treats training sets as environ- 081

ments. It iteratively expands the few-shot examples, 082

thus constructing several few-shot pools (for each 083

initial zero-shot prompt) or mixed-shot pools (com- 084
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Figure 1: Self-play environments can be used for probing and learning how to use tools/models. During training
stage, few-shot examples are iteratively replaced with better ones, whereas during inference the most suitable ones
for an example are selected.

bining across types of zero-shot prompts). These085

pools are then used at inference time. Unlike prior086

work (Gupta and Kembhavi, 2023; Surís et al.,087

2023), this process does not require any human088

supervision. For powerful VLMs, such as Gemini089

(Anil et al., 2023), which both generate code and090

perform visual reasoning, the training loop resem-091

bles self-play (Silver et al., 2017), where the model092

learns how to best use itself to solve a VQA task.093

Furthermore, it taps into improved reasoning capa-094

bilities of models which were also trained on code095

generation datasets (Ma et al., 2023).096

The process of replacing the zero-shot prompt097

with few-shots that matched the training label is098

similar to that of DSPy (Khattab et al., 2023). How-099

ever, we show that, without our method, DSPy fails100

to improve over zero-shot regime, even degrading101

when program-of-thought is used. In our initializa-102

tion, we seed the process with multiple initial zero-103

shot prompts which differ through the type of code104

generated (e.g., program of thought (Chen et al.,105

2023a), API-based (Patil et al., 2023)). Uniquely106

introduced by our approach, we extend the iterative107

process for up to 10 iterations and we introduce a108

novel few-shot selection technique that builds upon109

the learning signals from the multiple iterations.110

The computational environment constructed111

through code generation couples values inferred 112

directly from the image (e.g., values of bars or text 113

labels in a chart) with tool (model)’s inference out- 114

puts, through basic arithmetic computations (Patil 115

et al., 2023; Schick et al., 2023; Cai et al., 2024). A 116

main challenge to address in this setup is how to au- 117

tomatically choose APIs to be used in prompts for 118

invoking individual models (as tools). Prior work 119

has shown how LLMs are capable to perform self- 120

debugging and self-correction (Stanić et al., 2024). 121

We study two types of computational environments. 122

The first one extends program-of-thought (Bi et al., 123

2023) conditioning on multimodal input, while the 124

second type makes use of an indirection API, en- 125

abling the model to focus on orchestration and de- 126

composition aspects. 127

The self-play environment surfaces and main- 128

tains as few-shots those training examples where 129

the model successfully performed such orchestra- 130

tion. Furthermore, it enables a model such as Gem- 131

ini, to be both an orchestrator, by predicting the 132

code which decomposes the problem and leverages 133

tools, and a tool, by being called by the underly- 134

ing API. By keeping the training step outputs for 135

which results match training labels, we form few- 136

shot pools for each type of zero-shot prompt pro- 137

vided. We provide an example question and model 138
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Figure 2: Example of a compositional reasoning question from ChartQA (Masry et al., 2022). Gemini predicts
code conditioned on the image, re-using itself through an API for visual information lookup (image_obj.answer)
and leveraging the computational environment for the arithmetic comparison (i.e., comparing bar values).

generated solution using our work in Figure 2.139

Our contributions can be summarized as fol-140

lows: (i) we introduce a simple, yet powerful API,141

for constructing self-play environments for VLMs142

to reuse existing training sets, (ii) we show the143

effectiveness of our approach by outperforming144

zero-shot performance on ChartQA, PlotQA and145

ChartFC for Gemini and GPT without additional146

data, and (iii) we show that our approach can over-147

come scaling limitations encountered in prior work,148

when applied within DSPy (Khattab et al., 2023).149

2 Related Work150

Strong capabilities of recent multimodal models151

in zero-shot regimes indicate continued improve-152

ments on difficult reasoning tasks, particularly in153

the image understanding domain. Yet, it is expected154

that capabilities may differ by modality, due to spe-155

cific technical challenges stemming from modality-156

specific tokenization (Borsos et al., 2023; Fu et al.,157

2022; Dosovitskiy et al., 2021) and availability of158

mixed-modality pre-training datasets (McKinzie159

et al., 2024; Fu et al., 2022) to learn inter-modal de-160

pendencies. While impressive results are reported161

for text modality in many-shot regime (Agarwal162

et al., 2024), earlier few-shot results on images163

flattened more quickly (Alayrac et al., 2022) and164

recent work on classification tasks (Jiang et al.,165

2024) highlighted scaling challenges. Our ap-166

proach would directly be accelerated by further167

breakthroughs in multimodal many-shot regime.168

Auto-prompting methods We ground our con-169

tributions in auto-prompting approaches, such as170

AutoCoT (Zhang et al., 2022), AutoDirected CoT 171

(Schulhoff et al., 2024) and DSPy (Khattab et al., 172

2023). AutoCoT generates reasoning traces and 173

augments an existing pool of few-shot examples, 174

while AutoDiCoT further expands by using a de- 175

velopment set and constructing different reasoning 176

traces based on whether it was correctly labeled 177

or not. Finally, DSPy introduces a programming 178

model. We identify DSPy (Khattab et al., 2023) 179

as the most closely related work to ours. DSPy 180

introduces a programming model that defines a 181

computation graph through which language model 182

pipelines are invoked. In DSPy, the user can make 183

use of a compilation stage, where a metric function 184

can be used for identifying the best examples to 185

use in a few-shot prompt. However, the effective- 186

ness of such approaches is limited when applied on 187

training sets that models have been trained with, as 188

the novelty of the labels is limited. We therefore 189

focus our contribution on enabling such approaches 190

to generate novel solutions on existing data. 191

Learning to use tools Toolformer (Schick et al., 192

2023) introduced a pre-training and fine-tuning 193

recipe for augmenting LLMs with capabilities to 194

use tools. ReAct (Yao et al., 2023) leverages few- 195

shot capabilities, and has recently been extended 196

(Yang et al., 2023; Castrejon et al., 2024; Hu et al., 197

2023; Gao et al., 2023) to the multimodal domain. 198

Multi-agent frameworks such as AutoGen (Wu 199

et al., 2023) are examples of mainly natural lan- 200

guage based environments for learning how to col- 201

laborative solve tasks. There, code generation is 202

mainly a tool, however as an environment, it can 203
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also be effective at scaling tool use to thousand204

of APIs (Patil et al., 2023), with selecting among205

prompt libraries for using specific tools depending206

on the task being a key element (Paranjape et al.,207

2023). Our proposed technique treats predicted208

code as environments where agents learn to use209

themselves, a less explored angle (Stanić et al.,210

2024; Surís et al., 2023; Subramanian et al., 2023).211

Visual QA Solving visual question-answering212

tasks poses numerous challenges for VLMs, that213

are typically solved with general image repre-214

sentation techniques (Alayrac et al., 2022; Chen215

et al., 2023b; Baechler et al., 2024) or question-216

conditioned ones (Ganz et al., 2024; Yang et al.,217

2024). VLMs highly specialized on types of tasks218

are another possibility (Carbune et al., 2024; Chen219

et al., 2024; Levy et al., 2022). Such methods re-220

quire numerous pre-training and fine-tuning exper-221

iments and are less flexible compared to those that222

leverage in-context learning (Brown et al., 2020)223

for improving task performance either through few224

exemplars (Alayrac et al., 2022; Song et al., 2022),225

or zero-shot techniques such as chain-of-thought226

(Wei et al., 2023). Our work leverages both zero-227

shot capabilities, as well as few-shot learning in a228

way that enables an iterative refinement loop not229

previously explored for these tasks.230

Self-play Environments such as AlphaGo (Silver231

et al., 2017) and Atari (Mnih et al., 2013) have232

been widely used for training models using rein-233

forcement learning (Tesauro, 1995). We take inspi-234

ration from such work and translate VQA tasks into235

self-play environments. The VLM first constructs236

a python runtime, which decomposes the task into237

multiple sub-tasks and then uses itself for solving238

those. As improvement signal, correctness of an-239

swer is used. We hypothesize that transforming240

training datasets this way, paired with richness of241

programs generated, enables VLMs to construct a242

rich state-space from which compositional reason-243

ing can be improved.244

3 Method245

Figure 1 presents our approach of constructing a246

synthetic environment through code generation, it-247

eratively constructing better and better few-shot248

exemplars. Similar to auto-prompting techniques249

(Khattab et al., 2023; Wu et al., 2023; Zhang et al.,250

2022), our method starts by bootstrapping exam-251

ples using zero-shot capabilities of VLMs. The252

instructions describe at a high-level how the pro- 253

gram solving the visual question should roughly 254

look like, leveraging instruction-following capabil- 255

ities (Wei et al., 2022), as well as minimal self- 256

refinement capabilities (Madaan et al., 2023). Our 257

method can be described through a seed stage, fol- 258

lowed by an offline training stage. Finally, at test 259

time, the inference stage solves a given test ex- 260

emplar by making use of the best matching train 261

exemplars constructed during the training stage. 262

Seed stage We provide a zero-shot prompt which 263

contains instructions for generating programs to 264

solve the given tasks, controlling the type of com- 265

putational environments constructed, which need 266

to be able to perform visual information look-up, 267

arithmetic operations and compositional reasoning 268

on the given task. We enable using two types of 269

programs. One type is a zero-shot visual program- 270

of-thought (Bi et al., 2023), whereas the second 271

one introduces an API through which the model 272

can orchestrate the task decomposition and dele- 273

gate sub-tasks to itself within the program. Given 274

that generated programs may not follow precisely 275

expected output constraints (e.g., numeric values, 276

percentages, etc.) or may perform superficial type 277

conversations that lead to execution failure, we 278

allow the model to refine it three times (Madaan 279

et al., 2023) using the execution error as feedback. 280

The output of this stage are then programs which 281

correctly solve a given training example. 282

Visual Program-of-Thought: Our first type of 283

environment is a natural extension to program- 284

of-thought (Chen et al., 2023a), where the image 285

alongside the question is used when generating 286

programs, with code interleaved with rationales as 287

comments. Values on the images are extracted di- 288

rectly in code, but there is no API that enables a 289

tool call. An illustration of the generated code is in 290

Figure 3 and the corresponding zero-prompt is in 291

the Appendix D.1. 292

Self-play API: We extend visual program-of- 293

thought with a simple, yet powerful indirection 294

API, depicted in Listing 1. It consists of an 295

ImageObject that wraps a provided image and 296

has an answer method for answering a question 297

related to the image. The API interface can be 298

implemented in multiple ways, either through call- 299

ing a large model using a prompt well suited for 300

question-answering or by through calling a special- 301

ist fine-tuned model. This API enables the model to 302

focus on the problem decomposition into sub-tasks 303
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Q: What's the average value of all dark blue bars?

def execute():

"""

Calculates the average value of the dark blue bars in the image.

Returns:

float: The average value of the dark blue bars.

"""

# Define the data from the image

dark_blue_bars = {

"Healthy eating habits": 72,

"Getting enough physical exercise": 71,

"Safe and healthy housing conditions": 61,

"Genetics and hereditary factors": 47,

}

# Calculate the average value of the dark blue bars

average_value = sum(dark_blue_bars.values()) / len(dark_blue_bars)

return average_value

ans = execute()

Figure 3: Visual program-of-thought (Chen et al., 2023a) creates intermediate data structures using extracted values
from the image in order to provide an answer that requires arithmetic computations.

separately from the individual sub-task solution.304

The single method class abstracts away details such305

as which model is called, how it is called and even306

what hyper-parameters are used.307
308

1 c l a s s ImageObjec t :309
2 " " " Holds t h e image . " " "310
3 d e f _ _ i n i t _ _ ( s e l f , image : Image ) :311
4 p a s s312
5 d e f answer ( s e l f , q u e s t i o n : s t r )−> s t r :313
6 " " " Answers q u e s t i o n s on h e l d image . " " "314
7 p a s s315316

Listing 1: Our simple, yet powerful, API proposal

Training stage This stage adds few-shot exem-317

plars from the seed stage’s outputs to the zero-shot318

instructions. The stage then runs few-shot infer-319

ence with the goal of improving the few-shot exem-320

plar pool. The selection of the few-shot exemplars321

to label is mainly done through random sampling322

on the training set. The output of the training stage323

ultimately consists of the best possible few-shot ex-324

emplar pool within the budget specified. We treat325

the number of exemplars N ≤ 1000 and training326

steps T ≤ 10 as hyper-parameters.327

Inference stage Lastly, once the training set con-328

structed a few-shot exemplar pool, at inference we329

can select, at random or using a similarity measure,330

which K = 8 few-shot examples to use to solve a331

task. When the same N exemplars are used across332

all T training steps, we obtain information about333

how difficult to solve a particular example is across334

all stages of the training. These exemplars may335

be useful to include due to the model’s inability to 336

solve them. 337

We refer the reader to Appendix D.1 and Ap- 338

pendix D.2 where we provide examples not only of 339

prompts, but also how the code changes after the 340

training stage. 341

4 Experimental Setup 342

We first introduce tasks of interest and models we 343

make use of our in our setup in Section 4.1. Then 344

we report the baseline performance using zero-shot, 345

as well as program-of-thought, followed by our 346

proposed method’s performance on validation sets. 347

Finally, we report main results in Section 4. 348

4.1 Datasets and Models 349

We evaluate our method on several challenging mul- 350

timodal benchmarks that require reasoning about 351

scientific diagrams, such as charts. In order to 352

solve a visual question-answering task or fact- 353

check whether a particular statement is supported 354

by the provided chart, models oftentimes have to 355

perform visual information look-up paired with 356

compositional reasoning through mathematical op- 357

erations (e.g. comparisons, multiplications). 358

Models Our methods builds on the strength of 359

models that can generate code conditioned on im- 360

ages. We therefore perform ablations and evaluate 361

our approach primarily on Gemini 1.5 (Anil et al., 362

2023), although smaller scale fine-tuned models on 363

code generation tasks may equally work. Through 364
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the generated code, the model can use itself as tool365

or another model.366

Tasks Key to our method is to continue leverag-367

ing existing training sets, even if they have been368

used during large model training phases, such as369

pre-training or post-training. To do so, we focus on370

using as few exemplars as possible. Therefore, we371

use a pool of up to 1000 exemplars during the seed372

and training stages and 8 exemplars at inference373

stage. The larger the pool at initial stages, the more374

diverse exemplars are available. We make use of375

ChartQA (Masry et al., 2022) and PlotQA (Methani376

et al., 2020) for question-answering, while for vi-377

sual fact-checking we evaluate ChartFC (Akhtar378

et al., 2023). More details in Appendix E.379

Metrics For all the tasks we report relaxed accu-380

racy metric (RA). This metric requires string pre-381

dictions to match ground truths, while for numeric382

answers a 5% relative difference to ground truth383

is considered correct. Since our method generates384

code, we kept track of code pass rate (CPR), which385

quantifies number of time code executed succes-386

fully over total code execution attempts. However,387

we noticed that at all times this is usually more than388

95%. Therefore, we do not report it separately.389

The DSPy programming model (Khattab et al.,390

2023) described in Section 2 is a strong baseline391

for our work. We show, however, that naively using392

DSPy on training sets leads to performance drops,393

which our proposed method overcomes. We apply394

the DSPy programming model for the first time,395

to our knowledge, on multimodal tasks. We find396

that the programming model proposed can easily397

accommodate images, besides text, as input.398

4.2 Zero-shot Bootstrapping399

We start by defining the corresponding DSPy pro-400

gram signature, namely (image, question) →401

(answer) and implement a predictor that lever-402

ages this signature in a zero-shot manner. The403

DSPy approach makes use of a student and teacher404

predictor in a loop, where initially the teacher is a405

zero-shot prompt. Once demonstrations have been406

performed, we bootstrap the student by append-407

ing the teacher-labeled examples to the zero-shot408

prompt. The student then becomes the teacher.409

To ground the performance of the approach in410

Gemini 1.5 (Anil et al., 2023) performance, we411

use from the beginning the task-specific zero-shot412

prompt with chain-of-thought (CoT) predictor, in-413

stead of a naive prompt based on just the signature.414

DSPy (CoT) ChartQA PlotQA ChartFC

0-shot 80.0 42.2 78.9
8-shot (bootstrap-1) 80.9 32.3 79.6
8-shot (bootstrap-2) 80.4 32.2 78.9
8-shot (bootstrap-3) 81.2 31.5 78.5

Table 1: Naively bootstrapping few-shot exemplars us-
ing the DSPy programming model on task training sets
arbitrarily affects performance.

We report the results in Table 1. 415

Bootstrapping through the DSPy programming 416

model on training sets does not necessarily lead to 417

performance improvements. Indeed, as can be ob- 418

served, PlotQA performance degrades significantly 419

from the zero-shot performance. The drop may be 420

explained through the fact that the bootstrapping 421

process selects 8-shot exemplars from those that 422

the teacher can label, thus biasing the exemplars se- 423

lection space compared to random sampling from 424

the training sets. This is an important aspect to 425

optimize, considering that most real-world tasks do 426

not have labels to start with. 427

4.3 Visual Program-of-Thought 428

DSPy programming model enables chaining multi- 429

ple predictors. The chain facilitates using outputs 430

from one predictor as inputs for the next predic- 431

tor, naturally forming solutions traces. The boot- 432

strapping process can keep the end-to-end traces 433

that reach the correct answer according to the RA 434

metric, constructing few-shot exemplars for each 435

predictor out of a single trace. 436

We implement a visual program-of-thought 437

(VPoT) predictor, from which we take the outputs 438

and pass them through chain-of-thought (CoT) pre- 439

dictor that takes into account the code and the code 440

output. We report the results in Table 2. 441

DSPy (VPoT + CoT) ChartQA PlotQA ChartFC

0-shot (CoT) 80.0 42.2 78.9

0-shot 79.3 45.4 81.9
8-shot (bootstrap) 78.1 29.5 78.2
8-shot (bootstrap-2) 78.0 32.1 77.7
8-shot (bootstrap-3) 78.2 32.2 79.5

Table 2: Extending the DSPy bootstrapping process by
involving code generation suffers from the same perfor-
mance degradation.

We observe that the ChartQA numbers degrade 442

less compared to the PlotQA and ChartFC bench- 443

marks. This may likely be attributed to the model 444
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capability to ignore the generated code and code445

outputs and simply focus on the task at hand. It may446

also explain better why in the previous baseline,447

without the use of generated code, performance on448

ChartQA slightly increased. This also suggest that449

the results on the other two benchmarks may be450

better indicators of generalizability.451

4.4 Self-play API452

Further, we replace the visual program-of-thought453

predictor with our Self-play API (SP) predictor,454

while also making use of a chain-of-thought pre-455

dictor. The core elements of the baseline setup456

described remain the same.457

DSPy (SP + CoT) ChartQA PlotQA ChartFC

0-shot (CoT) 80.0 42.2 78.9

0-shot 78.2 46.5 80.4
8-shot (bootstrap-1) 80.0 49.5 80.3
8-shot (bootstrap-2) 81.3 51.2 82.2
8-shot (bootstrap-3) 81.1 52.4 81.9

Table 3: The Self-play API (SP) predictor significantly
boost performance on scientific diagram reasoning.

The improvements shown in Table 3 demonstrate458

the predictor using the Self-play API comes with459

several benefits: (1) the model can always choose460

to call itself within the generated program, thus461

delegating the entire task or a sub-task to itself, (2)462

execution of the generated code represents a feed-463

back signal on how well the delegation was tied464

together. Thus, our approach not only better sepa-465

rates orchestration from delegation, but constructs466

a feedback loop through which enables the model467

to balance what to delegate and what to orchestrate.468

5 Scaling Self-play on PlotQA469

To further strengthen our contribution, we scale up470

our analysis beyond the DSPy configuration. We471

chose to focus this study on PlotQA to limit costs.472

We ablate the choice of large model, adding GPT-473

4o, scale the number of bootstrapping iterations474

up to 10 and we report the effects of labeling up475

to 1000 exemplars per iteration during the training476

stage using our method. Due to the large number477

of examples available, we chose to select the 8-478

shot at test time using a similarity measure based479

on the question asked. Lastly, we also report how480

the performance changes when Image.answer is481

implemented using a tool, specifically a fine-tuned482

version of PaliGemma-3B (Beyer et al., 2024). For483

strengthening our contribution, we do not make 484

use of an additional predictor based on chain-of- 485

thought, rather directly use the self-play predictor 486

output after code execution. 487

When scaling up to T = 10 steps, we use 488

up to N = 1000 examples from the training set 489

during the training stage. During every step, the 490

teacher typically labels up to 60% of the training 491

set, roughly 600 examples. Out of these, during in- 492

ference stage, we select 8 examples that best match 493

the question at test time. 494

Self-play API
PlotQA

Gemini 1.5 Flash GPT-4o

0-shot (CoT) 42.2 21.6

0-shot 43.7 20.8
8-shot (bootstrap-5) 50.6 21.7
8-shot (bootstrap-10) 52.3 22.9

Table 4: Behavior of Self-play API when used for boot-
strapping up to 10 iterations, teacher-labeling up to
1000 examples, while selecting best 8 matching exam-
ples at inference. Performance on PlotQA validation
set.

Our findings in Table 4 confirm that our ap- 495

proach works well across model families. Although 496

the performance of GPT-4o on PlotQA starts lower, 497

our method nonetheless improves the model’s abil- 498

ity to better use itself. 499

PaliGemma An alternative implementation of 500

the Self-play API is for the Image.answer 501

method to call an external tool. We fine-tune 502

PaliGemma (Beyer et al., 2024) on PlotQA. Then 503

we replace the original implementation that calls 504

the model with the zero-shot prompt with a call to 505

the fine-tuned model. First, we contrast the tool per- 506

formance with the zero-shot performance in Table 5 507

and note that the specialist model indeed performs 508

better than Gemini 1.5 Flash in zero-shot regime. 509

Tool PlotQA (RA %)

Gemini 1.5 (zero-shot) 42.2

PaliGemma (fine-tuned) 52.1

Table 5: Standalone performance of models on PlotQA
validation set.

Then, we replace the implementation of the Self- 510

play API. The implementation details are not visi- 511

ble at code generation time, for which the prompt 512

is the same and consists of a simple high-level API 513
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description. In spite of this, we observe significant514

differences in performance on the validation set af-515

ter multiple refinement iterations of the training set.516

Our method improves significantly over the base-517

line in both cases, as depicted in Figure 4. Gemini518

1.5 Flash is able to improve regardless of the im-519

plementation, but benefits from more predictable520

and higher quality outputs from specialized tools.521

Figure 4: Performance when using different
Image.answer specializations, using PaliGemma and
Gemini 1.5 Flash.

We attribute the large improvement over the522

setup in Table 4 to the predictability of the523

PaliGemma model behind the API call. Specif-524

ically, the fine-tuned model outputs directly an-525

swers to questions, removing spurious errors such526

as incorrect conversations, longer answers, thus527

enabling the refinement over multiple iterations to528

focus on how to decompose a complex question.529

Novelty Score Training stage has 1000 exam-530

ples which includes questions of varying difficulty.531

Some questions are simple and are always an-532

swered correctly, while others are challenging and533

only solved occasionally. We argue that examples534

that are hard to solve contain more novel informa-535

tion. For this, we introduce a novelty score that we536

assign to an example which has been evaluated re-537

peatedly through the T ≥ 10 iterations described in538

previous section. This would be defined as follows:539

NoveltyEi
=

(
1− Kcorrect

T

)
,540

where i ∈ 1, 2, ..., N and Kcorrect is the number of541

times an example was correctly solved during the542

training stage. Then, at inference time, we com-543

bine the similarity measure score with the novelty544

measure score introduced here in order to choose545

whether an example should be used as part of the546

8-shots selected at test time. The final similarity 547

distance is defined as 548

ScoreEi,Etest = 549

α ∗NoveltyEi
+ (1− α) ∗ SimilarityEi,Etest

550

we use α = 0.15 for our experiments. 551

We report the result in Figure 5. 552

Figure 5: PlotQA performance improves when, at test
time, harder examples, besides similar ones, are used
as part of the 8-shot examples.

Lastly, we report the results on the sub-sampled 553

test set for PlotQA in Table 6. 554

Self-play API
PlotQA

Gemini GPT

0-shot [Chain-of-Thought] 41.6 19.3

0-shot [Self-play API] 42.8 19.0
8-shot [Self-play API], Best Step 49.8 19.9

Table 6: Gemini 1.5 Flash / GPT 4o performance with
our method on PlotQA test

6 Conclusion 555

Our work introduces a new training recipe through 556

which highly capable models, such as Gemini 557

multimodal, can leverage their joint image un- 558

derstanding and code generation capabilities for 559

bootstrapping improved performance. We validate 560

our approach by seeding environments with zero- 561

shot prompts that solve a given task in two ways, 562

through program-of-thought or through a self-play 563

API that enables Gemini to focus on the high-level 564

reasoning challenge. Our method iteratively im- 565

proves performance on visual-question answering 566

training sets, generalizing strongly on validation 567

and test sets after just a few training iterations. 568

Improvements over zero-shot baselines are strong 569

across each environment and task combination. 570
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A Limitations863

We report several limitations of our work: we note864

that the evaluation focused on a limited number865

of environment types (two) and tools, used with866

a strong emphasis on a powerful indirection API,867

but potentially overlooking scalability challenges.868

Our results on test sets are limited to the open ones,869

while work on the closed test sets of DocVQA and870

InfographicVQA will be done at a later stage. Al-871

though the effects of few-shot learning were effec-872

tively leveraged, a deeper investigation into many-873

shot learning was not undertaken before iterating874

on training steps to refine the few-shots. Lastly, we875

think our work extends to natural images; however,876

our focus has been on UI interfaces, charts, and877

infographics.878

B Societal impact879

Our work proposes a technique through which a880

training set can be exploited in creating an environ-881

ment through which alternative solutions can semi-882

autonomously, through self-play, be constructed by883

large models to solve the task. Training sets are884

already heavily used in the pre-training and fine-885

tuning stages of large model training. Our work886

reuses these datasets. Due to inherent limitations887

of the training sets, it is likely that broader societal888

impact is rather limited compared to what models889

already achieve today. The particular skill acquired890

does play a role, in our case for refining generated891

code as an alternative problem solving path, should892

have a positive impact where models can bootstrap893

alternative approaches the downstream user has894

access to. However, refining and improving gen-895

erated code does require safety handles, such as896

sandboxed environments. Our technique may also897

have an impact on the type of datasets collected, as898

our method enables constructing datasets syntheti-899

cally by introducing external learning signals from900

the computational environment. It may be able to901

reduce the collection of unnecessary datasets, being902

able to extract more from the currently available903

ones already collected.904

C Qualitative Improvements905

Qualitatively looking at examples helps better un-906

derstand the type of improvements noticeable after907

two iterations of training stage. For example, con-908

sider the task of identifying the third largest con-909

tributor on the following image from the ChartQA910

dataset in Figure 6.911

Figure 6: ABC

Our zero-shot prompt for visual program-of- 912

thoughts, generates the following solution. 913
914

1 Q: What is the third largest contributor? 915
2 ======= Zero -shot (Incorrect) ======== 916
3 def execute (): 917
4 """ 918
5 This function returns the third largest contributor in the 919

given pie chart. 920
6 921
7 Args: 922
8 None 923
9 924

10 Returns: 925
11 A string representing the name of the third largest 926

contributor. 927
12 """ 928
13 # Get the data from the pie chart. 929
14 data = [35.7, 15.4, 7.3, 8.7, 26.9] 930
15 931
16 # Sort the data in descending order. 932
17 data.sort(reverse=True) 933
18 934
19 # Get the third largest value. 935
20 third_largest = data [2] 936
21 937
22 # Find the corresponding company name. 938
23 company_names = ['Facebook ', 'Google ', 'Apple ', 'Twitter ', 939

'Other '] 940
24 third_largest_company = company_names[data.index( 941

third_largest)] 942
25 943
26 # Return the company name. 944
27 return third_largest_company 945
28 ans = execute () 946947

After two training steps, zero-shot examples are 948

replaced with few-shot examples. The code is then 949

modified as follows. 950
951

1 Q: What is the third largest contributor? 952
2 ======== Few -shot Pool (Correct) ======= 953
3 def execute (): 954
4 """ 955
5 This function returns the third largest contributor in the 956

graph. 957
6 958
7 The answer is Twitter because it has a 7.3% share of the 959

2013 mobile display ad revenues. 960
8 961
9 Args: 962

10 None 963
11 964

12



12 Returns:965
13 The third largest contributor in the graph as a string.966
14 """967
15968
16 # Get the data from the image.969
17 data = [970
18 {971
19 "company": "Facebook",972
20 "revenue_share": 35.7973
21 },974
22 {975
23 "company": "Google",976
24 "revenue_share": 15.4977
25 },978
26 {979
27 "company": "Other",980
28 "revenue_share": 26.9981
29 },982
30 {983
31 "company": "Apple",984
32 "revenue_share": 6.0985
33 },986
34 {987
35 "company": "Twitter",988
36 "revenue_share": 7.3989
37 },990
38 {991
39 "company": "Pandora",992
40 "revenue_share": 8.7993
41 }994
42 ]995
43996
44 # Sort the data by revenue share.997
45 sorted_data = sorted(data , key=lambda x: x["revenue_share"998

], reverse=True)999
461000
47 # Get the third largest contributor.1001
48 third_largest_contributor = sorted_data [2]["company"]1002
491003
50 # Return the third largest contributor.1004
51 return third_largest_contributor1005
52 ans = execute ()10061007

Sometimes the model solves the question even1008

in the doc-string function. We think this may be an1009

artefacts of the training data. However, our iterative1010

method continues to improve the code logic and1011

correct answer is returned. Another example can1012

be found below.1013
1014

1 Q: What is the value of the largest pie section?1015
2 ========= Zero -shot(Incorrect) ===========1016
3 def execute ():1017
4 """1018
5 Computes the value of the largest pie section.1019
61020
7 The largest pie section is the one that represents the1021

largest percentage1022
8 of the pie. In this case , the largest pie section is the1023

one that1024
9 represents the percentage of people who support allowing1025

companies1026
10 from other countries to invest in Pemex. This percentage1027

is 34%.1028
111029
12 Args:1030
13 None1031
141032
15 Returns:1033
16 The value of the largest pie section as a float.1034
17 """1035
181036
19 # Get the value of the largest pie section.1037
20 largest_pie_section = 341038
211039
22 # Return the value of the largest pie section.1040
23 return largest_pie_section1041
24 ans = execute ()10421043

After two steps during the training stage, the1044

code improves significantly.1045
1046

1 Q: What is the value of the largest pie section?1047
2 ======== Few -shot Pool (Correct) =======1048
3 def execute ():1049
4 """ Calculates the value of the largest pie section.1050
51051
6 The largest pie section represents the percentage of1052

people who oppose allowing1053
7 companies from other countries to invest in Pemex. The1054

value of the largest pie1055

8 section is 57, which means that 57% of people oppose 1056
allowing companies from 1057

9 other countries to invest in Pemex. 1058
10 1059
11 Args: 1060
12 None 1061
13 1062
14 Returns: 1063
15 The value of the largest pie section. 1064
16 """ 1065
17 1066
18 # Get the data from the image. 1067
19 data = [ 1068
20 (2007, 41, 44), 1069
21 (2009, 43, 44), 1070
22 (2011, 57, 49), 1071
23 (2013, 51, 37), 1072
24 (2015, 23, 19), 1073
25 (2017, 41, 29) 1074
26 ] 1075
27 1076
28 # Get the U.S. favourability in Russia for each year. 1077
29 us_favorability_in_russia = [y[1] for y in data] 1078
30 1079
31 # Get the highest value in U.S favourability in Russia. 1080
32 highest_value = max(us_favorability_in_russia) 1081
33 1082
34 return highest_value 1083
35 ans = execute () 10841085

D Zero-shot and Self-refinement 1086

Prompts 1087

In this section we provide the zero-shot prompts 1088

used for generating the initial examples. Once a 1089

few examples are generated on training sets, these 1090

zero-shot prompts are replaced by few-shot exam- 1091

ples that have successfully matched labels on the 1092

training set. 1093

D.1 Visual Program-of-Thought 1094

The first type of prompt, described in Section 3, is 1095

visual program-of-thought. 1096
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Prompt: Visual Program-of-Thought

Look at the image and question pair below.
The main objective is to write a function
‘execute()‘ to answer the question from the
image. In the Python documentation of the
function, provide step by step reasoning to
explain how the following question can be
answered. Afterward write the code that
will answer the given question. Return the
final answer from the function. All the re-
quired information is given in the image.
Do not load any external files or request
for additional input. Pay attention to the
units of the answer and when providing per-
centage as an answer convert the number
to decimal format. Write professional level
code that an experienced software developer
would write. Prefer to write explicit code
instead of implicit calculations (e.g. use
Python standard libraries to compute max,
mean, median values, etc.). Do not print
anything with Python print function. Gener-
ate Python function only. No english text.

1097

D.2 Self-play API 1098

Here we detail the type of prompts where the model 1099

can call itself, but it wouldn’t know it does so. The 1100

results correspond to Section 3. These do not in- 1101

clude any implementation detail, e.g. how to call 1102

any of the models or what prompts are used when 1103

calling them. Instead a generic interface descrip- 1104

tion within a prompt is provided. 1105

Prompt: Self-play API

Look at the image and question pair below.
The main objective is to write a function
‘execute()‘ to answer the question from the
image.
In the Python documentation of the
function, provide step by step reasoning to
explain how the following question can be
answered.
Afterward write the code that will answer
the given question.
Return the final answer from the function.
All the required information is given in the
image. Do not load any external files or
request for additional input.
Pay attention to the units of the answer and
when providing percentage as an answer
convert the number to decimal format.
Write professional level code that an
experienced software developer would
write.
Prefer to write explicit code instead of
implicit calculations (e.g. use Python
standard libraries to compute max, mean,
median values, etc.).
Do not print anything with Python print
function. Generate Python function only.
No english text.

You are given an interface and some
examples of how to use the interface to
answer the question. Your task to answer a
newly given question with the interface.

These are interface descriptions of python
classes you can use. Actual implementa-
tions are provided at runtime.

1106
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Prompt: Self-play API Example

Here are some examples of what the
implementation of it may return:
ImageObject(image).answer(’What is the
value of ...?’) may return a number
ImageObject(image).answer(’Is ...?’) may
return a Yes / No
ImageObject(image).answer(’What are the
steps?’) may return a comma-sep string

For the execute function make use of the
ImageObject class. Only the answer()
method.

All queries should have an answer, so no
need to consider corner cases.

For usual cases, follow the guidelines
below:
- For simple visual queries, directly output
the answer in the code.
- For queries that require counting and
spatial relations, use python code.

Consider the following guidelines:
- Use base Python (comparison, sorting) for
basic logical operations, left/right/up/down,
math, etc.
- Do not import additional modules and do
not use types for variables.
- Use only the ImageObject when multiple
questions are needed to answer the given
question.
- When calling answer on ImageObject
use as complete and specific questions as
possible.

The code you output can look similar to
this function below
# Question: ...
def execute(image):
# Explanation for why a first step like the
one below is needed
im = ImageObject(image)
value = im.answer(question)
# Explanation for why the next value is
needed
other_value = im.answer(other_question)
# Explanation on how to combine the
values in a meaningful way for answering
the original question.
ans = value + other_value
return ans

1107

D.3 Self-refinement prompt 1108

The self-refinement strategy is rather straightfor- 1109

ward and is captured through the prompt below. 1110

Prompt: Self-play API Refinement

// Missing: answer variable
This code is missing the final answer vari-
able. The final answer should be assigned
to the answer variable ({answer_var}).
Correct the missing variable mistake and
try again.
// NameError: usually import statement
missing.
This code has raised NamedError: {er-
ror_trace}. There might be missing import
statements. Correct the NameError mistake
and try again.
// Generic: for everything else.
The code above is a valid Python code, how-
ever it raised {error_type}: {error_trace}
Correct the mistake and try again please.

1111

E Dataset size summary 1112

Size ChartQA ChartFC PlotQA

Training 1000 1000 1000
Validation 960 1000 1000
Test 2500 1000 1000

Table 7: To reduce costs, we sampled down datasets:
all datasets containing 1000 samples were randomly
sampled and kept consistent across all runs. We used
full sized validation and test sets for ChartQA.
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