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Abstract

Compact and energy-efficient models have become essential in this era when deep learning-
based solutions are widely used for various real-life tasks. In this paper, we propose rotating
the ReLU activation to give an additional degree of freedom in conjunction with the appro-
priate initialization of the rotation. This combination leads to implicit sparsification with-
out the use of a regularizer. We show that this rotated ReLU (RReLU) activation improves
the representation capability of the parameters/filters in the network and eliminates those
parameters/filters that are not crucial for the task, giving rise to significant savings in mem-
ory and computation. While the state-of-the-art regularization-based Network-Slimming
method achieves 32.33% saving in memory and 26.38% saving in computation with ResNet-
164, RReLU achieves a saving of 35.92% in memory and 25.97% in the computation with a
better accuracy. The savings in memory and computation further increase by 64.67% and
52.96%, respectively, with the introduction of L1 regularization to the RReLU slopes. We
note that the slopes of the rotated ReLU activations act as coarse feature extractors and can
eliminate unnecessary features before retraining. Our studies indicate that features always
choose to pass through a lesser number of filters. We demonstrate the results with popular
datasets such as MNIST, CIFAR-10, CIFAR-100, SVHN, and Imagenet with different archi-
tectures, including Vision Transformers and EfficientNet. We also briefly study the impact
of adversarial attacks on RReLU-based ResNets and observe that we get better adversar-
ial accuracy for the architectures with RReLU than ReLU. We also demonstrate how this
concept of rotation can be applied to the GELU and SiLU activation functions, commonly
utilized in Transformer and EfficientNet architectures, respectively. The proposed method
can be utilized by combining with other structural pruning methods resulting in better spar-
sity. For the GELU-based multi-layer perceptron (MLP) part of the Transformer, we obtain
2.6% improvement in accuracy with 6.32% saving in both memory and computation.

1 Introduction

Machine Learning has garnered significant attention in recent times for achieving superhuman-level perfor-
mance in a wide range of problem domains, encompassing real-world applications and intricate tasks. This
remarkable progress is primarily attributed to the utilization of Deep Neural Networks (DNNs) endowed
with millions of parameters. In the realm of image classification, Convolutional Neural Networks (CNNs)
such as AlexNet (Krizhevsky et al., 2012) with 60 million parameters and VGGNet (Simonyan & Zisserman,
2014) with 138 million parameters have set the benchmark. However, deep networks are prone to overfit-
ting and encounter exploding and vanishing gradient problems. To address this issue, He et al. (2016a)
introduce ResNet, a neural architecture that surpasses VGGNet in depth and can be extended to include
thousands of layers while maintaining relatively lower computational complexity. Zagoruyko & Komodakis
(2016) illustrate that achieving a marginal improvement in ResNet performance necessitates doubling the
number of layers. Consequently, they introduce WideResNet (WRN) as an alternative approach to enhance
performance by widening the ResNet architectures instead of increasing their depth.

Increasing depth or width to improve accuracy also leads to storing a significantly higher number of parame-
ters. For resource-constrained, energy-efficient green networks, the major concerns regarding the deployable
network are (i) model size, (ii) run-time memory, and (iii) computation in terms of floating point opera-
tions (FLOPs). In order to reduce the complexity without degrading the performance, different compression
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techniques have been introduced - for example, low-rank approximation (Denton et al., 2014), quantization
(Han et al., 2015), binarization (Courbariaux et al., 2015; Rastegari et al., 2016), and transfer learning (Kim
et al., 2020). Numerous studies have been conducted (Han et al., 2015; Molchanov et al., 2016; Li et al.,
2017; He et al., 2017; Liu et al., 2017) that put forth methodologies involving the pruning of connections,
weights, and filters in deep neural networks. Typically, regularization techniques are employed to induce
sparsity in weight matrices as a means of facilitating efficient pruning, as demonstrated in previous studies
(Han et al., 2015; Wen et al., 2016; Liu et al., 2019). However, these techniques primarily target memory
reduction without significantly impacting computational efficiency. To address the dual objectives of memory
and computation savings, a group sparsity-based regularization approach has been introduced in the context
of CNNs in various investigations conducted by Meier et al. (2008); Wang et al. (2017); Nayak et al. (2020);
Zhou et al. (2016); Liu et al. (2015); Scardapane et al. (2017).

In Liu et al. (2017), L1 regularization is imposed on the scaling factors of Batch Normalization (BN) layers,
making it easy to implement without introducing any changes to the existing CNN architectures. By using
the idea of the L1 penalty on BN scaling parameters, MorphNet (Gordon et al., 2018) iteratively shrinks and
expands a network, followed by retraining. It shrinks by a resource (FLOP or memory)-weighted sparsifying
regularizer on activations and expands by a uniform multiplicative factor on all the layers. ThiNet is
proposed by Luo et al. (2017) where the algorithm first trains a model, and then, by a greedy algorithm,
it determines the filters that can be removed without affecting the performance. In Liu et al. (2019), the
authors claim to perform better when the pruned networks are further retrained from scratch. Yang et al.
(2020a) propose decomposed training that reduces the rank of the matrix/kernel via SVD training, achieving
a higher reduction in computation load under the same accuracy. However, it requires separate regularizers
for the orthogonality of the singular vectors and sparsity of the singular values.

Until now, researchers have used regularizers to impose sparsity, forcing the deeper/wider networks to use
fewer filters without degrading the performance. However, can this sparsity be achieved intrinsically
without a regularizer? Motivated by this question, in this work, we propose a novel activation function
Rotated ReLU (RReLU), where one of the two halves of a ReLU can rotate to have any slope, whereas
the other half has a slope as zero. This slope of the rotating half is trained along with the other network
parameters. The proposed method is different from dynamic ReLU (Chen et al., 2020) because, in dynamic
ReLU, both halves have different slopes determined by a hyper-function dependent on all the input elements.
In RReLU, as the slopes are trained along with the network, each of the filters in the convolution layer with a
significant RReLU slope attains more representation power. During the training, some of the RReLU slopes
corresponding to the excess filters go to very small values. Therefore, introducing rotation to ReLU has a
two-fold advantage - (i) improves representation power corresponding to each significant filter and, therefore,
(ii) encourages sparsity. This efficient sparsifying method allows pruning filters efficiently without using any
regularizer. Note that researchers have come up with different variations of the activation ReLU (Nair &
Hinton, 2010) such as leaky ReLU (Maas et al., 2013), PReLU (He et al., 2015), Exponential Linear Units
(ELU) (Clevert et al., 2015), randomized ReLU (Xu et al., 2015) and randomized leaky ReLU (Srivastava
et al., 2014) to improve the performance. Dynamic ReLU (Chen et al., 2020) is proposed to improve the
representation power of deep networks. This activation function is characterized by piecewise linearity with
varying slopes, and its parameters are determined by a hyper function over all input elements. Hendrycks &
Gimpel (2016) propose Gaussian Error Linear Units (GELU), which is shown to improve the performance
compared to ReLU and ELU. However, none of the above induces sparsity.

We discuss RReLU in detail in Sec. 2. To demonstrate the power of RReLU, we choose ResNet-based archi-
tectures, which are extensively used in diverse areas such as computer vision, natural language processing,
security, healthcare, remote sensing, and wireless communication (Guo et al., 2020; Nguyen et al., 2021;
Alrabeiah et al., 2020; Mañas et al., 2021; Shankar et al., 2021). However, irrespective of the architecture,
any model that has ReLU can be retrained by replacing the ReLUs with RReLUs. Further, we show that
the use of rotation in activation is not only limited to ReLU but can be applied to other activations as well,
like Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016) that are used in emerging transformer
architectures. Researchers use GELU instead of ReLU for many applications to achieve state-of-the-art
results using Transformers, including Natural Language Processing (Radford et al., 2018) and Vision Trans-
formers (Dosovitskiy et al., 2020). By proposing rotated GELU (RGELU) in Vision Transformer, we not
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only show that sparsity is induced, but the top-1 validation accuracy improves, too, thus making it suitable
across different architectures. This makes the RReLU, in our opinion, a potent tool for compressing neural
networks. Our key contributions are as follows.

• We propose a Rotated ReLU activation along with an initialization scheme for the rotation. We
show that this combination is a powerful tool to improve the representation capability of the filters,
resulting in intrinsic sparsification. For example, the WRN-40-4 architecture with RReLU saves a
memory of 63.37% and FLOP-count of 69.7% without any loss in performance.

• RReLU can work with other compression techniques. An example considered in our work is imposing
L1 regularization of batchnorm parameters. Using RReLU with the L1 regularization of batchnorm
scaling parameters achieves better sparsity and accuracy.

• RReLU provides better adversarial robustness when compared with ReLU in networks such as
ResNet-56.

• We validate the results with extensive simulation with various architectures such as fully connected
neural network (FCNN), ResNet, WideResNet, and Transformer using a wide variety of datasets
such as MNIST, CIFAR-10, CIFAR-100, SVHN, and large-scale image dataset like ILSVRC-2012
(ImageNet-1k).

• Finally, we show that the idea of rotation is not limited to ReLU and can be applied to activations
like GELU used in most popular Transformer architectures.

2 Why and how to rotate the ReLU?

ReLU is a widely used activation function for introducing non-linearity in DNNs. The output of lth layer of
a DNN of depth L is given by hl+1 = σ(F(hl; Wl)), where F is either the weights multiplication operation
for FCNN or the convolution operation for a CNN followed by batchnorm layer, Wl are the trainable
weights or filters respectively of layer l, and σ is the non-linearity or the activation function. The ReLU
activation (Glorot et al., 2011) σ(x) = max(0, x) is a composite of piecewise linear approximation, hence
can approximate a wide range of functions (Huang, 2020; Hanin, 2019; Cybenko, 1989; Barron, 1993). The
non-zero-slope part of ReLU has a fixed slope of 1. In this paper, we increase the degrees of freedom of ReLU
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Figure 1: Rotated ReLU activation

by rotating the part of the activation where the slope is one, with a non-zero slope, thereby increasing the
representative power of ReLU. The proposed RReLU activation σ(x; a, b) = b max(0, ax) has two trainable
parameters a ∈ {+1, −1} and b ∈ R. RReLU outputs zero for either the positive part or the negative part
of its domain, and for the remaining part of the domain, it produces a linear output. The slope of this
linear output depends on the values of (a, b). With these values of a and b, various possible RReLUs can be
realized. Fig. 1a shows all possible cases of RReLU activations with different (a, b).

Employing an RReLU with shared (a, b) values for all features across all layers is quite similar to using
regular ReLU in the architecture, as the roles of a and b are compensated by the network weights/filters.
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Therefore, to fully exploit the power of rotation, instead of using a single (a, b) across all features in all
layers, (a{i}

l , b
{i}
l ) is used for ith feature x

{i}
l . So, the output of the lth layer is given by

hl+1 = σ(xl; al, bl) = bl max(0, al.xl) (1)

where the feature input to the RReLU is xl = F(hl; Wl). As xl is the output from the linear/convolution
layer, it is clear from equation 1 that any numeric value al can take can be adjusted using the weights/filters
itself. Therefore, only two different types of RReLU corresponding to b ≥ 0 and b < 0 are sufficient for the
proposed technique and are shown in Fig.1b. With these RReLU activations, the output of the lth layer is
denoted as

hl+1 = σ(xl; bl) = bl max(0, xl). (2)

When the input hl is fed to the lth layer within a residual unit, the output of the unit with a ReLU activation
can be represented by

hl+2 = max(0, hl + γl+1Conv(max(0, γlConv(hl; Wl) + βl); Wl+1) + βl+1), (3)

where γl and βl are the batchnorm scaling and shifting parameters, respectively. Incorporating bl in equa-
tion 3 increases the capacity of the piecewise linear approximation to represent the underlying function with
more linear segments. The output of the residual unit with an RReLU activation is given by

hl+2 = bl+1 max(0, hl + γl+1Conv(bl max(0, γlConv(hl; Wl) + βl); Wl+1) + βl+1). (4)

Sparsity and RReLU: Due to the freedom in choosing the value of the slope, the architecture with RReLU
needs lesser trainable weights to achieve a similar performance as ReLU. The degree of rotation of the non-
zero-slope segment of RReLU determines the degree to which the feature xl is transmitted through the lth

layer. Once fully trained, if the value of b
{i}
l for ith feature is comparatively less, then it implies that the

convoluted feature x
{i}
l is not essential for the task and can be ignored keeping the performance intact. It

has been observed that with the introduction of RReLU, for deeper/wider architectures, many of the bl go
to zero, resulting in a significant amount of structural sparsity in the model. Note that the value of h

{i}
l+1 is

insignificant when b
{i}
l is approximately equal to zero, and this is logically consistent as xl is batch normalized

before passing it via RReLU, and therefore xl can take only a bounded value. We do not use magnitude-
based pruning on weights/kernels; instead, RReLU inherently learns sparsity, and we prune weights/filters
based on the corresponding RReLU slope values. Now, we describe how rotation helps to achieve lower
complexity with lesser computation. We discuss the results using FCNN and ResNet architectures, where
the primary operations are matrix multiplication and convolution with skip connection, respectively.

Figure 2: RReLU in FCNN. The figure is bet-
ter visible in color. F(.) represents linear op-
erations with learnable parameters Wl. The
RReLU slopes bl, too, are the learnable param-
eters.

RReLU in FCNN: Let the input and output for the
lth layer be hl and hl+1, respectively and let the number
of elements in hl+1 be h̄l+1. The RReLU activation with
trainable slope bl ∈ Rh̄l+1 is applied on F(hl, Wl). After
training, element b

{i}
l is compared against a threshold ζ

and made equal to zero if b
{i}
l is less than ζ, indicating

that the ith column of the weight matrix Wl can be ig-
nored. The threshold ζ is set by cross-validation. This
idea is pictorially illustrated with an example in Fig. 2.
Here, F(.) is matrix multiplication and denoted by ×. In
the example in Fig. 2, after the training, the second el-
ement of bl converges to zero, i.e., b

{2}
l → 0. So the 2nd

entry in hl is negligible as the RReLU does not allow the
second element of xl to pass; clearly, the 2nd column of
Wl can be ignored.
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Figure 3: RReLU in CNN. The figure is better visible in color. F(.) represents convolution operation with
learnable parameters Wl. The RReLU slopes bl, too, are learnable.

RReLU in CNN: Let the number of channels out
from the convolution operation at the lth layer be cl+1. The RReLU activation with trainable slope bl ∈ Rcl+1

is applied on F(hl, Wl) . After training, b
{i}
l is compared against a threshold ζ, and if b

{i}
l < ζ then the ith

feature at the lth layer can be ignored. Therefore, at the lth layer, ith filter out of a set of cl+1 filters can
be ignored and at (l + 1)th layer, ith sub-filter from each of cl+2 filters can be ignored. This is explained
pictorially with an example in Fig. 3 where ⊗ denotes the convolution operation. At the lth layer, four
2D features hl are convolved with three set of filters denoted by Wl with four sub-filters each, resulting in
hl+1. The first 2D feature (yellow) of hl+1 is calculated by convolving each of the four 2D features in hl

with corresponding sub-filters of the first filter (yellow) and adding them. The same occurs at layer l + 1.
Let, after the training, the slope b

{3}
l → 0, then 3rd feature in hl+1 is also close to zero. In this case, the 3rd

filter of Wl and the 3rd sub-filter of every filter in Wl+1 can be ignored (grey).

2.1 Enhanced Filter Representation with RReLU and Batch Normalization Scaling Parameters

Batchnorm scaling and shifting parameters γl and βl, respectively, in equation 3 are used to scale and
shift the batch normalized features to restore the representation power of the network after normalization
(Ioffe & Szegedy, 2015). The parameters are learned along with the original model parameters. Liu et al.
(2017) propose a technique, namely network-slimming for structural pruning, which involves the utilization
of the L1 norm on the batch normalization scaling parameters γl, ∀l ∈ L. This approach encourages the γl

parameters to approach zero, allowing for the corresponding filters to be discarded. Our proposed method
provides increased flexibility to the γl by introducing slopes bl as shown in equation 4, which enhances
the representation power corresponding to every filter in all the convolution layers. In the context of this
study, an increase in filter representation power signifies the achievement of comparable accuracy while
utilizing a reduced number of filters. As shown in equation 4, when some of the slopes (bl) go to zero,
then corresponding BN parameters (γl) go to zeros too. In case some elements of bl and the corresponding
elements of γl do not go to zero, then the elements of bl give more flexibility to batchnorm parameters
resulting in more representation power to the filters, and as a result, many filters become unnecessary. The
degree of sparsity is further enhanced through the application of L1 regularization to the RReLU slopes.
To delve deeper into this, we need a more thorough analysis. Liu et al. (2017) minimizes the L1 norm on
the γl given by

∑L
l=1

∑N
i=1 γ

{i}
l that will force each element γ

{i}
l to take lower values and therefore the

network may lose its representation power. On the other hand, while minimizing L1 norm on RReLU slopes,
although every element of bl is compelled to adopt smaller values, the term b

{i}
l γ

{i}
l remains unconstrained

because the regularization is not directly applied to the scaling parameters, γl. Thus, RReLU possesses
the potential to augment the representational capabilities of every filter within the convolutional layers to a
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greater extent than ReLU in scenarios both with and without the application of regularization. Moreover,
we have substantiated this assertion through empirical evidence, as detailed in Section 5.5.

2.2 Compatibility of RReLU with other algorithms Featuring ReLU

RReLU is applicable to other architectures as well, where ReLU is used as an activation function. The
output of the residual unit of PreAct-ResNet (He et al., 2016b) is given by

zl+2 = zl + Conv(max(0, γl+1Conv(max(0, γlzl + βl); Wl) + βl+1); Wl+1). (5)

When ReLU is replaced by RReLU, the same is represented by

zl+2 = zl + Conv(bl+1 max(0, γl+1Conv(bl max(0, γlzl + βl); Wl) + βl+1); Wl+1). (6)

Similarly, the proposed RReLU activation can be used along with other compression techniques as well, such
as ThiNet (Luo et al., 2017) and MorphNet (Gordon et al., 2018). The main idea of ThiNet (Luo et al.,
2017) is to approximate the output of a layer by using a subset of the filters in that layer to remove the rest
of the filters safely. For filter selection, they use a data-driven greedy algorithm. One can use RReLU instead
of ReLU in the ThiNet architecture to study if one can prune more filters with RReLU, which could be an
interesting future study. For shrinking a network, MorphNet (Gordon et al., 2018) considers a sparsifying
regularizer G(.) based on discounting the use of batchnorm parameters,

G(.) =
L∑

l=1

C

Il−1∑
i=0

|γl−1,i|
Ol−1∑
j=0

Bl,j + C

Il−1∑
i=0

Al,i

Ol−1∑
j=0

|γl,j |

 . (7)

Here Il and Ol denotes the number of input and output channel, respectively, for the lth layer; AL,i(BL,j) is
an indicator function which equals one if the ith input (jth output) of layer L is not zeroed out. The same
can be done with RReLU in the architecture as well, where the same regularizer G(.) can be applied. Note
that, here RReLU slopes provides better representation power of every filter in the architecture.

Yang et al. (2020a) propose singular value decomposition (SVD) training to explicitly achieve low-rank
DNNs. The authors use sparsity-inducing regularizers on the singular value vector s of each layer, such
that the L1 regularization on s can be represented as L1(s) =

∑
i si. Therefore, all the singular values

si, ∀i shrink simultaneously to take lower values. To mitigate the proportional scaling associated with
the L1 regularization, the authors uses Hoyer regularizer (Hoyer, 2004) defined as LH(s) = ∥s∥1/∥s∥2 =∑

i |si|/
√

s2
i . However, one can replace the ReLU activations with the proposed RReLU activation while

still conducting SVD training to get another degree of freedom as the elements of bl can take any values.
This will provide higher representation power to every filter1 which may increase the sparsity even more.

A channel exploration method has been recently proposed in Hou et al. (2022) which repeatedly prunes
and regrows the channels throughout the training process. Channel pruning selects the most representative
columns from Wl that can reconstruct the original channel matrix with minimal error, therefore formulated
as a column subset selection (CSS) problem. The regrowing stage helps to dynamically re-allocating the
number of channels across all the layers under a global channel sparsity constraint. CHEX is shown to have
excellent pruning capability, and RReLU combined with CHEX can further improve the sparsity. Therefore,
the proposed RReLU need not replace the current sparsifying techniques but can also complement them
further to enhance sparsity.

2.3 Applicability of the idea of rotation to GELU activations

Till now, we have discussed how RReLU can be applied to replace ReLU in sparsification techniques. Now,
we elucidate how the concept of rotation extends to GELU (Hendrycks & Gimpel, 2016), which is defined
by the equation:

σGELU (x) = xP (X ≤ x) = xϕ(x) = x.
1
2

[
1 + erf( x√

2
)
]

. (8)

1In this work, every filter is represented as a combination of orthogonal singular vectors and singular values.
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It is well-established that Transformers exhibit improved performance when employing GELU activations
(Radford et al., 2018). To introduce varying slopes in the GELU activation, we propose the rotation of the
GELU activation, denoted as RGELU, as follows:

hl+1 = σRGELU (xl; bl) = blxl.
1
2

[
1 + erf( xl√

2
)
]

(9)
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GELU, bl = 1
RGELU w/ bl ≥ 0
RGELU w/ bl < 0

Figure 4: Rotated GELU activation
σGELU (xl; bl)

Therefore, any architecture that uses activations similar to
ReLU can use the rotated version of the activation of variable
slope. For example, SiLU used in EfficientNets can be replaced
by rotated SiLU (RSiLU) using the above idea of rotation. In
Fig. 4, we show how RGELU can have any slope compared
to GELU, which is fixed at bl = 1. In Sec. 5, we provide
results with Vision Transformers and EfficientNet on the Ima-
geNet dataset that prove the intrinsic sparsification properties
of RGELU and RSiLU, respectively.

3 Saving memory and FLOPs using RReLU

For an FCNN, considering Wl ∈ Rh̄l+1×h̄l , the total number
of parameters at the lth layer is given by h̄lh̄l+1. During the
forward pass, the number of multiplications and additions is
given by h̄l−1h̄l and (h̄l−1 −1)h̄l respectively; therefore, a total
of ≈ 2h̄l−1h̄l FLOPs are needed. If n values of bl are zero, then
n columns of Wl can be ignored. So, the memory saving at
the lth and the (l +1)th layer are h̄l−1n and nh̄l+1 respectively.
The savings in FLOPs for the lth and the (l + 1)th layers are approximately 2h̄l−1n and 2nh̄l+1.

The savings are even more for the CNN-based ResNets. The memory and FLOPs for 1D-CNN and 2D-
CNN were given in Vikas et al. (2021) and Shankar et al. (2021), respectively. Considering L layers in a
ResNet architecture, the trainable parameters are given by ϕ = {W1, . . . , WL} where Wl ∈ Rcl+1×cl×k×k

is the filter for the lth layer of a 2D CNN. Here, cl and cl+1 represent the number of input and output
channels at the lth layer, respectively, and k is the dimension of the filter. The input and output for
the lth layer are hl ∈ Rcl×h̄w

l ×h̄h
l and hl+1 ∈ Rcl+1×h̄w

l+1×h̄h
l+1 respectively. Here, (h̄w

l , h̄h
l ) and (hw

l+1,
hh

l+1) are spatial dimensions (width, height) of the input and the output respectively. The total number
of multiplication for the lth layer is clk

2h̄w
l+1h̄h

l+1cl+1 and the total number of addition for the lth layer is
(cl − 1) (k2 − 1) × h̄w

l+1h̄h
l+1cl+1. The total count of FLOPs for the lth layer of a real-valued 2D CNN is the

summation of the number of multiplication and addition that is roughly twice the number of multiplication
given by 2clk

2h̄w
l+1h̄h

l+1cl+1. Because of the addition of residue in the ResNet structure, if there is a residual
connection at the lth layer, an extra of cl+1h̄w

l+1h̄h
l+1 additions are required. At lth convolution layer, if

the input to RReLU at the lth layer has cl
out channels and n entries of bl are insignificant, then only

(cl+1 − n) channels remain significant. This needs to save only (cl+1 − n)clk
2 parameters for the lth layer.

The computation for these reduced (cl+1 − n) filters at the lth layer is only 2clk
2h̄w

l+1h̄h
l+1(cl+1 − n) and the

same at (l + 1)th layer is given by 2(cl+1 − n)k2h̄w
l+2h̄h

l+2cl+2.

4 RReLU against Adversarial attacks

Deep neural networks are susceptible to adversarial attacks, wherein a seemingly minor malicious alteration in
the input can lead to the network misclassifying the data point. Numerous techniques have been investigated
with the aim of fortifying neural networks against such vulnerabilities, leading to the concept of adversarial
robustness in the network (Cisse et al., 2017; Tramèr et al., 2017). We briefly investigate the adversarial
robustness characteristics of networks with RReLU activation. Considering a function f : X → RC as a
neural network classifier with C classes, (Cohen et al., 2019; Hein & Andriushchenko, 2017; Salman et al.,
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2019) showed that Lipschitzness of f is closely related to its robustness. Yang et al. (2020b) demonstrated
that a network could achieve better adversarial robustness by imposing an upper bound/constraint on the
network’s local Lipschitz constant (LLC). A smaller LLC indicates better adversarial robustness (Yang et al.,
2020b; Tholeti & Kalyani, 2022). Note that Lipschitzness is a function of the gradients of the function f ,
which in turn is a function of the slopes of the RReLU. A function f : Rm → Rn is said to be Lipschitz
continuous if ∀x, y ∈ Rm,

|f(x) − f(y)| ≤ Lp||x − y||q (10)

where
Lp = sup{||∇f(x)||q : x ∈ Rm} (11)

is the Lipschitz Constant (LC), ∇f(x) is gradient of function f(x), 1/p+1/q = 1, 1 ≤ p and q ≤ ∞ (Latorre
et al., 2020; Paulavičius & Žilinskas, 2006). Motivated by the fact that many of the RReLU slopes tend to
take smaller values than one, we believed that the local Lipschitz constant for networks with RReLU should
have lower values than the local Lipschitz constant for networks with ReLU. Therefore, the local smoothness
should be more for architectures with RReLU. Yang et al. (2020b) also demonstrate that the usual robust
training methods such as adversarial training (Madry et al., 2017), robust self-training (Raghunathan et al.,
2020), and TRADES (Zhai et al., 2019) impose a high degree of local smoothness and therefore are most
robust. However, these three methods have a large gap between training and test accuracies as well as
adversarial training and test accuracies, leading to poor generalization of the robust methods. As we do not
perform any adversarial training, the networks’ generalization capability with RReLU is unaffected. Here, we
study the adversarial robustness of RReLU by computing its LLC as it involves the gradient of the function
f(x) given by ∇f(x), which in turn is a function of RReLU slopes bl. Based on the results in subSec. 5.10,
it seems that the architectures with RReLU are inherently more robust than those with ReLU.

5 Results and discussion

In order to demonstrate the effectiveness of our proposed method, we have conducted extensive investigations
using various architectures, including a fully connected dense network, ResNet architectures (He et al.,
2016a;b) with depths of 20, 56 layers, and WideResNet (Zagoruyko & Komodakis, 2016) with depths of 40
and 16, and a widening factor of 4. Inspired by He et al. (2016b), we have used improved ResNet architectures
to efficiently train deeper ResNets (i.e., with depth 110 and 164). This architecture has identity mapping
between two ResNet units where the convolution layer follows the ReLU layer, and we consider this as the
baseline. As the activation is before the convolution layer, we name them ResNet-110-pre and ResNet-164-pre
for depth 110 and 164, respectively.

We tested our method on various standard datasets such as MNIST, SVHN, CIFAR-10, and CIFAR-100. To
evaluate our method, we compared its performance to the baseline performances of ResNet and WideRes-
Nets2. Towards the end, to show the efficacy of the proposed method and to strengthen our claims, we
have demonstrated the results on the Imagenet dataset with both WideResNet and Transformer architec-
tures (Vaswani et al., 2017). The experiments with Transformer architecture with the Imagenet dataset are
conducted using an NVIDIA-A100 GPU, while the rest of them are conducted on a single NVIDIA-GeForce
2080 Ti GPU.

Even though the number of trainable parameters increases slightly in the architectures with RReLU, intro-
ducing RReLU can discard a significant amount of weights/filters. As the optimization process is sensitive
towards bl, the convergence is comparatively slow and, therefore, trained for more time. When some elements
of the trainable bl take very small values, the resulting network act as a sparse model. Research conducted
by Kuznedelev et al. (2023) demonstrates that sparse networks exhibit a slower convergence rate and derive
greater advantages from prolonged training sessions. Hence, while conventional models described in the
literature undergo training for 200 epochs, models utilizing RReLU are trained for an extended duration of
1200 epochs. For a fair comparison, ReLU models are also trained for 1200 epochs, and the corresponding
accuracy values are listed in the 2nd row of Table 1. Please note that the models do not show a notion of
overfitting as the validation accuracy keeps increasing till 1200 epochs. The last row of Table 1 represents

2as reported by Idelbayev; Kuen; Liu
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Dataset MNIST CIFAR-10 CIFAR-100 SVHN

Architecture FCNN ResNet-
20

ResNet-
56

ResNet-
110-
pre

ResNet-
164-
pre

WRN-
40-4

ResNet-
20

ResNet-
56

ResNet-
110-
pre

ResNet-
164-
pre

WRN-
40-4

WRN-
16-4

Acc ReLU (standard) – 91.25 93.03 93.63 94.58 95.47 68.20 69.99 74.84 75.67 78.82 97.01

Acc ReLU (more
training)

98.33 93.12 94.45 95.33 95.51 96.18 67.27 72.91 75.23 78.31 79.75 96.75

#Params ReLU 0.10 0.27 0.85 1.7 1.7 8.9 0.27 0.85 1.7 1.7 8.9 2.78
#FLOPs ReLU 0.40 81 251 505 489 2605 81 251 505 489 2605 944

Filters pruned (%) 4.8 3.86 8.78 6.05 45.34 43.36 0.0 10.32 1.88 22.63 17.99 20.88

Acc RReLU (post-
pruning)

98.24 92.86 94.11 95.11 95.10 96.01 67.69 71.40 74.87 77.85 80.19 96.77

#Params RReLU 0.09 0.25 0.78 1.59 0.85 3.26 0.27 0.798 1.69 1.48 7.23 1.86
#FLOPs RReLU 0.38 78 188 454 309 1245 81 175 487 409 1841 675

Table 1: Performance of RReLU in terms of accuracy, number of trainable parameters, and computation
power (in FLOPs). Architectures with both ReLU and RReLU are trained from scratch without using any
regularizer. The number of parameters and FLOPs are in Millions (Mn).

the accuracy of networks when trained with RReLU. We prune the RReLU slopes using cross-validation
such that the accuracy does not degrade after pruning. Comparing the accuracy of RReLU (in the last row)
and ReLU (in the second row), one can observe that with RReLU, one can achieve an accuracy very close to
ReLU even though we offer significant saving in memory and computation, which is evident by comparing
#Params and #FLOPs for ReLU and RReLU.

Note that after 1200 epochs of training, the slight gap between the accuracies of ReLU and RReLU is because
of slower convergence and not because of sparsification/compression. To empirically prove this, we trained
ResNet20 and ResNet56 with RReLU for even higher (2000) training epochs; we achieved an accuracy of
93.25 and 94.14, which is comparable to the accuracy of 93.12 and 94.45 of respective architectures with
ReLU. The WideResNet architecture WRN-40-4 for CIFAR10 and CIFAR100 datasets are trained for 400
epochs, and WRN-16-4 for the SVHN dataset is trained for 1000 epochs. All the architectures are trained
using a Cosine Annealing (CA) learning rate (lr) scheduler.

5.1 More training improves the validation accuracy of the networks

Here, we make an interesting observation - when the networks are trained for a higher duration, the perfor-
mance improves significantly for most of them, as highlighted in the second row in Table. 1. This observation
is consistent with the findings of Nakkiran et al. (2021), which suggest that increasing the duration of training
can be beneficial. The distribution of batchnorm parameters (γl) changes too from 200 epochs to 1200 epochs.

Figure 5: Initial Distribution of
RReLU slopes (bl)

Without employing any regularizer, an extended training duration com-
pels a greater proportion of the elements in γl to approach zero. As
illustrated in Figure 6a, following 200 training epochs, there are approx-
imately 50 elements in γl in close proximity to zero. However, with pro-
longed training, this count rises to approximately 270, as depicted in
Figure 6b. Hence, the augmentation of training duration facilitates a
more pronounced adjustment of the γl values, leading to improved rep-
resentation. When employing RReLU in the architecture, the count of
elements of γl in proximity to zero further escalates, reaching an approx-
imate value of 400, as depicted in Figure 6c. This observation suggests
that a network equipped with RReLU attains greater flexibility, yielding
a comparable representation capability with fewer filters compared to a
basic ReLU-based ResNet architecture.
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(a) ReLU, 200 epochs (b) ReLU, 1200 epochs (c) RReLU, 1200 epochs

Figure 6: Subfig. (a)-(c) are the distribution of batchnorm parameters γl after the training when the
architecture considered is ResNet56. Subfig. (a)-(b) shows the effect of more training on γl. Subfig. (c)
shows the distribution of γl when ResNet56 is trained with RReLU for 1200 epochs.

5.2 Initialization of the network parameters

In this experimental setup, the weights/filters are initialized using the Kaiming He initialization method (He
et al., 2015). We found that the right initialization of the RReLU slopes (bl) is crucial for effectively training
the proposed method. When slopes are initialized randomly with a zero mean Gaussian distribution, many
of the slopes bl are initialized with very small values and converge to values close to zero very soon, and
therefore, the whole network converges to a sub-optimal solution. Therefore, it is imperative to implement
an effective initialization scheme for the slopes to ensure that the network has an adequate convergence
window before certain slopes approach zero. Therefore, the slopes (bl for all l ∈ L) are initialized with a
truncated Gaussian Mixture Model (GMM) with a mean of {+1, −1} and a variance of 3, which is depicted
in Fig. 5. The utilization of the GMM-type initialization for bl provides the slopes with a more extended
duration for convergence, given that they are initialized with substantial values. After training, the RReLU
slopes converge to a distribution where many elements of bl tend towards zero, as can be observed in Fig.
7 across different architectures and datasets.

5.3 Distribution of RReLU slopes bl

Fig. 7 shows the converged RReLU slopes (bl) after the training for different architectures when trained with
CIFAR10 and CIFAR100 datasets. A comparison of Fig. 7c and Fig. 7g reveals that for a relatively more
challenging task, such as CIFAR100 classification using the ResNet-110-pre architecture, a smaller number
of filters can be pruned using RReLU compared to a relatively easier task like CIFAR10 classification.
Furthermore, the degree of pruning is more pronounced for a deeper architecture such as ResNet-164-pre in
Fig. 7d than ResNet-110-pre in Fig. 7c. Readers are encouraged to check the distribution of slopes bl for
WideResNets in Fig. 14 in the Appendix, which shows that many filters are made redundant by the use of
RReLU. Fig. 15 in the Appendix shows the distribution of BN parameters γl when different architectures
are trained with CIFAR10 and CIFAR100 datasets. In the latter part of the paper, we discuss the potential
range of values, both γl and bl can take in Fig. 10.

5.4 Discussion on intrinsic sparsity property of RReLU

Table 1 presents the percentage of filters that are discarded when utilizing the RReLU activation function.
Additionally, a comparison is made between the number of network parameters and FLOPs when using
RReLU versus the conventional ReLU activation function. Finally, the paper reports the accuracy achieved
after discarding unnecessary weights/filters.

The first experiment uses a fully connected neural network (FCNN) with a hidden layer of 500 neurons for
MNIST classification. Both ReLU and RReLU architectures are trained for 300 epochs using the same Adam
optimizer and achieve a similar range of accuracy. After training, RReLU slopes bl less than a predefined
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(a) ResNet-20 (b) ResNet-56 (c) ResNet-110-pre (d) ResNet-164-pre

(e) ResNet-20 (f) ResNet-56 (g) ResNet-110-pre (h) ResNet-164-pre

Figure 7: Distribution of RReLU slopes (bl) with CIFAR-10 (top) and CIFAR-100 (bottom).

threshold ζ can be made zero without degrading performance. By setting ζ by cross-validation3, 24 out of
500 bl with values less than ζ = 1.0 are dropped, making 4.8% of the weight matrix at the hidden layer
unnecessary. The savings are even greater when the architectures are deeper or have more parameters due
to convolution operation.

With the CIFAR-10 dataset, the ResNet-164-pre architecture achieves an accuracy of 95.10% with RReLU,
while ReLU achieves 95.51%. The proposed RReLU method leads one to discard 45.34% of the total filters,
leading to significantly improved sparsity and computational efficiency. The number of parameters reduces
from 1.7 Mn to 0.85 Mn, and the number of FLOPs reduces from 489 Mn to 309 Mn. Therefore, RReLU
saves 49.1% in memory and 36.81% in computation without a regularizer. Interestingly, for a not-so-deep but
wider architecture like WRN-40-4 (depth 40, widening factor 4), which has 8.9 Mn trainable parameters, the
proposed RReLU activation saves 63.37% in memory and 52.20% in computation for CIFAR-10. While saving
memory and computation, the WRN-40-4 architecture with RReLU does not compromise on accuracy; for
example, it achieves an accuracy of 96.01% comparable to the 96.18% achieved with ReLU. The performance
of the proposed RReLU activation function is evaluated on CIFAR-100 and SVHN datasets, and the outcomes
are presented in Table 1, demonstrating consistently noteworthy results.

5.5 RReLU enhances the representation capability of the filters

To demonstrate that RReLU provides extra representation capability to batchnorm parameters, we first
establish a baseline using the work by Liu et al. (2017), where the authors learn efficient convolutional
networks through network slimming. We denote it by ResNet-164-L1BN, where the authors claim that L1
regularization imposed on the batchnorm parameters, γl, leads to an increased number of γl values near
zero. Note that Liu et al. (2017) trained the ResNet164-L1BN model for 160 epochs, after which only 31%
of the filters could be removed without any degradation in accuracy (94.8%), which resulted in 19.3% saving
in memory and 26.6% saving in FLOP. We have observed earlier that sufficient training gives rise to better
convergence of network parameters, resulting in better sparsity and validation accuracy. Therefore, we train
the same model for 400 epochs and call it ResNet-164-L1BN-MT (MT: more training), after which 44%
of the filters could be removed without any degradation in accuracy (95.1%) as reported in Table 2 (third
column). In the fourth column of Table 2, without any use of a regularizer, the proposed RReLU (ResNet-164-
RReLU) can prune 31.96% of the filters with even better accuracy (95.54%) than ResNet-164-L1BN-MT.

3The value of ζ is picked such that the performance does not degrade after the pruning. The values we found for ζ via
cross-validation are given in Table. 11 in the Appendix.
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Figure 8: Filters alive at different depth for ResNet-164 and ResNet-164-RReLU

While ResNet-164-L1BN-MT achieves 32.33% saving in memory and 26.38% saving in computation, the
proposed ResNet-164-RReLU achieves a saving of 35.92% in memory and 25.97% in FLOP. All the models
in Table 2 are trained for 400 epochs for a fair comparison. From these results, it shows that With RReLU,
the models can achieves similar sparsity as L1BN-MT without using any regularizer. One may inquire as
to why L1BN-MT exhibits a higher number of pruned filters but a similar degree of savings compared to
RReLU. The explanation lies in the fact that toward deeper layers, RReLU primarily targets larger filters
of size 3 × 3, whereas L1BN-MT prunes both 3 × 3 and 1 × 1 filters. In Fig. 8, the vertical red lines denote
the depths where the convolution operation uses 3 × 3 filters while the rest of the convolution operations
use filters with kernel size 1. It is evident that within the higher depths, RReLU achieves a higher degree of
sparsity, resulting in greater savings in memory and FLOP compared to the number of pruned filters.

Whereas ResNet-164-RReLU has RReLU without any regularizer, ResNet-164-L1RReLU uses a L1 regu-
larizer with a sparsity regularizer of s = 5e−5. The proposed ResNet-164-L1RReLU achieves even higher
accuracy with a great saving of 64.67% in memory and 52.96% in FLOP. The proposed ResNet-164-L1RReLU
achieves an accuracy of 95.25% which is very close to a ResNet-164 model trained with ReLU. As shown in
Fig. 8, the ResNet-164-L1RReLU achieves higher degree of sparsity within the ranger of higher depth both
in terms of bigger (3 × 3) and smaller (1 × 1) filters, resulting in higher savings.

Methods Baseline Pruning methods

Architecture ResNet-164 ResNet-164-L1BN-MT
(Liu et al., 2017)

ResNet-164-RReLU
(Proposed)

ResNet-164-L1RReLU
(Proposed)

Acc (with CIFAR10) 95.77 95.10 95.54 95.25
Filters pruned (%) – 44 31.96 57.44
Params in Mn(% saving) 1.67 1.13(32.33%) 1.07(35.92%) 0.59(64.67%)
FLOPs in Mn(% saving) 489 360(26.38%) 362(25.97%) 230(52.96%)

Table 2: Pruning capability of RReLU. All sparse models are trained for 400 epochs before sparsification.
Percentage values inside parentheses indicate corresponding savings.

Comparing Fig. 9b with Fig. 9a shows that without regularization, the number of elements of γl close
to zero is 1600, whereas with regularization, this number has increased to 4000. Without any use of reg-
ularizer, the proposed RReLU (ResNet-164-RReLU) has 2500 elements of γl close to zero lesser than the
ResNet-164-L1BN-MT, as depicted in Fig. 9c. At the end of 400 epochs, ResNet-164-L1BN-MT has more
γl parameters close to zero than ResNet-164-RReLU because of the L1 regularization applied to the γl.
The introduction of L1 regularization to the RReLU slopes, denoted as ResNet-164-L1RReLU, leads to a
pronounced enhancement in sparsity, as evidenced in Figure 9d. The implementation of regularization on
bl yields a substantial increment in the number of elements within γl that approach zero, with this count
reaching 6200.

In Fig. 10, we show the type of values bl and γl take after training ResNet-164-L1RReLU. Out of 54 residual
blocks, we pick 4 blocks at random and plot bl (y-axis) against γl (x-axis) 4. Given that the regularization
is applied to bl, it compels these parameters to adopt smaller values. However, as the elements of γl are
not regularized and can hence assume a wide range of values, the term γlbl can take any value in the real
line as shown in the figures. In every block, we see that when bl takes significant values, γl takes a range
of values, giving a higher representation power to every filter. Therefore, in our approach, we prune the

4In Fig. 16 in the Appendix, we show such plots for more blocks.
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(a) ResNet-164 (b) ResNet-164-L1BN-MT (c) ResNet-164-RReLU (d) ResNet-164-L1RReLU

Figure 9: Effect of RReLU on BN scaling parameters γl. (a) ResNet164 (b) ResNet164-L1BN-MT (c)
ResNet164 with RReLU as activation (d) ResNet164 with RReLU as activation and L1 regularization imposed
on bl.

filters only based on the values of bl. If we look at Fig. 9b for ResNet-164-L1BN-MT, we see that, when L1
regularization is applied on γl, many of the batchnorm parameters γl are pushed to take values in the range
0 < γi

l ≤ 0.1. However, looking at the same range in Fig. 9c and 9d while using RReLU, we see that the
number of elements of γl in that range is less. These values tend to either shift towards higher magnitudes
or concentrate around values close to zero, indicating more flexibility with RReLU.

(a) Block 8 (b) Block 20 (c) Block 36 (d) Block 49

Figure 10: Plot of RReLU slopes (bl) along y-axis vs. BN parameters (γl) along x-axis in different residual
blocks of ResNet-164-L1RReLU.

Also note that, with more depth, more number of filters could be pruned as more number of (bl, γl) is close
to zero 5. For example, in 8th residual block (Fig. 10a), which consists of shallow layers, there are relatively
few slopes in proximity to zero, limiting the pruning capacity. In contrast, when examining deeper layers,
such as the 49th block, numerous pairs of (bl, γl) gravitate towards zero, indicating a greater potential for
filter pruning.

Following equation 3, one can observe that when the L1 regularization is applied to the batchnorm parameters
γl, it enforces all the elements of γl to take lower values. This constraint may limit the representation capacity
of the ResNet-164-L1BN-MT model. But with RReLU, there is no such restriction on γl or bl, and RReLU
provides another degree of freedom by the slopes bl. Therefore, When bl is significant, the elements of
γl take an unconstrained range of values, e.g. in Fig. 10b. It improves the representation power of the
corresponding filters. Therefore, it inherently enables a greater number of parameters of bl to approach
zero, leading to disregarding corresponding filters, all achieved without the need for explicit regularization,
thus resulting in implicit sparsification.

In Fig. 11, we present the top 1% accuracy vs. FLOP reduction trade-off for the ResNet-164 model. The
FLOP reduction signifies the difference between the FLOP count of the ResNet-164 and the FLOP count
of the models employing various sparsifying methods, as depicted in Figure 11. Enhanced performance is
indicated by a positioning closer to the upper-right quadrant of the graph, as it indicates higher accuracy
while using lower no of FLOPs. Without using a regularizer, the RReLU provides same FLOP reduction as
L1BN-MT with a little higher accuracy, indicating that RReLU provides intrinsic sparsification. Further,

5This trend is visible in Fig. 16 of the Appendix.
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Figure 11: Acc vs FLOP reduction. The proposed methods (RReLU, L1RReLU) are compared with L1BN-
MT (MT: more training)

when L1 regularization is applied on RReLU slopes, L1RReLU provides the best FLOP reduction with a
same level of accuracy.

With its excellent sparsification capability, decomposed training (Yang et al., 2020a) achieves exceptional
speedup, keeping the accuracy the same. Whereas decomposed training maintains an accuracy of 93.28% for
ResNet56, we achieve an accuracy of 94.11% with RReLU (without any regularization). As RReLU demon-
strates inherent sparsification properties, it can be seamlessly integrated into the architectures employed in
the study by Yang et al. (2020a) in conjunction with decomposed training techniques. This integration has
the potential to yield significantly improved speedup and enhanced accuracy. In the below paragraph, we
show it can be applied to another recent structural pruning work by Hou et al. (2022).

5.6 RReLU combined with other structural pruning methods improves sparsity

Here we show that when RReLU is combined with the structural pruning methods such as CHEX Hou et al.
(2022), the sparsity further improves. The pruning and regrowing for the CHEX method are performed
during the training after every ∆T = 2 time step. CHEX considers ResNet50 for performing classification
on the ImageNet Dataset. ResNet50 on the ImageNet classification task achieves an accuracy of 76.13% using
a GFLOP count of 4.09. The ResNet50 architecture with RReLU reduces the GFLOP to 3.45 without using
any regularizer. This shows that RReLU can provide sparsity intrinsically. Here, both the architectures with
ReLU and RReLU, respectively, are trained for 250 epochs. We have observed that instead of the usual multi-
step learning rate (LR) scheduler, if the cosine annealing LR scheduler is used, then the accuracy improves
to 76.28% with 3.15 GFLOPs. The improved performance indicates that if trained well with appropriate
hyperparameters and proper initialization, the architectures with RReLU can have better accuracy than
ReLU with a lesser number of GLOPs within the same number of time steps.

We acknowledge that compared to recent sparsity-inducing methods such as CHEX, RReLU provides less
sparsity. However, it’s crucial to recognize that the sparsity induced by RReLU is intrinsic. As highlighted
in our paper, RReLU is an activation function that inherently promotes sparsity and is not a pruning
technique. Consequently, RReLU can be effectively combined with various structured pruning methods to
enhance sparsity, as each filter has better representation power with RReLU. To validate this, we have
integrated RReLU with CHEX and compared the GFLOP counts for ResNet50 with ReLU and RReLU
below.

With a target sparsity of s = 70%, the baseline (CHEX w/ ReLU) with ResNet50 on ImageNet classification
achieved an accuracy of 76.28% with a GFLOP count of 1.35 when trained from scratch using the codebase
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Methods Accuracy GFLOPs
ReLU (multistep LR) 76.13% 4.09

RReLU (multistep LR) 75.22% 3.45
RReLU (cosine annealing) 76.28% 3.15

CHEX w/ ReLU (s = 70%, cosine annealing) 76.28% 1.35
CHEX w/ RReLU (s = 70%, cosine annealing) 75.48% 1.12
CHEX w/ ReLU (s = 50%, cosine annealing) 77.98% 2.49

CHEX w/ RReLU (s = 50%, cosine annealing) 77.58% 2.20

Table 3: Comparison between (i) ReLU (ii) RReLU (ii) CHEX, and (iv) RReLU combined with structured
pruning method CHEX for ResNet50 on ImageNet dataset.

and the hyperparameters the authors have provided6. When CHEX is combined with RReLU (CHEX w/
RRELU), the architecture reduces the computation to 1.12 GFLOPs, as shown in Table. 3, corroborating
our claim. Further, with a target sparsity of s = 50%, CHEX reduces the computation from 4.09 GFLOPs
to 2.20 GFLOPs, but when CHEX is combined with RReLU, it reduces the computation to 2.20 GFLOPS.
This shows that RReLU improves the sparsity when combined with existing structured pruning techniques.
The detailed results are provided in Table. 3.

5.7 RReLU as the coarse feature extractor

During training, the learned weights/filters are tuned to extract finer features of the input. The RReLU
activation function is observed to extract the coarse features where the weights/filters are random. In order
to substantiate this claim, we conducted an experiment whereby only the RReLU slopes (bl) are trained for
500 epochs. At the same time, the weights are fixed, following initialization with the Kaiming He method
(He et al., 2015). The outcomes indicate that while a neural network architecture with untrained weights
and a ReLU activation function fails to learn anything, an architecture with solely learned bl can attain
some degree of learning. Specifically, ResNet-56 with only the learned bl (and untrained weights) yielded an
accuracy of 51.42% with the CIFAR-10 dataset, and one can remove 7.09% of the filters using ζ = 0.1, as
shown in Table 4.

Dataset CIFAR-10 CIFAR-100

Architecture ResNet20 ResNet56 ResNet20 ResNet56

Acc ReLU (standard) 93.03 93.63 68.20 69.99

Acc (1st-step) 45.12 51.42 8.02 10.54
Filters ignored (%) 5.35 7.09 6.84 7.44
#Params RReLU 0.24 0.72 0.23 0.72
#FLOPs RReLU 72.5 220 70.29 216
Acc (2nd step) 91.93 92.82 66.68 66.39

Table 4: RReLU extracts the coarse features with bl being only the trainable parameters.

These findings suggest that the RReLU activation function, particularly its learned slopes, extracts the coarse
features of the inputs in terms of the untrained filters in the case of CNNs. Fig. 12 shows the histogram of
the RReLU slopes of ResNet-56 after training. Once the RReLU is used as a coarse feature extractor, one
can drop those RReLU that have nearly zero slopes and prune their corresponding filters. We can then train
the remaining weights and retrain the slopes to attain the finer features. After the 2nd step, the models tend
to achieve similar accuracy as the baseline, as seen in Table 4.

6https://github.com/zejiangh/Filter-GaP/tree/main
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Figure 12: Distribution of bl for ResNet-56 with
CIFAR-10.

Figure 13: Distribution of filter-path length for
WRN-40-4 with CIFAR-100.

5.8 Features choose the shortest path length

Veit et al. (2016) demonstrate residual networks as an ensemble of independent paths, and the study show
that only shorter paths carry gradients despite using deeper architecture. Our study supports these findings
as we observe that features not only try to pass through shorter paths, but they try to pass through a lesser
number of filters as well. While Veit et al. (2016) define path-length as the number of layers the input
features pass through, we define filter-path length as the number of filters the features pass through. For
a WRN-40-4 with ReLU activation, most paths have a filter-path length between 300 to 1100, but using
RReLU, we observe a reduction in filter-path length, with most paths having lengths between 100 to 500, as
shown in Fig. 13. This shows that RReLU activation allows features to pass through fewer filters, resulting
in saved memory and computation.

5.9 Scalable across larger dataset and various architectures

In this part, we show results with the benchmark ILSVRC-2012 (ImageNet-1k) dataset in Table. 5. For
testing with ImageNet-1k, we consider three architectures: (i) a WideResNet with depth 50 and widening
factor 2 denoted by WRN-50-2, (ii) a Vision Transformer with 12 layers, a width of 384, the MLP width of
1536, and patch-size of 16 denoted by VIT-s16 (Steiner et al., 2021), and an (iii) EfficientNet. For training
WRN-50-2, we closely follow the official implementation7 for image classification with ImageNet dataset
with standard PyTorch models. We have selected WRN-50-2 due to its superior performance compared to
considerably deeper ResNets such as ResNet-152. We do not use pre-trained parameters for initializing the
network and train WRN-50-2 for both ReLU and RReLU from scratch. In both scenarios, whether utilizing
ReLU or RReLU activation functions, the architectures of WRN-50-2 undergo training for a total of 120
epochs, the same as the one considered in the official PyTorch repository.

VIT-s16 was successfully trained on ImageNet by Dosovitskiy et al. (2020), attaining excellent results com-
pared to familiar convolutional architectures. The VIT-s16 architecture uses only the Encoder block of a
Transformer, which consists of 12 blocks, each having a Multi-head-dot-product-attention, a multi-layer per-
ceptron (MLP) block and two Dropout layers and two Layer-normalization layers 8 Even though Dosovitskiy
et al. (2020) proposed Vision Transformer, they published codes only for fine-tuning and pre-trained models.
In a subsequent study by Steiner et al. (2021), the researchers conducted a thorough investigation into the
relationship between the amount of training data, model regularization/data augmentation, model size, and
compute budget. They made their code base available with a configuration (Beyer et al., 2022) to train plain
VIT baselines from scratch for ImageNet-1k. In our research, we utilized this framework to present results
with the VIT-s16 model. This plain VIT baseline uses standard data augmentation and no sophisticated
regularization techniques such as augmentation or regularization pipeline. It does not use any pre-training

7https://github.com/pytorch/examples/tree/main/imagenet
8For detailed architecture, please refer to https://github.com/google-research/big_vision.
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procedure. The VIT-s16 model for ReLU is trained for 300 epochs, whereas for better convergence of RReLU
slope, ViT-s16 with RReLU is trained for 400 epochs.

EfficientNet has shown superior performance post-ResNet and is famous for efficient computation. For
example, for a similar accuracy, EfficientNet-b1 is 7.6x smaller and 5.7x faster than ResNet-152 Tan & Le
(2019). EfficientNet uses (i) depthwise separable convolution and (ii) sequential squeeze and excitation in
an inverted bottleneck residual block along with intermediate expansion operation and therefore is a better
version than MobileNet which has only depthwise separable convolution. Therefore, we proceeded with
comparisons only against EfficientNet, as it represents a superior architecture than MobileNet Howard et al.
(2017) for studying the performance of RReLU. EfficientNet uses Sigmoid Linear Unit (SiLU) activation. We
show the intrinsic sparsity achieved by using the idea of rotation in one of the EfficientNet architecture i.e.
EfficientNet-b4. We replace SiLU with rotated SiLU (RSiLU) and train it. The EfficientNet architectures
with ReLU are trained for 400 epochs, whereas we report the performance of EfficientNet with RSiLU after
500 epochs.

Arc Activation Filters ignored (%) Accuracy Params(Mn) Pruned FLOP(Mn) Pruned

WRN-50-2 ReLU - 76.682 67.4 - 21563 -
WRN-50-2 RReLU 25.34 76.58 55.2 18.1% 18648 13.5%
VIT-s16-MLP GELU - 77.51 14.2 - 28.3 -
VIT-s16-MLP RGELU 6.32 80.1 13.2 6.32% 26.5 6.32%
EfficientNet-b4 SiLU - 82.80 19.3 - 4200 -
EfficientNet-b4 RSiLU 16.83% 81.67 17.2 10.9% 3500 16.66%

Table 5: Applying Rotation on ReLU, GELU, and SiLU activation with Imagenet dataset.

While WRN-50-2 architecture uses ReLU, each MLP block of VIT-s16 contains two dense layers with a GELU
non-linearity in between two layers. So, for WRN-50-2, we have used RReLU instead of ReLU; for VIT-s16,
we have used RGELU instead of GELU. In Table 5, we demonstrate the sparsity property of RReLU or
RGELU. Training WRN-50-2 with RReLU for ImageNet demonstrated the implicit regularization property
of RReLU, allowing for the removal of 25.34% of the filters. This led to a 18.1% reduction in parameters
and a 13.5% reduction in FLOPs, keeping the performance the same. The VIT-s16 architecture boasts a
total parameter count of 22.14 million, with 14.2 million parameters dedicated to the MLP component, while
the remaining parameters are attributed to the multihead-dot-product attention mechanism. So in Table
5, we report the saving in the number of parameters and FLOPs in VIT-s16-MLP. Whereas the VIT-s16
was reported to achieve an accuracy of 77.51% with GELU, the same with RGELU achieved an accuracy
of 80.1% with sufficient training. Not only does the accuracy improve, but RGELU provides a saving of
6.32% in both memory and FLOPs. The baseline architecture, EfficientNet-b4 has 19.3 Mn parameters and
4.2 Bn FLOPs and is reported to have an accuracy of 82.80%. Using RSiLU provides an intrinsic sparsity
to reduce the parameter count and FLOP count to 17.2 Mn and 3.5 Bn, respectively, with a comparable
accuracy of 81.67%. We could run only one iteration because of limited computing power, but we believe
that the accuracy can be improved with better hyperparameter tuning. These results imply that rotation
operation is transferable to other activations if the activation mimics ReLU.

5.10 RReLU imposes better adversarial robustness

From the distribution of bl in Fig. 7, it is observed that most of the RReLU slopes have values less than one
in most cases. As LC can be defined as the upper bound on the gradient of the function f(x) (Latorre et al.,
2020; Paulavičius & Žilinskas, 2006), it can be argued that the value of LC is typically lower for RReLU than
ReLU, resulting in better adversarial robustness. However, in practice, calculating the Lipschitz Constant
(LC) for the neural network is NP-hard, and an alternative empirical computation of the Local Lipschitz
Constant (LLC) is preferred and defined as the following quantity (Yang et al., 2020b)

1
n

n∑
i=1

max
x′

i
∈B∞(xi,ϵ)

||f(xi) − f(x′
i)||KL

||xi − x′
i||∞

. (12)

To perform the max operation in equation 12, we adopt a gradient-descent-like algorithm with a step-
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Architecture activation LLC Attack type Adv test acc

ResNet-20
ReLU 1.33 FGSM 34.11

PGD 38.20

RReLU 1.2 FGSM 39.84
PGD 42.46

ResNet-56
ReLU 1.41 FGSM 59.01

PGD 16.45

RReLU 1.30 FGSM 66.85
PGD 17.05

Table 6: RReLU to boost local smoothness and hence adversarial accuracy.

size of 0.001 and 60 iterations. We have computed the LLC using equation 12 and provided in the third
column of Table 6, which shows that the LLC for the architectures with RReLU is lower than the LLC for
the architectures with ReLU, indicating better smoothness (Yang et al., 2020b). We consider a single-step
attack, such as the Fast Gradient Sign Method (FGSM), and an iterative attack, Projected Gradient Descent
(PGD), to test the adversarial robustness of architectures with RReLU. FGSM samples considered in our
experiments have a perturbation of ϵ = 0.031. The input variation parameters ϵv for the PGD attack are
considered to be 0.031 and 0.1 for ResNet20 and ResNet56, respectively. The step size for each attack
iteration is ϵv/20, and the number of attack iterations is 10. Observing the adversarial test accuracy (for
both FGSM and PGD) at the last column of Table 6, we see that for the type of attack we have considered,
the architectures with RReLU have better robustness than one with ReLU.

5.11 A discussion on speedup with the sparse models

FLOP reduction serves as an indicative measure of speedup (Gao et al., 2021; Han et al., 2015; Li et al.,
2017; Gordon et al., 2018). In our specific computational environment, operating within a 64-bit system,
even though the elements of the RReLU slope (bl) converge to zero, they are still represented as 64-bit real
numbers. Consequently, under the current system configuration, any significant speedup is not anticipated.
Further, the same model may demonstrate different execution times based on various hardware configura-
tions. For example, in Fig. 15.5.6 of Tu et al. (2022), the peak performance in terms of TFLOPs is different
in different deep learning processors. In a single chip also, the performance varies based on the floating
point format (BF16 or FP32). Moreover, the same architecture will have different speedups in different
frameworks such as PyTorch, Caffe, Tensorflow, etc (Hadidi et al., 2019). As our focus here is primarily on
the algorithmic aspect, hardware/framework considerations are currently not in the scope of this paper.

However, to get an idea about speedup concerning the saving in memory and FLOP reported in the paper,
we have done the following. First, we have trained the model with RReLU which makes some of the filters
insignificant after training. In this response, we have shown the study with a VGG and a ResNet164-pre
network. As RReLU can ignore a set of filters and sub-filters in two consecutive layers, for inference we can
create a smaller architecture, and overwrite its parameters by the values of the significant filters from the
original trained model. The smaller model performs the same as the original model but has a lesser number
of filters. Therefore, the inference time of this smaller model will be less. As the inference time is a metric
for showing speedup Bianco et al. (2018), therefore we measured the total inference time of both the original
model and the smaller model in a GPU device. The below results are averaged over multiple iterations.

Activation ReLU (Baseline) RReLU (Unpruned) RReLU (Pruned)
FLOP 1270 Mn 1270 Mn 1010 Mn

Memory 20 Mn 20 Mn 6.4 Mn
Average inference time 1.06s 1.03s 0.62s

GPU memory utilization 81.7% 81.7% 77.90%

Table 7: VGG
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Activation ReLU (Baseline) RReLU (Unpruned) RReLU (Pruned)
FLOP 478 Mn 478 Mn 307 Mn

Memory 1.7 Mn 1.7 Mn 0.92 Mn
Average inference time 3.09s 3.59s 2.14s

GPU memory utilization 84.2% 86.7% 82.9%

Table 8: ResNet-164-pre

In Table 7 and Table 8, we reported the average inference time of VGG and ResNet-164-pre, respectively in
a Quadro P2200 5GB RAM GPU while taking average over 200 forward pass. Please note that the average
inference time of the pruned model using the RReLU slope is lower for both VGG and ResNet-164-pre
networks. The GPU utilization is also reported in the last row. We do not have control over the GPU
utilization as the GPU uses optimal cores based on batch size and specific GPU configuration. But we have
taken a higher batch size to keep them in the same range across all three architectures (i) ReLU (Baseline),
(ii) RReLU (Unpruned), and (iii) RReLU (Pruned). For example for VGG, a batch size of 2048 is used
whereas for ResNet-164-pre, a batch size of 3000 is used. Keeping the utilization at the same level, we
compare the inference time, which shows that RReLU (Pruned) has the minimum inference time therefore
it gives the maximum speedup.

6 Conclusion

In this work, we proposed the RReLU activation and a novel initialization for the RReLU slopes. We
then demonstrated through extensive experiments that the combination plays a vital role in the implicit
sparsification of the architecture by enhancing the representation capability of the architecture. The proposed
activation saves resources and improves performance in many architectures. For example, with the CIFAR-
10 dataset, the WRN-40-4 achieves 63.37% saving in memory and 69.7% saving in computation without any
loss in accuracy. The proposed RReLU can be used as an alternative to ReLU in all deep architectures where
ReLU had been used earlier including other structural pruning methods too. The RReLU-based architectures
are also shown to have a lower LLC value and hence better adversarial robustness. Therefore, RReLU is
a one-stop solution for improved performance, energy efficiency, and robustness. The idea of learning the
rotation of the linear component of the activation function can also be applied to other activation functions
which have a partly linear component, i.e. we have applied the proposed idea to GELU and observed that
RGELU in ViT-s16 achieves an accuracy better than GELU with 6.32% saving in memory and computation
of the MLP block.
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A Appendix

In this section we provide experiment details so that it is easier for the readers to reproduce the results.

A.1 The sample ResNet and WideResNet architectures considered for our experiments

The architecture of vanilla ResNet-20 is given in Table. 9 where each of the three blocks has 6 layers. For
vanilla ResNet-56, each block has 9 layers He et al. (2016a); Idelbayev. To obtain the architecture with
RReLU, the ReLU activations at all the layers (except the first convolution layer) are converted to RReLU.
We do not replace the ReLU after the first convolution layer with RReLU because we may not want to miss
out on any information in the input by deactivating filters at the very first layer. For CIFAR-10 dataset,
K = 10 and for CIFAR-100, K = 100.

Layer Description Output Dimen-
sion

Input - 3 × 32 × 32
Conv Cin = 3, Cout = 16, Kernel: (3 × 3), BN, ReLU 16 × 32 × 32
Block1-layer1 Cin = 16, Cout = 16, Kernel: (3 × 3)], BN, ReLU 16 × 32 × 32
Block1-layer2 Cin = 16, Cout = 16, Kernel: (3 × 3)], BN, ReLU, addition 16 × 32 × 32
Block1-layer3 Cin = 16, Cout = 16, Kernel: (3 × 3)], BN, ReLU 16 × 32 × 32
Block1-layer4 Cin = 16, Cout = 16, Kernel: (3 × 3)], BN, ReLU, addition 16 × 32 × 32
Block1-layer5 Cin = 16, Cout = 16, Kernel: (3 × 3)], BN, ReLU 16 × 32 × 32
Block1-layer6 Cin = 16, Cout = 16, Kernel: (3 × 3)], BN, ReLU, addition 16 × 32 × 32
Block2-layer1 Cin = 16, Cout = 32, Kernel: (3 × 3)], BN, ReLU 32 × 16 × 16
Block2-layer2 Cin = 32, Cout = 32, Kernel: (3 × 3)], BN, ReLU, addition 32 × 16 × 16
Block2-layer3 Cin = 32, Cout = 32, Kernel: (3 × 3)], BN, ReLU 32 × 16 × 16
Block2-layer4 Cin = 32, Cout = 32, Kernel: (3 × 3)], BN, ReLU, addition 32 × 16 × 16
Block2-layer5 Cin = 32, Cout = 32, Kernel: (3 × 3)], BN, ReLU 32 × 16 × 16
Block2-layer6 Cin = 32, Cout = 32, Kernel: (3 × 3)], BN, ReLU, addition 32 × 16 × 16
Block3-layer1 Cin = 32, Cout = 64, Kernel: (3 × 3)], BN, ReLU 64 × 8 × 8
Block3-layer2 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU, addition 64 × 8 × 8
Block3-layer3 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU 64 × 8 × 8
Block3-layer4 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU, addition 64 × 8 × 8
Block3-layer5 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU 64 × 8 × 8
Block3-layer6 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU, addition 64 × 8 × 8
Linear classification into K classes with softmax K × 1

Table 9: Architecture of vanilla ResNet-20; For the RReLU version, the ReLU activations are replaced by
ReLU. Here addition implies the addition of a skip connection with the residual path. For CIFAR-10, K = 10
and for CIFAR-100, K = 100.

The ResNet-110-pre architecture has an identity connection between two ResNet units; the batchnorm layers
are followed by RReLU and the RReLU layers are followed by the convolution layers. The “pre" in its name
indicates preactivation, i.e., ReLU/RReLU activation before the convolution layer. The ResNet-164-pre also
has the above identity connection and preactivation; along with a special bottleneck architecture which has
a different number of channels along the depth than the standard ResNets He et al. (2016b); Liu.

The WideResNetKuen architecture WRN-16-4 is given in Table. 10 that is used with the SVHN dataset.
For SVHN K = 10. The other WideResNet architecture is WRN-40-4, which has 40 layers and a widening
factor of 4. It has the same three blocks but each with 12 layers. WR N-40-4

A.2 How to set ζ during deployment of the models to discard the slopes that are below ζ and still
not degrade the performance?

The value of ζ is set by cross-validation. The network is trained with the train set, and the test set is divided
into two parts. The first part of the test set is used to find a ζ such that if the slopes that are below that
ζ are made equal to zero, the performance does not degrade. The number of RReLU slopes that can be
ignored for different experiments and the corresponding ζ is given in Table 11. With the latter part of the
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Layer Description Output Dimen-
sion

Input - 3 × 32 × 32
Conv Cin = 3, Cout = 16, Kernel: (3 × 3), BN, ReLU 16 × 32 × 32
Block1-layer1 Cin = 16, Cout = 64, Kernel: (3 × 3)], BN, ReLU 64 × 32 × 32
Block1-layer2 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU, addition 64 × 32 × 32
Block1-layer3 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU 64 × 32 × 32
Block1-layer4 Cin = 64, Cout = 64, Kernel: (3 × 3)], BN, ReLU, addition 64 × 32 × 32
Block2-layer1 Cin = 64, Cout = 128, Kernel: (3 × 3)], BN, ReLU 128 × 16 × 16
Block2-layer2 Cin = 128, Cout = 128, Kernel: (3 × 3)], BN, ReLU, addition 128 × 16 × 16
Block2-layer3 Cin = 128, Cout = 128, Kernel: (3 × 3)], BN, ReLU 128 × 16 × 16
Block2-layer4 Cin = 128, Cout = 128, Kernel: (3 × 3)], BN, ReLU, addition 128 × 16 × 16
Block3-layer1 Cin = 128, Cout = 256, Kernel: (3 × 3)], BN, ReLU 256 × 8 × 8
Block3-layer2 Cin = 256, Cout = 256, Kernel: (3 × 3)], BN, ReLU, addition 256 × 8 × 8
Block3-layer3 Cin = 256, Cout = 256, Kernel: (3 × 3)], BN, ReLU 256 × 8 × 8
Block3-layer4 Cin = 256, Cout = 256, Kernel: (3 × 3)], BN, ReLU, addition 256 × 8 × 8
Linear classification into K classes with softmax K × 1

Table 10: Architecture of WRN-16-4. For CIFAR-10, K = 10 and for CIFAR-100, K = 100.

test set, the pruned network is tested, and accuracy is reported in Table 1 of the main manuscript. For
Imagenet and WRN-50-2, the threshold ζ is set equal to 0.045 via cross validation.

Table 11: The value of ζ for different experiments and the corresponding number of filters ignored in the
‘x/y’ format. Here ‘x’ filters out of ‘y’ filters could be dropped because of RReLU.

Dataset MNIST CIFAR-10 CIFAR-100 SVHN

ArchitectureFCNN ResNet-
20

ResNet-
56

ResNet-
110-
pre

ResNet-
164-pre

WRN-
40-4

ResNet-
20

ResNet-
56

ResNet-
110-
pre

ResNet-
164-pre

WRN-
40-4

WRN-
16-4

ζ 1.0 0.1 0.06 0.045 0.08 0.04 0 0.08 0.04 0.04 0.04 0.04
Filters
ignored

24
500

26
672

179
2016

241
3984

5376
11856

2227
5136

0
672

208
2016

75
3984

2684
11856

924
5136

336
1552

(a) WRN-40-4, CIFAR-10 (b) WRN-40-4, CIFAR-100 (c) WRN-16-4, SVHN

Figure 14: Distribution of slopes bl in WRN-40-4 with dataset CIFAR-10 and CIFAR-100 in (a) and (b)
respectively; and distribution of slopes bl in WRN-16-4 with dataset SVHN in (c).

A.3 Comparison of the distribution of the slopes of RReLU for WideResNets

In the main manuscript, the distributions of the slope of RReLU are shown for ResNets for CIFAR-10 and
CIFAR-100 datasets. The same with WRN-16-4 and WRN-40-4 architectures are shown in Fig. 14. It is
clear in the figure that many slopes take values close to zero, indicating that the corresponding filters are not
useful. For WideResNets, a great number of filters could be ignored without any degradation in performance.
For accuracy and saving in memory and computation, see Table 1 in the main manuscript.

25



Under review as submission to TMLR

(a) ResNet-20 (b) ResNet-56 (c) ResNet-110-pre (d) ResNet-164-pre

(e) ResNet-20 (f) ResNet-56 (g) ResNet-110-pre (h) ResNet-164-pre

Figure 15: Distribution of BN parameters (γl) with CIFAR-10 (top row) and CIFAR-100 (bottom row).

A.4 Distribution of the batchnorm paramters

The distribution of batchnorm parameters are presented in Fig. 15 for architectures ResNet-20, ResNet-56,
ResNet-110-pre and ResNet-164-pre corresponding to the distribution of the slopes bl in Fig. 7 of the main
manuscript.

A.5 Typical values taken by γl and bl

In ResNet-164 architecture, there are total of 163 convolution layers and one linear layer at the end before
softmax layer. There are a total of 54 Residual blocks out of which we show the scatter plot for a couple of
Residual blocks in Fig. 16 which shows the typical values taken by γl and bl.

A.6 Finding the filter-path length

Fig. 13 in the main manuscript shows the filter-path length of WRN-40-4 architecture with RReLU. The
metric filter-path length is defined by us, representing the number of filters the features pass through. We
get paths of different lengths in ResNets depending on whether we choose the direct or residual connection
because features may pass via the residual or direct connections in every ResNet unit Veit et al. (2016). If
we consider the direct path, as the number of filters is zero, the value of the filter-path length metric is also
zero. Similarly, if we consider the residual path, the features pass via the filters; therefore, the filter-path
length is the total number of active filters in that residual unit. As the number of filters reduces at every
ResNet unit because of using RReLU, the filter-path length also reduces, indicating that features choose the
shortest paths to pass.
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(a) Block 2 (b) Block 8 (c) Block 13 (d) Block 18

(e) Block 20 (f) Block 26 (g) Block 31 (h) Block 36

(i) Block 38 (j) Block 44 (k) Block 49 (l) Block 54

Figure 16: Plot of BN parameters (γl) vs. RReLU slopes (bl) in different residual blocks of ResNet-164-
L1RReLU.
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