
Motion-Focused Tokenization for Source-Free Video Domain Adaptation

Tzu Ling Liu 1 Ian Stavness 1 Mrigank Rochan 1

Abstract
Source-free video unsupervised domain adapta-
tion (SFVUDA) represents a significant challenge
in action recognition research. It requires adapt-
ing a pretrained model from a labeled source do-
main to an unlabeled target domain, with the con-
straint that source data remains inaccessible dur-
ing adaptation. Despite advances in SFVUDA ap-
proaches, their performance remains significantly
inferior to that of the supervised approach. We
argue that a key reason for this performance bot-
tleneck is the presence of variable static back-
grounds in videos, which contribute substan-
tially to domain shifts. To address this, we pro-
pose Motion-Focused Tokenization (MFT) for
SFVUDA. In MFT, we first tokenize source and
target video frames into patch tokens, then sup-
press the low-motion tokens, which largely belong
to the background, while retaining the motion-rich
tokens corresponding to actions for domain adap-
tation. Experiments introducing MFT to the best-
performing existing SFVUDA method demon-
strate a significant improvement (∼2%) in its per-
formance across two popular domain adaptation
(DA) benchmarks, Daily-DA and UCF-HMDB,
covering 15 different DA settings.

1. Introduction
Efficiently transferring models across different domains re-
mains a significant challenge in video action recognition.
To bridge this gap, Video Unsupervised Domain Adaptation
(VUDA) has been proposed, which leverages labeled source
domain videos to align feature representations with unla-
beled target domain videos (Yang et al., 2020a; Xu et al.,
2022a; da Costa et al., 2022; Sahoo et al., 2021). How-
ever, in real-world scenarios, direct access to source videos
is often restricted due to privacy concerns or data-sharing
limitations. To overcome this issue, Source-Free VUDA
(SFVUDA) has emerged as an alternative, where the adap-
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tation process relies on a pretrained source model without
accessing the source data during adaptation.

Previous SFVUDA methods (Xu et al., 2022b; 2024; Li
et al., 2023; Zara et al., 2023) focus on temporal consistency
or robust pseudo-labeling methods to mitigate domain shifts.
Despite the success of video domain adaptation (DA) meth-
ods, they still underperform compared to fully supervised
approaches on the target domain, limiting their real-world
applicability. We argue that a key bottleneck lies in the pres-
ence of low-motion, static backgrounds across both source
and target videos. In such cases, models often rely on back-
ground appearance rather than motion dynamics, leading
to poor generalization. For example, the same action, such
as running, may occur in indoor and outdoor settings with
vastly different background contexts. These variations intro-
duce significant domain shifts that interfere with the transfer
of motion-centric domain-invariant action semantics, which
are crucial for effective DA in action recognition.

To address this challenge, we propose the Motion-Focused
Tokenization (MFT) module for video domain adaptation,
specifically aimed at enhancing SFVUDA. MFT aims to
explicitly prioritize regions within video frames that exhibit
meaningful motion dynamics. It begins by partitioning both
source and target video frames into patch-level tokens. Low-
motion tokens, often corresponding to static or redundant
background content, are suppressed, while high-motion to-
kens, which encapsulate key action-related semantics, are
retained. This selective emphasis helps reduce background-
induced domain shifts and reinforces the model’s focus on
transferable motion cues essential for action recognition.

MFT offers two key advantages that are particularly benefi-
cial for domain adaptation in video representation learning.
First, by selectively enhancing salient motion cues, it en-
sures that the learned representations emphasize rich and
dynamic information crucial for capturing temporal action
patterns. Second, by suppressing low motion tokens that are
typically associated with static and domain specific back-
ground content, MFT mitigates background induced biases
that contribute to domain shift. This dual focus on motion
enhancement and background suppression leads to more
robust and domain invariant video embeddings, ultimately
improving generalization across diverse video domains.

In summary, our contributions are: (i) We introduce Motion-
Focused Tokenization (MFT), a new module for video do-
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Figure 1: Overview of MFT. For both source and target videos (e.g., a pushing action), MFT tokenizes the frames into patch
tokens, computes L1 distance between consecutive temporal tokens, and suppresses those with differences below a threshold
τ , which correspond to static, low-motion background. The remaining motion-rich tokens are used for DA. Note that, for
SFVUDA, we apply MFT to source videos, obtaining a new pretrained source model that we then adapt to the target domain.

main adaptation that suppresses low-motion tokens while
preserving motion-rich action tokens, thereby reducing
static background-induced domain shift. (ii) We show
that MFT substantially boosts the DA performance of the
strongest existing method on two benchmarks spanning 15
diverse DA settings. (iii) We further compare MFT with an
alternative strategy and present qualitative analysis.

2. Related Work
Video Unsupervised Domain Adaptation. In recent years,
VUDA has made rapid progress (Yang et al., 2020a; Sahoo
et al., 2021; Xu et al., 2022a; da Costa et al., 2022), yet most
methods still rely on direct access to source videos during
adaptation, which can be impractical due to privacy restric-
tions. To address this, SFVUDA techniques have emerged,
which adapts a pretrained source model to a new target do-
main without requiring any source data during adaptation.
Early work ATCoN (Xu et al., 2022b) and EXTERN (Xu
et al., 2024) exploit temporal consistency and regularization
to address the problem. Moreover, STHC (Li et al., 2023)
adopts stochastic augmentations with consistency learning,
while DALL-V (Zara et al., 2023) utilizes CLIP (Radford
et al., 2021) and an adapter for target adaptation. How-
ever, these methods take full frames into the frameworks.
We argue that this would lead to suboptimal cross-domain
generalization, as static scene elements often dominate rep-
resentations. Thus, we propose to retain motion-rich tokens
and suppress low-motion tokens to alleviate domain shift.

Video Tokenization. Recent advances in video tokenization
have explored various strategies to improve efficiency and
effectiveness. VideoMAE (Tong et al., 2022) leverages a
masked autoencoder for self-supervised learning. However,
their masking strategy is random, potentially preserving
static backgrounds and amplifying domain shifts. Token
Merging (ToMe) (Bolya et al., 2023) progressively fuses

pairs of similar tokens based on the similarity score. How-
ever, it primarily considers spatial similarity and does not
explicitly model temporal dynamics. RLT (Choudhury et al.,
2024) encodes pixel differences between consecutive frames
and removes low difference tokens. In this work, we adopt
the content-aware idea from RLT (Choudhury et al., 2024)
and develop motion-focused tokenization (MFT) to mitigate
domain shift for SFVUDA.

3. Motion Focused Tokenization (MFT)
We introduce Motion-Focused Tokenization (MFT), a novel
module that selectively suppresses low-motion regions and
retains motion-rich regions in video frames, yielding more
robust representations for cross-domain action recognition
(Fig. 1). In MFT, we first tokenize the videos into patch-
level tokens. Next, we apply a motion-focused criterion to
identify motion-rich tokens, which are then used for DA.

Tokenization of Videos. Let V ∈ RT×C×H×W represents
a video, where T is the number of frames, C represents
channels, and each frame has a spatial resolution of H ×W .
Following the standard tokenization scheme, we partition
the video V into a set P of non-overlapping patches of
uniform size p×p. Each patch P ∈ Rt×C×p×p corresponds
to a spatial location (x, y) in the frame grid, where x ∈
[1, H/p] and y ∈ [1,W/p]. Each patch P is then treated
as a token corresponding to a distinct spatial location in
the video. Pt represents a token in frame t-th at a specific
spatial location. To identify low-motion and motion-rich
tokens, for each token P , we compute L1 distance among
its each pair of consecutive patches P1, P2, . . . , PT . This
yields pixel-wise motion differences D as illustrated in Eq.
1. We then calculate the mean of D across its p× p values
to obtain the patch-level motion energy EP .

D = ∥P1:T − P0:T−1∥1 (1)
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Method Top-1 Accuracy on target domain (%)
K→A K→H K→M M→A M→H M→K H→A H→M H→K A→H A→M A→K Avg.

Source Only 15.6 47.9 35.7 34.7 44.6 61.6 17.5 25.5 45.1 14.6 15.5 17.8 31.3
Z

S CLIP (ResNet50) (Radford et al., 2021) 30.5 50.0 42.2 30.5 50.0 62.9 30.5 42.2 62.9 50.0 42.2 62.9 46.4

SF
U

D
A

SFDA (Kim et al., 2020) 12.6 44.9 27.5 16.0 35.2 49.2 13.1 24.2 24.9 16.3 13.2 25.2 25.2
SHOT (Liang et al., 2020) 12.0 44.6 29.5 15.3 36.7 51.0 13.6 24.2 21.2 17.1 14.0 24.3 25.3
SHOT++ (Liang et al., 2021) 12.6 40.8 28.7 14.9 41.7 46.3 16.0 22.2 33.1 15.4 12.5 21.8 24.4
MA (Li et al., 2020) 12.8 45.8 30.0 17.7 37.4 53.5 12.9 25.0 22.2 16.7 15.2 24.3 26.1
BAIT (Yang et al., 2020b) 12.7 45.7 30.0 16.9 39.6 53.0 13.6 25.5 21.2 15.7 14.5 25.5 26.2
CPGA (Qiu et al., 2021) 13.1 46.0 30.7 18.1 39.2 55.1 13.1 26.2 25.5 19.2 16.5 26.7 26.5

SF
V

U
D

A

ATCoN (Xu et al., 2022b) 17.2 48.2 32.5 27.2 47.3 57.7 17.9 30.7 48.5 26.7 17.2 31.0 33.5
EXTERN (Xu et al., 2024) 23.9 55.8 35.2 18.1 53.7 68.1 26.2 40.7 57.6 26.2 18.2 51.4 39.6
STHC (Li et al., 2023) 15.5 48.7 34.8 18.4 56.3 76.6 13.8 39.8 50.1 44.6 27.3 44.7 39.2
DALL-V (Zara et al., 2023) 24.0 52.5 47.0 24.0 65.4 78.1 24.0 47.0 76.7 57.9 45.7 75.0 51.4
DALL-V† (Zara et al., 2023) 22.8 53.8 48.9 23.8 58.3 76.8 25.0 46.8 75.1 52.5 48.8 73.9 50.5
DALL-V†+ MFT (Ours) 24.4 57.5 49.3 31.3 60.4 79.4 26.4 47.0 74.5 55.8 47.3 74.6 52.3

Target Only 26.9 70.4 61.5 26.9 70.4 88.9 26.9 61.5 88.9 70.4 61.5 88.9 61.9

Table 1: Impact of MFT on the best SFVUDA method, DALL-V on the Daily-DA benchmark. Bold indicates the best
performance, underline denotes the best with the same backbone, and †denotes the results from our run of their public code.

Method Accuracy (%)
H→U U→H Avg.

Source Only 71.6 76.1 73.8

Z
S CLIP (ResNet50) (Radford et al., 2021) 81.0 86.0 83.5

SF
U

D
A

SFDA (Kim et al., 2020) 69.8 75.0 72.4
SHOT (Liang et al., 2020) 74.4 74.4 74.4
SHOT++ (Liang et al., 2021) 71.1 68.1 69.6
MA (Li et al., 2020) 74.4 67.3 70.9
BAIT (Yang et al., 2020b) 75.3 76.3 75.8
CPGA (Qiu et al., 2021) 75.8 68.1 72.0

SF
V

U
D

A ATCoN (Xu et al., 2022b) 85.3 79.7 82.5
EXTERN (Xu et al., 2024) 91.9 88.9 90.4
STHC (Li et al., 2023) 92.1 90.9 91.5
DALL-V (Zara et al., 2023) 93.1 88.9 91.0
DALL-V† (Zara et al., 2023) 88.4 90.8 89.6
DALL-V†+ MFT (Ours) 91.1 91.9 91.5

Target Only 93.7 91.4 92.6

Table 2: Impact of MFT on the existing best SFVUDA
method, DALL-V, on the UCF-HMDBfull benchmark.
Bold indicates the best performance, while underline repre-
sents the best with the same backbone.

Since the first frame lacks a preceding frame for tempo-
ral differencing and retaining its full context risks intro-
ducing static background domain shift, we approximate
its motion energy using the strongest motion energy ob-
served elsewhere in the video. Concretely, we take the
maximum motion energy over the temporal index t of the
motion energy EP to obtain the first frame motion energy
Efirst

P = maxt(EP [:, t, :, :]) , where maxt(.) is applied
over the (T − 1) temporal dimension. This ensures that
Efirst

P captures the most salient motion cues in the video.
Finally, we concatenate Efirst

P with EP along the temporal
axis to obtain the complete motion energy representation
Efull

P for each video:

Efull
P = concat([Efirst

P ,EP ]) (2)

By combining Efull
P across every P in the video, we obtain

Efull that contains the motion energy values for each token.

Motion-Focused Tokens for Video Domain Adaptation.
Next, we upsample Efull with resolution H

p ×W
p to the orig-

inal resolution of the video H ×W using nearest-neighbor
interpolation to obtain Eup

full. We then apply the motion
threshold τ to obtain the final motion mask M:

M = (Eup
full) > τ ∈ {0, 1} (3)

where τ is a tunable hyperparameter that balances the cap-
ture of relevant motion patterns with the exclusion of redun-
dant static tokens. Rather than removing low-motion tokens,
which would alter the expected fixed token shape, we sup-
press the low-motion tokens by setting their values to zero,
yielding the final motion-focused video Vmft = V ◦ M,
where “◦” denotes element-wise multiplication. We in-
troduce our MFT module on top of the state-of-the-art
SFVUDA method, DALL-V (Zara et al., 2023). Specifi-
cally, the motion-focused video Vmft is partitioned into
motion-focused patches Pmft, which are subsequently pro-
cessed by the ViT-based (Dosovitskiy et al., 2020) vision
encoder of DALL-V. For method details, we refer the read-
ers to the DALL-V paper. By utilizing motion-focused
action regions identified through MFT, the method is able
to improve generalization across diverse domains.

4. Experiments
Datasets and Implementation. We conduct experiments
on two popular VUDA benchmarks: Daily-DA and UCF-
HMDBfull. Daily-DA consists of 18,949 videos drawn from
four datasets: ARID (A) (Xu et al., 2021), HMDB51 (H)
(Kuehne et al., 2011), Moments-in-Time (M) (Monfort et al.,
2019) and Kinetics-600 (K) (Kay et al., 2017), covering
eight overlapping categories of daily activities. Note that

3



Motion-Focused Tokenization

Method Accuracy (%)
Any→A Any→H Any→M Any→K Avg.

DALL-V† 23.8 54.8 48.2 75.3 50.5
DALL-V† + RM 26.1 [+2.3] 47.7 [-7.1] 42.1 [-6.1] 67.6 [-7.7] 45.9 [-4.6]
DALL-V† + MFT (Ours) 27.4 [+3.6] 57.9 [+3.1] 47.9 [-0.3] 76.2 [+0.9] 52.3 [+1.8]

Table 3: Comparison between MFT (Ours) and random masking (RM).

Figure 2: MFT visualization on four videos (two left, two right). Black patches mark static regions. Each video has three
rows: original frames, motion differences, and masked frames after MFT. MFT highlights action-related regions, reducing
background noise for effective DA.

ARID was filmed under low-light conditions, adding an
extra difficulty to the DA task. UCF-HMDBfull consists of
3,209 videos spanning 12 action classes from the HMDB51
(H) (Kuehne et al., 2011) and UCF101 (U) (Soomro et al.,
2012) datasets. We evaluate the effectiveness of our MFT
module on the state-of-the-art DA method, DALL-V (Zara
et al., 2023). We set τ in Eq. 3 to 0.005.

Main Results and Analysis. In Table 1, we present the re-
sults of incorporating MFT into the best existing SFVUDA
method, DALL-V, on the Daily-DA benchmark. Our MFT
module improves DALL-V’s performance by an average
of 1.8%. Additionally, we report evaluation results on the
UCF-HMDBfull dataset in Table 2, where MFT improves
DALL-V by 1.9%. On both benchmarks, our MFT module
consistently enhances DALL-V’s performance, establishing
a new state-of-the-art and demonstrating its effectiveness
across diverse DA settings. A performance improvement of
approximately 2% is a significant boost for domain adap-
tation and brings the method closer to the upper-bound
supervised Target Only baseline.

MFT vs. Random Masking. To evaluate the effectiveness
of MFT, we perform an additional experiment on Daily-DA,
replacing MFT with random masking (RM). In RM, we
maintain the same proportion of tokens suppressed as in
MFT but randomly mask tokens in each frame, disregarding
content and motion cues. Our MFT module consistently
outperforms RM (Table 3), demonstrating its superior abil-
ity to leverage both content and motion information for
improving robustness to domain shifts.

Qualitative Analysis. In Fig. 2, we qualitatively assess the

effectiveness of MFT by masking low-motion regions with
black patches. In the first two examples (left), MFT success-
fully suppresses irrelevant, domain-variant backgrounds,
isolating motion-rich regions. This selective focus on dy-
namic regions enables robust domain adaptation by priori-
tizing motion-relevant features corresponding to the action
that are invariant across domains, effectively reducing the
impact of domain-specific noise or static contextual varia-
tions. In the latter two examples (right), where the viewpoint
undergoes significant shifts, MFT again consistently pre-
serves the dynamic, motion-rich regions, ensuring reliable
tracking of action-centric motion patterns despite changes in
perspective or scene composition. By emphasizing action-
relevant motion-rich regions over static or domain-specific
features, MFT enhances cross-domain generalization, en-
abling models to adapt seamlessly to new environments.

5. Conclusion
We proposed Motion-Focused Tokenization (MFT), a sim-
ple yet effective module that prioritizes motion-relevant
action content while suppressing variable static background
regions, thereby reducing domain shift and improving
SFVUDA. Experimental results on two video DA bench-
marks showed that the introduction of MFT significantly
enhances DA performance. Future work will focus on ap-
plying MFT to other video DA models and exploring its
potential in unsupervised and semi-supervised video DA.
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