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ABSTRACT

Autoregressive diffusion models (ARDMs), which generate continuous latent se-
quences, have recently achieved state-of-the-art zero-shot text-to-speech (TTS)
performance. However, fine-tuning these models with reinforcement learn-
ing (RL) to directly optimize user-defined reward functions remains an open chal-
lenge. In this work, we propose Value-Guided Policy Optimization (VGPO), an
actor-critic RL algorithm tailored to ARDMs. We train a causal value model to
predict expected future rewards and update the ARDM using gradients from this
value model. To validate VGPO, we fine-tune the recently introduced DiTAR
model and evaluate it on two tasks: improving F0 variance to enhance expres-
siveness; and optimizing text log-probability to improve the model’s robustness
to challenging long text. VGPO can achieve significant improvement in zero-shot
TTS expressiveness and robustness, while maintaining naturalness and speaker
similarity.

1 INTRODUCTION
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Figure 1: Illustration of a widely adopted autoregressive diffusion model architecture. It is used in
state-of-the-art models for speech (Sun et al., 2024; Jia et al., 2025), and image generation (Kou
et al., 2025; Sun et al., 2024; NextStep Team et al., 2025). A causal transformer encodes the gener-
ation conditions and previously generated tokens, while a diffusion head predicts the next token xn
via diffusion modeling. This architecture is highly efficient, as only the diffusion head is repeatedly
evaluated when generating each next token.

Autoregressive diffusion models (ARDMs) represent continuous modalities using latent vectors
(continuous tokens) and generate data sequentially by predicting the next token through diffusion
modeling. This approach has been adopted in an increasing number multimodal generation models,
including audio (Liu et al., 2024; Jia et al., 2025; Yang et al., 2025), image (Li et al., 2024a; Hu et al.,
2024), and video generation (Yin et al., 2025; Deng et al., 2024). Unlike the approach of tokenizing
data into discrete symbols for next-token prediction, ARDMs offer two key advantages with next-
token diffusion (Sun et al., 2024): they preserve fine-grained details while avoiding prohibitively
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long sequences, thanks to the compactness of latent continuous representations. This allows for
more precise control over the generated content, yielding superior performance on tasks that re-
quire high-fidelity details. In particular, several recent works have introduced ARDMs for speech
generation (Jia et al., 2025; Sun et al., 2024), achieving state-of-the-art performance in zero-shot
text-to-speech.

Reinforcement fine-tuning (RFT) (Ouyang et al., 2022; Rafailov et al., 2023; Xu et al., 2023) is a
key stage in the post-training of multimodal generative models. It improves model performance by
directly optimizing the expected reward of generated samples under a user-specified reward function
r(x). Given a pre-trained reference model µ(x), RFT optimizes a policy ρ(x) to maximize the
expected reward while remaining close to the reference via a divergence regularizer d(·∥·), which
helps mitigate reward hacking (Weng, 2024):

max
ρ

Ex∼ρ(x)[r(x)]− d(ρ∥µ) (1)

For speech generation, prior work has instantiated r(x) with a variety of reward models, including
predicted mean opinion score (MOS) (Chen et al., 2025; 2024; Tian et al., 2025), speaker similarity
from speaker encoders (Du et al., 2025; Li et al., 2025), emotion classification accuracy (Anas-
tassiou et al., 2024), and text accuracy measured by automatic speech recognition (ASR) (Zhang
et al., 2025). RFT with such rewards has been shown to improve intelligibility, naturalness, speaker
identity preservation, and controllability of speech generative models.

Although recent work has extensively explored the network architectures and training techniques
of ARDMs, relatively little research has investigated RFT algorithms for these models (NextStep
Team et al., 2025; Liu et al., 2025b), leaving this area largely unexplored. In this work, we intro-
duce Value-Guided Policy Optimization (VGPO), a novel actor–critic RFT algorithm tailored for
ARDMs.

The core component of VGPO is a learned (soft) value function, initialized from a pre-trained
ARDM. Given the previously generated tokens and the current partially denoised token, it pre-
dicts the expected final reward. Extending prior results in maximum-entropy (MaxEnt) RL (Levine,
2018) and exact energy guidance (Lu et al., 2023) to ARDMs, we prove that the optimal ARDM
prediction equals the sum of the reference model’s prediction and the gradient of the value func-
tion. To train the model, VGPO samples trajectories online and regresses the model’s intermediate
predictions toward this theoretical optimum.

The contributions of this paper are as follows:

• We propose VGPO, a value-based reinforcement fine-tuning algorithm specifically designed for
ARDMs. VGPO trains a value model to predict the total reward from partial trajectories and
updates the diffusion score using the value model gradient.

• We apply VGPO to fine-tune DiTAR (Jia et al., 2025), a recently proposed state-of-the-art zero-
shot TTS model based on ARDMs. We evaluate VGPO on two benchmark tasks: Task A, which
aims to enhance the expressiveness of generated speech by optimizing the F0 variance (Quatieri,
2002). And task B, which focuses on improving TTS robustness when handling challenging
long texts that are difficult for autoregressive TTS models.

• We propose to regularize VGPO through adversarial distribution matching (ADM). Unlike the
common KL regularization (Fan et al., 2023), which struggles to correct errors accumulated
during reinforcement fine-tuning, ADM effectively mitigates this issue.

The audio samples are available at https://vgpo-web.github.io/.

2 PRELIMINARIES

In this section, we describe the related background formulations necessary for describing our algo-
rithm, including formulations of diffusion models (DM) and ARDMs.

2.1 NOTATIONS

Without loss of generality, we omit input conditions c, such as text or prompt speech, and we
assume that the generated token sequence has a fixed length N . Each sample trajectory x ∈ RN×d
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consists of N tokens (x1, . . . , xN ), where each token resides in Rd. We define x≤n as the sequence
(x1, . . . , xn), with similar definitions for x<n, x>n, and x≥n.

To prevent ambiguity between the diffusion time index, t, and the sequence index, n, we use a
superscript on variables to denote the diffusion time when both t and n appear simultaneously
(e.g., xtn). For conciseness, all t-conditioned models are written without the explicit time argument:
g(xtn) := g(xtn, t). This convention applies to all score models and value models.

2.2 AUTOREGRESSIVE DIFFUSION MODELS

Diffusion Models. One view that unifies many diffusion model formulations (Song et al., 2021b;
Liu et al., 2023) is to view DMs as multiscale score estimators. For each diffusion time t, define a
Gaussian transition distribution q(xt|x) := N (xt;αtx, σ

2
t Id), where αt, σt > 0. Suppose p(x) is

the clean token distribution. Then the marginal distribution of noisy tokens at time t is:

p(xt) :=

∫
p(x)q(xt|x)dx. (2)

A diffusion model trained with denoising score matching can be interpreted as a score estimator
sθ(xt) that approximates the true score ∇ log p(xt). Given the true score of all diffusion time t,
one can draw samples from p(x) with various diffusion model samplers such as DDPM (Ho et al.,
2020), DDIM (Song et al., 2021a), SDE and ODE solvers (Song et al., 2021b).

Autoregressive Models. Let p(x) denote the data distribution. By the chain rule of probability,

p(x) =

N∏
n=1

p(xn|x<n), (3)

An autoregressive (AR) model parameterizes these conditionals and approximates p(xn | x<n).
Sampling proceeds ancestrally: first draw x1 ∼ p(x1), then x2 ∼ p(x2 | x1), and, in general,
xn ∼ p(xn | x<n) until all N tokens are generated.

Autoregressive Diffusion Models. ARDMs sample from each conditional p(xn|x<n) with a diffu-
sion model. Let q(xtn|xn) := N (xt;αtx, σ

2
t Id). For each diffusion time t, define the conditional

marginal distribution p(xtn|x<n) as:

p(xtn|x<n) :=
∫
p(xn|x<n)q(xtn|xn)dxn (4)

An ARDM learns a conditional multiscale score estimator sθ(xtn|x<n) that estimates the conditional
score ∇xt

n
log p(xtn|x<n), given clean tokens generated previously x<n, and the token currently

being denoised xtn. Let πθ(x) be the sample distribution of the ARDM with the score model sθ.
Assuming sθ(xtn|x<n) = ∇xt

n
log p(xtn|x<n), and that the diffusion sampler is an exact solver, we

have πθ(x) = p(x).

2.3 KL REGULARIZED REWARD MAXIMIZATION

Definition 1 (KL RFT). Suppose that the distribution of the reference model is µ(x) and the reward
function is r(x) : RN×d → R. Suppose that we pick the Kullback–Leibler (KL) divergence as our
divergence regularizer, the goal of RFT now becomes the following:

max
ρ

Ex∼ρ(x) [r(x)]−DKL (ρ(x)∥µ(x)) . (5)

Theorem 1 (Solution of KL RFT). The closed form solution π for the KL RFT problem in Defini-
tion (1) is given by:

π(x) =
µ(x) exp r(x)

Z
, Z =

∫
µ(x) exp r(x)dx. (6)

Proof. The proof can be found in previous works (Rafailov et al., 2023; Peng et al., 2019). A short
proof is provided in Appendix A.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODS

3.1 VALUE GUIDANCE FOR ARDMS

Definition 2 (Soft Value Functions of ARDMs). Given a reward function r(x) : RN×d → R and
an ARDM with distribution µ(x). Soft value function V (·) estimates the future reward given partial
information of the complete sample trajectory.

V (x≤n) := log
(
Eµ(x>n|x≤n) [exp r(x)]

)
; (7)

V (x<n, x
t
n) := log

(
Eµ(xn|xt

n,x<n) [expV (x≤n)]
)
= log

(
Eµ(x≥n|xt

n,x<n) [exp r(x)]
)
. (8)

Theorem 2 (Solution of KL RFT for ARDMs). Given a reward function r(x) : RN×d → R and a
reference ARDM with distribution µ(x). Suppose π(x) ∝ µ(x) exp r(x) is the optimal solution of
the KL RFT problem in Eq. (5). Then the conditional distribution π(xtn|x<n) is given by:

π(xtn|x<n) = µ(xtn|x<n) exp
(
V (x<n, x

t
n)− V (x<n)

)
. (9)

where the soft value function V (·) is defined in Definition 2.

Proof. We provide two proofs for this result in A.2 and A.3. Proof in A.2 is based on directly
solving for π(xtn|x<n). We can view the ARDM sampling process as a Markov decision process
(MDP), and apply MaxEnt RL (Levine, 2018) to the MDP. This leads to the proof in A.3. We show
that V (·) is indeed the soft value function of the optimal policy.

Corollary 1 (Value Guidance). By applying ∇xt
n
log on both sides of Eq. (9), we can show that

the conditional score of the optimal policy π(xtn|x<n) is the sum of the reference score and value
gradient:

∇xt
n
log π(xtn|x<n) = ∇xt

n
logµ(xtn|x<n) +∇xt

n
V (x<n, x

t
n). (10)

3.2 ESTIMATING THE VALUE FUNCTION

Apply exp on both sides of Equation (8) gives:

expV (x<n, x
t
n) = Eµ(x≥n|x<n,xt

n)
[exp r(x)] . (11)

Therefore, given a parameterized soft value model Vϕ(x<n, xtn), we can approximate V (x<n, x
t
n)

by minimizing the following Exp-MSE loss(Lu et al., 2023; Uehara et al., 2024):

Ln,tV (ϕ) := Eµ(x),q(xt
n|xn)

[
expVϕ(x<n, x

t
n)− exp r(x)

]2
. (12)

The Exp-MSE loss in Eq. (12) is numerically unstable (Lu et al., 2023) due to the exp(·) functions.
We propose an alternative loss L̂n,tV (ϕ) that shares the same global minimum, while providing better
numerical stability. We leave the analysis in A.4. Previous works (Li et al., 2024b; Lu et al., 2023)
observed that replacing the soft value function in Eq. (10) with the value function also provides good
results, at the cost of losing the theoretical distribution guarantee provided by Theorem 1. We can
minimize the following MSE loss to learn a value model Vϕ(·) approximating the value function.

L̃n,tV (ϕ) := Eµ(x),q(xt
n|xn)

[
Vϕ(x<n, x

t
n)− r(x)

]2
. (13)

Algorithm 1 Value Training
Require: Reference ARDM model with distribution µ(x);
initialized value model Vϕ(·)

1: while Vϕ has not converged do
2: Sample a trajectory x ∼ µ(x)
3: Compute reward r(x)
4: Update ϕ by minimizing the loss En,t

[
L̂n,tV (ϕ)

]
or

En,t
[
L̃n,tV (ϕ)

]
5: end while

Algorithm 1 learns a (soft) value
model given a reference ARDM
model. As a result of Corollary 1,
the value model can be used to guide
ARDM sampling via Algorithm 2.
Note that Algorithm 2 scales the
value gradient by the parameter λ.
Similar to classifier guidance (Ho &
Salimans, 2022), we observe that set-
ting λ > 1 can further improve the
rewards of the samples.
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Algorithm 2 Value Guided Sampling
Require: Reference ARDM model with distribution µ(x) and score estimator sµ(xtn|x<n); pre-
trained value model Vϕ(·); guidance scale λ ∈ R

1: for n = 1 to N do
2: Sample initial noise from N (0, Id)
3: Sample xn by running diffusion sampler with score sµ(xtn|x<n) + λ · ∇xt

n
Vϕ(x<n, x

t
n) at t

4: end for

3.3 VALUE GUIDED POLICY OPTIMIZATION

Given an ARDM model with distribution πθ(x) and score estimator sθ(xtn|x<n), VGPO fine-tunes
its score prediction to match the optimal solution in Eq. (10). Suppose the reference model µ(x)
has score estimator sµ(xtn|x<n) = ∇xt

n
log µ(xtn|x<n), and let Vϕ(x<n, xtn) be a trained value

model. The MSE loss En,t
[
Ln,tVD(θ)

]
updates the prediction of sθ to match the optimal solution

∇xt
n
log µ(xtn|x<n) +∇xt

n
Vϕ(x<n, x

t
n).

Ln,tVD(θ) := Eπsg[θ](x), q(xt
n|xn)

∥∥sθ(xtn|x<n)− (
sµ(x

t
n|x<n) +∇xt

n
Vϕ(x<n, x

t
n)
)∥∥2

2
. (14)

Note that the loss Ln,tVD can be decomposed into two components that pull sθ(xtn|x<n) in different
directions. The first component is a KL regularization term (Liu et al., 2025a):

Ln,tKL(θ) := Eπsg[θ](x), q(xt
n|xn)

∥∥sθ(xtn|x<n)− sµ(x
t
n|x<n)

∥∥2
2
, (15)

and the second is a value-guidance term:

Ln,tVG(θ) := Eπsg[θ](x), q(xt
n|xn)

∥∥sθ(xtn|x<n)− sg
[
sθ(x

t
n|x<n)

]
−∇xt

n
Vϕ(x<n, x

t
n)
∥∥2
2
. (16)

VGPO is described in Algorithm 3. In Algorithm 3 we multiply the term Ln,tKL by wKL to control
the KL regularization strength. Additionally, we can choose to update the value model online with
Algorithm 1, turning the algorithm into a variant of online policy mirror decent (Tomar et al., 2020;
Kimi Team et al., 2025; Ma et al., 2025).

Algorithm 3 Value Guided Policy Optimization (VGPO)
Require: Reference ARDM model with distribution µ(x) and score estimator sµ(xtn|x<n); pre-
trained value model Vϕ(·); KL loss weight wKL; target ARDM model πθ(x) initialized from µ with
score estimator sθ(xtn|x<n)
Optionally Require: Discriminator Dψ(·); weight of adversarial gradient wA

1: while πθ has not converged do
2: Sample a trajectory x ∼ πθ(x)

3: Update θ by minimizing wKLLn,tKL(θ) + Ln,tVG(θ) on randomly sampled n, t pairs
4: if enabled online value update then
5: Invoke Algorithm 1 to sample from πθ and update Vϕ
6: end if
7: if enabled adversarial distribution matching (Section 3.4) then
8: Update θ by minimizing wALn,tG (θ) on randomly sampled n, t pairs
9: Sample a trajectory x′ ∼ µ(x)

10: Update ψ by minimizing Ln,tD (ψ) with x and x′.
11: end if
12: end while

3.4 REGULARIZING VGPO WITH ADVERSARIAL DISTRIBUTION MATCHING

There are several sources of gradient noise in Algorithm 3, including errors in value model prediction
and noise from Monte Carlo loss estimation. We observed error accumulation running Algorithm 3,
and find that the KL loss in Eq. (15) alone cannot fully rectify these errors. Tuning the KL weight
wKL does not fully resolve this issue. When the KL weight is high, the original suboptimal behaviors

5
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of the reference policy tend to be preserved in the target policy, leading to slow optimization. And
when the KL weight is low, it fails to correct the error accumulation.

We propose an alternative regularization method based on token-level adversarial distribution match-
ing (Goodfellow et al., 2014; Ho & Ermon, 2016; Huang et al., 2025). A discriminator network
Dψ(x

t
n) is trained to distinguish between true noisy tokens and fake noisy tokens by minimizing

En,t[Ln,tD (ψ)], where

Ln,tD (ψ) := Eπsg[θ](x),q(xt
n|xn)

[
Dψ(x

t
n) + 1

]2
+ Eµ(x),q(xt

n|xn)

[
Dψ(x

t
n)− 1

]2
. (17)

And the generator is updated by minimizing En,t[Ln,tG (ψ)], where

Ln,tG (θ) := Eπsg[θ](x),q(xt
n|xn)

∥∥sθ(xtn|x<n)− sg
[
sθ(x

t
n|x<n)

]
−∇xt

n
Dψ(x

t
n)
∥∥2
2
. (18)

LG can be obtained from replacing Vϕ with Dψ in Eq. (16).

4 EXPERIMENTS

4.1 COMMON SETUP

Base Model. We fine-tuned a DiTAR model comprising approximately 0.4 billion parameters,
trained on an internal dataset containing about 280k hours of Chinese and English speech. The
language model (LM) within this architecture consists of 24 layers, while the diffusion head (DiT)
includes 4 layers. All Transformer layers in the model have a hidden dimension of 1024, 16 attention
heads, and a feed-forward network (FFN) dimension of 4096.

Diffusion Sampler and CFG. For all online and offline sampling in the experiments, we used the
DDPM sampler with 16 sampling steps, with LM Guidance (Jia et al., 2025) weight w = 2. We
always enable LM Guidance with w = 2 during training. See Appendix B.2 for more discussion
about classifier-free guidance (CFG) in VGPO.

VGPO Training. All experiments were conducted on 32 A100 GPUs. We used the AdamW opti-
mizer, with learning rate fixed to 1× 10−6, β1 = 0.9, β2 = 0.95, weight decay 0.01.

Value Models. All value models used in our experiments are initialized from the base DiTAR model,
with the last linear layer of the diffusion head replaced by a zero initialized linear layer that outputs
a scalar. We refer to the modified diffusion head as the value head. We choose to initialize the value
head with diffusion head parameters, which brings better performance than random initialization in
our preliminary experiments. The inputs to the value models are the same as in the DiTAR TTS
model, including prompt speech, prompt text, and target text.

Objective Evaluations. We report the word error rate (WER) for speech intelligibility using
Whisper-large-v3. For speaker similarity (SIM), we report the cosine similarity of speaker em-
beddings between prompts and generated audios, using a WavLM-TDCNN model. We computed
WER and SIM using the same models and evaluation code1 as in Seed-TTS (Anastassiou et al.,
2024). For all evaluations, we run tests eight times and report the average. We also report the av-
erage KL loss (KL) on the test sets to report the divergence between the fine-tuned model and the
base model. For evaluation, we used the KL loss definition in Eq. (17) in Liu et al. (2025b).

Subjective Evaluations. We evaluate the subjective quality of fine-tuned models using comparative
mean opinion score (CMOS) for speech naturalness (N-CMOS), speaker similarity (S-CMOS), and
speech expressiveness (E-CMOS). Human listeners compare the generated audio against base model
response, and assign a score from −2 to 2. See Appendix C for more details.

Baselines. We compare VGPO against the following baselines: (1) Guided sampling results using
Algorithm 2. (2) ARDM-DPO, we evaluated the Liu et al. (2025b) (3) Base model sampling and
best-of-K (BoK) sampling.
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Figure 2: Evolution of KL, F0V, SIM, WER during VGPO training for task A.

4.2 TASK A: IMPROVING F0 VARIANCE

Motivation. We choose the fundamental frequency variance (F0V) as the reward for task A because
it is a robust and label-free proxy of perceived expressiveness and directly counteracts monotony.
F0V provides a simple and reproducible benchmark for testing the RFT algorithms of TTS models.

Dataset. We used the LibriTTS corpus (Zen et al., 2019) for both speech prompts and target texts,
which includes 555 hours of recordings from 2,311 speakers. Evaluations were performed with 38
test cases, with prompts and target texts from 38 different speakers within the LibriTTS test-clean
subset.

Reward Function. For a given utterance, we extract the F0 track of the voiced regions with an
off-the-shelf F0 tracker. Then we apply a band-pass filter to the F0 track to focus on phrase-level
variations. The reward is computed as the standard deviation of the filtered F0 track.

Table 1: Selected objective evaluation results on task A.

Method F0V ↑ WER ↓ SIM ↑ KL ↓
Base 14.2 5.17 0.770 —
Best-of-16 22.5 4.74 0.770 —
Best-of-64 26.6 4.93 0.770 —

Guided s = 22 15.6 5.41 0.769 —
Guided s = 24 19.3 5.24 0.771 —
Guided s = 25 27.3 4.93 0.771 —
Guided s = 26 52.6 5.76 0.760 —

DPO 200 steps
β = 200 29.2 3.73 0.765 0.010

VGPO 600 steps
A3 30.5 4.75 0.767 0.003

Value Training. We trained the value
model directly with audios and tran-
scripts from the LibriTTS corpus. The
value model takes a transcript and an au-
dio as input, and is trained to predict the
F0V with the MSE loss. This is justi-
fied if we assume µ(x) is significantly
similar to the dataset distribution. The
value model is trained for 60k steps with
a dynamic batch size of approximately
2 hours of speech per batch. The re-
sults of the value-guided sampling with
this value model can be found in Table 1.
The WER and SIM of the guided mod-
els are close to the base model, indicat-
ing good prior distribution preservation.
We also report Best-of-N (BoN) results
with N ∈ {16, 64} in Table 1. We see that the value guidance can match the performance of Bo64
without reducing SIM.

Table 2: Subjective evaluation results for task A.

Method E-CMOS ↑ N-CMOS ↑ S-CMOS ↑

DPO 200 steps
β = 200 1.70± 0.36 −0.14± 0.12 −0.05± 0.16

VGPO 600 steps
A3 1.65± 0.34 0.05± 0.13 −0.03± 0.20

VGPO Training. During
VGPO training, we sampled
32 pairs of prompts and target
texts. And for each pair, we
generate about 2 minutes syn-
thesized speech with a dynamic
number of rollouts per itera-
tion. The evolution of KL, F0V, and SIM during training can be found in Figure 2. Experiments A1,
A2, A3, A4, A5 are trained with KL weight 2−4, 2−5, 2−6, 2−7, 2−8, respectively. When achieving
similar F0V as the ARDM-DPO baseline, VGPO (600 steps, A3) obtains lower KL divergence, and
higher SIM compared to DPO (200 steps, β = 200).

1https://github.com/BytedanceSpeech/seed-tts-eval
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Subjective Evaluations. For each prompt in the test set, we generated three samples from the base
model, DPO model, and VGPO model. We conducted N-CMOS, E-CMOS, and S-CMOS tests, for
each we collected 114 scores. Evaluation results can be found in Table 2.

4.3 TASK B: ENHANCING ROBUSTNESS TO DIFFICULT TEXTS

Table 3: Selected objective evaluation results on task B. Table contains results of VGPO with dif-
ferent hyperparameters. O.V. is abbreviation for online value update. wKL is the weight of the KL
loss. wA is the weight of ADM loss.

ID (steps) O.V. wKL wA NLL ↓ CER ↓ SIM ↑ KL ↓
Base Model — — — 0.55 8.37 0.711 0
Best-of-8 (WER) — — — 0.39 4.99 0.713 —
Best-of-8 (NLL) — — — 0.27 6.79 0.712 —
DPO 9000 steps

β = 1600 — — — 0.32 6.32 0.712 0.009

B1 No 2−11 0 — diverged —
B2 (6k) No 2−10 0 0.34 7.56 0.698 0.143
B3 (6k) No 2−9 0 0.33 7.07 0.705 0.008
B4 (6k) Yes 2−12 0 0.29 6.52 0.696 0.037
B5 (6k) Yes 2−11 0 0.31 6.65 0.705 0.017
B6 (6k) Yes 2−10 0 0.33 6.58 0.709 0.007
B7 (6k) Yes 2−9 0 0.39 7.18 0.710 0.002
B4 (15k) Yes 2−12 0 0.26 6.18 0.689 0.660
B5 (15k) Yes 2−11 0 0.27 6.20 0.700 0.299
B6 (15k) Yes 2−10 0 0.28 6.48 0.707 0.099
B7 (15k) Yes 2−9 0 0.36 7.06 0.708 0.040
B8 (15k) Yes 0 2−6 0.29 6.27 0.725 0.027
B9 (15k) Yes 0 2−3 0.32 6.36 0.732 0.016

Motivation. Autoregressive TTS models often struggle to accurately read complex texts containing
repetitive words or phrases. When evaluating our base model on such sentences, it frequently fails
to correctly handle repetitions, either by omitting some repetitions, adding additional ones, or be-
coming trapped in a loop of repetitive generation, unable to terminate. In task B, our objective is to
enhance the robustness of the DiTAR model when processing these challenging texts.

Dataset. We used the DiDiSpeech-2 (Guo et al., 2021) dataset as the source of speech prompts,
which comprises 227 hours of recordings from 1,500 speakers. We excluded all speakers included
in the hard subset of the SEED-TTS-Eval test set. For the training text set, we used a corpus of
100,000 long Chinese sentences. These sentences contain randomly repeated words, phrases, and
clauses, making them difficult to synthesis correctly for autoregressive TTS models. All evaluations
were performed on the test-hard subset of SEED-TTS-Eval. We excluded 2 test cases with the
longest target texts, as they significantly exceed the context-length limit of our base model.

Reward Modeling. Following previous work (Du et al., 2025; Li et al., 2025), we utilize the likeli-
hood of speech in automatic speech recognition (ASR) models as a proxy reward function. An alter-
native reward choice is CER, but computing CER is significantly slower than evaluating likelihood.
For all experiments on task B, we employ a phoneme-based CTC model trained on DidiSpeech-2 as
the reward model.

Group Reward Normalization. We find it necessary to normalize the reward for each pair of
prompts and target texts to train the value model. Otherwise, the value model failed to capture
the relative differences between trajectories with the same prompt and text. We perform a reward
normalization similar to GRPO (Shao et al., 2024). Suppose that for each pair of prompt and target
text, the CTC likelihoods are r = (r1, . . . , rG) ∈ (0, 1)G for G samples. We normalize the reward
to r̃ ∈ RG as r̃ := r−mean(r)

std(r) . This normalization is applied in all experiments of task B.
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Table 4: Results of value guided
sampling with different guidance
scale s on task B.

s NLL ↓ CER ↓ SIM ↑
0 0.55 8.37 0.711
32 0.47 7.54 0.712
64 0.40 7.18 0.712
128 0.38 7.40 0.711
192 0.36 8.23 0.712

Value Training. To train the value model, we randomly gen-
erated approximately 430k pairs of prompts and target texts.
For each pair, we produced 16 samples using the base DiTAR
model, resulting in an offline corpus containing 27k hours of
speech. The value model was trained on this dataset for 150k
steps with MSE loss in Eq. (13), with a dynamic batch size of
approximately 3 hours of generated speech per batch.

VGPO Training. During VGPO training, each iteration in-
volved sampling 32 pairs of prompts and target texts, fol-
lowed by generating approximately 8 rollouts for each pair.
This process yielded approximately 2 hours of synthesized
speech per training iteration. The value model (when updated online) and the discriminator (when
ADM enabled) is trained 10 steps per iteration. The ARDM πθ is always updated once per iteration.

Results. From the results in Table 4 and Tabel 3, we see that VGPO leads to better performance than
value guided sampling in task B. We observe that enabling online value update leads to more stable
training and better performance. VGPO with more iterations not only leads to a lower NLL and CER
but also causes an increase in the accumulation of errors, as reflected in the decrease of SIM. For
example, model B4 (15k) sometimes generates audio with audible artifacts such as sudden change
of volume. We find that regularization with ADM can significantly mitigate this issue. Experiments
B8 and B9 in Table 3 are initialized from B6 (10k), and further trained for 5k iterations with ADM
enabled. For discriminator training, we used only the first 7 seconds of speech generated from the
base model, as they include less distribution drift caused by exposure bias. As a result, B8 and B9
can beat the base model in SIM.

Table 5: Subjective evaluation results for task B.

Method N-CMOS ↑ S-CMOS ↑

DPO 9000 steps
β = 1600 −0.03± 0.11 0.05± 0.12

VGPO 15k steps
B8 −0.05± 0.15 0.19± 0.23

Subjective Evaluations. We randomly sampled
40 test cases from the test set and generated 3
random outputs each from the base, DPO, and
VGPO models. For Task B, we conducted N-
CMOS and S-CMOS evaluations, collecting 120
scores for each test. Evaluation results can be
found in Table 5.

5 RELATED WORK

RFT algorithms for non-autoregressive (NAR) diffusion models (Uehara et al., 2024; 2025) and rein-
forcement learning methods with diffusion policies (Zhu et al., 2023) are closely related to our work.
However, it is unclear whether these approaches can be effectively applied to fine-tune ARDMs. Ex-
isting research in both directions shares several core ideas: (1) Policy gradient (PG) methods (Black
et al., 2024; Fan et al., 2023; Liu et al., 2025a; Xue et al., 2025) cast the diffusion sampling process
as a Gaussian MDP. (2) Reward-weighted regression (RWR) methods (Lee et al., 2023; Zhang et al.,
2024; Dong et al., 2023) iteratively maximize the likelihood of high-reward samples. (3) Direct
gradient (DG) methods (Xu et al., 2023; Clark et al., 2024; Li et al., 2025) differentiate through
the diffusion sampling process to optimize the reward. (4) Multiple works adapt DPO to diffusion
models (Wallace et al., 2024; Yang et al., 2024; Liu et al., 2025b).

6 CONCLUSION

We introduce Value-Guided Policy Optimization (VGPO), an online actor–critic reinforcement fine-
tuning algorithm tailored for autoregressive diffusion models. We derive VGPO from the exact
solution to KL-regularized policy optimization, thereby providing strong theoretical guarantees. We
apply VGPO to fine-tune the DiTAR TTS model and evaluate it on two benchmarks. Empirically,
VGPO exhibits stable training and achieves better results than DPO. For future work, VGPO can be
applied to fine-tuning image and video ARDMs. In this work, we focus on an ARDM architecture
with a causal transformer and a diffusion head. It would be interesting to investigate whether VGPO
generalizes to other variants of autoregressive diffusion models, including masked autoregressive
diffusion models (Li et al., 2024a) and diffusion-forcing models (Song et al., 2025).
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A ADDITIONAL DERIVATIONS

A.1 OPTIMAL SOLUTION FOR KL-CONSTRAINED RFT OBJECTIVE IN EQ. (5)

Proof. The objective in Eq. (5) can be written as

J = Ex∼ρ(x)

[
r(x)− log

ρ(x)

µ(x)

]
= Ex∼ρ(x)

[
− log

Z

exp r(x)
− log

ρ(x)

µ(x)

]
+ const.

= Ex∼ρ(x)

[
− log

ρ(x)

π(x)

]
+ const. = −DKL(ρ(x)∥π(x)) + const.,

(19)

where Z and the optimal policy π(x) are defined in Eq. (6).

A.2 PROOF OF THEOREM 2 BASED ON SOLVING FOR π(xtn|x<n)

Proof. From Theorem 1 we know that π(x) = µ(x) exp r(x)/Z. We can find the relation between
π(x≤n) and µ(x≤n) by marginalizing all x>n.

π(x≤n) =

∫
µ(x)

exp r(x)

Z
dx>n =

∫
µ(x>n|x≤n)µ(x≤n)

exp r(x)

Z
dx>n

= µ(x≤n) ·
1

Z
·
∫
µ(x>n|x≤n) exp r(x)dx>n = µ(x≤n)

expV (x≤n)

Z
.

(20)

Our goal is to obtain the relation between π(xn|x<n) and µ(xn|x<n). Divide both sides of Eq. (20)
with π(x<n) gives:

π(x≤n)

π(x<n)
= π(xn|x<n) =

µ(x≤n) expV (x≤n)

µ(x<n) expV (x<n)
= µ(xn|x<n)

expV (x≤n)

expV (x<n)
. (21)

Following Lu et al. (2023), we multiply both sides of Eq. (21) with q(xtn|xn) and marginalize xn,
which gives:

π(xtn|x<n) =
∫
π(xn|x<n)q(xtn|xn)dxn =

∫
q(xtn|xn)µ(xn|x<n)

expV (x≤n)

expV (x<n)
dxn

= µ(xtn|x<n) ·
1

expV (x<n)
·
∫
µ(xn|xtn, x<n)expV (x≤n)dxn

= µ(xtn|x<n)
expV (x<n, x

t
n)

expV (x<n)
.

(22)

Now apply logarithm on both sides of Eq. (22) and take the gradient with respect to xtn gives our
result in Eq. (10).

A.3 PROOF OF THEOREM 2 BASED ON MAXIMUM ENTROPY RL

In this section, we analyze diffusion models and ARDMs using the discrete-time sampler introduced
in DDPM Ho et al. (2020). This choice does not limit our results to the DDPM sampler, as will
become clear from the following derivation. The following derivation are based on the Markov
chain view of ARDMs. See Liu et al. (2025b, Fig. 1).
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A.3.1 BACKGROUND: MAXIMUM ENTROPY RL

Consider a Markov Decision Process (MDP) in which all trajectories consist of T steps. Each
trajectory can be expressed as follows:

τ := (s0, a0, s1, a1, . . . , sT ), (23)

where sT represents a terminal state. Given a reference policy µ(a|s) and a target policy π(a|s),
Maximum Entropy Reinforcement Learning (MaxEnt RL) (Levine, 2018) optimizes the following
objective:

π∗ := argmax
π

Eπ

[
r(sT )−

T−1∑
t=0

DKL(π(·|st)∥µ(·|st))

]
, (24)

where DKL denotes the Kullback-Leibler divergence.

The soft state value function, V π , is defined as:

V π(st) := Eπ

[
r(sT )−

T−1∑
u=t

DKL(π(·|su)∥µ(·|su)) | st

]
. (25)

Similarly, the soft Q function, Qπ , is defined as:

Qπ(st, at) := Est+1∼p(st+1|st,at) [V
π(st+1)] , t < T, (26)

where p(st+1|st, at) represents the transition dynamics of the environment.

For the optimal policy π∗, along with the corresponding optimal value functions V ∗ and Q∗, the
following expression holds (Levine, 2018):

π∗(at|st) := µ(at|st) ·
exp(Q∗(st, at))

exp(V ∗(st))
. (27)

Additionally, the optimal soft value function V ∗ satisfies the following:

V ∗(st) = log

∫
µ(at|st) · exp(Q∗(st, at)) dat. (28)

With the above results from MaxEnt RL, we are ready to prove Theorem 2.

Proof. The Markov sampling chain of ARDMs can be embedded in an MDP. The state space and
initial distribution of the MDP are the same as those of the Markov chain in Liu et al. (2025b, Fig. 1).
In state stn = (x01:n, x

t
n), where t > 1, the action is xt−1

n , determined by the ARDM. Given action
xt−1
n in state stn, the MDP deterministically transitions to (x01:n, x

t−1
n ). In state s0n, where n < N ,

the action is a randomly sampled Gaussian noise xTn+1. Given action xTn+1 in state s0n, the MDP
deterministically transitions to (x01..n, x

T
n+1). Intermediate states and actions in the MDP do not

receive a reward; only the terminal state receives a reward r(x01..N ).

Since we have mapped the ARDM sampling Markov chain as an MDP, we can analyze it using
MaxEnt RL. For ease of description, we will first flatten the sampling Markov chain of ARDM by
identifying state snT−t with state stn. The Markov chain of ARDM sampling can now be written as
s0 → s1 → · · · → sNT . First, since the MDP has deterministic transitions, we have

V ∗(su+1) = Q∗(su, au) (29)

for all possible pairs (su, au, su+1). Suppose that the reference policy is µ(su+1|su), the optimal
policy π∗(su+1|su) satisfies:

π∗(su+k|su) · exp(V ∗(su)) = µ(su+k|su) · exp(V ∗(su+k)), (30)

Rewriting Equation 30 by expanding the states as tokens, we have the following.

π∗(xtn|x01:n) = µ(xtn|x01:n) ·
exp(V ∗(x01:n, x

t
n))

exp(V ∗(x01:n))
. (31)
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A.4 NUMERICAL STABILITY OF EXP-MSE LOSS

The Exp-MSE loss in Eq. (12) is numerically unstable during optimization. We propose an alterna-
tive loss that shares the same global minimum, while providing better numerical stability. Here, sg
is the stop gradient operator.

L̂n,tV (ϕ) := Eµ(x),q(xt
n|xn)

[
exp

(
Vϕ(x<n, x

t
n)− sg

[
Vϕ(x<n, x

t
n)
])

−

exp
(
r(x)− sg

[
Vϕ(x<n, x

t
n)
]) ]2

.
(32)

Proof. To see why is this the case, consider the following simplified version of the Exp-MSE loss.
Here fθ(x) is a neural network estimator, and r(x, y) is an arbitrary bounded function depending on
both x, y. The conditional distribution of y given x is p(y|x).

ℓθ(x) :=

∫
p(y|x)

(
exp fθ(x)− exp r(x, y)

)2
dy. (33)

The gradient has high variance since it contains multiple exponential functions:

∇θℓθ(x) =

∫
p(y|x)

[
2
(
exp fθ(x)− exp r(x, y)

)
exp fθ(x)

]
∇θfθ(x) dy. (34)

We propose the following surrogate loss:

ℓ̂θ(x) :=

∫
p(y|x)

(
exp

(
fθ(x)− sg[fθ(x)]

)
− exp

(
r(x, y)− sg[fθ(x)]

))2

dy. (35)

The gradient of this surrogate loss is

∇θ ℓ̂θ(x) = 2

(
1−

∫
p(y|x) exp

(
r(x, y)− fθ(x)

)
dy

)
∇θfθ(x). (36)

This loss has the desired unique global minimum:

f∗θ (x) = log

∫
p(y|x) exp r(x, y)dy. (37)

B MORE IMPLEMENTATION DETAILS

B.1 DISCRIMINATOR ARCHITECTURE IN TASK B

Adversarial distribution matching is applied to Task B VGPO training. The discriminator in our
experiments is initialized from the base DiTAR model. The LM in DiTAR is adapted as a prompt
encoder, taking prompt speech as input and outputting a speaker embedding. The diffusion head is
adapted into a discriminator network that takes a speaker embedding, a noisy token, and its diffu-
sion time as input. Similar to the value model, the discriminator is first trained on offline sampled
trajectories from the base model.

B.2 CLASSIFIER-FREE GUIDANCE IN VGPO

Many ARDMs rely on classifier-free guidance (CFG) to obtain high-quality samples (Song et al.,
2025; Sun et al., 2024; Jia et al., 2025). However, CFG violates the assumption that q(xtn|xn) can
approximate the true marginal distribution p(xtn|xn), creating a gap between theory and practice. In
our implementation, we consistently enabled LM guidance with a fixed weight w = 2 in DiTAR,
which we found to work well. Consequently, the diffusion head is evaluated twice in each inference
and training step. Because the diffusion head in DiTAR is lightweight, the additional computational
cost remains acceptable.
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C SUBJECTIVE EVALUATIONS

We conducted comparative mean opinion score (CMOS) tests to evaluate the performance of fine-
tuned models against the base model. The evaluation user interfaces for the different CMOS tests
are shown in Figures 3, 4, and 5. In all tests, listeners are presented with a set of instructions, the
target text, and audio generated by two models. For the speaker similarity test, the prompt audio is
provided as the reference.

0:000:00 / 0:00/ 0:00 0:000:00 / 0:00/ 0:00

Figure 3: Screen shot of CMOS evaluation interface for speech naturalness (N-CMOS).

0:000:00 / 0:00/ 0:00

0:000:00 / 0:00/ 0:00 0:000:00 / 0:00/ 0:00

Figure 4: Screen shot of CMOS evaluation interface for speaker similarity (S-CMOS).

D LLM USAGE

LLMs including GPT-5 and GPT-4o are used for correcting grammar errors.
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0:000:00 / 0:00/ 0:00 0:000:00 / 0:00/ 0:00

Figure 5: Screen shot of CMOS evaluation interface for speech expressiveness (E-CMOS).
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