
Published in Transactions on Machine Learning Research (05/2025)

Responsive Noise-Relaying Diffusion Policy:
Responsive and Efficient Visuomotor Control

Zhuoqun Chen∗ zhc057@ucsd.edu
UC San Diego

Xiu Yuan∗ x1yuan@ucsd.edu
UC San Diego

Tongzhou Mu t3mu@ucsd.edu
UC San Diego

Hao Su haosu@ucsd.edu
UC San Diego

Reviewed on OpenReview: https: // openreview. net/ forum? id= LLWJkR6gaI

Abstract

Imitation learning is an efficient method for teaching robots a variety of tasks. Diffusion
Policy, which uses a conditional denoising diffusion process to generate actions, has demon-
strated superior performance, particularly in learning from multi-modal demonstrates. How-
ever, it relies on executing multiple actions predicted from the same inference step to retain
performance and prevent mode bouncing, which limits its responsiveness, as actions are
not conditioned on the most recent observations. To address this, we introduce Responsive
Noise-Relaying Diffusion Policy (RNR-DP), which maintains a noise-relaying buffer with
progressively increasing noise levels and employs a sequential denoising mechanism that
generates immediate, noise-free actions at the head of the sequence, while appending noisy
actions at the tail. This ensures that actions are responsive and conditioned on the latest
observations, while maintaining motion consistency through the noise-relaying buffer. This
design enables the handling of tasks requiring responsive control, and accelerates action
generation by reusing denoising steps. Experiments on response-sensitive tasks demonstrate
that, compared to Diffusion Policy, ours achieves 18% improvement in success rate. Further
evaluation on regular tasks demonstrates that RNR-DP also exceeds the best acceleration
method (DDIM) by 6.9% in success rate, highlighting its computational efficiency advan-
tage in scenarios where responsiveness is less critical. Our project page is available at
https://rnr-dp.github.io/.

1 Introduction

Imitation learning is a powerful approach for training robots to perform complex tasks, including grasping
(Johns, 2021; Xie et al., 2020; Stepputtis et al., 2020), legged locomotion (Ratliff et al., 2007; Al-Hafez
et al., 2023; Yang et al., 2023b), dexterous manipulation (Qin et al., 2022; Radosavovic et al., 2021), and
mobile manipulation (Wong et al., 2022; Du et al., 2022). Advances in computer vision and natural language
processing have led to increasingly sophisticated imitation learning frameworks, achieving impressive success
across diverse tasks (Chen et al., 2021; Abramson, 1970; Florence et al., 2022; Shafiullah et al., 2022). A
notable breakthrough, Diffusion Policy (Chi et al., 2023), models robot action sequences through a condi-
tional denoising diffusion process, setting new benchmarks over traditional imitation learning techniques.

∗These authors contributed equally to this work.

1

https://openreview.net/forum?id=LLWJkR6gaI
https://rnr-dp.github.io/

Published in Transactions on Machine Learning Research (05/2025)

Consequently, Diffusion Policy has rapidly gained traction and is now widely adopted as a foundational
framework in both research and real-world applications.

Response-sensitive Tasks

Regular Tasks

Su
cc

es
s

Ra
te

Su
cc

es
s

Ra
te

Figure 1: Our RNR-DP consistently
delivers responsive and efficient con-
trol.

However, Diffusion Policy faces significant limitations. As shown
in Chi et al. (2023), its performance heavily depends on having a
relatively large action horizon, Ta, which corresponds to executing
multiple actions in the environment. The policy widely achieves
optimal performance at Ta = 8 but suffers substantial degrada-
tion when Ta = 1, where only a single action is executed per in-
ference. We attribute this to the nature of modeling multi-modal
data: each inference independently samples actions aligned with a
specific mode. Consequently, a larger action horizon is essential to
ensure a sequence of actions adheres to the same mode, maintaining
consistency. Conversely, using Ta = 1 leads to severe mode bounc-
ing, causing significant performance drops. However, employing a
large action horizon (e.g., Ta = 8) also introduces drawbacks, as
most actions are not conditioned on the latest observations, thereby
reducing responsiveness and adaptability to environmental changes.
Empirically, we observe that Diffusion Policy struggles particularly
with tasks requiring responsive control, such as handling dynamic
objects.

To address these issues, we propose Responsive Noise-Relaying Diffusion Policy (RNR-DP). We define re-
sponsiveness as the degree to which the current action leverages the most recent observation. Our approach
fundamentally relies on a noise-relaying buffer that contains increasing noise levels and implements a se-
quential denoising mechanism. After each denoising step, conditioned on the most recent observations, the
model executes an immediate noise-free action at the buffer’s head and appends fully noisy actions at the
buffer’s tail. The noise-relaying buffer, combined with the sequential denoising mechanism, not only reuses
denoising steps from previous outputs—allowing one denoising step to generate one action—but also ensures
active control based on the most recent observations and prevents frequent mode bouncing, maintaining
action consistency throughout the entire process. We name it Responsive Noise-Relaying Diffusion
Policy because it employs a noise-relaying buffer at its core and has the ability to respond quickly
and actively to the environment.

We evaluate our approach across a range of benchmarks, focusing on 9 tasks from three well-established
datasets: ManiSkill2 (Gu et al., 2023), ManiSkill3 (Tao et al., 2024), and Adroit (Rajeswaran et al., 2017).
Our primary evaluation targets 5 tasks involving dynamic object manipulation that demand responsive
control. Empirical results show that RNR-DP significantly outperforms Diffusion Policy, delivering much
more responsive control. Additionally, we extend our evaluation to tasks that do not require responsive
control. The results indicate that, even on these simpler tasks, RNR-DP functions as a superior acceleration
method compared to popular alternatives such as DDIM (Song et al., 2020) and Consistency Policy (Song
et al., 2023; Prasad et al., 2024). Overall, our evaluations systematically demonstrate that RNR-DP provides
both highly responsive and efficient control.

To summarize, our contributions are as follows:

• We identify a key limitation of Diffusion Policy: its reliance on a relatively large action horizon Ta,
which compromises its responsiveness and adaptability to environmental changes.

• We propose Responsive Noise-Relaying Diffusion Policy (RNR-DP) which maintains a noise-relaying
buffer with progressively increasing noise levels and employs a sequential denoising mechanism.

• We conduct extensive experiments on 5 tasks involving dynamic object manipulation and 4 simpler
tasks that do not demand responsive control. The results consistently demonstrate that RNR-DP
delivers both highly responsive and efficient control.

2

Published in Transactions on Machine Learning Research (05/2025)

2 Related Work

Diffusion Model Acceleration Techniques Diffusion models (Ho et al., 2020) have garnered significant
attention for their capacity to model complex distributions. However, their iterative sampling processes can
be computationally expensive due to the large number of diffusion steps required. One approach to address
the low inference speed of diffusion models is by reducing the number of denoising steps needed, as seen in
works like (Song et al., 2020) and (Karras et al., 2022). Another line of research employs distillation-based
techniques, which begin with a pretrained teacher model and train a new student model to take larger steps
over the ODE trajectories that the teacher has already learned to map, as demonstrated in (Song et al., 2023),
(Liu et al., 2023), and (Salimans & Ho, 2022). Among the most commonly used acceleration techniques in
the robotics community are DDIM (Song et al., 2020) and Consistency Models (Song et al., 2023), which
are particularly effective for speeding up the diffusion policy process.

Diffusion Model for Motion Synthesis Diffusion Model, renowned for its strong representational capa-
bilities, has been widely applied to motion synthesis tasks (Shafir et al., 2023). Building on this foundation,
Zhang et al. (2024) proposed an innovative framework that incorporates temporally varying denoising and
maintains a motion buffer comprising progressively noised poses, enabling long-term motion synthesis. In-
spired by TEDi, we develop a noise-relaying buffer with incrementally increasing noise levels and implement
a sequential denoising mechanism to enhance Diffusion Policy, ensuring more efficient and responsive control.

Diffusion Model as Policy With the success of diffusion models in image synthesis and video generation
(Ho et al., 2020), they have become a popular choice as policy backbones in the robotics community. These
models are utilized in two main ways: 1) As policies in reinforcement learning (RL) methods, including
offline RL (Wang et al., 2022; Hansen-Estruch et al., 2023; Mao et al., 2024), offline-to-online RL (Ding
& Jin, 2023), and online RL (Yang et al., 2023a); 2) As policies in imitation learning (Chi et al., 2023;
Reuss et al., 2023). Diffusion Policy belongs to the second category and has demonstrated state-of-the-art
performance compared to other imitation learning methods (Shafiullah et al., 2022; Florence et al., 2022;
Abramson, 1970). Furthermore, it exhibits significant potential for future research and practical applications
(Yuan et al., 2024).

3 Background

Diffusion Policy (Chi et al., 2023) models control policies using Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., 2020), which have shown strong performance in generative modeling. In control,
Diffusion Policy predicts the future action sequence At using a noise prediction network εθ(A(k)

t ; Ot, k),
where A(k)

t = At + ϵk is a perturbed version of the clean action sequence At with added Gaussian noise ϵ at
noise level k. The model learns to estimate and remove noise by minimizing the mean squared error (MSE)
loss:

L = ∥εθ(A(k)
t ; Ot, k)− εk∥2.

During inference, given an observation Ot, the trained network iteratively refines the action sequence over
K denoising steps following:

A(k−1)
t = α

(
A(k)

t − γεθ(A(k)
t ; Ot, k) + ϵ

)
,

where the initial action sequence At is sampled from N (0, 1), and ϵ ∼ N (0, σ2I) represents Gaussian noise.
The predefined noise schedule functions α, γ, and σ are part of the DDPM scheduler (Ho et al., 2020). Once
denoised to A(0)

t , the agent executes the first n = Ta future steps after time t.

3

Published in Transactions on Machine Learning Research (05/2025)

Table 1: We compare the performance of Diffusion Policy under different action horizon Ta with multi-modal
data and RL data.

Traj Num Ta=1 Ta=2 Ta=4 Ta=8
Demo Type
Multi-Modal 1000 0.78 0.93 0.95 0.96
RL (Single-Modal) 500 0.62 0.59 0.58 0.55

4 Limitations of Diffusion Policy

This section explores the key limitations of Diffusion Policy in detail. In summary, Diffusion Policy relies
on a relatively large action horizon, Ta, to ensure a sequence of actions adheres to the same mode and avoid
frequent mode bouncing. However, using a large action horizon results in most actions being unconditioned
on the latest observations, thereby limiting the policy’s responsiveness to environmental changes. Section
4.1 delves into why Diffusion Policy requires a large action horizon, while Section 4.2 examines how this
impacts responsiveness.

4.1 Why Diffusion Policy Needs A Large Action Horizon?

As shown in Chi et al. (2023), Diffusion Policy performs best with a relatively large action horizon Ta

(e.g., Ta = 8), while Ta = 1 significantly degrades performance. This is because each action sequence is
independently denoised from noise, and in multi-modal settings, Ta = 1 allows actions to switch modes,
causing inconsistencies. Executing multiple actions within the same mode is crucial for stable performance.
To validate this, we train Diffusion Policy on 500 single-modal demonstrations from an RL agent in the
ManiSkill2 StackCube task. Results in Table 1 show no performance drop with Ta = 1, even slightly
improving over Ta = 8, confirming that mode bouncing in multi-modal settings is the main reason for
requiring a large action horizon.

4.2 How A Large Action Horizon Limits Responsiveness?

As discussed above, a large action horizon Ta is crucial for Diffusion Policy, particularly when modeling multi-
modal data. However, an excessively large Ta can hinder responsiveness to rapid environmental changes.
Consider a dexterous robotic hand tasked with picking up a ball from a surface and transporting it to
a goal position. This task demands continuous fine-grained control and rapid adaptation to unforeseen
disturbances, such as the ball slipping or shifting unpredictably within the fingers. If the policy commits
to executing Ta = 8 future actions, it may struggle to react promptly to subtle variations in grip force or
contact dynamics. For example, if the ball begins to slip, a long action sequence could delay corrective actions,
making recovery difficult. In contrast, a short action horizon (Ta = 1) allows the policy to continuously refine
its grip based on real-time feedback, ensuring stable and controlled relocation. This example highlights
that in contact-rich object manipulation tasks, a large action horizon forces the policy to predict complex
interactions prematurely, making precise control more challenging. Empirically, we observe that Diffusion
Policy struggles with such dynamic, contact-rich manipulation tasks, where real-time adaptability is essential,
further underscoring the dilemma between long-horizon consistency and responsiveness.

5 Responsive Noise-Relaying Diffusion Policy

To achieve responsive and efficient control, our proposed approach relies on a noise-relaying buffer and the
implemented sequential denoising machanism at its core (Section 5.1) with additional key design choices
(Section 5.2). More details of the implementation including policy architecture and hyperparameters are
summarized in Appendix B.

4

Published in Transactions on Machine Learning Research (05/2025)

Denoiser

Shifting

Enqueue

Dequeue

Visual

ot−1

Eobs

t

ot

Visual

k1 kj kf

obs feature

conditioning

past steps in episode future steps in episode

noise levels

Action Denoising: denoise once and execute one action

a
(0)
t

fully noisy action

clean action

proceed to next control step

Figure 2: Inference Overview of Responsive Noise-Relaying Diffusion Policy (RNR-DP). The
core of RNR-DP is the noise-relaying buffer (Section 5.1) and it has 3 stages during the entire control-loop,
as exemplified by the transition between time step t and time step t+1, (1) The buffer contains noisy actions
with increasing noise levels (2) After denoising once, each action in the buffer is denoised for one step, clean
action at the buffer’s head is removed and executed (dequeue) (3) The remaining noisy actions are left
shifted for one slot and a fully noisy action is appended to the buffer’s tail (enqueue). The conditioning
data is discussed with more details in Section 5.2 and Appendix B.3.

5.1 Noise-Relaying Buffer

The noise-relaying buffer Q̃t = {a(1)
t , a(2)

t+1, . . . , a(f−1)
t+f−2, a(f)

t+f−1} contains a sequence of noisy actions with
linearly increasing noise levels from 1 to f , where f is the buffer capacity as well as the total number
of noise levels. As shown in Figure 2, after each denoising step, the trained network transforms Q̃t into
Qt = {a(0)

t , a(1)
t+1, . . . , a(f−2)

t+f−2, a(f−1)
t+f−1}, producing a noise-free action a(0)

t at the head. This clean action is
immediately executed, and a fully noisy action is appended to the buffer’s tail. For the next step, the buffer
reuses f − 1 denoising steps from previous outputs, ensuring consistency and avoiding full denoising from
scratch. This sequential denoising mechanism conditions clean actions on the latest observations, enabling
responsive and long-term active control. Pseudocode is provided in Algorithm 1.

5.2 Key Design Choices

Mixture Noise Scheduling We train the denoiser network following the DDPM (Ho et al., 2020) frame-
work, and allow each action in At perturbed by independent noise levels. Given a fixed variance schedule
β1, . . . , βf (β1 < βf), any aj in At can be perturbed by one of the f levels. During training, we use a
mixed per-action noise injection scheme (mixture schedule): with probability plinear, actions are perturbed
by linearly increasing variances (linear schedule); with probability 1− plinear, actions are perturbed by ran-
dom variances from β1 to βf (random schedule). The random schedule trains the model to denoise actions
independently pθ(a(k−1) | a(k); O), 1 ≤ k ≤ f , while the linear schedule ensures smooth transitions across
consecutive actions during inference. Unlike Diffusion Policy, which applies a single variance level to all
actions in At per iteration, our mixture schedule enables diverse and robust training. An illustrative visu-
alization is included in Appendix I.

Laddering Initialization During inference, we use a noise-relaying buffer with f noisy action frames,
following Algorithm 1. Initially, the buffer contains f fully noisy actions sampled from N (0, I), i.e., Q̃ =

5

Published in Transactions on Machine Learning Research (05/2025)

denoise sufficient times

Initialization noise levels

Figure 3: A visulization of the initialization process. Noise-relaying buffer contains only fully noisy
actions sampled from standard multivariate Gaussian distribution of dimension Ta at each action index
before the initialization; the buffer is denoised for f times until the buffer head contains minimal noise level
and can be executed with one more model forward call.

{zj ∼ N (0, I) | j = 1, . . . , f}. To align with training and avoid performance drops, we initialize the buffer
by iteratively denoising it f times using the random schedule conditioned on the initial observation O0.
This transforms the buffer to follow the linear schedule, ensuring smooth and responsive control. Since this
process transitions the buffer from uniform noise to monotonically increasing variances like a ladder, we term
it laddering initialization, as illustrated in Figure 3. A more detailed illustrative visualization is included in
Appendix J.

Noise-Aware Conditioning Unlike Diffusion Policy (Chi et al., 2023), which encodes a single diffusion step
to one time embedding, our approach uses mixed scheduling and a noise-relaying buffer to handle multiple
noise levels, requiring awareness of multiple diffusion steps. For each action’s noise level kj (1 ≤ kj ≤ f), we
use an MLP to encode a time embedding, yielding f embeddings. These are appended to the observation
features from the encoder Eobs. This allows the buffer, during both training and inference, to decode actions
at each noise level using up-to-date observations, enabling more dynamic and consistent behaviors. See
Appendix B.3 for more details.

6 Experiments

The goal of our experimental evaluation is to study the following questions:

1. Can Responsive Noise-Relaying Diffusion Policy outperform Diffusion Policy by delivering more
responsive control? (Section 6.3)?

2. Can Responsive Noise-Relaying Diffusion Policy function as a superior acceleration method compared
to commonly used alternatives on simpler tasks that do not require responsive control (Section 6.4)?

3. What are the effects of the components introduced by Responsive Noise-Relaying Diffusion Policy
(Section 6.5)?

6.1 Experimental Setup

To validate the responsiveness and efficiency of Responsive Noise-Relaying Diffusion Policy, our experimental
setup incorporates variations in the following dimensions:

• Task Types: Stationary robot arm manipulation, mobile manipulation, dual-arm coordination,
dexterous hand manipulation, articulated object manipulation, and high-precision tasks.

• Demo Sources: Teleoperation, Task and Motion Planning, RL, and Model Predictive Control.

• Observation Modalities: State observation (low-dim) and visual observation (high-dim).

6

Published in Transactions on Machine Learning Research (05/2025)

StackCube TurnFaucet Pen Hammer

Response-sensitive Regular

Relocate DoorPushT RollBall PushChair

Figure 4: Task Visualization in Simulation. ManiSkill tasks including PushT, RollBall, PushChair,
StackCube, TurnFaucet; Adroit tasks including Relocate, Door, Pen, Hammer. See Appendix A.1 for more
properties about each task.

6.1.1 Task Descriptions

Our experiments are conducted on 9 tasks from 3 benchmarks: ManiSkill2 (robotic manipulation; 3 tasks),
ManiSkill3 (robotic manipulation; 2 tasks) and Adroit (dexterous manipulation; 4 tasks). These tasks are
separated into 2 groups to validate the responsiveness and efficiency of Responsive Noise-Relaying Diffusion
Policy. A detailed discussion of task groupings and classification criteria can be found in Appendix D.

Response-sensitive Group: Tasks Involving Dynamic Object Manipulation Requiring Respon-
sive Control We consider 5 challenging tasks involving contact-rich, dynamic object manipulation to assess
the responsiveness of RNR-DP. PushT requires using a stick to push a T-shaped block to a target location
and orientation. RollBall involves pushing and rolling a ball to a randomized goal region. PushChair tests
bimanual manipulation of articulated objects with variations. Adroit Relocate involves picking up a ball and
moving it to a goal position, while Adroit Door requires unlocking and opening a door. See Figure 4 for task
visualizations, and more details are included in Appendix A.1.

Regular Group: Simpler Tasks that Do Not Require Responsive Control We consider the rest 4
simpler tasks that do not require responsive control to validate the efficiency of RNR-DP. StackCube requires
picking up a cube and stack it onto another cube. TurnFaucet uses a stationary arm to turn on faucets of
various geometries and topology. Adroit Pen repositions the blue pen to match the orientation of the green
target. Adroit Hammer picks up a hammer and drives a nail into a board. More details are included in
Appendix A.1.

6.2 Baselines

We compare our Responsive Noise-Relaying Diffusion Policy against a set of strong baselines related to
Diffusion Policy.

Diffusion Policy (DDPM) is the original setting from Chi et al. (2023), which utilizes a conditional
Denoising Diffusion Probalistic Model with discrete time scheduling to generate actions. We use 100 DDPM
denoising steps in our experiments.

Diffusion Policy (EDM) is introduced in Prasad et al. (2024) to train a teacher model and employs
the EDM (Karras et al., 2022) framework with continuous-time scheduling. This model takes the current
position xt, time t, and conditioning o as inputs along a PFODE and is used to estimate the derivative of
the PFODE’s trajectory. We utilize the EDM model with Heun’s second-order solver taking 80 denoising
steps, which requires two neural network evaluations per discretized step in the ODE, resulting in a total of
159 neural function evaluations (NFEs).

Diffusion Policy (DDIM) is used in Chi et al. (2023) to accelerate Diffusion Policy with Diffusion Denoising
Implicit Model framework (Song et al., 2020). We test 1, 2, 4, and 8 DDIM denoising steps.

Consistency Policy (CP) is introduced in Prasad et al. (2024), which employs the Consistency Trajectory
Model (Kim et al., 2023) to distill the knowledge from a Teacher Model (EDM). We evaluate both the 1-step
Consistency Policy and the 8-step chaining Consistency Policy.

7

Published in Transactions on Machine Learning Research (05/2025)

Table 2: Evaluation on tasks requiring responsive control (Response-sensitive Group) from ManiSkill and
Adroit benchmarks (State Observations). We report average success rate (↑) of the best checkpoint for 1000
episodes across 10 random seeds. Results that are statistically better are highlighted in bold. Our results
are highlighted in light-blue cells.

Relocate Door PushChair RollBall PushT
Method w/ g w/o g
DP 0.422 0.558 0.495 0.635 0.083 0.470
RNR-DP 0.585 0.629 0.547 0.694 0.121 0.491

Table 3: Evaluation on tasks (Response-sensitive Group) from ManiSkill and Adroit benchmarks (Visual
Observations). We report values under the same settings as in Table 2. Tasks in which none of the methods
achieve a reasonable success rate under visual observations are omitted.

Door (Adroit) RollBall (MS3) PushT (MS3)
Method
DP 0.079 0.080 0.349
RNR-DP 0.122 0.131 0.379

Streaming Diffusion Policy (SDP) is a recent advancement over Diffusion Policy that stays close to our
approach. See Appendix C.2 for detailed discussion.

6.3 Results & Analysis on Responsive Control

First, we provide comprehensive evaluation and validate the responsiveness of RNR-DP on 5 tasks (Response-
sensitive Group) involving contact-rich dynamic object manipulation, a primary focus of our policy. Figure 1
shows an overview of performance improvement. As shown in Table 2 and Table 3, RNR-DP consistently
outperforms Diffusion Policy across all tested scenarios in both state and visual experiments. Specifically, in
state experiments, RNR-DP achieves a 15.1% improvement over Diffusion Policy, while in visual experiments,
it demonstrates a 24.9% improvement. Overall, RNR-DP surpasses Diffusion Policy by 18.0%. Notably, in
the Relocate task, RNR-DP achieves a significant performance boost of 38.6% over Diffusion Policy.

We attribute these significant performance gains to the design of our noise-relaying buffer and sequential
denoising mechanism, which offer two key advantages. The noise-relaying buffer ensures that the denoising
of each action remains consistent, allowing actions to follow the same mode. This effectively eliminates
frequent mode bouncing, enabling RNR-DP to support single-action rollouts (Ta = 1). Furthermore, the
single-action rollout in RNR-DP ensures that all actions are conditioned on the latest observations, resulting
in significantly more responsive control to environmental changes compared to Diffusion Policy.

6.4 Results & Analysis on Efficient Control

In this section, we conduct extended experiments on 4 simpler tasks (Regular Group) that do not require
responsive control to evaluate the efficiency of RNR-DP. An overview of the performance improvements
is provided in Figure 1. Section 6.4.1 introduces a metric designed for fair efficiency comparisons, while
Section 6.4.2 provides a detailed analysis of the empirical results compared to commonly used acceleration
methods.

6.4.1 Neural Function Evaluations per Action (NFEs/a)

Adopting the settings from Chi et al. (2023), Diffusion Policy and related methods utilize a relatively large
action horizon (Ta) to achieve better performance, whereas RNR-DP employs a single-action rollout (Ta = 1)
at each inference. To facilitate a fair comparison of efficiency, we introduce a new metric, Neural Function
Evaluations per Action (NFEs/a), as defined in Equation (1).

8

Published in Transactions on Machine Learning Research (05/2025)

Table 4: Evaluation on simpler tasks (Regular Group) not requiring responsive control from ManiSkill and
Adroit benchmarks (State Observations). We report average success rate (↑) and overall average success
rate of all tasks (↑). Particularly, DDIMs with NFEs/a = 1, CPs with NFEs/a = 1 are highlighted in
light-green, light-red cells respectively. Our results are highlighted in light-blue cells.

StackCube TurnFaucet Pen Hammer Avg. SR of tasks
Method Steps (S) NFEs/a w/ g w/o g
DDPM 100 12.5 0.960 0.495 0.595 0.508 0.120 0.536

DDIM

1 0.125 0.000 0.000 0.000 0.110 0.000 0.000
2 0.25 0.214 0.433 0.594 0.190 0.000 0.286
4 0.5 0.959 0.482 0.612 0.476 0.000 0.506
8 1 0.964 0.477 0.614 0.483 0.000 0.508

EDM 80 20 0.955 0.449 0.575 0.517 0.120 0.523

CP 1 0.125 0.214 0.051 0.028 0.326 0.000 0.124
8 1 0.680 0.112 0.299 0.483 0.041 0.323

RNR-DP 1 1 0.935 0.531 0.594 0.487 0.139 0.537

NFEs/a = NFEs
Ta

(1)

6.4.2 Empirical Comparison with Commonly Used Acceleration Methods

To evaluate the efficiency of Responsive Noise-Relaying Diffusion Policy (RNR-DP), we compare it against
common acceleration methods, including DDIM (Chi et al., 2023) and Consistency Policy (Prasad et al.,
2024), on simpler tasks that do not require responsive control (Regular Group). As shown in Table 4 and
Appendix C.1, RNR-DP consistently achieves the highest overall performance among all DDIM and Con-
sistency Policy variants. For a fair comparison, we specifically evaluate RNR-DP against 8-step DDIM
(NFEs/a = 1) and 8-step-chaining Consistency Policy (NFEs/a = 1). In state-based experiments, RNR-DP
outperforms 8-step DDIM by 5.7% and 8-step-chaining Consistency Policy by 66.2%. In vision-based experi-
ments, it surpasses 8-step DDIM by 8.5% and 8-step-chaining Consistency Policy by 3.4%, yielding an overall
improvement of 6.9% over 8-step DDIM and 32.0% over 8-step-chaining Consistency Policy. Additionally,
both DDIM and Consistency Policy struggle in certain tasks. For instance, 8-step DDIM achieves a 0%
success rate on Adroit Hammer, while Consistency Policy performs poorly on StackCube and TurnFaucet.
In contrast, RNR-DP demonstrates consistent and robust performance across all tasks. Notably, RNR-DP
achieves an average success rate comparable to Diffusion Policy across all state and visual experiments while
being 12.5 times faster. These results confirm that even on simpler tasks, RNR-DP serves as a superior
acceleration method, enabling efficient control.

We attribute this robust performance to the design of the noise-relaying buffer and sequential denoising
mechanism. By reusing denoising steps from previous outputs, RNR-DP requires only one denoising step
to generate a single action, while ensuring all actions undergo sufficient denoising to maintain high action
quality. In contrast, DDIM and Consistency Policy significantly reduce the number of denoising steps per
action, leading to pronounced performance drops.

6.5 Ablation Study

We conduct various ablations to provide further insights on the effects of components of RNR-DP.

Noise Scheduling Scheme We conduct a comprehensive study to evaluate how different noise scheduling
schemes impact the performance of the Responsive Noise-Relaying Diffusion Policy. As shown in Table 5,
the results demonstrate that relying solely on either a linear schedule or a random schedule significantly
reduces task success rates. This highlights the importance of integrating mixture scheduling to fully exploit
the potential of the noise-relaying buffer design. By combining the two schedules, our model effectively
utilizes different noise levels, enhancing the robustness and adaptability of action generation.

9

Published in Transactions on Machine Learning Research (05/2025)

Table 5: Ablation study on noise scheduling scheme during training (Section 5.2). Numbers represent aver-
age success rates (↑). Numbers in parenthesis indicate the performance drop after removing key component
of our Responsive Noise-Relaying Diffusion Policy.

Relocate (Adroit) Door (Adroit)
Ablation
Linear 0.323 (-26.2%) 0.404 (-22.5%)
Random 0.389 (-19.6%) 0.360 (-26.9%)
Mixture (Ours) 0.585 0.629

Table 6: Ablation study on noise-relaying buffer initialization (Section 5.2).

Relocate (Adroit) Door (Adroit)
Ablation
Pure noise 0.522 (-6.3%) 0.516 (-11.3%)
Laddering (Ours) 0.585 0.629

Table 7: Ablation study on model prediction type (Section 5.2).

Relocate (Adroit) Door (Adroit)
Ablation
Action 0.154 (-43.1%) 0.374 (-25.5%)
Noise (Ours) 0.585 0.629

Noise-Relaying Buffer Initialization We conduct an ablation study to evaluate the effectiveness of
our initialization scheme. Pure noise directly uses a fully noisy buffer as the initialization for subsequent
operations. As shown in Table 6, laddering initialization achieves significant performance gains compared to
pure noise. This result highlights the critical role of our initialization scheme in enabling strong and robust
performance.

40 50 60 70 80 90 100 110
40%

45%

50%

55%

60%

65% DP
RNR-DP

Figure 5: Noise-relaying buffer ca-
pacity v.s. average success rate.

Noise-Relaying Buffer Capacity We also evaluate the impact of
the noise-relaying buffer capacity to the performance, the only tuned
hyperparameter in our approach. As shown in Figure 5, on the Adroit
Relocate task, RNR-DP achieves peak performance of 58.5% at a
buffer capacity of 84 and maintains strong performance within the
range of 56 to 92, demonstrating a wide tolerance. Performance de-
clines when the buffer capacity is too small (e.g., 48) or too large (e.g.,
100). Notably, Diffusion Policy achieves only 42.2%, while RNR-DP
with buffer capacities between 48 and 100 consistently outperforms it.
This highlights that for a single task, the noise-relaying buffer offers robust performance over a broad range
and is not difficult to tune. Empirically, starting with a value between 56 and 84 and making adjustments
suffices most cases.

Model Prediction Type In addition, we investigate the impact of the model’s prediction type. As shown
in Table 7, models predicting the added noise component outperform those directly predicting the action
sequence. This finding aligns with the common practice of using noise prediction in diffusion models within
the vision domain (Ho et al., 2020).

7 Conclusion and Future Work

In this paper, we identify the key limitation of Diffusion Policy: its reliance on a relatively large action
horizon Ta compromises its responsiveness and adaptability to environment changes. To address these

10

Published in Transactions on Machine Learning Research (05/2025)

issues, we propose Responsive Noise-Relaying Diffusion Policy which maintains a noise-relaying buffer with
progressively increasing noise levels and employs a sequential denoising mechanism. Our method provides
more responsive control than Diffusion Policy on 5 tasks involving dynamic object manipulation, and delivers
more efficient control than commonly used acceleration methods on 4 simpler tasks.

Limitations. A limitation of this work is the lack of real-robot evalutions. We discuss our method’s potential
advantages in real-robot deployment in Appendix E. We will conduct complex real world deployment for
future research.

11

Published in Transactions on Machine Learning Research (05/2025)

References
Norman Abramson. The aloha system: Another alternative for computer communications. In Proceedings

of the November 17-19, 1970, fall joint computer conference, pp. 281–285, 1970.

Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. Locomujoco: A comprehensive imitation
learning benchmark for locomotion. arXiv preprint arXiv:2311.02496, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems, 34:15084–15097, 2021.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal
of Robotics Research, pp. 02783649241273668, 2023.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement learning.
arXiv preprint arXiv:2309.16984, 2023.

Yuqing Du, Daniel Ho, Alex Alemi, Eric Jang, and Mohi Khansari. Bayesian imitation learning for end-
to-end mobile manipulation. In International Conference on Machine Learning, pp. 5531–5546. PMLR,
2022.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In Conference on Robot
Learning, pp. 158–168. PMLR, 2022.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao Su. Maniskill2:
A unified benchmark for generalizable manipulation skills. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=b_CQDy9vrD1.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine. Idql:
Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573,
2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Sigmund H. Høeg, Yilun Du, and Olav Egeland. Streaming diffusion policy: Fast policy synthesis with
variable noise diffusion models, 2024. URL https://arxiv.org/abs/2406.04806.

Edward Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration. In 2021
IEEE international conference on robotics and automation (ICRA), pp. 4613–4619. IEEE, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in neural information processing systems, 35:26565–26577, 2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode
trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for high-quality
diffusion-based text-to-image generation. In The Twelfth International Conference on Learning Represen-
tations, 2023.

Liyuan Mao, Haoran Xu, Xianyuan Zhan, Weinan Zhang, and Amy Zhang. Diffusion-dice: In-sample
diffusion guidance for offline reinforcement learning. arXiv preprint arXiv:2407.20109, 2024.

12

https://openreview.net/forum?id=b_CQDy9vrD1
https://arxiv.org/abs/2406.04806

Published in Transactions on Machine Learning Research (05/2025)

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral Kumar,
and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning. Advances in
Neural Information Processing Systems, 36:62244–62269, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual rea-
soning with a general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy: Accelerated
visuomotor policies via consistency distillation. arXiv preprint arXiv:2405.07503, 2024.

Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong Wang. Dexmv:
Imitation learning for dexterous manipulation from human videos. In European Conference on Computer
Vision, pp. 570–587. Springer, 2022.

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning for
dexterous manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7865–7871. IEEE, 2021.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel Todorov,
and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and
demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Nathan Ratliff, J Andrew Bagnell, and Siddhartha S Srinivasa. Imitation learning for locomotion and
manipulation. In 2007 7th IEEE-RAS international conference on humanoid robots, pp. 392–397. IEEE,
2007.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation learning using
score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. Human motion diffusion as a generative
prior. arXiv preprint arXiv:2303.01418, 2023.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior transformers:
Cloning k modes with one stone. Advances in neural information processing systems, 35:22955–22968, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni Ben Amor.
Language-conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139–13150, 2020.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao, Xinsong Lin,
Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan Xiao, Arnav Gurha, Zhiao Huang,
Roberto Calandra, Rui Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized robotics simulation
and rendering for generalizable embodied ai, 2024. URL https://arxiv.org/abs/2410.00425.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for
offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Josiah Wong, Albert Tung, Andrey Kurenkov, Ajay Mandlekar, Li Fei-Fei, Silvio Savarese, and Roberto
Martín-Martín. Error-aware imitation learning from teleoperation data for mobile manipulation. In
Conference on Robot Learning, pp. 1367–1378. PMLR, 2022.

13

https://arxiv.org/abs/2410.00425

Published in Transactions on Machine Learning Research (05/2025)

Fan Xie, Alexander Chowdhury, M De Paolis Kaluza, Linfeng Zhao, Lawson Wong, and Rose Yu. Deep
imitation learning for bimanual robotic manipulation. Advances in neural information processing systems,
33:2327–2337, 2020.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen, Binbin
Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for reinforcement learning.
arXiv preprint arXiv:2305.13122, 2023a.

Ruihan Yang, Zhuoqun Chen, Jianhan Ma, Chongyi Zheng, Yiyu Chen, Quan Nguyen, and Xiaolong
Wang. Generalized animal imitator: Agile locomotion with versatile motion prior. arXiv preprint
arXiv:2310.01408, 2023b.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator: Model-
agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Zihan Zhang, Richard Liu, Kfir Aberman, and Rana Hanocka. Tedi: Temporally-entangled diffusion for
long-term motion synthesis. In SIGGRAPH, Technical Papers, 2024. doi: 10.1145/3641519.3657515.

14

Published in Transactions on Machine Learning Research (05/2025)

A Further Details on the Experimental Setup

A.1 Task Descriptions

We consider a total of 9 continuous control tasks from 3 benchmarks: ManiSkill2 (Gu et al., 2023), ManiSkill3
(Tao et al., 2024), and Adroit (Rajeswaran et al., 2017). This section provides detailed task descriptions on
overall information, task difficulty, object sets, state space, and action space. Some task details are listed in
Table 8.

Table 8: We consider 9 continuous tasks from 3 benchmarks. We list important task details below.

Task State Obs Dim Cstate Act Dim Ca Max Episode Step
ManiSkill3: PushT 31 7 100
ManiSkill3: RollBall 44 4 80
ManiSkill2: StackCube 55 4 200
ManiSkill2: TurnFaucet 43 7 200
ManiSkill2: PushChair 131 20 200
Adroit: Door 39 28 300
Adroit: Pen 46 24 200
Adroit: Hammer 46 26 400
Adroit: Relocate 39 30 400

A.1.1 ManiSkill2 Tasks

StackCube

• Overall Description: Pick up a red cube and place it onto a green one. See Figure 6 for episode
visualization.

• Task Difficulty: This task requires precise control. The gripper needs to firmly grasp the red cube
and accurately place it onto the green one.

• Object Variations: No object variations

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information

• Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD image
from a hand camera.

Figure 6: StackCube Episode Visualization.

TurnFaucet

• Overall Description: Turn on a faucet by rotating its handle.

• Task Difficulty: This task needs to handle object variations. See Figure 7 for episode visualization.

15

Published in Transactions on Machine Learning Research (05/2025)

• Object Variations: We have a source environment containing 10 faucets, and the dataset is collected
in the source environment. w/o g means the agent directly interacts with the source environment
online; w/ g means the agent interacts with the target environment online, which contains 4 novel
faucets.

• Action Space: Delta pose of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, the mobile base, and task-specific goal information.

Figure 7: TurnFaucet Episode Visualization.

PushChair

• Overall Description: A dual-arm mobile robot needs to push a swivel chair to a target location
on the ground (indicated by a red hemisphere) and prevent it from falling over. The friction and
damping parameters for the chair joints are randomized. See Figure 8 for episode visualization.

• Task Difficulty: This task needs to handle object variations.

• Object Variations: We have a source environment containing 5 chairs, and the dataset is collected
in the source environment. w/o g means the agent directly interacts with the source environment
online; w/ g means the agent interacts with the target environment online, which contains 3 novel
faucets.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, task-specific goal information.

• Visual Observation Space: three 50x125 RGBD images from three cameras 120◦ apart from each
other mounted on the robot.

Figure 8: PushChair Episode Visualization.

A.1.2 ManiSkill3 Tasks

PushT

• Overall Description: It is a simulated version of the real-world push-T task from Diffusion Policy:
https://diffusion-policy.cs.columbia.edu/. In this task, the robot needs to precisely push the T-
shaped block into the target region, and move the end-effector to the end-zone which terminates the
episodes. The success condition is that the T block covers 90% of the 2D goal T’s area. See Figure 9
for episode visualization.

• Task Difficulty: The task involves manipulating a dynamic T-shaped object, which introduces non-
linear dynamics, friction, and contact forces.

• Object Variations: No object variations.

16

https://diffusion-policy.cs.columbia.edu/

Published in Transactions on Machine Learning Research (05/2025)

• Action Space: Delta pose of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

• Visual Observation Space: one 64x64 RGBD image from a base camera.

Figure 9: PushT Episode Visualization. The T-Block is pushed from sampled initial configuration to the
goal area.

RollBall

• Overall Description: A task where the objective is to push and roll a ball to a goal region at the other
end of the table. The success condition is that The ball’s xy position is within goal radius (default
0.1) of the target’s xy position by euclidean distance. See Figure 10 for episode visualization.

• Task Difficulty: The task involves manipulating a dynamic ball, which introduces non-linear dynam-
ics, friction, and contact forces.

• Object Variations: No object variations.

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

• Visual Observation Space: one 64x64 RGBD image from a base camera.

Figure 10: Rollball Episode Visualization. The blue ball is pushed and rolled from sampled initial configu-
ration to the target red circle.

A.1.3 Adroit Tasks

Adroit Door

• Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on undoing the latch and swing the door open. See Figure 11
for episode visualization.

• Task Difficulty: The latch has significant dry friction and a biass torque that forces the door to
stay closed. No information about the latcch is explicitly provided. The position of the door is
randomized.

• Object Variations: No object variations.

• Action Space: Absolute angular positions of the Adoit hand joints.

17

Published in Transactions on Machine Learning Research (05/2025)

Figure 11: Door Episode Visualization.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as state of the latch and door.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Pen

• Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on repositioning the blue pen to match the orientation of
the green target. See Figure 12 for episode visualization.

• Task Difficulty: The target is also randomized to cover all configurations.

• Object Variations: No object variations.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as the pose of the real pen and target goal.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Figure 12: Pen Episode Visualization.

Adroit Hammer

• Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom ShadowHand and a 4 degree of freedom arm. The task to be completed consists on picking
up a hammer with and drive a nail into a board. See Figure 13 for episode visualization.

• Task Difficulty: The nail position is randomized and has dry friction capable of absorbing up to 15N
force.

• Object Variations: No object variation.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
the pose of the hammer and nail, and external forces on the nail.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Relocate

18

Published in Transactions on Machine Learning Research (05/2025)

Figure 13: Hammer Episode Visualization.

• Overall Description: The environment is based on the Adroit manipulation platform, a 30 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 6 degree of freedom
arm. The task to be completed consists on moving the blue ball to the green target. See Figure 14
for episode visualization.

• Task Difficulty: The positions of the ball and target are randomized over the entire workspace.

• Object Variations: No object variations.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as kinematic information about the ball and target.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Figure 14: Relocate Episode Visualization.

A.2 Demonstrations

This subsection provides the details of demonstrations used in our experiments. See Table 9. ManiSkill2 and
ManiSkill3 demonstrations are provided in Gu et al. (2023) and Tao et al. (2024), and Adroit demonstrations
are provided in Rajeswaran et al. (2017).

Table 9: Demonstration sources, numbers and generation methods.

Task Traj Num for Training Generation Method
ManiSkill3: PushT 1000 Reinforcement Learning
ManiSkill3: RollBall 1000 Reinforcement Learning
ManiSkill2: StackCube 1000 Task & Motion Planning
ManiSkill2: TurnFaucet 1000 Model Predictive Control
ManiSkill2: PushChair 1000 Reinforcement Learning
Adroit: Door 25 Human Demonstration
Adroit: Pen 25 Human Demonstration
Adroit: Hammer 25 Human Demonstration
Adroit: Relocate 25 Human Demonstration

B Implementation Details

B.1 Noise-Relaying Diffusion Policy Inference

We summarize the inference pseudo-code of our RNR-DP in Algorithm 1.

19

Published in Transactions on Machine Learning Research (05/2025)

Algorithm 1 Noise-relaying Diffusion Policy Inference
1: Require: denoising model, εθ; observation, Ot; noise-relaying buffer, Q̃t; buffer capacity f ;

2: while task execution do
3: Qt ← εθ(Q̃t; Ot, {1, · · · , f}) ▷ εθ is trained using f noise levels
4: a(0)

t ← Qt.pop(0) ▷ a(0)
t is a clean action (fully denoised)

5: Q̃t ← Qt.push(z) ▷ z is a random noisy action sampled from N (0, I)
6: Ot ← env.step(a(0)

t) ▷ executes a(0)
t and envrionment updates observation

7: t ← t + 1 ▷ update timestep for the next iteration

B.2 Noise-Relaying Diffusion Policy Training

We summarize the training pseudo-code of our RNR-DP in Algorithm 2.

Algorithm 2 Responsive Noise-Relaying Diffusion Policy Training
1: Require: demonstration dataset, D = {(Oi, Ai)}N

i=1; denoising model, εθ; number of diffusion steps, f

2: repeat
3: Sample (O, A) ∼ D
4: Sample p ∼ Unif(0, 1); Sample noise ϵ ∼ N (0, I) and reshape to RCa×f

5: if p < plinear :
6: k = {k1 = 1, · · · , kf = f} ▷ linear schedule
7: else
8: k = {k1 ∼ Unif({1, · · · , f}), · · · , kf ∼ Unif({1, · · · , f})} ▷ random schedule

9: for all aj ∈ A indexed by frame index j do
10: âj =

√
ᾱtj

aj +
√

1− ᾱtj
ϵj ▷ perturbe each aj independently

11: Â = {â0, · · · , âf−1}
12: Take gradient descent step to update θ on
13: ∇θ∥ϵ− εθ(Â; O, k)∥ ▷ noise-aware conditioning
14: until converged

B.3 Policy Architecture

We build our RNR-DP on top of the UNet-based architecture of Diffusion Policy (Chi et al., 2023). The
model includes 2 downsampling modules and 2 upsampling modules with each module containing 2 residual
blocks. The residual block consists of 1D temporal convolutions (Conv1d), group normalizations (GN),
and Mish activation layers. The encoded noise-aware conditioning data (Section 5.2) is fused into each
residual block through the FiLM transformation (Perez et al., 2018). The raw conditioning data is of shape
Rf×(Cemb+Cstate) for state policies and of shape Rf×(Cemb+Cvisual+Cstate) for visual policies. See Figure 15 for
the visualization of a visual policy. We follow the UNet denoiser design for the observation that transformer-
based policies are more sensitive to hyperparameters and often require more tuning (Chi et al., 2023). The
choice of policy architecture is orthogonal to our method and we believe our design would also improve this
policy class.

20

Published in Transactions on Machine Learning Research (05/2025)

GN
Mish

Conv1d
FiLM

GN
Mish

Conv1d

x

statevisual
k1

kj

kf

PosEnc

MLP

level

MLP
Up

Up

Down

Down

UNetNoise-aware ConditioningEmbedding

Figure 15: The detailed policy architecture for our RNR-DP. We only extract visual features for visual
policies.

B.4 Important Hyperparameters

B.4.1 Key Hyperparameters of RNR-DP

We summarize the key hyperparameters of RNR-DP in Table 10. The observation horizon To and noise-
relaying buffer capacity f for each task is listed in Table 11. The number of trainable parameters for each
task is listed in Table 12.

Table 10: We list the key hyperparameters of RNR-DP used in our experiments.

Hyperparameter Value
RNR-DP Noise Scheduling Scheme Mixture Sampling(plinear) plinear = 0.4
RNR-DP Model Prediction Type Noise
Diffusion Step Embedding Dimension 64
UNet Downsampling Dimensions [64, 128, 256]
Optimizer AdamW
Weight Decay 1e-6
Learning Rate 1e-4
Learning Rate Scheduler Cosine
EMA Model Update 0.9999
Online Evaluation Episodes 1000

B.4.2 Key Hyperparameters of Diffusion Policy

We summarize the key hyperparameters of Diffusion Policy in Table 13. The observation horizon To, action
executation horizon Ta and action prediction horizon Tp for each task are listed in Table 14.

B.5 Training Details

We train our models and baselines with cluster assigned GPUs (NVIDIA 2080Ti & A10). We use AdamW
optimizer with an initial learning rate of 1e-4, applying 500 warmup steps followed by cosine decay. We use
batch size of 1024 for state policies and 256 for visual policies for both ManiSkill and Adroit benchmarks.
We evaluate DP, CP and RNR-DP model checkpoints using EMA weights every 10K training iterations for
ManiSkill tasks and every 5K for Adroit tasks. DDIMs are evaluated using the best checkpoints of DDPMs
in an offline manner. CPs are trained using the best checkpoints of EDMs.

21

Published in Transactions on Machine Learning Research (05/2025)

Table 11: The observation horizon and noise-relaying buffer capacity of our RNR-DP for each task.

Task Obs To Capacity f

ManiSkill3: PushT (Visual) 2 48
ManiSkill3: RollBall (Visual) 2 64
ManiSkill2: StackCube (Visual) 2 84
Adroit: Pen (Visual) 2 4
Adroit: Hammer (Visual) 2 64
Adroit: Door (Visual) 2 56

ManiSkill3: PushT (State) 2 32
ManiSkill3: RollBall (State) 2 4
ManiSkill2: StackCube (State) 2 84
ManiSkill2: TurnFaucet w/g (State) 2 64
ManiSkill2: TurnFaucet w/o g (State) 2 72
ManiSkill2: PushChair w/g (State) 2 56
ManiSkill2: PushChair w/o g (State) 2 48
Adroit: Door (State) 2 74
Adroit: Pen (State) 2 4
Adroit: Hammer (State) 2 32
Adroit: Relocate (State) 2 84

Table 12: The number of our RNR-DP trainable parameters for each task. Noise-relaying buffer size doesn’t
affect the number of trainable parameters for each task.

Task Trainable Params
ManiSkill3: PushT (Visual) 11.42M
ManiSkill3: RollBall (Visual) 11.59M
ManiSkill2: StackCube (Visual) 10.85M
Adroit: Pen (Visual) 14.67M
Adroit: Hammer (Visual) 14.72M
Adroit: Door (Visual) 14.41M

ManiSkill3: PushT (State) 4.53M
ManiSkill3: RollBall (State) 4.73M
ManiSkill2: StackCube (State) 4.91M
ManiSkill2: TurnFaucet (State) 4.71M
Adroit: Door (State) 4.66M
Adroit: Pen (State) 4.75M
Adroit: Hammer (State) 4.77M
Adroit: Relocate (State) 4.66M

C Additional Results

C.1 Empirical Comparison with Acceleration Methods on Visual Observations

We summarize the results of vision-based experiments in Table 15. As shown in Table 15, our RNR-DP
ourperforms all DDIM variations and CP variations and particularly has an overall improvement over 8-step
DDIM by 6.9%, over 8-step-chaining CP by 3.4%.

22

Published in Transactions on Machine Learning Research (05/2025)

Table 13: We list the key hyperparameters of Diffusion Policy baseline used in our experiments.

Hyperparameter Value
Diffusion Step Embedding Dimension 64
UNet Downsampling Dimensions [64, 128, 256]
Optimizer AdamW
Weight Decay 1e-6
Learning Rate 1e-4
Learning Rate Scheduler Cosine
EMA Model Update 0.9999
Online Evaluation Episodes 1000

Table 14: We list the observation horizon, action executation horizon and action prediction horizon of
Diffusion Policy baseline for each task.

Task Obs To Act Exec Ta Act Pred Tp

ManiSkill3: PushT (Visual) 2 2 16
ManiSkill3: RollBall (Visual) 2 4 16
ManiSkill2: StackCube (Visual) 2 8 16
Adroit: Pen (Visual) 2 8 16
Adroit: Hammer (Visual) 2 8 16
Adroit: Door (Visual) 2 8 16

ManiSkill3: PushT (State) 2 1 16
ManiSkill3: RollBall (State) 2 4 16
ManiSkill2: StackCube (State) 2 8 16
ManiSkill2: TurnFaucet (State) 2 8 16
Adroit: Door (State) 2 8 16
Adroit: Pen (State) 2 8 16
Adroit: Hammer (State) 2 8 16
Adroit: Relocate (State) 2 8 16

Table 15: Evaluation on simpler tasks (Regular Group) not requiring responsive control from ManiSkill
and Adroit benchmarks (Visual Observations). We follow our evaluation metric and report values under the
same settings as in Table 4. Tasks in which none of the methods achieve a reasonable success rate under
visual observations are omitted.

StackCube Pen Hammer Avg. SR of tasks
Method Steps (S) NFEs/a
DDPM 100 12.5 0.958 0.133 0.123 0.404

DDIM

1 0.125 0.000 0.000 0.000 0.000
2 0.25 0.946 0.042 0.000 0.329
4 0.5 0.947 0.125 0.000 0.357
8 1 0.946 0.139 0.009 0.365

EDM 80 20 0.930 0.156 0.067 0.384

CP 1 0.125 0.615 0.127 0.088 0.277
8 1 0.910 0.161 0.077 0.383

RNR-DP 1 1 0.924 0.154 0.110 0.396

23

Published in Transactions on Machine Learning Research (05/2025)

C.2 Comparsion with Streaming Diffusion Policy (SDP)

Streaming Diffusion Policy (SDP) (Høeg et al., 2024) is a recent advancement over Diffusion Policy that
stays close to our approach. In this section, we compare our method with SDP in terms of motivation
(Appendix C.2.1), methodology (Appendix C.2.2), and empirical results (Appendix C.2.3).

C.2.1 Motivation Comparison

SDP accelerates Diffusion Policy inference by reducing the number of denoising steps required to generate
an action sequence. While improving diffusion inference speed is a relevant research topic, its impact in
robotics is less compelling, as DDIM and Consistency Policy already provide reasonable speedups with strong
performance. In contrast, our method addresses a fundamental limitation of Diffusion Policy—its lack of
responsiveness—which significantly hinders performance in rapidly changing environments (e.g., contact-rich
dynamic object manipulation). This challenge is far more critical to advancing robotic control. Although
our approach also serves as an effective acceleration method, we view this as a secondary benefit compared
to its primary advantage of enabling more responsive control.

C.2.2 Method Comparison

Rollout Method SDP also employs an action buffer structure but partitions the prediction horizon Tp into
multiple action chunks, ensuring that (1) each chunk maintains the same noise level and (2) noise levels
increase across chunks. This chunk-wise design focuses solely on reducing denoising steps and accelerating
inference. However, it does not address responsiveness and thus retains the limitations of Diffusion Policy. In
contrast, our sequential denoising scheme conditions all actions on the latest observations, enabling responsive
control while leveraging the noise-relaying buffer to maintain efficiency.

Policy Architecture SDP fuses all time embeddings along the temporal dimension into a single embedding.
In contrast, our architecture retains multiple time embeddings, ensuring that noisy actions within the noise-
relaying buffer can perceive time step changes based on the latest observation features. This design preserves
temporal dynamics, allowing each action to adapt to varying time steps, thereby improving responsiveness
and consistency in action generation.

C.2.3 Empirical Results Comparison

To comprehensively compare Diffusion Policy, Streaming Diffusion Policy, and our method, we conduct
experiments on both response-sensitive tasks and regular tasks to evaluate their responsiveness and effi-
ciency, as shown in Table 16 and Table 17. The empirical results indicate that on response-sensitive tasks,
Streaming Diffusion Policy performs similarly to Diffusion Policy, whereas our method achieves significantly
more responsive control than both. On regular tasks, both SDP and our method successfully preserve the
performance of DP, but our method achieves 6.25 times faster inference.

Table 16: We compare Diffusion Policy, Streaming Diffusion Policy with our method on response-sensitive
tasks.

DP SDP RNR-DP
Task
Relocate (Adroit) 0.422 0.436 0.585
PushChair w/ g (ManiSkill2) 0.495 0.500 0.547
PushChair w/o g (ManiSkill2) 0.635 0.633 0.694

D Task Grouping Discussion

In this section, we provide a detailed discussion of the criteria used for grouping tasks into response-sensitive
tasks and regular tasks. Appendix D.1 outlines the general rules for task grouping, while Appendix D.2
explains the specific reasoning behind the classification of each task.

24

Published in Transactions on Machine Learning Research (05/2025)

Table 17: We compare Streaming Diffusion Policy with Diffusion Policy and our method on regular tasks.

StackCube TurnFaucet (w/ g) TurnFaucet (w/o g) Hammer
Method Steps (S) NFEs/a

DP 100 12.5 0.960 0.495 0.595 0.120
SDP 50 6.25 0.961 0.480 0.615 0.136

RNR-DP 1 1 0.935 0.531 0.594 0.139

D.1 General Rules for Task Grouping

For response-sensitive tasks, inaccurate actions based on outdated observations can easily lead to states not
covered by the demonstration dataset. For example, if the robot pushes a swivel chair too forcefully, it may
fall and become unrecoverable. In contrast, regular tasks are more tolerant of inaccuracies from outdated
observations. For instance, in the stack cube task, even if the gripper doesn’t precisely stop above the cube,
this state still falls within the distribution.

D.2 Detailed Task Separation Criteria for Each Task

Relocate (Adroit) (Response-Sensitive) This task requires controlling a high-dimensional dexterous
hand to pick up a ball from a surface and transport it to a goal position. Due to the potential for the ball
to slip on the surface or shift unpredictably within the fingers, responsive real-time feedback is essential for
successful execution.

Door (Adroit) (Response-Sensitive) This task requires controlling a high-dimensional dexterous hand to
apply the appropriate force to turn the handle. Insufficient force fails to open the door, while excessive force
causes the hand to slip off. Since each phase relies on the precise execution of the previous one, real-time
control is essential for success.

PushChair (ManiSkill2) (Response-Sensitive) This task requires controlling a mobile bimanual system
to push a swivel chair to a goal position. Effective force control is crucial—pushing too hard can cause the
chair to topple over, making recovery impossible. Precisely stopping the chair at the goal position demands
highly adaptable control to make fine adjustments. Without real-time feedback, the chair tends to bounce
around the goal position instead of coming to an exact stop.

RollBall (ManiSkill3) (Response-Sensitive) This task requires precisely rolling a ball to reach the goal
position. Successful execution depends on applying the appropriate force and accurately controlling the
rolling trajectory. Even a slight control error can result in missing the target, making highly adaptable and
responsive control essential.

PushT (ManiSkill3) (Response-Sensitive) This task involves pushing a T-shaped block to a goal re-
gion. Successful completion requires the block to cover 90% of the goal area, necessitating real-time fine
adjustments to its position. Without adaptable control, precisely aligning the T-shaped block to the goal
position becomes challenging and prone to failure.

StackCube (ManiSkill2) (Regular) This task requires controlling a gripper to pick up a cube and stack
it onto another cube. It is tolerant to minor inaccuracies in control, as the gripper does not need to stop
precisely above the cube; slight deviations still fall within the expected distribution.

TurnFaucet (ManiSkill2) (Regular) This task requires controlling a gripper to turn on a faucet. Since
it involves simple manipulation without complex contact-rich operations, and the faucet remains fixed in
place, it is tolerant to inaccuracies in control and does not require real-time adjustments.

Pen (Adroit) (Regular) This task involves controlling a high-dimensional dexterous hand to rotate a pen
and align it with a goal pose. Successful completion in the dataset requires an average of only 30 steps, with
a minimum of 13 steps, indicating a very short-horizon control requirement. Additionally, numerous studies
(Nakamoto et al., 2023; Florence et al., 2022) have identified it as one of the easiest tasks in Adroit.

25

Published in Transactions on Machine Learning Research (05/2025)

Hammer (Adroit) (Regular) This task involves controlling a high-dimensional dexterous hand to strike a
nail. The hammering motion does not require fine-grained, real-time adjustments, as the primary objective
is to deliver sufficient force to the nail. Minor deviations in trajectory or impact position do not significantly
impact the task’s success.

E Complex Real-world Scenarios Discussion

RNR-DP’s responsiveness is crucial in complex real-world scenarios, where dynamic environments, distur-
bances, and multi-object interactions create significant variability. The ability to quickly adapt to changing
conditions is key to achieving robust performance. This responsiveness could enable RNR-DP to tackle
real-world challenges like object variations, complex interactions, human disturbances, and environmental
uncertainties, broadening its applicability to a wider range of tasks.

We believe RNR-DP offers significant advantages for real-robot deployment. First, it provides responsive
control to handle rapid environmental changes, which are crucial in both simulation and real-world scenarios.
Second, in real-robot settings, the control policy must meet a specific control rate, unlike in simulation where
the environment can wait for policy inference. While DP requires acceleration via DDIM for real-robot
deployment, as noted in the DP paper, this does not preserve performance well in our experiments. RNR-
DP, on the other hand, better preserves the DP performance while achieving the necessary control rate for
real-robot applications.

F Multi-Modality Property of RNR-DP

To demonstrate the preservation of multi-modality in practice, we visualize action distributions from a state
in the ManiSkill2 StackCube task, using our RNR-DP. We sample 1000 actions from our policy then applies
PCA dimensionality reduction for visualization. We use histograms to visualize the discrete relative density
of these action samples and use kernel density estimation (KDE) to visualize the estimated probability
density function. The results are shown in Figure 16.

0.02 0.01 0.00 0.01 0.02
Action (1st principal component)

0.00

0.05

0.10

0.15

0.20

0.25

Ac
ti

on
 R

el
at

iv
e

D
en

si
ty

KDE Density
Relative Density

Figure 16: Conditional action distribution visualization from our experiments. Our method demonstrates
clear bimodal distribution, showing that RNR-DP preserves multi-modality property.

We can see that the dimension-reduced action distribution exhibits a clear bimodal distribution, confirming
that multi-modality is preserved in our method.

26

Published in Transactions on Machine Learning Research (05/2025)

G Noise-Relaying Buffer Capacity Discussion

We find that the optimal buffer capacity is closely related to the task horizon, or the number of steps required
to complete the task in the dataset. The rationale is that if a task is solved in 30 steps, an 84-step noise-
relaying buffer would be inappropriate. Notably, Adroit Pen has the shortest task horizon, an average of 30
steps with a minimum of 13 steps, significantly lower than other tasks, and thus requires a much smaller
buffer capacity. In practice, we set the buffer capacity to a value lower than the minimum task horizon in the
dataset and make adjustments around this value. For every task, including Adroit Pen, the buffer capacity
has a wide range of workable values.

H Noise Scheduling Discussion

In this section, we aim to discuss two noise scheduling method from Streaming Diffusion Policy (Høeg et al.,
2024), 67% Independent 33% Linear and Chunk-Wise Noise Scheduling.

H.1 67% Independent 33% Linear Noise Scheduling

The key difference between Mixture Noise Scheduling and the "67% Independent, 33% Linear" schedule is
the proportion of linear noise and random (or independent) noise. In our setup, we use 60% random noise
(or independent noise from the SDP paper) and 40% linear noise from TEDi (Zhang et al., 2024), which has
proven effective and robust across all tasks. We also tested the "67% independent (random), 33% linear"
noise schedule from SDP (Høeg et al., 2024) for the Adroit Relocate task, and the results show it performs
well, as the two noise schedules (67-33 vs. 60-40) are quite similar. Refer to Table 18 for detailed results.

H.2 Chunk-Wise Noise Scheduling

To leverage current observations, RNR-DP uses a single-action rollout during each inference (Ta = 1).
Chunk-wise noise scheduling is inappropriate for our setting (Table 18), as it is designed for action sequence
rollouts (e.g., Ta = 8 in DP and SDP). Our scheduling is essentially a special case of chunk-wise noise
perturbation, where the chunk size is set to 1.

Table 18: Ablation study on noise scheduling scheme during training. Numbers represent average success
rates (↑).

Relocate (Adroit)
Ablation
Chunk-Wise 0.001
100% Linear 0.323
100% Random (Independent) 0.389
67% Independent (Random) 33% Linear 0.558
Mixture (60% Random 40% Linear) (Ours) 0.585

I Mixture Scheduling Visualization

In this section, we provide a detailed discussion of the mechanism and motivation behind Mixture Noise
Scheduling. As illustrated in Figure 17, the random schedule is teaching the model to denoise actions
independently, where each action is assigned a random noise level. The linear schedule, on the other hand,
maintains an increasing noise level across actions, closely aligning with our inference process through the
noise-relaying buffer. Our mixture schedule not only trains the model to denoise actions independently, as
in the DP setting, but also ensures smooth transitions between consecutive actions. This better aligns with
the noise-relaying buffer structure, resulting in more diverse and robust trainings.

27

Published in Transactions on Machine Learning Research (05/2025)

Training Inference

ability to denoise each action independentlyrandom schedule
{β5, β3, β1, β2, β4}

linear schedule
{β1, β2, β3, β4, β5}

enforce inference structure (buffer)

diff step

no
is

e
le

ve
l

min

max

β1

β5

mixed schedule
p ≥ plinear

p < plinear

inherit advantages from both schedules
p ∼ Bernoulli(·)

Figure 17: Detailed illustration of the process of Mixture Scheduling.

J Laddering Initialization Visualization

In this section, we provide a clear and concise discussion of Laddering Initialization. As illustrated in
Figure 18, to transition from random noise to an increased noise level suitable for inference through the
noise-relaying buffer, we perform several denoising steps. This process results in a buffer with laddered
noise, ensuring a more structured and effective initialization.

Laddered

44444

55555

4 4 4 4 5

3 3 3 3 4

4 4 44 5

4333 5

32 2 2 4

3 3 43 5

4322 5

1 1 2 3 4

2 3 42 5

21 43 5

Gaussian
before denoising

after denoising

dequeue & enqueue

denoising step 1 denoising step 2 denoising step 3 denoising step 4

Figure 18: Detailed illustration of the process of Laddering Initialization. Everything happens before our
policy interacts with the environment.

K Qualitative Examples of How DP Struggles with Response-Sensitive Tasks and
How RNR-DP Resolves Them

Comparison videos of response-sensitive tasks between DP and RNR-DP can be found on this page. The
videos clearly demonstrate that while DP struggles with responsive control, RNR-DP effectively completes
the tasks with greater precision and adaptability.

L Discussion on Robosuite Tasks

We initially decided not to experiment with Robosuite for two reasons: (1) nearly all tasks can be solved
by DP with close to 100% success, as demonstrated in the DP paper, and (2) the tasks primarily involve
pick-and-place, which does not require highly responsive control.

M Response Sensitivity Analysis with RL Policies

In this section, we assess response-sensitivity through RL training and further validate our task classification.
We design two experimental settings. In Action Horizon setting, RL agent directly outputs the next Ta

actions (as in Diffusion Policy); In Action Repeat setting, RL agent outputs one action which is then executed
in the environment repeatedly for Ta steps (a strong challenge to responsiveness). We experiment with

28

https://sites.google.com/view/rnr-dp/home/improvement-videos

Published in Transactions on Machine Learning Research (05/2025)

Adroit Relocate (response-sensitive), Adroit Pen (regular), and ManiSkill2 StackCube (regular) using SAC
algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0

2

4

6

8

10

Su
cc

es
s R

at
e

%

Adroit: Relocate
SAC
SAC (Action Horizon = 4)
SAC (Action Repeat = 8)

Figure 19: RL training results on Adroit Relocate (classified as response-sensitive task). Both the Action
Horizon and Action Repeat experiments fail to achieve any success on Adroit Relocate, indicating that the
task has very low tolerance to outdated actions and strongly depends on the most recent observations. This
supports our classification of Adroit Relocate as a response-sensitive task.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0

20

40

60

80

100

Su
cc

es
s R

at
e

%

ManiSkill2: StackCube
SAC
SAC (Action Horizon = 4)
SAC (Action Repeat = 8)

Figure 20: RL training results on ManiSkill2 StackCube (classified as regular task). Action Horizon runs
can achieve decent success rate, while Action Repeat runs cannot, indicating that ths task has some tolerance
to outdated actions. This supports our classification of ManiSkill2 StackCube as a regular task.

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e

%

Adroit: Pen
SAC
SAC (Action Horizon = 4)
SAC (Action Repeat = 8)

Figure 21: RL training results on Adroit Pen (classified as regular task). Both Action Horizon and Action
Repeat runs have reasonable success rate, indicating that the task has very high tolerance to outdated actions.
This supports our classification of Adroit Pen as a regular task.

29

Published in Transactions on Machine Learning Research (05/2025)

In the Action Horizon setting, Ta = 8 is unsolvable due to the large action space, which hinders RL explo-
ration. Behavior Cloning handles this better since it’s supervised. Hence, we focus on Ta = 4, where Adroit
Pen and ManiSkill2 StackCube achieve reasonable success, while Adroit Relocate struggles and achieves
nearly-zero success rate (See Figures 19 to 21). In the Action Repeat setting, repeating the same action for
Ta = 8 steps poses a high responsiveness challenge. Even so, Adroit Pen still achieves some success, showing
strong tolerance to outdated actions (See Figure 21). In summary, these experiments confirm that Adroit
Pen and ManiSkill2 StackCube tolerate outdated actions better than Adroit Relocate, supporting our task
classification.

30

	1 Introduction
	2 Related Work
	3 Background
	4 Limitations of Diffusion Policy
	4.1 Why Diffusion Policy Needs A Large Action Horizon?
	4.2 How A Large Action Horizon Limits Responsiveness?

	5 Responsive Noise-Relaying Diffusion Policy
	5.1 Noise-Relaying Buffer
	5.2 Key Design Choices

	6 Experiments
	6.1 Experimental Setup
	6.1.1 Task Descriptions

	6.2 Baselines
	6.3 Results & Analysis on Responsive Control
	6.4 Results & Analysis on Efficient Control
	6.4.1 Neural Function Evaluations per Action (NFEs/a)
	6.4.2 Empirical Comparison with Commonly Used Acceleration Methods

	6.5 Ablation Study

	7 Conclusion and Future Work
	A Further Details on the Experimental Setup
	A.1 Task Descriptions
	A.1.1 ManiSkill2 Tasks
	A.1.2 ManiSkill3 Tasks
	A.1.3 Adroit Tasks

	A.2 Demonstrations

	B Implementation Details
	B.1 Noise-Relaying Diffusion Policy Inference
	B.2 Noise-Relaying Diffusion Policy Training
	B.3 Policy Architecture
	B.4 Important Hyperparameters
	B.4.1 Key Hyperparameters of RNR-DP
	B.4.2 Key Hyperparameters of Diffusion Policy

	B.5 Training Details

	C Additional Results
	C.1 Empirical Comparison with Acceleration Methods on Visual Observations
	C.2 Comparsion with Streaming Diffusion Policy (SDP)
	C.2.1 Motivation Comparison
	C.2.2 Method Comparison
	C.2.3 Empirical Results Comparison

	D Task Grouping Discussion
	D.1 General Rules for Task Grouping
	D.2 Detailed Task Separation Criteria for Each Task

	E Complex Real-world Scenarios Discussion
	F Multi-Modality Property of RNR-DP
	G Noise-Relaying Buffer Capacity Discussion
	H Noise Scheduling Discussion
	H.1 67% Independent 33% Linear Noise Scheduling
	H.2 Chunk-Wise Noise Scheduling

	I Mixture Scheduling Visualization
	J Laddering Initialization Visualization
	K Qualitative Examples of How DP Struggles with Response-Sensitive Tasks and How RNR-DP Resolves Them
	L Discussion on Robosuite Tasks
	M Response Sensitivity Analysis with RL Policies

