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ABSTRACT

Understanding drivers’ decision-making is crucial for road safety. Although pre-
dicting the ego-vehicle’s path is valuable for driver-assistance systems, existing
methods mainly focus on external factors like other vehicles’ motions, often ne-
glecting the driver’s attention and intent. To address this gap, we infer the ego-
trajectory by integrating the driver’s attention and the surrounding scene. We in-
troduce RouteFormer, a novel multimodal ego-trajectory prediction network com-
bining GPS data, environmental context, and driver field-of-view—comprising
first-person video and gaze fixations. We also present the Path Complexity In-
dex (PCI), a new metric for trajectory complexity that enables a more nuanced
evaluation of challenging scenarios. To tackle data scarcity and enhance diversity,
we introduce GEM, a comprehensive dataset of urban driving scenarios enriched
with synchronized driver field-of-view and gaze data. Extensive evaluations on
GEM and DR(eye)VE demonstrate that RouteFormer significantly outperforms
state-of-the-art methods, achieving notable improvements in prediction accuracy
across diverse conditions. Ablation studies reveal that incorporating driver field-
of-view data yields significantly better average displacement error, especially in
challenging scenarios with high PCI scores, underscoring the importance of mod-
eling driver attention. All data, code, and models will be made publicly available.

1 INTRODUCTION

Understanding the perception and decision-making process of drivers is crucial for road safety in
autonomous and assisted driving. Statistics reveal that 42% of car-bicycle collisions result from
driver inattention (Allenbach et al., 2021). In response, a driver-assistance system capable of inte-
grating the driver’s perspective into its decision-making would enable vehicles to make informed
decisions (Schwarting et al., 2018). While predicting the driver path is critical for such systems,
traditional methods mostly focus on inferring the paths of other vehicles (Salzmann et al., 2020; Gu
et al., 2021; Ngiam et al., 2021; Varadarajan et al., 2022; Nayakanti et al., 2023). In contrast, we
seek to predict drivers’ ego-trajectory by observing both the surrounding scene, and the perception
of the ego-vehicle’s drivers via their frontal view and gaze fixations.

The central idea of this work builds on the insight that the perception of a person is tightly inter-
twined with their imminent and long-term goals, influenced by the surrounding traffic (Triesch et al.,
2003; Hayhoe et al., 2003; Argyle et al., 1994). In driving, the attention of a driver can reveal other-
wise inaccessible information about their decisions on the road. Complementing scene information
with these cues enables the vehicles to resolve ambiguous situations. For instance, the head move-
ments of the driver might be highly informative in determining the turn direction in a junction. The
value of predicting ego-trajectories emerge in ambiguous, complex road paths, e.g., cases where the
road is not trivially straight, or when predicting where the driver would turn at an intersection.

Our focus is thus twofold: firstly, to develop a framework capable of predicting the drivers’ future
ego-trajectories in various driving scenarios, and secondly, to create a method for identifying com-
plex yet rare trajectories and quantifying their complexity. Despite the presence of other driving
datasets with gaze data (Gopinath et al., 2021; Xia et al., 2017; Fang et al., 2023), to the best of
our knowledge, only one public benchmark DR(eye)VE contains both ego-drivers’ locations and
their field-of-view (Palazzi et al., 2018). The scarcity of available data poses another challenge for
our task. To this end, we present an end-to-end framework that predicts future ego-trajectories, a
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Driver FOV (video + gaze)
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Figure 1: RouteFormer framework. Using the past GPS and the scene together with driver field-
of-view, we predict the future ego-trajectory and visual features in driving with a novel loss scheme.

novel metric to measure the complexity of road scenarios, and a new dataset of real-world driving
recordings that include drivers’ field-of-view changes.

First, we build a multi-modal framework, RouteFormer, for egocentric trajectory estimation that in-
tegrates scene data, driver FOV, and past trajectory, as shown in Figure 1. RouteFormer is crafted
based on insights from time-series forecasting literature, offering the flexibility to incorporate ad-
ditional data from other modalities, like navigation paths and LIDAR. We train RouteFormer with
auxiliary tasks of predicting future gaze and scene features for regularization, using a novel future-
discounted loss formulation. To better quantify the complexity of various driving scenarios, we
propose a new metric named Path Complexity Index (PCI), which measures the divergence of a
driving trajectory from an extrapolation of the current path. It also indicates the difficulty of the cor-
responding prediction tasks and allows us to analyze model performance under different scenarios.
Finally, we introduce a Gaze-assisted Ego Motion (GEM) dataset that captures diverse urban driv-
ing scenarios across 10 subjects, integrating GPS, high-resolution scene data from two front-view
cameras, and driver field-of-view (FOV)—comprising first-person video and gaze fixations.

Experimental results show that RouteFormer outperforms state-of-the-art (SOTA) methods on
the GEM dataset. To test its generalization capabilities, we also evaluate RouteFormer on the
DR(eye)VE dataset (Palazzi et al., 2018), and our method surpasses the SOTA approaches. Ab-
lation studies show that incorporating drivers’ field-of-view information improves the prediction
quality, particularly in high-PCI situations.

In summary, our contributions are:

• RouteFormer, an end-to-end multimodal ego-motion prediction network that effectively
utilizes FOV data with a novel loss design.

• PCI, a metric that measures the trajectory complexity.
• GEM, an ego-motion dataset with driver positions and perspective.

2 RELATED WORK

Ego-trajectory prediction. Predicting the future sequence of locations of a moving entity has been
explored for humans (Lyu et al., 2022; Rodin et al., 2021; Singh et al., 2016; Park et al., 2016),
road agents (Huang et al., 2022; Gulzar et al., 2021) and aircraft (Zeng et al., 2022). Autonomous
driving has largely focused on estimating the trajectories of the many agents surrounding the ego-
vehicle (Salzmann et al., 2020; Gu et al., 2021; Nayakanti et al., 2023; Varadarajan et al., 2022;
Ngiam et al., 2021). Recent advances in multi-agent prediction leverage specialized modalities
like HD maps (Shi et al., 2022a) and interaction graphs (Girgis et al., 2021; Vishnu et al., 2023),
while emerging approaches exploit large language models (Mao et al., 2023; Zheng et al., 2024) and
human-inspired perception (Liao et al., 2024a;b). The fusion of these diverse modalities has shown
promise in improving prediction accuracy (Choi et al., 2021; Li et al., 2024a). However, predicting
the ego-vehicles’s trajectory, which is crucial for driving assistance systems (Schwarting et al., 2018;
Jain et al., 2015; Vellenga et al., 2024; Kung et al., 2024), remains less explored. Kinetic models
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assuming constant velocity and turn rate have been utilized (Ammoun & Nashashibi, 2009). Kim
et al. (2021) predict the ego-vehicle’s trajectory with a VAE by conditioning on predicted driving
style, while Baumann et al. (2018) use observations of the static environment, albeit neither with
visual information, similarly with Kim et al. (2017) and Feng et al. (2019). Only Malla et al. (2020)
proposes a vision module but requires hand-annotated actions. Taking a different direction, we focus
on leveraging drivers’ gaze and the scene to predict future ego-vehicle locations.

Driving and attention. Individuals tend to focus on relevant objects in situations with a particular
goal in view, acquiring necessary information even before they are needed (Land & Lee, 1994;
Underwood et al., 1999; Zhang et al., 2022; Fathi et al., 2012; Admoni & Srinivasa, 2016; Argyle
et al., 1994). In navigation tasks, individuals often fixate on an intended path or destination well
before initiating the movement (Hayhoe et al., 2003). For example, Zheng et al. (2022) successfully
shows that the gaze is a high-quality indicator for human motion with GIMO. Using the data from
a gaze headset and the point cloud model of the environment, they accurately predict long-term
sparse motions of humans in closed spaces. Similarly, numerous studies have also employed eye
tracking to study the driving behavior of individuals, focusing on aspects such as attention (Ahlström
et al., 2021), cognitive load (Engström et al., 2005; Kountouriotis et al., 2015), and levels of fatigue
(Heitmann et al., 2001; Gao et al., 2015), while many of them are conducted in a driving simulator.
For driver maneuver classification, recent work has shown relative success with an in-cabin camera
observing the driver (Jain et al., 2015; Ma et al., 2023; Vellenga et al., 2024; Li et al., 2024b), with
some works exploring using gaze and scene information for ego-action prediction, e.g. turns or
lane changes (Lee et al., 2021; Amadori et al., 2020; Wu et al., 2019; Yi et al., 2023). Han et al.
(2023) predict maneuvers based on rider sensor head motion data. Yan et al. (2023) use head motion
and headset gaze to forecast the driver’s future path by fitting a polynomial, but their non-robust
gaze data limits its effectiveness. Finally, Ma et al. (2023) propose a transformer model, which
integrates driver behavior information for maneuver prediction. In contrast, we use driver’s field
of view together with the surrounding scenes for the trajectory prediction task, inspired by similar
works in human motion such as GIMO (Zheng et al., 2022).

Driving datasets with driver FOV. In the context of driving, there are datasets that provide in-
vehicle footage of the driver’s behavior as an indication of driver’s attention (Ortega et al., 2020),
gaze categorized into zones (Ghosh et al., 2021; Ribeiro & Costa, 2019) (in a stationary vehicle),
head pose (Schwarz et al., 2017). Jain et al. (2015) provide both driver in-cabin video footage
and synchronized footage of the scene around the vehicle, yet without gaze data. Palazzi et al.
(2018) provide a dataset of driving under various conditions, with gaze data from a tracking headset
and synchronized GPS locations, however with limited urban scenes. Given the limited amount of
driving datasets with gaze, we introduce a new high-resolution dataset, where accurate eye tracker
gaze location and vehicle GPS information are available. In contrast to others, we focus on city
scenes with many agents where complex situations can arise.

3 EGO-MOTION PREDICTION WITH DRIVER FIELD-OF-VIEW

Driving is an interplay of short and long-term goals, influenced by exogenous factors. Although
such external effects can be understood to some level through computer vision, drivers’ behavior is
mostly driven by self-established targets, which complicates the task of ego-motion prediction. To
address this challenge, we propose a new framework named RouteFormer. At its core, our method is
designed to exploit visual information from multiple cameras, the past trajectory of the vehicle, and,
most notably, the driver’s field-of-view—comprising first-person video and gaze fixations. Each
modality contributes to understanding a different aspect: the surrounding scene, the motion of the
vehicle, and the targets of the driver. See Figure 2 for an overview.

RouteFormer offers two key contributions: (1) a novel architecture that fuses multimodal inputs
via self- and cross-attention mechanisms for time-series prediction, and (2) an auxiliary loss and
future-discounting to regularize long-term forecasting that is otherwise prone to over-fitting.

3.1 TASK DEFINITION

In the ego-trajectory prediction task, given measurements of the vehicle and the environment for T
time steps, we aim to anticipate the future locations of the vehicle for each of the next Tpred time
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Figure 2: Framework details. The multimodal architecture fuses FOV, scene, and motion data for
ego-trajectory forecasting. (a) The videos are encoded with the scene encoder ES frame-wise using a
pre-trained vision backbone. FOV data is then encoded via a cross-modal transformer. The resulting
tensors, all in the image feature domain, are stacked across time, self-attended, and concatenated
with motion features for forecasting. (b) RouteFormer predicts the trajectory, as well as features
from visual modalities concurrently to use them as auxiliary losses for regularization.

steps (our prediction horizon). For the first T steps, we use as input the vehicle’s motion M1:T and
scene representations in the form of video from K cameras of the surroundings S1:K

1:T . Notably, in
addition, we incorporate FOV data F1:T . We build a model Ψ(M1:T , S

1:K
1:T , F1:T |λ) = M ′

T+1:Tpred

to predict the future motion, where λ are the model’s parameters.

We represent vehicle location with two GPS coordinates using the EPSG:3857 coordinate system (in
meters) (Pridal & Pohanka, 2024). The t’th element of the input motion M1:T ∈ RT×2 corresponds
to the relative change of the coordinates compared to t − 1, as in Salzmann et al. (2021). For each
time step t ∈ [0, T ] the scene S1:K

1:T ∈ RK×T×3×HK
S ×WK

S contains images from K external vehicle
cameras, with width WK

S and height HK
S . FOV data has two components F1:T = {FV

1:T ;F
L
1:T }

representing a frontal video feed from a camera fitted on driver’s head FV
1:T ∈ RT×3×HF×WF , and

the high-frequency gaze positions, respectively. The second component, FL
1:T ∈ RT×2, consists of

(x, y) coordinates of points gazed in the image FV , relative to the bottom-left of the image.

3.2 ROUTEFORMER ARCHITECTURE

In our architecture, scene and FOV modalities are processed by a separate encoders ES(S
1:K
1:T ) =

s1:K1:T and EF (F1:T ) = f1:T , producing sequences of compact feature vectors with the same
size. Next, all K scene features are fused with FOV features using a self-attention module
EV (s

1:K
1:T , f1:T ) = v ∈ RT×D. Finally, a time-series forecasting module T predicts the future

Tpred data points - the future motion, in addition to feature vectors of other modalities, used in
training. We design two versions of this architecture: RouteFormer-Base, Ψ(M1:T , S

1:K
1:T |λ), which

does not use the FOV features, and RouteFormer, Ψ(M1:T , S
1:K
1:T , F1:T |λ), which incorporates all

the available modalities, including driver’s perspective.

Scene Module. Our shared scene module ES encodes each frame in S1:K
1:T using a pre-trained vision

backbone, in our case SwinV2 (Liu et al., 2021). The features are then reduced through a self-
attention layer to produce s1:T ∈ RT×D (see Figure 2 a). These features are used in subsequent
layers for temporal reasoning with inter-frame attention.

FOV Module. The frames FV
1:T of the FOV data F1:T are encoded using the same scene encoder

ES , in order to share the representation space and allow for implicit registration between the images.
To account for high frame rate of gaze positions and refine the potentially noisy gaze positions, we
perform a multi-head self-attention of FG

1:T , following the decoder design in Zhou et al. (2021). After
achieving two encoded feature vectors of the same shape for gaze and frontal video, we perform
gaze-frame cross-attention between visual and gaze location features. The attention mechanism
allows the model to “pick” the relevant scene features using the gaze positions across frames, thus
accounting for the highly dynamic scene in a moving vehicle. The produced vector is f1:T ∈ RT×D.
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Modality Fusion. The next step is using an encoder EV to fuse scene s1:K1:T and optionally FOV
f1:T features. To this end, we concatenate s1:K1:T and f1:T across the time dimension, sum with the
modality embeddings EM , and apply a self-attention mechanism. EM encodes the feature source
(e.g. one of the scenes (k ∈ [0,K]) or FOV). This self-attention layer performs implicit image
registration and feature selection within and between the scene and FOV modalities. More precisely,
we take the concatenation [s1:K1:T , f1:T ] ∈ R(K+1)·T×D and produce its fused encoding v ∈ RT×D.
In the case of RouteFormer-Base, where gaze data is not available, we only fuse the scene vectors.

Time-Series Forecasting. Next, we merge (along the feature dimension) the motion features m1:T

and the aforementioned fused features v1:T to obtain [m1:T , v1:T ] ∈ RT×2·D. This forms the input
for our time-series forecasting component T , which takes the merged features [m1:T , v1:T ] and
produces a prediction of the future motion M ′

T :Tpred
. For this task, we experiment with the state-of-

the-art long-term time-series prediction methods Informer (Zhou et al., 2021), Transformer (Vaswani
et al., 2017), PatchTST (Nie et al., 2023) and NLinear/DLinear (Zeng et al., 2023). While the focus
is on future trajectory prediction, we also predict future visual features v′T :Tpred

. The auxiliary outputs
are essential for regularization during training by enforcing intermediate features to remain rich in
scene- and FOV-related information, whenever available.

3.3 TRAINING OBJECTIVES

Trajectory prediction models are prone to over-fitting due to the inherent difficulty of the training
regime: as the subsequent predictions depend on the correctness of the previous forecasts, models
might learn from spurious correlations of the later sections of the trajectory. To tackle this problem,
RouteFormer employs a novel loss formulation which we term as “future-discounted loss”. The
principle behind this loss is to consider predictions for future time steps with diminishing weight,
particularly at the early stages of the training, making predictions for the immediate future more
influential on the overall loss than those for the distant future. This also follows real-world use cases
where immediate predictions often have a higher impact than long-term predictions.

Future-discounted loss. Given a predicted sequence ypred and a ground truth ygt, the future-
discounted loss Lfd over N time steps is then defined as:

Lfd(ypred,ygt) =

N∑
i=1

γi(ypred,i − ygt,i)
2

where γ is the discount factor with 0 < γ < 1. This is inspired by reward discounting in reinforce-
ment learning literature, where the discount rate is often in [0.9, 0.99]. On 6s at 5fps, the choice of
0.97, as used in our experiments, gives 0.9730 = 0.4 weight in the final time step.

Loss composition. Both the primary trajectory loss and the auxiliary losses are subject to the future-
discounting. Let LT denote the discounted trajectory loss and LV the discounted video visual. See
Appendix for detailed definitions. The combined loss Lcombined can be expressed as:

Lcombined = LT + αV LV .

The coefficient αV dynamically balances the primary and auxiliary losses. It is determined by:

αV = ρV × ||LT ||
||LV ||

.

Here, ρV is a scalar hyperparameter and || · || represents the parameter’s scalar value detached from
gradients. This ensures auxiliary losses maintain a consistent proportion to LT , stabilizing training
while preserving trajectory prediction as the primary objective.

3.4 IMPLEMENTATION DETAILS

RouteFormer is trained using the AdamW optimizer with a linear warm-up of 2 epochs and cosine
annealing, over a total of 200 epochs. Maximum learning rate of 1 × 10−5 and weight decay of
1× 10−4 are used with batch size 16. A full set of hyperparameters can be found in Appendix

Regularization. We employ no dropout inside the transformers, but apply aggressive within-
modality dropouts (e.g., dropping one of the two scene videos) to improve validation scores.
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Caching. To benefit from pre-trained vision backbones while keeping the training duration under
control, we have implemented module-level caching that utilizes intermediate features extracted
from these backbones. Details of the caching mechanism are explained in Appendix

4 PATH COMPLEXITY INDEX

In autonomous driving, tackling the long tail of driving scenarios — those situations that are less
frequent but potentially high-impact — is a critical challenge. These scenarios often encompass a
diverse range of unpredictable driving conditions, such as navigating complex intersections or road
obstructions. Traditional approaches often view the task as a classification problem, constrained by
the limitations of hand-labeling such events (Teeti et al., 2022; Girase et al., 2021; Palazzi et al.,
2018). To automatically identify and quantify the complexity of driving situations, we introduce a
novel metric termed Path Complexity Index (PCI). This metric evaluates the deviation from simple
driving patterns, thereby providing a robust tool for assessing and improving trajectory prediction
models.

Given an input trajectory, the PCI metric computes the Fréchet distance between the target trajectory
and a hypothetical simple trajectory in which the driver maintains the speed and direction exhib-
ited in the last segments of the input trajectory. Formally, the PCI of an observed target trajectory
Ttarget ∈ RT×2 given an input trajectory Tinput ∈ RT ′×2, is given by:

PCI(Ttarget|Tinput) =

inf
α,β∈[0,1]

max

(
sup

t∈[0,1]

∥Ttarget(α(t))− Tsimple(β(t))∥

)
where α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1] are continuous non-decreasing functions that
represent all path reparameterizations (Eiter & Mannila, 1994), and Tsimple ∈ RT×2 is the simple
trajectory derived by following the final velocity vector of Tinput:

Tsimple(t) = Tinput(T ) + vfinal · t, t ≥ T

PCI 0-20 PCI 20-40 PCI 40-60 PCI 60-80 PCI 80+

20 40 60 80 100

Path Complexity Index

Figure 3: Generated trajectories and their values.
The black paths to the left are inputs, and the colored
paths are targets generated exhaustively by varying
the speed, turning angle, and turn curvature.

10 30 50 70 90PCIPCIPCI PCI PCI

Figure 4: Example trajectories with varying PCI.
White is the input and red is the target trajectory.

Here, vfinal = Tinput(T ′) − Tinput(T ′ − 1)
represents the velocity vector estimated from
the final two points of Tinput, and t is the time
parameter extending beyond the duration of
the input trajectory T ′. ∥·∥ denotes the Eu-
clidean distance in the 2D plane.

A high value of PCI indicates a significant
deviation from the simple trajectory. Some
generated examples of deviations from a
straight input trajectory and their respective
PCI range can be seen in Figure 3. A sample
of real trajectories for these ranges are pro-
vided in Figure 4. We propose that a high PCI
indicates intriguing events, which are often
characterized as sudden changes in direction
or speed in the literature (Girase et al., 2021).
We provide more insights into this behav-
ior in Appendix with a comprehensive break-
down of the PCI statistics in GEM dataset.

Are all curved paths interesting? An es-
sential task for trajectory prediction models is
learning the road curvature from scene infor-
mation. PCI is simplistically designed to not
bias towards a particular type of curvature to
encourage that while allowing us to eliminate
instances of straight cruising that may domi-
nate the training and evaluation phases.
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Table 1: Contribution of GEM. Our dataset is designed for ego-trajectory prediction with noise-
free GPS positions and gaze data, in an entity-rich urban setting.

(a) Comparison of existing trajectory prediction datasets
with ours. Only public datasets are considered. *: hand-
annotated.

Dataset Gaze Noise-free pose Scene cameras Duration

Waymo (Ettinger et al., 2021) ✗ ✓ 5 574h
nuScenes (Caesar et al., 2020) ✗ ✓ 6 5.5h
Argoverse (Wilson et al., 2021) ✗ ✓* 7 305h
LOKI (Girase et al., 2021) ✗ ✗ 1 2.3h
DR(eye)VE (Palazzi et al., 2018) ✓ ✗ 1 (+1 headcam) 6h
GEM (Ours) ✓ ✓* 2 (+1 headcam) 5h

(b) GEM vs. DR(eye)VE: percentage of
frames with other agents, and total entity
counts, both detected by YOLOV8 at 1 fps.

GEM DR(eye)VE

% of frames with other drivers 89.7% 38.1%
% of frames with pedestrians 31.2% 22.5%
# of cars 23331 3979
# of pedestrians 3640 297
# of buses 1215 155
# of bicycles 357 18

5 GAZE-ASSISTED EGO MOTION (GEM) DATASET

Drivers’ gaze plays a significant role during driving, providing insights about their decisions on the
road. Understanding this role may allow us to build systems to improve vehicular safety. However,
training models in the gaze domain is constrained by data scarcity. The sole public dataset featuring
ego-driver positions and gaze, DR(eye)VE, contains only 6 hours of data, only one third of which is
urban driving, hindering the capture of rare gaze-based cues. (Palazzi et al., 2018).

We, therefore, propose GEM, a multimodal ego-motion with gaze dataset with synchronized multi-
cam video footage of the road scene and FOV data, with precise gaze locations from an eye-tracking
headset, and GPS ego-vehicle locations, manually corrected for further accuracy. A sample of the
dataset can be seen in Figure 1. By coupling gaze data with the car’s motion and the driving scene,
our dataset provides a rich source of information for ego-trajectory prediction and modeling of
drivers’ behavior. The primary objective of our dataset is to enable the development and validation
of models that can predict the future ego-vehicle locations based on the driver head/eye movements
and surrounding scenes.

5.1 HARDWARE SETUP

We mount high-resolution cameras on the vehicle to ensure high-quality recordings of the surround-
ing environment and record drivers’ eye gaze using a head-mounted eye tracker.

Frontal cameras and GPS tracking. To record the driving scene and car motion, we use two GoPro
cameras that provide a 4K resolution and a 30Hz sampling rate. These cameras record the car’s GPS
positions in real-time and embed this information into the video streams. However, GPS data can
have discrepancies due to various factors like satellite interference or obstructions, which we further
correct.

Gaze tracking. We employ the Pupil Invisible glasses 1 from Pupil Labs to track the driver’s gaze.
This device captures eye movements at 200Hz using two near-eye infrared cameras and includes a
frontal video camera of the scene. The gaze tracker and GoPro cameras are fully synchronized in
post-processing using the timestamp metadata.

5.2 DATA COLLECTION

10 participants were instructed to drive naturally on a variety of road types with a focus on urban
areas, during different times of the day to capture a comprehensive range of driving conditions. Each
participant drove for approximately 30 minutes, resulting in a total of 5 hours of collected data. See
Appendix for a breakdown of the dataset.

Procedure. Upon arrival, participants were briefed about the study and given a tutorial on the
equipment. Before commencing the driving sessions, participants went through a gaze calibration
process. They were asked to look at specific points on a board, ensuring that the eye-tracking
device was accurately capturing their fixations. After fitting the Pupil Invisible glasses and ensuring
calibration, participants were asked to start their driving session. A researcher was present in the car
to oversee the equipment and address any unexpected situations.

1Tech Specs.
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RouteFormer (ours) GIMO Multimodal Transformer Ground Truth RouteFormer RouteFormer-Base

Figure 5: Qualitative examples. RouteFormer shows higher confidence in sharp turns than other
SOTA models using gaze, which tend to prefer the mean of the past trajectory (left). The turn
confidence is lower when no driver FOV information is used (right).

Post-processing. GPS technology inherently exhibits limitations, including potential positional in-
accuracies up to 1.82m at the 95th percentile, as reported by the U.S. FAA (U.S. FAA NSTB/WAAS
T&E Team, 2021). These inaccuracies are notably magnified in occluded environments, making the
resulting data unsuitable for ground truth applications (see Appendix for examples). To mitigate
this, we developed a user-operated application that allows for the manual correction of GPS markers
to more accurate positions. This correction tool has been instrumental in enhancing the positional
accuracy of all samples within the GEM dataset. The tool’s source code will be released alongside
the dataset. We provide the data split and detailed description of the dataset in the Appendix

5.3 COMPARISON WITH EXISTING DATASETS

Most driving datasets to create road assistance systems lack either gaze data, noise-free vehicle tra-
jectory, or sufficient quality scene information, as seen in Table 1 (a). To the best of the authors’
knowledge, the only other public multimodal driving dataset with gaze data is DR(eye)VE, as pre-
sented by Palazzi et al. (2018). However, this dataset includes mostly rural/highway driving (63.5%
of the data), while GEM is designed for complex urban trajectory prediction with many interacting
agents. Our comparison in Table 1 (b), using YOLOV8 (Jocher et al., 2023), shows GEM’s signif-
icant lead in terms of traffic-related content: it has other vehicles in 89.7% of frames (compared
to DR(eye)VE’s 38.1%), six times more cars, over ten times more pedestrians, and twenty times
more bicycles than DR(eye)VE. For GEM, we further ensured the high quality of the GPS informa-
tion, fixing the inherent GPS limitations through hand annotation, especially in occluded areas like
tunnels (see in Appendix for examples, and the dataset noise comparison).

6 EXPERIMENTS

We evaluate our method RouteFormer by measuring the predicted motion trajectories using a set of
standard metrics. We compare against several state-of-the-art methods and baselines. Please see the
Appendix for more results and examples.

6.1 SETUP

Datasets. We evaluate our method on our proposed GEM dataset. To demonstrate that the benefit
from gaze extends beyond our dataset, we additionally train and evaluate our framework on a second
dataset. DR(eye)VE (Palazzi et al., 2018) has 6 hours of driving along with gaze input, however
with less number of traffic entities than GEM, and lower data quality.

Task. Following the task setting in nuScenes (Caesar et al., 2020), our task uses 8-second input
trajectories to predict the next 6-second motion. We sample synchronized sequences of location,
videos, and gaze data with a sliding window of 2-second strides, resulting in approximately 16 hours
of input for the training split. We choose different drivers for training and evaluation according to
the data splits of either dataset (see Appendix) to better demonstrate the benefit of FOV.
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Table 2: Comparison to baselines and SOTA. We use the test sets of both the proposed dataset and
the DR(eye)VE dataset. Our model RouteFormer achieves the best performance on both datasets.

GEM DR(eye)VE
Method ADE (m) ADE+20PCI (m) ADE (m) ADE+20PCI (m)

Stationary Baseline 32.04 30.22 64.11 61.41
Linear Baseline 7.37 13.37 10.16 15.54
GIMO (Zheng et al., 2022) 7.61 10.03 13.97 18.68
Multimodal Transformer (Li et al., 2021) 6.07 8.41 10.67 14.65
Ours - RouteFormer-Base (video only) 6.13 8.14 9.95 13.15
Ours - RouteFormer (video+gaze) 5.99 7.70 8.75 12.26

Table 3: Varying the prediction horizon. Average final displacement errors on GEM for predicting
1-6s in the future for test set samples with 20+ PCI, demonstrating RouteFormer’s increasingly
higher accuracy in long-term forecasting for complex samples, compared to RouteFormer-Base.

Method FDE@1s FDE@2s FDE@3s FDE@4s FDE@5s FDE@6s

RouteFormer-Base (video only) 1.74 4.19 7.08 10.56 14.45 18.45
RouteFormer (video+gaze) 1.68 4.04 6.72 9.93 13.61 17.37

Improvement 3.57% 3.71% 5.36% 6.34% 6.17% 6.21%

Baselines. We use two simple baselines. Stationary baseline assumes that the vehicle remains
stationary throughout the prediction window. Linear baseline assumes that the vehicle maintains a
linear trajectory, following the vehicle’s final direction and speed from the input.

Motion prediction models. We compare our model with two gaze-assisted human motion predic-
tion models adapted from the literature. Multimodal Transformer (Li et al., 2021) encodes the
input modalities with linear layers and predicts the future trajectory with an encoder/decoder ar-
chitecture. In addition, we implement GIMO (Zheng et al., 2022) to utilize scene videos using
RouteFormer’s own video encoder instead of 3D point clouds, and predict the future trajectory with
a cross-modal encoder architecture. The adaptations follow Zheng et al. (2022)’s adjustments in
GIMO to compare with their baseline Multimodal Transformer (referred in Tab. 2).

Metrics. We use the standard evaluation metrics Average Displacement Error (ADE) and Final
Displacement Error (FDE). ADE measures the average error between the ground truth and predicted
trajectory across all time steps. FDE measures the displacement error at the final prediction time
step, emphasizing the model’s accuracy in predicting the endpoint of a trajectory.

6.2 EVALUATION OF ROUTEFORMER

Comparison to baselines and SOTA. We report results on the test sets of both our proposed dataset
GEM and the DR(eye)VE dataset in Table 2. We train on 8 participants and test on 2 others to
explore generalizability across people. Our model RouteFormer outperforms all baselines across
both evaluation metrics and, therefore achieving state-of-the-art performance on both datasets.

Qualitative evaluation. In Figure 5, we display the behavior of the proposed model compared to
SOTA and baselines. RouteFormer shows better confidence in sharper turns compared to other mod-
els, predicts right exits in roundabouts, and overall has better performance in high-PCI situations.

Evaluating the benefit of driver FOV. We compare RouteFormer with RouteFormer-Base, its ver-
sion without driver FOV (Table 2). The additional modality in RouteFormer significantly improves
performance, especially for later points in the prediction horizon (Table 3). This confirms the im-
portance of driver field-of-view information in ego-trajectory prediction, particularly for long-term
forecasts. Notably, RouteFormer achieves lane-level accuracy for shorter horizons even in challeng-
ing GEM samples, demonstrating potential for industrial short-term forecasting applications.

Path complexity evaluation. We evaluated RouteFormer and RouteFormer-Base across different
levels of path complexity using the PCI metric. Results in Figure 6 show that gaze data becomes
increasingly valuable for more irregular trajectories. This demonstrates RouteFormer’s ability to
generalize driver FOV learning, improving predictions for complex paths across different drivers.

Gaze fixation importance. Throughout this study, we consider driver FOV as a composition of a
first-person video feed and gaze fixations, as they are highly interconnected and novel remote track-
ing systems (such as Smart Eye Pro) can capture them together (Smart Eye AB, 2024). To verify
the importance of gaze fixations beyond first-person video, we analyzed their attribution using Inte-
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tegrated Gradients (Sundararajan et al., 2017).

grated Gradients (Figure 7). Fixations significantly impact the final result, with increased reliance
for later prediction points and higher PCI samples. This confirms that RouteFormer effectively
utilizes both video and gaze data, despite having the same parameter count as RouteFormer-Base.

6.3 ABLATION STUDIES
Table 4: Loss ablations. Results over GEM vali-
dation set for 20+ PCI samples.

Method Val. ADE (m) Val. FDE (m)

Vanilla RouteFormer 8.85 58.54
+ auxiliary losses 8.68 (-0.17) 57.09 (-1.45)
+ future-discounted loss 8.27 (-0.41) 54.38 (-2.71)

Table 5: Visual encoder and time-series mod-
ule ablations. Results over GEM val. set for 20+
PCI samples. Time-series modules (top) perform
prediction without scene or gaze data. Pretrained
vision modules (bottom) use Informer.

Method Val. ADE (m) Val. FDE (m)

DLinear (Zeng et al., 2023) 10.67 81.40
NLinear (Zeng et al., 2023) 10.49 83.38
PatchTST (Nie et al., 2023) 10.23 79.80
Transformer (Vaswani et al., 2017) 9.97 67.88
Informer (Zhou et al., 2021) 9.62 66.14

Informer+SAM (Kirillov et al., 2023) 9.08 57.89
Informer+DinoV2 (Oquab et al., 2023) 8.69 60.83
Informer+SwinV2 (Liu et al., 2021) 8.51 55.56

We performed a set of ablation studies to
choose the right vision backbones and time se-
ries modules for RouteFormer, and justify the
discounted/auxiliary losses.

Auxiliary and discounted losses. As one of
the major contributions of our framework, we
assess the effect of the future-discounted loss
Lfd and the auxiliary losses. Both additions
show significant improvement over the standard
architecture on the validation set (Table 4).

Time-series module. Informer (Zhou et al.,
2021) is a Transformer-based model and lever-
ages the ProbSparse attention mechanism. Ta-
ble 5 shows that Informer consistently outper-
forms later models such as Autoformer (Wu
et al., 2021), LTSF-Linear (Zeng et al., 2023),
and PatchTST (Nie et al., 2023). We used In-
former in RouteFormer.

Pretrained vision backbone. In Table 5, we evaluate the impact of various visual encoders includ-
ing SAM (Segment Anything) (Kirillov et al., 2023), DinoV2 (Oquab et al., 2023) and SwinV2 (Liu
et al., 2021). SwinV2 consistently demonstrated superior performance on the validation set with
smaller embedding sizes than its counterparts.

7 CONCLUSION

Our results highlight the significance of incorporating driver FOV in predicting ego-vehicle trajec-
tories. Through our innovative multimodal method, RouteFormer, which integrates FOV, scene, and
motion data, we achieve superior performance over existing baselines, pushing the boundaries of
state-of-the-art achievements in this domain. Specifically, our approach demonstrates that incor-
porating first-person video and gaze fixations data enhances the prediction of complex non-linear
trajectories. By establishing a new benchmark with our GEM dataset, we pave the path for further
intuitive and human-centric developments in assisted driving technologies.
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Table 6: Breakdown of our GEM dataset. We report duration, weather condition, and PCI for
each participant.

Subject Total Distance (m) Rainy PCI (mean) PCI (max) Split

001 13,112 ✓ 12.37 92.99 train
002 12,824 ✓ 10.76 81.22 val.
003 12,997 ✗ 20.09 94.87 train
004 13,064 ✗ 14.59 79.30 val.
005 12,872 ✗ 17.29 86.39 train
006 13,127 ✗ 13.82 88.00 train
007 12,973 ✗ 16.42 77.47 train
008 13,700 ✓ 17.02 89.48 test
009 12,958 ✗ 15.30 103.96 test
010 13,048 ✗ 14.63 81.42 train

(a) t = 0s (b) t = 1s (c) t = 2s (d) t = 3s (e) t = 4s
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Figure 8: A sample from the GEM dataset. The top row shows frames with gaze heatmap overlay
on top, at 1 Hz. The bottom left image displays the trajectory of the vehicle, while the bottom right
plot shows the speed changes. This is an example of gaze-indicated short-term intent: the driver
decelerates as soon as their gaze meets with the brake lights of the vehicle in front.

A GEM DATASET

In this work, we proposed GEM, a multimodal ego-motion with gaze dataset with synchronized
multi-cam video footage of the road scene, precise gaze locations from an eye-tracking headset
and GPS ego-vehicle locations, manually corrected for further accuracy. We provide an additional
sample scene from the dataset in Figure 8, demonstrating the connection between driver FOV and
the short-term intentions of the driver.

A.1 BREAKDOWN OF GEM DATASET AND PCI INSIGHTS

For the information on the dataset split and the behavior of each participant, see Table 6.

A deeper dive into our dataset, combined with synchronization with OpenStreetMap (Open-
StreetMap contributors, 2017), reveals that the high PCI events indeed happen either close to the
intersections, or on trajectories with a high-speed change, as observed in Figure 9.
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Figure 9: Function of PCI with respect to the distance to an intersection. Speed range–the
difference between the highest and lowest instantaneous speed throughout the trajectory–is chosen
instead of speed as high yet constant speed without a change in direction (e.g. cruising on a highway)
is a low-PCI event. Bins with multiple samples are displayed, with a median speed range per bin.
PCI is highly correlated with distance to an intersection, but only if a vehicle changes its speed
throughout the trajectory, which discards stoppings and straight driving cases.

Figure 10: A simple representation of PCI as a concept.

A.2 VISUALIZING PATH COMPLEXITY INDEX

Figure 10 illustrates the key components of PCI computation. Given an input trajectory (gray),
we extrapolate a simple trajectory (dashed) by maintaining the final velocity vector. PCI measures
the Fréchet distance (red) in meters between this simple trajectory and the actual target path (blue),
effectively quantifying how much the actual path deviates from the simple projection. This deviation
captures the complexity of the maneuver - higher deviations indicate more complex trajectories,
requiring additional context to predict accurately. Unlike an alternative metric like mean-squared
error, Fréchet distance is more stable against speed changes, better capturing differences in trajectory
rather than point-by-point error.

A.3 PCI ANALYSIS ON URBAN DRIVING

Figure 11 visualizes PCI values across a representative urban drive in GEM. High PCI regions
(bright yellow) consistently align with challenging scenarios: roundabout exits (top-right, PCI >
80), lane merges after intersections (bottom-left, PCI > 60), and sharp turns exceeding 45 degrees
(top-left and bottom-right). Notably, slower 90-degree turns exhibit lower PCI values due to re-
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Figure 11: Average PCI values of a full trajectory of a video in GEM. Estimated by running a
sliding window of 1 second across the whole trajectory with 6s-8s input-target length, and averaging
the PCI values assigned to each point. Brightest yellow parts map to ∼ 80 PCI while the dark blue
is at 0 PCI.

duced divergence from simple trajectories, demonstrating PCI’s ability to distinguish the degree of
challenge to predict each target curve.

B GROUND TRUTH CORRECTION WITH GPSLABELER

GPS data, particularly those collected using devices like GoPro cameras, can often be noisy and
potentially inaccurate due to various reasons, ranging from satellite interference to obstructions like
tall buildings or tunnels. Such inaccuracies in geospatial data can severely hamper the reliability
and utility of a dataset, especially when the data is intended for detailed analysis and modeling.
Examples of such cases, as well as milder issues, can be seen in Figure 13.

In response to this challenge, we have developed the desktop tool GPSLABELER , designed to
facilitate the correction of noisy GPS data. The primary strength of GPSLABELER lies in its unique
user interface which juxtaposes the video feed and the associated GPS location points on a map. This
side-by-side presentation enables users to cross-verify the video content with the GPS coordinates
visually.

Using the application is intuitive and straightforward, an example of which can be seen in Figure 12.
As users watch the video playback, they can simultaneously observe the GPS path on the map. If
discrepancies are noted, users can manually re-label the GPS data by simply clicking on the map and
dragging the points to the desired accurate location. One key feature of GPSLABELER is its inter-
polation mechanism. Once users adjust certain key points on the map, the application automatically
interpolates the GPS data between these points, ensuring smooth and consistent transitions.
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Figure 12: User interface for GPS refinement. We show a video and its corresponding GPS
locations on a map concurrently. An annotator places correct markers on the map such that the GPS
locations align with the video observations.

Designed with user-friendliness in mind, GPSLABELER is cross-platform, with versions available
for Windows, MacOS, and Linux. This ensures that researchers and dataset curators across diverse
technological environments can access and utilize the tool to enhance the accuracy of their geospatial
data.

B.1 GEM VS. DR(EYE)VE NOISE COMPARISON

To demonstrate the difference in degree of noise between the proposed GEM dataset and the driv-
ing gaze saliency dataset from the literature, DR(eye)VE, we plotted the distribution of the GPS
distances to the nearest road center for each dataset in Figure 14. The road centers are gathered
from the public data in OpenStreetMap. For GEM, the distance distribution is centered around 1.25
meters, which is consistent with the average lane width of 3 meters in urban settings, while the
distribution is considerably more heavy-tailed in the case of DR(eye)VE, indicating significant GPS
noise.

C DATASET POSTPROCESSING

C.1 GAZE FIXATION DETECTION

For our fixation detection, we adopted the methodology from Pupil Labs, the creators of the glasses
embedded with gaze detectors (Tonsen et al., 2020). Our criteria define gaze fixations as instances
where the gaze remains relatively stationary for a duration ranging from 80ms to 1 second. The upper
limit of this range, 1 second, could also characterize a smooth pursuit, where the eyes smoothly track
a moving object. Furthermore, we account for dispersion, which represents the spatial movement
permitted within a single fixation. A gaze group is considered a fixation if the dispersion is within a
limit of 1.5 degrees, ensuring that minor involuntary or random gaze movements do not undermine
the detection of genuine fixations.
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(a) A bad GPS sample from a scene where the car
drives through a tunnel. (b) Consistent offset while driving straight.

(c) Left turn with slow-down. (d) Lane change and a stop.

Figure 13: Example trajectory fixes with GPSLABELER . The original GPS points are in gray,
and the hand-placed markers are blue. The new markers are interpolated with a cubic spline with a
color that represents the instantaneous speed: red for slow, and green for fast movement.

A set of example fixations can be seen in Figure 16. Note that there are frames without any detected
fixations, which is explained by saccades and blinks. For others, the accuracy is high: note how the
gaze meets exactly with the brake light of the bus in front, in Scene 1, Frame 9. Similarly, the gaze
over the motorcycle in front is well-centered in Scene 5 for most frames.

C.2 GAZE ALIGNMENT AND ROBUSTNESS

Our framework processes driver gaze data following established practices in eye-tracking re-
search (Hayhoe et al., 2003; Land, 2006). To align the high-frequency gaze measurements (200
Hz) with video frames (5 Hz), we use median downsampling. This approach ensures robust position
estimates while preserving the temporal characteristics of driver attention patterns.

To evaluate our model’s robustness to potential measurement errors, we conducted additional ex-
periments on the GEM dataset. As shown in Table 7, artificially introducing gaze position noise of
±50 pixels (approximately 5% error) results in minimal degradation of prediction accuracy (0.01m
increase in ADE). This resilience can be attributed to our ”field-of-view” approach, which treats
gaze as supplementary to the driver’s head-mounted video feed rather than as a primary input.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance (m)

0.00

0.05

D
en

si
ty Dr(eye)ve

GEM

Figure 14: GPS distances to the nearest road center. Estimated via OpenStreetMap. DR(eye)VE’s
GPS points are further away from road centers, indicating significant noise.
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Configuration ADE (m) ADE+20PCI (m)

RouteFormer - without noise 5.99 7.70
RouteFormer - with ±50px noise 6.00 7.72
RouteFormer-Base (without FOV) 6.13 8.14

Table 7: Impact of gaze measurement noise on prediction accuracy. The minimal change in ADE
demonstrates our model’s robustness to gaze uncertainty. Top and bottom rows are from Table 2

These results demonstrate that our processing pipeline, built on standard gaze analysis techniques,
effectively handles both natural gaze patterns and potential measurement uncertainties.

C.3 EXPLORING IMAGE HOMOGRAPHY AND STITCHING

In our dataset, we provide synchronized videos from different viewpoints. In an attempt to provide a
fully registered view from multiple cameras to our model, we have explored approaches for stitching
them. However, we have discovered that using the separate videos brings benefits:

• Using the current state of the art, it is not feasible to register the driver headcam and the
scene videos within an acceptable error margin. We experimented with classical feature
extractors such as DISK (Tyszkiewicz et al., 2020) and transformer-based detector-free
local feature matching (Sun et al., 2021), using Kornia library (Riba et al., 2019).

• We have observed that the redundancy from having multiple scene camera feeds can be
exploited for training regularization. By dropping out one of the views at each frame during
training, we improved the validation performance.

Example frames from the stitching experiments can be seen in Figure 15.

Figure 15: Successful and failed stitching examples. We used LoFTR for feature-matching across
scene videos and the head-cam.
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D ROUTEFORMER

Using the notation we have established, our full model can be described as:

Ψ
(
M1:T , S

1:K
1:T , F1:T |λ

)
≡

T
(
M1:T , EP (ES(S

1:K
1:T ), EF (F1:T ))

)
=

{M ′
T :Tpred

, v′T :Tpred
}

Loss definitions. For the model outputs Ψ
(
M1:T , S

1:K
1:T , F1:T |λ

)
= {M ′

T :Tpred
, v′T :Tpred

}, let LT

denote the discounted trajectory loss, and LV the discounted visual loss. The auxiliary losses are
defined as:

LT = Lfd

(
M ′

T :Tpred
,MT :Tpred

)
LV = Lfd

(
v′T :Tpred

, EP (ES(S
1:K
T :Tpred

), EF (FT :Tpred))
)
.

D.1 IMPLEMENTATION DETAILS

All experiments are carried out on a machine with an NVIDIA GPU with > 10 GB memory, 64 GB
of RAM, and an Intel CPU. The framework is implemented using PyTorch 2.0.

D.2 ANALYSIS OF FAILURE CASES

We observe two primary categories of prediction failures:

1. Occlusions in right turns: As shown in Figure 17a and 17b, trees and parked vehicles occlude
crucial parts of the upcoming path during right turns. While human drivers naturally compensate
for such occlusions through experience, our model shows increased uncertainty in these scenarios.
Reliance on additional information from the car, such as turn signals or LIDAR, can improve driver
behavior prediction for such instances.

2. Complex intersections: Figure 17c and 17d demonstrate varying accuracy in predicting motion
at complex intersections and turns. The model particularly struggles determining when the driver is
going to stop or resume in complex intersections (Figure 17c) and when multiple path options are
available (Figure 17d). This limitation suggests an opportunity to incorporate past driver behavior
to model driver initiative/aggression.

D.3 ABLATION STUDIES ON MODALITY CONTRIBUTIONS

Following our architecture in Figure 2(a), we conducted ablation experiments by selectively re-
moving modality branches from RouteFormer during inference. For FOV removal, we bypass the
cross-modal transformer and use only scene features for self-attention. For scene removal, we retain
only the FOV branch. When testing motion-only performance, we replace the entire visual feature
tensor v1:T with zeros.

Method ADE (m) ∆ ADE (%) ADE+20PCI (m) ∆ ADE+20PCI (%)

RouteFormer (full) 5.99 Baseline 7.70 Baseline
motion+scene (w/o FOV) 6.60 +10.2 8.58 +11.4
motion+FOV (w/o scene) 7.83 +30.7 11.17 +45.1
motion only 8.19 +36.7 11.22 +45.7

Table 8: Ablation study results showing degraded performance in removing different modalities.

The results, show in Tab. 8, demonstrate the clear benefits of each modality. Notably, our scene-
only variant maintains performance consistent with RouteFormer-Base (6.13m), and our FOV-only
variant remains competitive with GIMO (7.61m). This stability across modality configurations is
particularly valuable for real-world deployment, where sensors or gaze tracking might be temporar-
ily unavailable.
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(a) An unanticipated right turn (b) A right turn occluded by trees

(c) Driver stops while model predict right turn (d) Driver does not stop while models do

Figure 17: Failure cases analysis showing different scenarios where the model prediction de-
viates from ground truth (green). Blue is RouteFormer, red is Routeformer-Base (without FOV
modality), and white is the input trajectory.

D.4 EXTENDED BASELINE SELECTION DISCUSSION

We detail here our approach to baseline selection and the challenges in adapting vehicle-specific
models to our task. As the recent state-of-the-art methods work with multi-agent related traffic
information, we consider such models (Autobots Girgis et al. (2021), MTR (Shi et al., 2022b)) as
potential baselines.

We adapted Autobots Girgis et al. (2021) to our datasets by providing past ego-trajectory (ego in)
and setting other inputs (agents in, road graph) to zeros/placeholders. The model’s performance was
significantly worse than our baselines (ADE of 10.87m on GEM). This underperformance stems
from the fundamental mismatch between the input modalities and architectural design of these mod-
els, which are optimized for rich environmental context from multi-agent interactions rather than
driver-centric prediction. The key architectural differences between ego-trajectory and multi-agent
prediction approaches are summarized in Tab. 9.

Given the constraints, we focused on baselines that enable fair evaluation of our core contribution
- integrating driver FOV data for trajectory prediction. GIMO and Multimodal Transformer were
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Feature MTR/Autobots RouteFormer (Ours)

Primary Input BEV, HD maps, LIDAR Egocentric video, FOV data
Target Output Multi-agent trajectories Ego-vehicle trajectory

Table 9: Architectural differences between ego-motion and multi-agent prediction approaches.

selected as they support similar input modalities while representing the state of the art in attention-
based trajectory prediction.

D.5 MODULE-LEVEL CACHING WITH MODULECACHE

Caching is a crucial component of our training regime. During the initial epochs, the intermediate
representations from the pre-trained vision backbones are computed for each input frame and stored
in an efficient cache memory structure. When subsequent epochs require the same input data, the
pre-computed representations are fetched from the cache, thereby eliminating the need for repetitive
and costly forward passes through the vision backbones.

To make this process repeatable, we implemented the MODULECACHE utility to provide a generic
caching mechanism. The MODULECACHE library offers an easy way to cache the outputs of Py-
Torch modules, making it particularly suited for our need to efficiently cache the outputs of large,
pre-trained vision transformers.

D.5.1 KEY FEATURES

The MODULECACHE library offers several notable features:

• Allows caching of PyTorch module outputs in two formats: in-memory for fast retrieval,
and persistently on the disk for larger datasets.

• Adopts a decorator-based interface that simplifies its integration with PyTorch modules.

• Implements an MRU ( most-recently-used) cache policy to manage and limit memory or
disk consumption.

D.5.2 USAGE

The library’s decorator-based design ensures minimal modifications to the existing PyTorch code-
base. By adding the @modulecache() decorator, the output of the module’s forward method gets
cached, as illustrated in the provided basic usage example:

1 from modulecache import modulecache
2

3 @modulecache()
4 class MyModule(nn.Module):
5 def init(self):
6 super().init()
7 self.linear = nn.Linear(10, 10)
8 def forward(self, x):
9 # This output will be cached

10 return self.linear(x)

More detailed examples, advanced usage patterns, and further documentation will be accessible at
the official MODULECACHE documentation.

D.5.3 OPERATIONAL ASSUMPTIONS

For the MODULECACHE library to operate seamlessly, there are certain assumptions that the Py-
Torch modules should adhere to:

1. The module should be a subclass of nn.Module.
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2. The forward method of the module should be capable of accepting any number of positional
arguments with shapes denoted by (B, ∗), where B stands for the batch size, and ∗ denotes
any other dimensions.

3. All input tensors should be located on the same computational device and should share the
same data type (dtype).

4. The method should return a single tensor with the shape (B, ∗).

The MODULECACHE library has proven invaluable in our experiments by allowing us to efficiently
utilize the outputs of our pre-trained vision transformers without incurring significant computational
overhead.

E EXPERIMENTS

E.1 EVALUATION METRICS

The Average Displacement Error (ADE) is formally defined as:

ADE =
1

T

T∑
t=1

∥ppred
t − pgt

t ∥2, (1)

where T is the total number of prediction time steps, ppred
t is the predicted position at time t, and pgt

t
is the ground truth position at the same time.

The Final Displacement Error (FDE) is the displacement error at the final prediction time step:

FDE = ∥ppred
T − pgt

T ∥2. (2)

E.2 HYPERPARAMETERS

The hyperparameters for the experiments can be found in Table 10, Table 11, Table 12, and Table 13.

Table 10: Training configurations

Parameter Value
Optimizer AdamW
Learning rate 1e-5
Weight decay 1e-4
Epochs 200
Epsilon 1
Visual epsilon 0.3
Scene video FPS 1
Gaze video FPS 1
Batch size 16
Output FPS 5
Loss discount factor 0.97
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Table 11: Framework configurations

Parameter Value
Encoder heads 8
Encoder layers 8
Feature dropout 0.05
Encoder hidden size 64
Gaze decoder layers 2
Gaze dropout 0.2
View dropout 0.6
Front video scaling factor 0.3
Scene video scaling factor 0.1
Gaze decoder dropout 0.05
Image embedding size 64
Dense visual loss ratio 0.5

Table 12: GPS backbone (Informer) configurations

Parameter Value
Distil true
Factor 4
Model dimension 832
Dropout 0.0
Number of Heads 8
Sequence Length 40
Decoder layers 1
Encoder layers 6
Prediction Length 30
Label Length 40
Activation relu
Individual false
Moving average 25

Table 13: Video backbone (SwinV2) configuration

Parameter Value
Model Type swinv2 base window12to16 192to256
Pad to square true
Train backbone false
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