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Abstract

Slot-filling and intent detection are the backbone of conversational agents such as1

voice assistants and they are active areas of research. Even though state-of-the-art2

techniques on publicly available benchmarks show impressive performance,3

their ability to generalize to realistic scenarios has yet to be improved. In4

this work, we present NATURE, a set of simple spoken language oriented5

transformations, applied to the evaluation set of datasets, to introduce human spoken6

language variations while preserving the semantics of an utterance. We apply7

NATURE to common slot-filling and intent detection benchmarks and demonstrate8

that simple deviations from the standard test set by NATURE can deteriorate9

model performances significantly. Additionally, we apply different strategies to10

mitigate the effects of NATURE and report that data-augmentation leads to some11

improvement.12

1 Introduction13

The growing demand for Virtual Assistant systems (Uğurlu et al. (2020), Li et al. (2021)) has led to14

advances in conversational and spoken language oriented models, Natural Language Understanding15

(NLU), and Spoken Language Understanding (SLU). One of the backbones of NLU and SLU is16

the joint tasks of Intent Detection (ID, identification of the speaker’s intent) and Slot-filling (SF,17

extraction of the semantic constituents from the utterance). In recent years, NLU models specialized18

in ID and SF have obtained outstanding results (Qin et al. (2019), Wang et al. (2018), Yamada et al.19

(2020)). However, these models usually lack satisfying generalization capabilities (McCoy et al.20

(2019), Gururangan et al. (2018), Balasubramanian et al. (2020), Lin et al. (2020)).21

22

Data Augmentation (DA) is one of the well-known solutions to this problem (Hou et al. (2020),23

Louvan and Magnini (2020), Kale and Siddhant (2021)). However, without looking at the test set,24

we cannot account for all the patterns which are missing in the training set. Moreover, it still does25

not resolve the issue of a lack of generalization to out-of-distribution evaluation. This is an issue26

in real scenarios, specially considering the paraphrase richness of spoken language. Other works27

propose modified evaluation sets (Lin et al. (2020), Agarwal et al. (2020)). This is a valid option but28

for some tasks (as ID and SF) the available data is scarce, rarely open-source and producing new and29

qualitative data is labor-intensive, time-consuming, and expensive.30

We propose a framework that focuses on transforming the existing test sets by applying simple,31

spoken language-oriented, realistic operators that slightly modify the input sentence but without32
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Utterance Task: Model Prediction Errors
play party anthems
→ ploy party anthems ID: Play_Music

→ Search_Creative_Work

play some sixties music
→ plays some sixties music SF: [sixties]:year

→ [sixties]:year; [plays]:album

listen to dragon ball: music collection
→ like listen to dragon ball: music collection

ID:
Search_Creative_Work
→ Play_Music

SF: [dragon ball: music collection]:object_name
→ [dragon ball]:artist; [collection]:album

Figure 1: Examples of NATURE-altered utterances with badly predicted slots and or intent. The
altered utterance is preceded by a →.

altering the original meaning (as we shall see). By realistic, we mean that modified utterances remain33

semantically similar to the original ones. We call this framework NATURE (Naive Alterations of34

Textual Utterances for Realistic Evaluation). Figure 1 shows examples of altered utterances where a35

state-of-the-art model (Qin et al. (2019)) correctly predicted the label for the original utterance but36

failed for the altered utterance.37

We conduct experiments that apply our framework to standard benchmarks and compare the before38

and after performances of state-of-the-art models. The results illustrate the heuristic dependencies of39

each model.40

41

2 Related Work42

2.1 Realizing model use shortcuts43

A growing number of studies identify a tendency in NLU models to leverage the superficial features44

and language artifacts instead of generalizing over the semantic content. A naive way to force45

generalization is to automatically add noise to the training set, however, as demonstrated by Belinkov46

and Bisk (2017), models trained on synthetic noise do not necessarily perform well on natural noise,47

requiring a more elaborated approach. Given our incapacity to control what features these models48

learn, each task requires an in-depth analysis and a data or model modification that guides it to the49

correct answer. For the political claims detection task Padó et al. (2019) and Dayanik and Padó50

(2020) unveil a strong bias towards the claims made by frequent actors that require masking the51

actor and its pronouns during training to improve the performance. Other works (Gururangan et al.52

(2018), Poliak et al. (2018), Zellers et al. (2018), McCoy et al. (2019), Naik et al. (2018)) have53

focused on the artifact and heuristic over-fitting for the Natural Language Inference (NLI) task or54

for the Question-Answering (QA) task (Jia and Liang (2017)). The work of Balasubramanian et al.55

(2020) show how substituting Named-Entities (NEs) influence the robustness of BERT-based models56

for different tasks (NLI, co-reference resolution and grammar error correction). To the best of our57

knowledge, no work has attempted to demonstrate that the benchmarks and models for the dual tasks58

of SF and ID rely on frequent heuristic patterns.59

60

2.2 Alternative evaluation61

Some researchers have proposed evaluation sets with naturally occurring adverse sentences for62

different tasks such as HANS for MNLI (McCoy et al. (2019)) or PAWS( Zhang et al. (2019)) and63

PAWS-X (Yang et al. (2019)) for paraphrase identification. Another strategy involves a systematic64

alteration of the test set (Lin et al. (2020)). This has gained popularity in recent years with a65

growing interest in more challenging and adversarial evaluation frameworks. However, a more66

challenging test set has to ensure high quality annotation, which is why many papers have suggested67

an human-in-the-loop approach (Kaushik et al. (2019), Gardner et al. (2020), Kiela et al. (2021)).68

But these approaches are costly, specially due to the number and quality of annotators necessary to69
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produce a high-quality output. Generalization is more easily achieved when the training data is large70

and diverse. A model can be effective, yet, if it is only fed with small and/or similar data, it will have71

difficulties to achieve robustness. Some researchers (Louvan and Magnini (2020), Zeng et al. (2020),72

Dai and Adel (2020), Min et al. (2020), Moosavi et al. (2020)) use DA strategies to improve the73

training data and help boost a model’s performance.74

Other researchers have taken a different path and suggest a whole different way of evaluating: testing75

multiple task-agnostic requisites instead of using a test set that matches the train and validation sets76

(Ribeiro et al. (2020), Goel et al. (2021)).77

78

2.3 Test set alteration methods79

There has been many proposals of spoken-language oriented alteration methods (Tsvetkov et al.80

(2014), Simonnet et al. (2018), Li et al. (2018), Gopalakrishnan et al. (2020)) but the ones we are81

interested in require to change the utterance form while maintaining the original semantic value of82

each token (in the form of labels). Very few works have managed to devise methods that change the83

form while maintaining the semantic labeling, such as the work of Yin et al. (2020) where the authors84

suggest altering methods that emulate non-native errors or the work of Li et al. (2020) where they use85

simple methods to produce more counterfactual versions of the original utterances.86

87

3 Methodology88

In this section we describe the operators used to generate new utterances out of a given one. We89

present examples for each operator on Figure 2.90

91

3.1 Fillers92

Fillers are ubiquitous in everyday spoken language and often appear in human-to-human dialog93

(transcribed to text) corpora (such as the Switchboard corpus Godfrey et al. (1992), composed of94

approximately 1.6% fillers Shriberg (2001)). Yet they are intentionally cleaned off in SF and ID95

benchmarks. Fillers serve as hesitation markers (e.g.: Bring me the, like, Greek yogurt. I’ve heard96

it’s really, you know, savoury.) or as introduction/closure of a turn of speech (e.g., Now, bring me97

the Greek yogurt please and thank you. Actually, I’ve heard it’s really savoury, right?). Fillers are98

semantically poor and do not add essential information, and therefore, do not change the overall99

meaning of an utterance.100

We propose 4 different filler operators:101

• Begin-of-sentence (BOS): a small introductory filler phrase at the beginning of the utterance,102

such as: so, like, actually, okay so, so okay, so basically, now or well.103

• End-of-sentence (EOS): a small conclusive filler phrase at the end of the utterance, such as:104

if you please, please, pretty please, please and thank you, now please, if you can, now, right105

now, right away, right this minute, will you ?, would you ?, can you ?, would you mind ?.106

• Pre-verb: a filler word or sequence of words appearing before the utterance’s verb or verbal107

phrase, such as: like, basically or actually.108

• Post-verb: a filler word or sequence of words appearing after the utterance’s verb or verbal109

phrase, such as: basically, actually, like or you know.110

BOS and EOS operators simply add a filler at the very beginning or the end of the utterance,111

respectively. The pre-verb and post-verb operators require us to find the part-of-speech (POS) tag112

of the utterance tokens (we use the NLTK library to find the POS of the tokens). Then the filler is113

placed at the correct place. We add a fail-safe rule to ensure that a filler is added if no verb is found114

where expected. To that end, we use the overly-recurrent filler, like, and the first appearing Named115

Entity as a pivot instead of the first appearing verb e.g., let’s check like avengers).116
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Test set Example sentence

Original add tune to sxsw fresh playlist

BOS Filler okay so add tune to

sxsw fresh playlist

Pre-V. Filler like add tune to

sxsw fresh playlist

Post-V. Filler add tune actually to

sxsw fresh playlist

EOS Filler add tune to sxsw fresh

playlist if you can

Synonym V. play tune to sxsw fresh playlist

Synonym Adj. add tune to sxsw cool playlist

Synonym Adv. add prior to sxsw fresh playlist

Synonym Any mix tune to sxsw fresh playlist

Synonym StopW add tune the sxsw fresh playlist

Speako add tua to sxsw fresh playlist

Figure 2: Processed variants of original
utterances from the SNIPS corpus. The tokens
labeled as music_item appear with a dotted
underline and the tokens labeled as playlist show
a dashed underline. In SNIPS, the sxsw token
is part of a playlist name and an abbreviation of
South by Southwest.

Token in
context

Wiktionary
synonyms

BERT
candidates

let me buy
verb

it purchase,
accept, [...]

get, buy, present,
make, purchase,

offer, give, sell, [...]

is it large
adj

? giant, big,
huge, [...]

unusual, big,
dangerous, large,

powerful, [...]

i said it quickly
adv

rapidly,
fast

fast, well, strong,
high, good, deep,
large, slow, [...]

give me freedom
noun

liberty,
license, [...]

rights, property,
freedom, status,

goods, liberty, [...]

i found the
stopword

ball le
the, second, also,
third, their, still,
a, our, 2nd, [...]

Figure 3: Target words (underlined) of
various POS and their synonyms taken from
the crowd-sourced dictionary Wiktionary and
candidates obtained using a pre-trained BERT
language model.

3.2 Synonymy117

A synonym is a word that can be interchanged with another in context, without changing the meaning118

of the whole. To replicate this semantic operation, we select the POS corresponding to our operator119

(among verb, adjective, adverb, etc.). We then select a word of that type in the input utterance and120

make a list of potential synonym candidates (with the same POS tag) to replace it. Then we select the121

most probable of the candidates as our replacement. We use the pre-trained BERT-base model with a122

Language Modeling head on top to produce the synonym candidates instead of a human populated123

dictionary (such as Wiktionary) since not all dictionary entries show synonyms. We first randomly124

choose a POS tag and find a target token which has this tag in our utterance. Then we replace the125

target with a special [MASK] token. We feed this utterance into BERT and obtain a list of candidates126

from most to least probable.127

In case the sentence contains no token with the target POS, we use the more common noun POS. We128

observe an example in the Syn. Adv. row in Table 2.129

As we can see in Figure 3, not all BERT candidates are suitable synonyms of the target token. We130

remove candidates that do not have the same POS of the target token. For a better performance,131

we put each candidate in the context of the utterance before extracting candidate POS. We have132

5 different Synonymy operators based on different target POS: verb, adjective, adverb, any (at133

random between verb, adjective, adverb or noun), stop-words (grammatical and most common134

words).135

136

3.3 Speako137

Some words sound similar to others but have a different meaning altogether (e.g., decent and descent).138

This operator is based on the idea that anyone can make an error, but an efficient and robust model139
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should be able to recover a minor mistake using the context. Thus, we introduce speakos (slip of the140

tongue, speech-to-text misinterpretation), which are common in user-machine communication.141

To do so, we use a prepared dictionary of tokens appearing 1000+ times in the whole English142

Wikipedia1. We convert each entry of the dictionary into its representation in International Phonetic143

Alphabet (IPA). We randomly select one token from the sentence, convert it to IPA, calculate the144

similarity between it and the dictionary’s entries (using Levenshtein distance) and replace it with145

the closest candidate. For instance, the sentence let me watch (/wAtS/) a comedy video could be146

transformed into let me which (/wItS/) a comedy video).147

4 Experimental Setup148

4.1 Data149

In our work, we use 3 popular open-source benchmarks 2 which are summarized in Table 1:150

Airline Travel Information System (ATIS) 3 Hemphill et al. (1990) introduced an NLU benchmark151

for the SF and ID tasks with 18 different intent labels, 127 slot labels and a vocabulary of152

939 tokens. It contains annotated utterances corresponding to flight reservations, spoken153

dialogues and requests.154

SNIPS 4 Coucke et al. (2018) proposed the SNIPS voice platform, from which a dataset of queries155

for the SF and ID tasks with 7 intent labels, 72 slot labels and a vocabulary of 12k tokens156

were extracted.157

NLU-ED 5 is a dataset of 25K human annotated utterances using the Amazon Mechanical Turk158

service Liu et al. (2019). This NLU benchmark for the SF and ID tasks is comprised of 69159

intent labels, 108 slot labels and a vocabulary of 7.9k tokens.160

Following the common practice in the field (Hakkani-Tür et al. (2016), Goo et al. (2018), Qin et al.161

(2019), Razumovskaia et al. (2021), Krishnan et al. (2021)), we report the performance of SF using162

the F1 score. Moreover, we propose an End-to-End accuracy (E2E) metric (sometimes referred in163

the literature as the sentence-level semantic accuracy (Qin et al. (2019))). This metric counts true164

positives when all the predicted labels (intent+slots) match the ground truth labels. This allows us to165

combine the SF and ID performance in a single more strict metric.166

167

Benchmark Train Valid. Test
ATIS Sent 4 478 500 893

Words 50 497 5 703 9 164
Voc 867 463 448

SNIPS Sent 13 084 700 700
Words 117 700 6 384 6 354
Voc 11 418 1 571 1 624

NLU-ED Sent 20 628 2 544 2 544
Words 145 950 18 167 17 347
Voc 7 010 2 182 2 072

Table 1: Dataset size information of our benchmarks: ATIS, SNIPS and NLU-ED.

Any dialog-based dataset extracted from real user situations has the potential of containing private168

and security sensitive information. This is the main cause for the relative low amount of datasets for169

1We empirically observed that removing all tokens that had a co-occurrence lower than 1000 eliminated most
of the nonsensical strings and extreme misspellings and conserved most functional words and very common
typos.

2We did not select the SGD dataset of Rastogi et al. (2020) despite being recent and large, since it is a
multi-turn dialog benchmark and cannot be used out of the box for the SF and ID tasks.

3CGNU General Public License, version 2
4Creative Commons Zero v1.0 Universal License
5Creative Commons Attribution 4.0 International License
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SF and ID. The benchmarks we mention are well known and cautiously cleaned (as presented in170

Section 3). Our operators purposely avoid using any type of resource that would contain personal171

information. To the best of our knowledge, our work is not detrimental to people’s safety, privacy,172

security, rights or to the environment in any way.173

174

4.2 Models175

We use two different state-of-the-art models:176

Stack-Prop+BERT (Qin et al., 2019) uses BERT as a token-level encoder that feeds into two177

different BiLSTMs, one per each task. The output of the SF BiLSTM is added to the ID178

BiLSTM input in order to produce a token-level intent prediction which is further averaged179

into a sentence-level prediction.180

Bi-RNN (Wang et al., 2018) uses two correlated BiLSTMs that cross-impact each other by accessing181

the other’s hidden states and come to a joint prediction for ID and SF.182

The pre-trained version of these models were not available6. For ATIS and SNIPS, we trained the183

models using the same hyperparameters proposed in the documentation by Qin et al. (2019)7 and184

Wang et al. (2018)8, respectively. For NLU-ED, we use the hyperparameters from SNIPS, as their185

size is comparable. Our trained models obtained comparable results to their published counterpart186

(see in Appendix). To train the models, we used 1 NVIDIA Tesla V100 with 32Gb of internal187

memory. It took between 3 and 71 hours to train the Stack-Prop+BERT model (Qin et al., 2019)188

(depending on the size of the benchmark), and between 68 and 130 hours to train the Bi-RNN189

model (Wang et al., 2018).190

191

4.3 Modified NATURE Test Sets192

Since the original test sets only cover a limited set of patterns, we transform them by applying our193

NATURE patterns to obtain test sets of the same size as the original ones. As previously illustrated,194

NATURE operators offer simple ways of altering utterances. In order to avoid rendering utterances195

unrecognizable from their original version, we only apply one operator at a time and only once in the196

sentence (e.g. we add 1 filler or synonymize one token or transform a token into its speako version).197

We design 2 NATURE experimental test sets: Random and Hard. In the Random setting, for each198

utterance, we apply one operator at random. This random selection may cause an unbalanced199

distribution of alterations (some operators being more used that others). To obtain a more200

impartial score, we repeat the random operator selection 10 times and calculate the mean201

score.202

For the Hard setting experiments, after applying all our operators on each utterance and gathering203

all candidates, we use a relatively simple BERT-based model to calculate the performance of each204

candidate. We use JointBERT 9, which is an unofficial implementation of the SF and ID architecture205

described in Chen et al. (2019) to extract (for each utterance) the candidate that performs more206

harshly. The assumption being that the candidate that performed poorly for one model will have a207

greater chance of performing poorly on other models.208

The Random test set is meant to show how a random small change in the sentence can influence209

evaluation while the Hard test set is meant to assess the lower-bound performance of how much the210

model depends on similar pattern sentences to obtain the correct prediction.211

212

6https://github.com/LeePleased/StackPropagation-SLU and https://github.com/
ray075hl/Bi-Model-Intent-And-Slot

7300 epochs, 0.001 learning rate, 0.4 dropout rate, 256 encoder hidden dimensions, 1024 attention hidden
dimensions, 128 attention output dimensions, 256 word embedding dimensions for ATIS and 32 for SNIPS.

8500 epochs, max sentence length of 120, 0.001 learning rate, 0.2 dropout rate, 300 word embedding size,
200 LSTM hidden size

9https://github.com/monologg/JointBERT

6
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Operator ATIS SNIPS NLU-ED
BOS Filler 0.8 0.1 2.5
Pre-V. Filler 6.0 3.7 16.0
Post-V. Filler 1.9 8.6 5.1
EOS Filler 9.0 52.3 8.3
Syn. V. 25.6 5.4 16.3
Syn. Adj. 29.2 15.0 23.4
Syn. Adv. 11.8 5.6 10.2
Syn. Any 5.3 1.1 4.8
Syn. StopW 3.2 2.7 6.4
Speako 7.2 5.4 6.9

Table 2: Distribution of JointBERT-selected operators for the Hard experimental test set.

4.4 Augmented Training Sets213

Even though our NATURE operators are designed for different purposes, some of these operators214

may look like certain DA strategies. However, in this subsection, we show to what extent our current215

operators are different from most famous heuristic DA techniques. In this regard, we apply standard216

DA strategies to the train and validation sets and illustrate their impact on the model’s generalization217

ability. We use common automatic DA strategies from the NLPaug library (Ma, 2019) that allow to218

easily relabel the augmented data using the original labels:219

1. Keyboard Augmentation: simulates keyboard distance error.220

(e.g, find a tv seriSs called armaRdvdon summer)221

2. Spelling Augmentation: substitutes word according to spelling mistake dictionary.222

(e.g., fine a tv serie called armageddon summer)223

3. Synonym Augmentation: substitutes similar word according to WordNet/PPDB synonym.224

(e.g., find a tv set series called armageddon summertime)225

4. Antonym Augmentation: substitutes opposite meaning word according to WordNet226

antonym.227

(e.g., lose a tv series called armageddon summer)228

5. TF-IDF Augmentation: uses the TF-IDF measure to find out how a word should be229

augmented.230

(e.g., find tv series called armageddon forms)231

6. Contextual Word Embeddings Augmentation: feeds surroundings word to BERT,232

DistilBERT, RoBERTa or XLNet language model to find out the most suitable word for233

augmentation.234

(e.g., find a second series called armageddon ii)235

We apply the DA strategies exclusively to the train and validation sets, choosing 1 of the 6 DA236

functions at random and adding one output to the original dataset which will give us a training237

and validation data twice as large as the original training and validation sets. One might notice238

that some of the DA techniques implemented in this toolkit are close in nature to some of our239

NATURE operators, still (as we shall see) this DA toolkit does not suffice to generalize well to the240

transformations of NATURE.241

242

5 Results and Discussion243

5.1 Qualitative Evaluation244

Our assumption is that the operator-generated utterances share the same meaning and labeling as the245

original sentence. In order to measure this, we conducted a small but representative multiple-choice246

survey. We select 120 operator-altered utterances from the ATIS, SNIPS and NLU-ED benchmarks.247

We selected at random 40 utterances from each benchmark, making sure they were also evenly248
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distributed between operators (12 utterances per operator). In addition to these, we cherry-picked 12249

original utterances of high-quality that served as control. As we can see in the Appendix Survey250

Table, the control scores stayed high and therefore, there was no reason to invalidate any participant’s251

annotations.252

14 participants (NLP and ML interns and colleagues, with no links to this work) volunteered to253

participate in this unpaid survey and consented verbally to the use of their data within the scope of254

this research. To avoid a decrease in annotation quality (due to fatigue), we split the participants in 2255

groups (of 7 members) and divided the utterances in two sets (each with 60 operator-altered + 12256

control utterances). We estimated the survey time to be 30-60 minutes, which was not far from the257

actual time (27-53 minutes).258

For each utterance, we asked the participants to evaluate the intent and slot labels as reasonable or259

unreasonable.260

261

Group 1 Group 2
Experiment Control Experiment Control

Slot 94.5 94.0 93.8 97.0
Intent 89.0 97.6 85.9 97.5

Table 3: Survey results and statistics per group. All scores appear as percentages.

In Table 3 we observe a sizable decrease on the experiment side for Intent, which can be partially262

explained by disposition of some operators to alter a words (such as verbs) that are highly associated263

with the intent classification. We also observe that the Slot labeling results are high and very close264

to the control scores. This indicates that (contrary to many DA strategies) the NATURE operators265

maintain a close-to-ground-truth slot labeling.266

267

5.2 Quantitative Evaluation268

Table 4 show the performances of the Stack-Prop+BERT and Bi-RNN models trained on the original269

train data of ATIS, SNIPS and NLU-ED benchmarks. Models are evaluated on the Original, Rand270

and Hard test sets. We also show the scores on 10 test sets, each altered with a single NATURE271

operator altered test sets, where one operator is applied to the whole test set. For each benchmark, we272

report the F1 and accuracy on the SF and ID tasks respectively, and our End-to-End (E2E) metric.273

Furthermore, we report the unweighted average (Avg. column) of the aforementioned scores on the274

three benchmarks. Altered test sets results are sorted in descending order according to the averaged275

E2E metric. We notice that BERT-based models outperform RNN ones not only on original, but also276

on all test set variants. More precisely, we observe a gap of 6.3%, 8.7% and 5.9% on the Avg. E2E277

metric on the Orig, Rand and Hard test sets.278

First, we observe a noticeable lowering in the scores on Rand, and quite a radical change on Hard279

test set. We must consider the possibility that the hard test set incorporates more noise than the280

random test sets, and this could be the cause of this low score. Depending on the benchmark, the281

sharpest operators are not always the ones expected to be most disruptive. Yet, the decrease in score282

is extreme across all benchmarks and for both models.283

Second, we notice that not all operators are equally disruptive. Models seem to handle well Filler284

operators (except for EOS), suggesting some syntax-level pattern independence and indicating that285

the models are using the position of the tokens instead of the tokens themselves achieve the correct286

predictions. The Synonymy operators, specially the adjective and adverb, greatly deteriorate the287

performances. This decrease in score shines a light on the importance of the token-level pattern,288

signaling that the models are using certain adjectives and adverbs to make their predictions. Since289

adjectives and adverbs are much less diverse than the nouns and verbs, we infer that the models are290

using these words as prediction clues. The Speako operator is not very disruptive either, suggesting a291

good capacity of the models to overcome these variants and generalize using the remaining context.292

Interestingly, we notice that the drop of performances is highly strong on the E2E metric. For293

instance, using the Stack-Prop+BERT model on the ATIS test set, altered with the EOS Filler294

operator, we observe a 0.3% and 6.8% drop on SF and ID respectively but a 32.1% drop on E2E.295

We argue that E2E is a more reliable metric compared to reporting ID accuracy and SF F1 scores296

separately. Specially in an industrial environment, where a Virtual Assistant can only execute the297
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Test Set ATIS SNIPS NLU-ED Avg.
Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Slot
(F1)

Intent
(Acc)

E2E
(Acc)

Stack-Prop+BERT

Orig 95.7 96.5 86.2 95.0 98.3 87.9 74.0 85.1 67.8 88.2 93.3 80.6
Rand 91.3 95.0 66.5 83.4 96.1 53.8 67.4 76.1 56.8 80.7 89.1 59.0
Hard 82.3 90.7 34.9 70.6 95.3 12.9 55.5 62.7 38.9 69.5 82.9 28.9

Pre-V. Filler 95.6 96.5 85.6 92.2 98.3 79.3 71.0 83.6 65.7 86.3 92.8 76.9
Syn. StopW 93.0 94.8 76.5 89.7 96.7 74.3 70.2 78.9 60.2 84.3 90.1 70.3
BOS Filler 95.6 96.2 85.8 86.5 97.1 54.9 72.5 80.8 63.9 84.9 91.4 68.2
Post-V. Filler 94.0 96.5 80.3 84.8 98.0 57.1 68.0 84.1 63.6 82.3 92.9 67.0
Syn. V. 90.1 95.3 63.6 88.4 95.1 66.7 68.5 74.2 56.5 82.3 88.2 62.3
Speako 92.9 92.7 72.5 77.9 94.6 45.3 69.5 74.2 57.6 80.1 87.2 58.5
Syn. Any 90.3 90.5 54.4 86.9 94.4 61.6 67.8 71.0 53.5 81.7 85.3 56.5
Syn. Adj. 84.7 92.7 42.4 78.2 95.4 44.4 60.2 69.7 47.2 74.4 85.9 44.7
Syn. Adv. 88.2 89.1 43.9 77.6 94.3 41.9 61.6 65.6 45.4 75.8 83.0 43.7
EOS Filler 88.9 96.3 54.1 72.1 97.7 13.1 63.9 78.0 53.6 75.0 90.7 40.3

Bi-RNN

Orig 94.9 97.6 84.7 89.4 97.1 76.6 66.4 80.9 61.7 83.6 91.9 74.3
Rand 89.9 94.3 61.8 75.6 94.1 39.0 60.6 70.8 50.1 75.4 86.4 50.3
Hard 79.9 92.0 27.6 62.4 92.9 7.0 49.6 58.8 34.4 64.0 81.2 23.0

Pre-V. Filler 94.7 97.3 82.2 84.6 96.4 60.0 63.3 80.1 59.3 80.9 91.3 67.2
Syn. StopW 90.6 94.7 72.7 80.5 95.4 56.4 62.3 73.2 52.7 77.8 87.8 60.6
BOS Filler 80.7 96.7 82.6 80.9 96.7 38.4 65.8 78.8 59.6 75.8 90.7 60.2
Post-V. Filler 93.8 96.9 80.3 77.9 96.6 37.4 62.6 79.3 56.6 78.1 90.9 58.1
Syn. V. 87.6 95.9 56.6 79.5 92.1 50.6 61.3 70.5 50.7 76.1 86.2 52.6
Speako 91.8 90.3 68.1 70.1 90.1 33.6 61.5 69.8 51.0 74.5 83.4 50.9
Syn. Any 89.2 90.4 52.6 77.8 91.4 40.6 62.0 67.3 49.1 76.3 83.0 47.4
Syn. Adj. 81.7 94.2 34.4 71.7 93.9 34.9 54.3 65.5 42.1 69.2 84.5 37.1
Syn. Adv. 87.2 85.1 38.4 69.9 92.1 29.0 54.7 61.4 40.3 70.6 79.5 35.9
EOS Filler 88.9 96.8 52.2 64.1 94.1 5.9 56.4 65.8 42.0 69.8 85.6 33.4

Table 4: SF, ID and E2E performances of BERT and RNN based models trained on ATIS, SNIPS,
and NLU-ED and evaluated on their original and altered test sets. We show results on per-operator
as well as on Rand and Hard test sets. Furthermore, we report the unweighted average score on the 3
benchmark we considered. The lowest scores in each column appear underlined.

correct command if the intent and all slots are correctly predicted.298

Additionally, to better understand the underlying processes of the state-of-the-art models, we299

produced and analyzed the self-attention weight heat-maps. This allows us to better understand what300

tokens the models focus on more to make their prediction. In Figure 4 we show a representative301

excerpt heat-maps for wrongly predicted sentences (for both SF and ID). One for the unchanged302

SNIPS test set and one for each type of operator. We observe that the self-attention often focuses303

more heavily on verbs, nouns and certain types of stop words, such as "the". It also shows that high304

attention is given to verbs and certain stop words at the end of the sentence. This is evident in all305

Figures but particularly in Figure 4b, where we can see high attention on non-frequent tokens (for the306

benchmark), such as "if" or "?".307

308

Test Set ATIS SNIPS NLU-ED Avg.
w/o w Aug. w/o w Aug. w/o w Aug. w/o w Aug.

Orig 86.2 83.3 (-2.9) 87.9 85.3 (-2.6) 67.8 66.2 (-1.6) 80.6 78.3 (-2.3)
Rand 66.5 69.2 (+2.7) 39.0 48.2 (+9.2) 56.8 56.7 (-0.1) 54.1 58.3 (+4.2)
Hard 34.9 54.0 (+19.1) 12.9 27.1 (+15.2) 38.9 40.7 (+1.8) 28.9 40.6 (+11.7)

Table 5: End-to-End (E2E) scores of Stack-Prop+BERT models trained on ATIS, SNIPS and NLU-ED
original (w/o) and augmented (w) training data. Each model is evaluated on its respective original,
Rand, and Hard test set. We report the unweighted average of the 3 datasets.
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find on dress parade

what time will paris by night aired

in one hour find king of hearts

need to see mother joan of the angels in one second

play the new noise theology e p

i want to watch supernatural: the unseen powers of animals

(a) Heat-map of original SNIPS utterances.

find on dress parade go go

can i get the butterfly crush showings you ’re bad

what is dear old girl cooper foundation if you don ’t mind

in one hour find king of hearts if you don ’t mind

i need a table in uruguay in 213 days when it s chillier if you please

need to see mother joan of the angels in one second do we understand
each other ?

(b) Heat-map of EOS filler-altered utterances.
find on new parade

music coming back to life onto winter music

what how will paris by night aired

can i get the more crush showings

show the local times

in one i find king of hearts

(c) Heat-map of Synonymy Adjective-altered
utterances.

fines on dress parade

what is the webber of east portal ks

wnt time will paris by night aired

in one houser find king of hearts

can you find me a trainor for phineas redux

plays tujiko noriko s ten years and running

(d) Heat-map of Speako-altered utterances.

Figure 4: Heat-maps of SNIPS utterances whose SF and ID labels were wrongly predicted by the
Stack-Prop+BERT model. The more intense the color, the greater the self-attention weight.

So far, we have shown that state-of-the-art SF and ID models do suffer when small perturbations are309

introduced to the test data. We now run experiments on augmented data in order to test the models’310

performances on larger and slightly more diverse train sets (Section 4.4). Table 5 reports E2E scores311

of Stack-Prop+BERT 10 model when trained without (w/o) and with (w Aug) data-augmented train312

and validation sets. Similar to Table 4, we evaluate the model on the Original, Rand, and Hard test313

sets of ATIS, SNIPS and NLU-ED while also reporting the unweighted average score.314

On one hand, we observe significant gains on the altered test sets (except on NLU-ED Rand) across315

all benchmarks. The largest increase in performances are obtained on the Hard sets with 19.1%316

and 15.2% of gain on ATIS and SNIPS respectively. The gain can be partially explained by the317

augmentation of training data size, forcing the model to better generalize and also to the fact that our318

operator shares some characteristics with the used DA toolkit (i.e., Synonymy).319

On the other hand, the performances decrease on the 3 benchmark, by an average of 2.3%, when320

the model is evaluated on the Original test sets. DA is a valid strategy in NLP, specially for small321

sized datasets. However, even the large and more diverse NLU-ED benchmark shows only small322

improvement and does not solve the unobserved pattern problem exemplified by the NATURE323

operators. This is a strong indicator that the problem is far from solved, and that there is much room324

for research.325

326

6 Conclusions327

Neural Network models have a black-box architecture that makes it hard to discern when they328

correctly generalize over the input and when they resort to heuristic features that correlate to the329

expected output. We present the NATURE operators, apply them to test sets of standard spoken330

language oriented benchmarks and observe a consequential drop of the state-of-the-art model scores.331

The different operators in our framework help discern what surface patterns is the model misusing.332

We apply simple DA techniques (that are distinct from our operators) to the train and validation sets333

of each benchmark, allowing us to determine when and to what extent the problem is due to a small334

training set size. Although DA strategies tends to improve the generalization score, they do not fully335

recover nor catch up to their original scores.336

In future work, we expect to improve the current operators and include more diverse and realistic337

speech handicap, vocabulary, syntax, and miscellaneous pattern operators.338

339
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