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ABSTRACT

Pre-trained Deep neural network (DNN) models are valuable intellectual prop-
erty (IP) owing to their impressive performance, which might be extracted by
attackers for unauthorized use. While existing protection schemes primarily fo-
cus on preventing attackers from obtaining high-performance models, another
vulnerability regarding extracted models, i.e., the transferability has been largely
under-explored, where attackers could transfer the model to another domain with
good performance. Considering this dual vulnerability cannot be addressed by
simply combining existing solutions for each problem, for the first time, this work
jointly addresses these two security concerns and proposes DeTrans, a pre-trained
model protection framework that utilizes bi-level optimization to protect weights
of highly transferable filters, so as to prevent both unauthorized inference and
cross-domain transfer followed by model extraction. Importantly, DeTrans ensures
that the model functionality can be preserved for authorized users with specialized
hardware support. The experiments demonstrate that DeTrans can significantly
reduce accuracy on the source domain to random guessing and achieve up to an
81.23% reduction in transferability to the target domain.

1 INTRODUCTION

The success of on-device machine learning (ML) can be attributed to high-performance deep neural
networks (DNNs) Dhar et al. (2021). Given the significant effort required for model training (i.e.,
massive data labeling and computational resources), pre-trained DNNs are valuable intellectual
property (IP) assets for model owners Xue et al. (2021). However, model extraction has been
demonstrated to be practical and successful for on-device ML, where the exact DNN models can be
extracted via run-time attack Sun et al. (2021). Such attacks, constituting IP violation, potentially
lead to significant losses for model owners. As a countermeasure, previous works primarily focus on
preventing unauthorized inference for the victim models on their source domain Chakraborty et al.
(2020); Chen et al. (2019); Zhou et al. (2023). However, these works have neglected another attack
objective following model leakage, i.e., cross-domain transfer.

Why are attackers motivated to conduct cross-domain transfer on the victim models? In practice,
model IP attackers are motivated to transfer the maliciously extracted model to other domains of
interest, since they can exploit the common features learned by the pre-trained model to overcome
data scarcity and save effort compared to training from scratch Zhuang et al. (2020). This is also
an infringement of model owners’ rights and has been identified in prior works Wang et al. (2022;
2023). Defense strategies have been suggested in these works, but they predominantly rely on training
models from scratch to safeguard against transferability, which restricts their applicability to general
pre-trained models. Moreover, employing these training strategies to obtain a pre-trained model
may not be the optimal approach. This could potentially impact not only the model’s accuracy but
also other attributes (e.g., model owners lose transferability advantage themselves). Despite their
inapplicability to pre-trained models, the models they produce consistently exhibit high performance
on the source domain, making them vulnerable to unauthorized inference by attackers. Importantly,
addressing this vulnerability is not as straightforward as merging them with methods employed to
safeguard the source domain’s performance, since these methods designed to tackle distinct issues
utilize disparate training strategies and start from scratch Wang et al. (2022; 2023); Chakraborty et al.
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(2020). Consequently, model owners cannot sequentially apply different methods to train the model
and expect it to concurrently address both vulnerabilities.

Considering both unauthorized inference and cross-domain transfer are practical and common
attack objectives (as illustrated in Fig. 1),we are motivated to propose a comprehensive protection
method that can post-process pre-trained models to achieve (i) accuracy degradation on the source
domain for unauthorized use (ii) reduced transferability to target domains. However, implementing
such solutions are not as straightforward as combining known methods, but facing the following
challenges. First, the potential target domains of attackers are uncertain. Second, we should implicitly
measure the performance of possible model transfers during model protection, thereby ensuring the
protected model remains robust against cross-domain transfers. Last, it is important to maintain high
performance on the original domain for authorized users.

To address these challenges, we propose DeTrans, a novel approach that can provide double protection
for pre-trained DNN models. For the first challenge, while we cannot predict the specific target
domain, we make a reasonable assumption that the distribution of the potential target domain is likely
to be close to that of the source domain, motivated by the threat model of cross-domain transfer attack
Torrey & Shavlik (2010). With this assumption, we generate auxiliary domains based on the source
domain as inspired by single domain generalization to solve the target domain uncertainty Qiao et al.
(2020); Volpi et al. (2018). To address the second challenge, we formulate a bi-level optimization
problem, with the lower level assessing the model transferability.

Moreover, DeTrans leverages hardware support in the form of a trusted execution environment (TEE)
Ngabonziza et al. (2016); Truong et al. (2021) to address the last challenge. Specifically, DeTrans
only optimizes the weights of the filter with the highest transferability in each convolutional layer of
the victim DNN model. Since these weights capture the common features between the source and
potential target domains, perturbing weights associated with these features can degrade performance
on both domains. Therefore, when deploying the protected model on device, attackers cannot achieve
high performance on both domains, thus achieving double protection. Meanwhile, the original
value of the perturbed weights is small enough to be stored in the stringent secure memory of TEE
Ngabonziza et al. (2016), which can be used to restore the high performance on the source domain
for users. The contributions of this work are summarized as follows:

• To the best of our knowledge, this is the first work that mitigates the risk of model leakage
by preventing attackers from both unauthorized inference and cross-domain transfer, thus
achieving comprehensive protection for pre-trained DNN models.

• Leveraging the generated auxiliary domains, DeTrans optimizes critical weights of the
victim model through a bi-level optimization. The resulting protected model exhibits nearly
random guessing performance for attackers on the source domain, and reduces transferability
by up to 81.23% on potential target domains.

• Experiments demonstrate DeTrans outperforms the state-of-the-art model protection works
and exhibits robustness against different fine-tuning methods employed by attackers.

2 BACKGROUND

2.1 THREAT MODEL
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Figure 1: Attack model.

Attackers. To achieve comprehensive protec-
tion, we assume a strong model IP attacker who
has knowledge of the domain in which the vic-
tim model is trained. We also assume the at-
tacker is able to extract the DNN model stored
in unsecured memory including its architecture
and pre-trained weights, e.g., using the run-time
attack Sun et al. (2021). As illustrated in Fig. 1,
the attackers could exploit the extracted model
in two ways: 1) they directly use the model for
unauthorized inference when their interests
aligns with source domain; 2) they fine-tune the extracted model to achieve cross-domain transfer

2



Under review as a conference paper at ICLR 2024

when they collect a small set of data from the target domain, with the model architecture remaining
unchanged.

Model IP owners. To protect pre-trained models against illegal model exploitation while preserving
the model performance for authorized users, model owners could employ defense solutions with
hardware support (e.g., TEE), which can block the access to critical data stored in secure memory.
Specifically, owners will generate a protected model to be deployed on devices, and crucial data
(the original values of the perturbed weights) is safeguarded by TEE. During inference, users can
access this data but cannot extract it, thanks to the properties of TEE Chakrabarti et al. (2020).
Besides, it is worth noting that our intention is not to block all potential target domains, as this would
be impractical given the vast array of possibilities. Instead, we consider a common and practical
scenario that the target domains are close to the source domain, while sharing the same label space.

2.2 SINGLE DOMAIN GENERALIZATION

To protect models from illegal cross-domain transfer, we face the challenges that the target domains
are unknown during model protection. This challenge also exists in single domain generalization
Zhou et al. (2022), where its objective is to allow the model learned from a single source to be able to
generalize over a series of unknown distributions. Furthermore, it also assumes that the unknown
target domain is close to the source, which aligns with our assumption. A common practice in
single domain generalization is to augment the source domains to approximate the unknown domain
distributions Qiao et al. (2020); Volpi et al. (2018); Fan et al. (2021). For example, Volpi et al. propose
an adaptive data augmentation method, which adds adversarially perturbed samples to the data space
Volpi et al. (2018). Also, Qiao et al. generate fictitious domains using a Wasserstein Auto-Encoder to
encourage large domain discrepancy in the input space Qiao et al. (2020).

Given the shared challenge and assumption, we generate auxiliary domains by augmenting the source
domain using similar methods. However, it should be noted that our design objective is opposite of
domain generalization, i.e., we intentionally reduce the victim model’s generalization ability, thus
impeding its ease of transfer to unknown target domains.

2.3 TRUSTED EXECUTION ENVIRONMENT

TEE (e.g., ARM TrustZone Ngabonziza et al. (2016)) has been used to protect model protection
by creating hardware-based isolation between the secure and normal memory of a device to isolate
sensitive information Sun et al. (2023); Chakraborty et al. (2020); Chen et al. (2019); Zhou et al.
(2023). However, the secure memory space is relatively limited, e.g., 3-5MB in TrustZone Amacher
& Schiavoni (2019), compared to the size of normal DNNs Chen et al. (2019). To address this issue,
we aim to identify a subset of critical model weights that affect the model performance for both the
source domain and the target domains. Without authorized access to the critical weights stored in
TEE, the extracted model part will perform poorly due to a lack of critical data. Additionally, it is
noted that even with authorized inference, the data inside the TEE remains a black box for authorized
users. While they can leverage the data within the TEE to achieve high inference accuracy on the
source domain, they cannot extract the data (i.e., critical model weights in our case). Since the
effectiveness of TEE has been previously established in other studies Chen et al. (2019); Sun et al.
(2023), this work will not delve into the implementation details.

2.4 DISCUSSION ON RELATED WORKS

As model IP protection is critical for model owners, several studies have explored methods to degrade
the model’s performance to mitigate the risk of model leakage. For example, Chakraborty et al.
propose a key-dependent training algorithm to obfuscate the weight space such that the accuracy of the
model drops significantly when it is extracted and used on different devices Chakraborty et al. (2020).
Moreover, Zhou et al. introduce a protection approach for pre-trained models, which obfuscates a
small set of model weights using a fine-grained mask designed by a reinforcement learning-based
controller Zhou et al. (2023). However, these methods primarily focus on degrading accuracy on the
source domain, which cannot naturally reduce the transferability to prevent cross-domain transfer by
attackers.
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Figure 2: The framework overview of DeTrans. DeTrans leverages bi-level optimization to protect
the pre-trained model for both accuracy and transferability reduction. The resulting protected model
can prevent attackers from unauthorized inference and cross-domain transfer.

Taking transferability into account, Wang et al. propose a training strategy to restrict model transfer-
ability by capturing exclusive data representation in the source domain Wang et al. (2022). Further-
more, the compact un-transferable isolation domain is proposed to prevent cross-domain transfers
by emphasizing the private style features of the authorized domain Wang et al. (2023). However,
these methods cannot be extended to general pre-trained models, and using such methods to train a
model will naturally restrict the model’s transferability, even for model owners themselves. More
importantly, Wang et al. (2022; 2023) are designed for machine-learning-as-a-service (MLaaS), where
the service providers have to guarantee good performance for users on the source domain. As a
result, the preserved high performance renders them ineffective in preventing attackers from making
unauthorized inferences.

3 PROPOSED FRAMEWORK: DETRANS

Aiming at achieving the best for preventing both illegal usages, i.e., unauthorized inference and
cross-domain transfer, we propose an extensive model IP protection scheme that can provide accuracy
degradation on the source domain and transferability reduction on the target domain at the same
time. The workflow of the proposed method, referred to as DeTrans, is illustrated in Fig. 2. We first
generate the auxiliary domains by augmenting the source domain, then select critical weights via a
filter-wise mask to fit the small secure memory. Later, we obtain the protected model by modifying
the selected weights via a bi-level optimization process. The modified weights hinder attackers from
leveraging the victim model and successfully protect model IP.

3.1 AUXILIARY DOMAINS

We introduce a generative domain augmentation method to generate auxiliary domains Di based on
the source domain. The rationale behind this approach is that attackers are more likely to opt for
model transfer, when the target domain closely aligns with the source domain. This choice provides
them with the advantages of transfer learning while avoiding potential drawbacks, as discussed in
Pan & Yang (2010); Wang et al. (2019b). Therefore, even though we cannot precisely predict the
specific target domain that attackers may select, we can approximate its distribution by augmenting
the source domain.

Inspired by Qiao et al. (2020), we build a Wasserstein Auto-Encoder (WAE) parameterized by θ to
introduce domain discrepancy between the source domain S and the auxiliary domains Di. However,
to simulate cross-domain transfer, we need to generate labeled samples, simulating how attackers
use limited labeled data to fine-tune the extracted model. To this end, we enhance the WAE by
incorporating the label as a condition in the decoding phase. Specifically, it consists of an encoder
Q(x|z) and a decoder G(z, y), where x and y represent the input and its label, and z represents the
bottleneck embedding. Additionally, we employ Maximum Mean Discrepancy (MMD) to quantify
the distance between Q(x) and the Gaussian prior P (z), following the approach in Tolstikhin et al.
(2018). Detailed implementation specifics can be found in Appendix A. The conditional WAE is
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optimized according to:

min
θ

||G(Q(x), y))− x||2 + MMD(Q(x), P (z)) (1)

After optimization, we can generate samples to construct auxiliary domains via the decoder G. To
encourage a range of domain discrepancies that better align with the unseen target distribution, we
introduce feature augmentation by incorporating a latent vector h sampled from N (µ, σ) into the
feature embedding, as outlined in Qiao & Peng (2021). This augmentation technique has been
proven effective in enhancing domain discrepancy through variations in µ and σ. As a result, we
can generate diverse auxiliary domains Di. Each auxiliary domain is then divided into a training set
and a validation set, serving as components for the lower-level optimization (Eq. 5) and upper-level
optimization (Eq. 6), respectively.

3.2 MASK DESIGN

To overcome the limitations of secure memory in the Trusted Execution Environment (TEE), DeTrans
introduces a filter-wise mask design, allowing for the modification of weights exclusively for selected
filters. The filter selection strategy centers on identifying the filter with the highest transferability
in each layer. This selection is based on the understanding that filters with higher transferability
capture shared patterns between domains, making them more intrinsically transferable than others.
By adjusting the weights of these high-transferability filters, we disrupt the shared features learned by
both the source and target domains, thus achieving concurrent accuracy degradation and transferability
reduction. Since the target domains are unknown in our case, we replace them with auxiliary domains.

In quantifying filter transferability, we adopt the approach used in Wang et al. (2019a). We first
measure the discrepancy d between the source domain S and each auxiliary domain Di for each
channel c (output of a filter) following Eq. 2, where we omit i for simplicity.

d(c) =

∣∣∣∣∣∣ µ
(c)
S√
σ2
S
(c)

−
µ
(c)
D√
σ2
D
(c)

∣∣∣∣∣∣ , where µ(c) =
1

b

b∑
j=1

x
(c)
j , σ2(c) =

1

b

b∑
j=1

(x
(c)
j − µ(c)). (2)

Here, b denotes the batch size and x represents the feature map of convolutional layers. We choose x
from source domain when calculating µS and σ2

S , and from Di otherwise. Hence, the distance-based
probability α for each channel c is calculated as:

α(c) =
K(1 + d(c))−1∑K
n=1(1 + d(n))−1

, c = 1, 2, ...,K (3)

where K is the channel size, and a higher α score indicates greater transferability of a filter. We
calculate the α scores for each source-auxiliary domain pair and take the average α to rank the filters.
Consequently, a binary mask M is generated, with 1 indicting the selected filter with the highest
transferability in each layer.

3.3 BI-LEVEL OPTIMIZATION

We consider a pre-trained model M with weights W as the victim model, which is trained on labeled
data pairs (xs, ys) from the source domain S. We selectively modify a small set of weights WP
corresponding to the chosen filters, while keeping the rest fixed as W \ WP. A basic protection
method is adding weight changes ∆WP to WP to degrade the performance (i.e., accuracy drop), thus
preventing attackers from unauthorized inference. The optimization of modified weights W′

P (:=
WP+∆WP) follows:

max
W′

P

L
(
f
(
xs;W′

P ∪ (W \ WP)
)
,ys

)
, (4)

where f denotes the functionality of the DNN, and L denotes the loss function of the source task.

Given that our protection extends beyond unauthorized inference to include preventing cross-domain
transfer, we improve the above method by formulating a bi-level optimization to achieve our goal.
This framework enables us to comprehensively address the model protection challenge, alternating
stages while implicitly considering the transferability of the protected model through the use of
auxiliary domains.
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Lower-level Optimization. In this stage, we emulate how attackers optimize the extracted model for
transfer by finding an optimal weight update ∆W on the extracted model to enhance performance in
the target domain. This mimicking is done using training data (xtr

i , ytr
i ) in the auxiliary domain Di.

We optimize ∆W with the following equation:

∆W∗
i = argmin

∆Wi

L
(
f
(
xtr
i ;W′ +∆Wi

)
,ytr

i

)
(5)

where W′ is the weights of the protected model obtained from the upper-level optimization.

Upper-level Optimization. To leverage the knowledge gained from the lower-level optimization
regarding the transferability of the model with current weights W′, we proceed to optimize the
weights W′ further. The goal here is to diminish the transferability of the model across all auxiliary
domains. This process is guided by the following equation:

max
W′

P

I∑
i=1

λiL
(
f
(
xval

i ;W′ +∆W∗
i

)
,yval

i

)
, s.t. W′ = W′

P∪ (W\WP) = W′
P⊙M+W⊙ (1−M) (6)

where λi is the scaling factor of the loss on (xval
i ,yval

i ), i.e., the samples and labels from the
validation set in the auxiliary domain Di and

∑I
i=1 λi = 1. Notably, we also incorporate the source

domain into the auxiliary domain during the bi-level optimization to ensure accuracy degradation on
the source domain.

3.4 SUMMARY OF DETRANS

Integrating all the aforementioned strategies, we present DeTrans in Algorithm 1, with the following
key points: (i) Given a pre-trained model, DeTrans identifies the most critical filters for transfer
learning and generates a corresponding mask M for optimization; (ii) DeTrans implements basic
protection as a warm-up to initialize W′

P; (iii) DeTrans employs a bi-level optimization to further
optimize W′

P. Here we also add S as one Di during bi-level optimization to ensure that accuracy
degradation is maintained on the source domain. The optimal protected model will be generated upon
convergence, which could prevent attackers from malicious exploitation, including direct use and
model transfer. Besides, the protected original weights WP are stored in TEE secure memory, which
corrects the functionality of the protected model for authorized users.

4 EXPERIMENTS

We evaluate the performance of DeTrans on multiple DNN models and datasets for the classification
tasks, demonstrating its effectiveness compared to other methods. As DeTrans targets protecting
on-device DNN models, where the memory and computational capability is limited compared to cloud
ML, we examine DeTrans on relatively small DNNs and datasets in line with the actual situation.
Additionally, we conduct ablation studies to examine the influence of important modules in DeTrans.

4.1 EXPERIMENT SETUP

Algorithm 1 DeTrans
Input: pre-trained modelM; auxiliary domains Di

Output: protected model W′

// Generate mask
1: Calculate α(c) across Di ▷ Eq. (3)
2: Generate a filter-wise mask M

// Apply basic protection as a warm-up
3: Initialize W′

P with M constrained ▷ Eq. (4)
// Bi-level optimization loop

4: repeat
5: W′ ←W′

P ∪ (W \WP)
6: for all Di do
7: Obtain ∆W∗

i in lower-level stage ▷ Eq. (5)
8: Calculate loss with W′+∆W∗

i

9: end for
10: Update W′

P in upper-level stage ▷ Eq. (6)
11: until Converge

Dataset. We examine our methods on two types
of datasets following previous works on non-
transferable learning Wang et al. (2022; 2023).
One is the digits datasets, including MNIST
(MN) Lecun et al. (1998), USPS (US) Hull
(1994), and SVHN (SV) Netzer et al. (2011). The
training and test sets for these digit datasets are
unbalanced, i.e., the number of each class is un-
equal. The other is the natural image datasets,
including CIFAR10 (CF10) Krizhevsky et al.
(2009) and STL10 Coates et al. (2011). The
details of the dataset and data processing are
shown in Appendix B.

DNN Models. We train VGG-11 Simonyan
& Zisserman (2015) and ResNet-18 He et al.
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Table 1: The results of defending against unauthorized inference, reported with the top-1 accuracy
(%) on test dataset. Here the baseline accuracy is the benign accuracy of victim models.

Domain VGG-11 ResNet-18

Baseline SL NTL CUTI NNSplitter DeTrans Baseline SL NNSplitter DeTrans
MN 99.03 79.18 97.9 99.1 9.90 10.04±0.29 99.50 92.14 9.99 10.01±0.23
US 95.61 17.89 98.8 99.6 12.31 13.25±1.22 96.51 57.55 8.78 9.04±0.41
SV 93.57 20.12 88.4 90.9 8.87 8.90±2.45 94.28 51.42 8.15 8.81±1.52

CF10 92.39 42.61 / / 10.00 10.00±0.00 93.07 42.93 10.00 10.00±0.00
STL10 78.44 11.25 / / 10.00 10.00±0.00 79.12 11.67 10.00 10.00±0.00

(2016) on different datasets as the victim models.
We select these two DNNs to match the victim
models in previous works Wang et al. (2022); Zhou et al. (2023). For fairness, we resize all images
from different datasets into the same size to avoid the architecture changing (see Appendix C) when
applying transfer learning. The victim models are trained using the Adam optimizer Kingma & Ba
(2015).

Settings. We generate auxiliary domains based on the source domain, where µ is from 0 to 1 with
step of 0.25 and σ is set to 0.5 and 1. The generated examples are shown in Appendix D. Note that
the target domain remains unseen during model protection. We assume attackers hold 5% of training
data in the target domain to conduct cross-domain transfer. Also, the ratio of modified parameters is
unchanged, i.e., 0.07% and 0.18% of total parameters for VGG-11 and ResNet-18, respectively. The
corresponding storage size is 79KB and 122KB, which can meet the secure memory constraint on
TEE. The hyperparameter settings can be found in Appendix E. We use top-1 inference accuracy (%)
as the evaluation metric for all experiments, which are implemented using PyTorch and conducted on
a machine equipped with an NVIDIA A10 GPU.

4.2 COMPARISON METHODS

As DeTrans is the first approach to simultaneously prevent unauthorized inference and cross-domain
transfer (i.e., dual protection), there are no previous works fully comparable to it. However, to better
evaluate the effectiveness of DeTrans, we adopt the following state-of-the-art (SOTA) works as a
comparison on a single aspect. For preventing unauthorized inference, we select the SOTA method
NNSplitter Zhou et al. (2023), which shares the same objective as the basic protection mentioned
in our work, and measure its performance on datasets in our work. As for defending against model
transfer, the recent works NTL Wang et al. (2022) and CUTI Wang et al. (2023) can be used for
comparison. Since they did not experiment with ResNet-18, we only include comparison on VGG-
11. Moreover, we also propose Baseline, where no protection is applied to the victim model, and
Supervised Learning (SL), i.e., training from scratch with limited data (5% of training data).

4.3 PERFORMANCE EVALUATION

Based on our threat model, we consider two attack scenarios and demonstrate that DeTrans can
defend against two attacks at the same time, while SOTA works can only achieve one aspect.

Scenario I: Unauthorized Inference. When attackers’ target domains align with the source domain
of the victim model, they can directly utilize the extracted model to conduct inference without further
fine-tuning. To prevent attackers from such attack, DeTrans aims to degrade the accuracy on the
source domain. By intentionally introducing modifications to the model weights, DeTrans ensures
that the extracted model performs poorly and becomes ineffective for direct use by attackers.

From the results in Tab. 1, we can observe that by applying DeTrans, the top-1 inference accuracy
experiences a significant drop compared to the baseline (i.e., from over 90% to ∼10%), where the
baseline applies no protection to the victim model, allowing attackers to achieve the exact inference
accuracy as the victim model. Besides, the succeed of DeTrans in accuracy drop results from
misclassifying all images into a random class. Specially, since all classes in CF10 and STL10 are
balanced, the accuracy is degraded to 10% with no variance.
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Table 2: The results of defending against cross-domain transfer. The left of ⇒ is the source domain,
and the right side is the target domain (unseen during protection). The average drop (Avg. Drop) is
calculated by the average difference from the baseline, and the higher drop indicates better protection.

MN ⇒ US MN ⇒ SV US ⇒ MN US ⇒ SV SV ⇒ MN SV ⇒ US Avg. Drop

VGG-11

Baseline 93.35 81.53 93.20 81.97 94.78 94.67 /
SL 17.89 20.12 79.18 20.12 79.18 17.89 50.86

NTL 13.8 20.8 6.7 6.0 12.3 8.9 78.50
CUTI 6.7 6.7 9.1 25.5 11.9 14.3 77.55

NNSplitter 92.67 80.52 93.11 81.71 94.34 94.40 0.46
DeTrans 17.88±0.23 19.58±0.47 11.35±0.49 19.59±0.38 10.10±0.76 13.15±0.39 74.65

ResNet-18

Baseline 95.24 84.64 96.24 83.75 97.46 96.22 /
SL 57.55 51.42 92.14 51.42 92.14 57.55 25.22

NNSplitter 94.98 83.82 95.87 82.85 97.54 96.17 0.39
DeTrans 17.89±0.39 6.70±1.10 9.80±0.65 6.69±0.68 9.58±0.23 15.52±0.24 81.23

Moreover, it is noted that DeTrans can achieve a comparable degraded accuracy as the SOTA work
NNSplitter. The degraded accuracy is even lower than the victim DNN trained with supervised
learning (SL), rendering the unauthorized inference useless. In contrast, NTL Wang et al. (2022) and
CUTI Wang et al. (2023) designed for restraining model transferability fail in preventing unauthorized
inference, since their accuracy on the source domain are still high.

Scenario II: Model Transfer. We form several domain pairs to demonstrate that the models under
DeTrans protection have reduced transferability. We provide results in Tab. 2 and Appendix F. As
shown in Tab. 2, although NNSplitter shows the optimal performance in defend against unauthorized
inference, it demonstrates almost no reduction in transferability compared to the baseline, with only
0.46% and 0.39% accuracy drop on VGG-11 and ResNet-18, respectively. The results underscores
that accuracy reduction on the source domain does not necessarily impact the model transferability.

In contrast, DeTrans proves to be effective in reducing transferability, e.g., up to 81.23% accuracy
drop on ResNet-18. Besides, it can achieve comparable protection as SOTA works (i.e., NTL and
CUTI) on transferability reduction, with the difference less than 4%. More importantly, unlike NTL
and CUTI, DeTrans does not require additional input-level modification to achieve transferability
reduction, i.e., adding a spacial patch on the input sample.

Moreover, when attackers attempt to transfer the model to a more complex domain, such as MN ⇒
SV, the transferred accuracy is relatively low even without any protection (i.e., 81.53% for baseline).
The complexity of SV is raised from its enriched feature and unbalanced class compared to MN
Lorena et al. (2019). However, attackers may still be motivated to extract the model and transfer it to
the target domain, as training a model from scratch with limited data would yield lower accuracy
(i.e., 20.12% for SL). Therefore, reducing transferability in this case is still crucial. As shown in Tab.
2, the model under DeTrans protection achieve performance even lower than SL, making attackers’
effort in model transfer useless.

Overall, DeTrans achieves comprehensive model protection by defending against unauthorized
inference and model transfer at the same time, filling the gap of SOTA methods. It successfully
reduces the accuracy on the source domain to the random-guessing level (∼10% for ten-class
classification tasks), while restraining the performance on unseen target domains lower than attackers
training one from scratch using SL.

4.4 ABLATION STUDIES

Victim       Baseline   Random       DeTrans Transfer

Figure 3: The comparison of random filter selec-
tion filter selection with DeTrans. The dot marks
showing the accuracy of victim model after be-
ing transferred to the target domain.

Filter Selection. The filter selection strategy in
the mask design of DeTrans is based on the trans-
ferability measurement of each channel (Sec. 3.2).
To measure the influence of this strategy, we re-
place it with a random filter selection strategy, i.e.,
randomly selecting a channel to design a mask for
model protection. We conduct the comparison ex-
periments on the VGG-11 model, and the results
are shown in Fig. 3, where the performance of
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victim is measured on the source domain. Overall,
random filter selection can also reduce transfer-
ability compared to the baseline among all cases,
but DeTrans performs even better with an extra
14.95% accuracy drop on average.

Optimization Method. Our bi-level optimization takes the potential attack surface (i.e., malicious
model transfer) into consideration during model protection. To demonstrate its effectiveness, we
assume a stronger protector who: (i) has knowledge of the target domain as the attacker (i.e., a small
set of data in the target domain); (ii) and applies a naive model protection scheme, in which we
assume the protector and attacker conduct “defense-attack-defense-...”, in an alternative optimization
manner as described in Eq. (7) and Eq. (8):

(attack) ∆W∗
a = arg min

∆Wa

L
(
f
(
xt;W′ +∆Wa

)
,yt

)
(7)

(defense) max
W′

P

L
(
f
(
xt;W′

P ∪ (W \WP) + ∆W∗
a)
)
,yt

)
(8)

where ∆W∗
a is the weights modification by attackers via transfer learning, W′

P is optimization from
the protector, and (xt,yt) denoted 5% labeled data from the target domain.

The model performance after 50-step naive optimization is reported in Tab. 3. Compared to the base-
line method, the naive optimization only shows 1.3 % accuracy drop, while the bi-level optimization
achieves over 80% accuracy drop. The reason behind this difference lies in the nature of the naive op-
timization process. As described in Appendix G, the naive optimization is dynamic, meaning that due

Table 3: Comparison of transferability reduction
on ResNet-18 model.

MN⇒SV US⇒MN SV⇒US Avg. Drop
Naive 83.76±1.06 95.67±1.17 93.77±0.41 1.3

Bi-level 6.70±1.10 9.80±0.65 15.52±0.24 81.69

to the same set of samples (xt,yt) but with op-
posite objectives in the two equations, each equa-
tion can counteract the modifications made by
the other in the last step. In other words, the
influence of one equation can be nullified by the
other equation, resulting in a minimal impact on
the model’s accuracy. As the attacker is the one who makes the final modification on the extracted
model, they can always improve the accuracy to a level comparable to the baseline. This explains the
limited effectiveness of the naive optimization approach in reducing model accuracy compared to the
bi-level optimization approach.

5 DISCUSSION

5.1 MODIFICATION AND FINE-TUNING RANGE

Table 4: The comparison of different modification
and fine-tuning ranges, where the source domain
is MN and the target is US.

Protector Attacker DeTrans

w/o fine-tune
(Source)

p1 - 12.59±3.60
p2 - 10.04±0.29

w/ fine-tune
(Target)

p1 a1 58.07±0.43
p1 a2 39.36±0.44
p2 a1 22.27±0.33
p2 a2 17.88±0.23

We explore different modification ranges for pro-
tectors and model fine-tuning ranges for attack-
ers. For protectors, the choices include modi-
fying: p1) the first layer, and p2) one filter per
layer. For attackers, they can either conduct
unauthorized inference on the source domain
without fine-tune or fine-tune a1) the last layer or
a2) the whole extracted model for transferring to
the target domain. We evaluate the performance
of each modification and fine-tuning range on
the VGG-11 model trained on MN. The results
in Tab. 4 show that p2 outperforms p1 when defending against the unauthorized inference. Besides,
Tab. 4 also presents the performance of each combination when the attacker aims to transfer the model
to another domain (i.e., US). When adopting p2, attackers can only achieve low accuracy (∼20%) no
matter they fine-tune the last layer or the whole model. The results demonstrate the advantage of
spreading the weights modification across all layers.

5.2 APPLICABILITY BEYOND SMALLER MODELS

9
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Table 5: The performance of cross-
domain transfer on CF10.

Target Baseline NTL CUTI DeTrans
STL10 58.0 14.8 14.0 10.5

Since this works focuses on securing the IP of on-device
DNN models, which has been demonstrated as vulnerable
to model extraction attacks Sun et al. (2021), thus, we
choose models with fewer layers as the victim models for
above experiments and demonstrate the effectiveness of
DeTrans. However, as a generic defense strategy, our proposed methodology can also be applied to
larger models with more layers, if the device can accommodate the model. We use ResNet-50 as
a case study, which was used as largest model in previous related works Wang et al. (2022; 2023).
We obtain a pre-trained ResNet-50 on CIFAR-10 with inference accuracy of 93.65%. By applying
DeTrans protection with 0.14% of weights being modified, the accuracy of unauthorized inference
degrades to 10%. Meanwhile, as shown in Tab. 5, the cross-domain transfer only achieves 10.5%
with DeTrans, which also outperforms SOTA in reducing transferability.

6 CONCLUSION

In this work, we introduce DeTrans, a novel framework for protecting on-device DNN models against
unauthorized inference and cross-domain transfer while preserving model performance for users
using TEE. By selectively modifying a small subset of weights in the pre-trained model, DeTrans
achieves near-random guess performance on the source domain and transferability reduction for
potential target domains (> 80% for ResNet-18). The original values of these modified weights are
stored in TEE, which is only accessible to authorized users. Moreover, DeTrans remains effective
regardless of how attackers fine-tune the protected model, and it is applicable to larger models.
Overall, it fills the gap of SOTA model protection works, which either fail to prevent unauthorized
inference or overlook the cross-domain transfer from attackers.
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A IMPLEMENTATION OF WAE

The design of the encoder Q and the decoder G follows the prior work Tolstikhin et al. (2018). The
input size of Q is 32× 32× 1 for digit datasets and 32× 32× 3 for CIFAR10 & STL10. Specifically,
the encoder architecture is (using input size of 32× 32× 3 as an example):

x ∈ R32×32×3 → Conv128 → BN → ReLU

→ Conv256 → BN → ReLU

→ Conv512 → BN → ReLU

→ Conv1024 → BN → ReLU → FC64,

and the decoder architecture is:

z ∈ R74 → FC4×4×1024

→ ConvTranspose512 → BN → ReLU

→ ConvTranspose256 → BN → ReLU

→ ConvTranspose128 → BN → ReLU → FSConv3,

where ConvTranspose denotes transposed convolutional layers. Here the input of decoder is the
concatenation of the output latent vector of Q (64-dimension) and the one-hot encoding of the
10-class labels (10-dimension).

Both architectures include 4 convolutional layers with the filter size of 5×5. The stride is set to 2 for
the first 3 Conv and ConvTranspose in Q and D, respectively. The WAE is optimized for 100 epochs
according to Eq. 1 using the Adam optimizer. The learning rate is initially set to 0.001 and decreased
by factor of 2 after 20 epochs.

B DETAILS OF DATASETS

Digits. MNIST contains 70k gray-scale images of handwritten digits from 0 to 9, each of which
is 28×28 pixels in size. The training set includes 60k labeled data and the rest data are for testing.
USPS has 7291 training and 2007 test images in gray-scale with size 16×16. It was created by taking
a sample of real-world handwritten digits from envelopes and intended to be representative of the
variation in handwritten digits that might be encountered in the wild. SVHN is a widely used digits
dataset and more challenging for classification tasks than MN, which consists of real-world images
collected from house number plates. It contains over 70k 32×32 RGB images for training and over
20k for testing. The training set and test set for all these digit datasets are unbalanced, i.e., the number
of each class is unequal, shown in the Tab. 6 and Tab. 7, respectively.

Table 6: The number of each class in the training set of the digits dataset.

0 1 2 3 4 5 6 7 8 9

MNIST 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949
USPS 1194 1005 731 658 652 556 664 645 542 644
SVHN 4948 13861 10585 8497 7458 6882 5727 5595 5045 4659

Table 7: The number of each class in the test set of the digits dataset.

0 1 2 3 4 5 6 7 8 9

MNIST 980 1135 1032 1010 982 892 958 1028 974 1009
USPS 359 264 198 166 200 160 170 147 166 177
SVHN 1744 5099 4149 2882 2523 2384 1977 2019 1660 1595

We also apply the same data processing to all digits datasets, i.e., resizing all images to 32×32. We
also apply the gray-scale transform to images in SVHN to be consistent with MNIST and USPS. As
the visualization of each digit dataset shown in the Fig. 4, the SVHN dataset is more complex than
the the MNIST and USPS datasets, making the classification task more challenging. Therefore, the
model trained on SVHN will learn more complicated feature representation and can be transferred to
the MNIST/ USPS domain with high accuracy.

Natural Image. Both CIFAR-10 and STL-10 have 10 classes. For CIFAR-10, it contains 60k 32×32
color images in 10 classes, with 6k labeled images per class. It is divided into 50k training images
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MNIST USPS SVHN

Figure 4: The visualization of the digits datasets.

and 10k test images. As for STL-10, it has 5k training images and 8k test images with the original
size of 96×96. To make the DNN models applicable to both datasets, we down-scale the images to
32×32 resolution to match that of CIFAR-10.

C DNN ARCHITECTURES

The VGG-11 architecture follows the setting from ConvNet Configuration A in Simonyan & Zis-
serman (2015) with a liitle modification. Specifically, each convolutional layer is followed by a
batchnorm layer and ReLU operation. We also add ReLU and dropout after the first and the second
linear layer.

The setting of ResNet-18 is the same as the one defined in He et al. (2016) except the kernel size of
the first convolutional layer is set to 3×3 instead of 7×7. Similarly, we add batchnorm and ReLU
after each convolutional layer.

Besides, for the victim model trained on the digits datasets, the input channel of the first convolutional
layer is set to 1 for both DNNs, while it set to 3 for CIFAR dataset.

D EXAMPLES OF AUXILIARY DOMAINS

We provide a few examples of auxiliary domains generated in Fig. 5 and Fig. 6. We also measure the
MMD between the source domain and its auxiliary domains, and we observe the MMD increases
with the value of µ when σ is fixed. Specifically, in Fig. 5, the MMD is [0.017, 0.036, 0.041] when µ
=[0, 0.25, 0.5] and σ = 0.5.

𝜇 = 0, 𝜎 = 0.5	 𝜇 = 0.25, 𝜎 = 0.5	 𝜇 = 0.5, 𝜎 = 0.5	

Figure 5: The examples of auxiliary domains for MNIST

𝜇 = 0, 𝜎 = 0.5 𝜇 = 0.25, 𝜎 = 0.5	 𝜇 = 0.5, 𝜎 = 0.5	

Figure 6: The examples of auxiliary domains for CIFAR10
Besides, we use t-SNE to visualize the latent space of the source domain and the auxiliary domains,
as shown in Fig. 7. Here we sample 100 data from 6 auxiliary domain for better visualization, where
µ=[0, 0.5, 1] and σ=[0.5, 1]. The Fig. 7 successfully demonstrates that the auxiliary domains can
augment the source domain.
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Figure 7: The visualization of of MNIST and its auxiliary domains using t-SNE

E HYPER-PARAMETERS

After attackers extract the pre-trained model, they will either directly use it in the same domain, or
apply transfer learning with 1000 data in the target domain to improve the accuracy by fine-tuning
the whole model. To mimic the real-world behavior of both attacker and protector, we construct a
small searching space with common choices [0.01, 0.005, 0.001, 0.0005. 0.0001] for each side, and
finally determine the initial learning rate for the protector is 0.0005, and for the attacker is 0.001. The
learning rate will then decay at a rate of 0.5 every 10 epochs.

For the fine-tuning training strategy, we follow the same setting in Sec. 5.1, and the training process
stops when the inference accuracy does not improve for the last 3 validation epochs.

F RESULTS ON CIFAR10 & STL10

Here we provide the protection performance of CIFAR10 & STL10 when attackers fine-tune the
protected model for cross-domain transfer. The methods NTL and CUTI only experiment with
VGG-13 on CIFAR10 & STL10, so we simply include their results as a comparison. As results
shown in Tab. 8, through the modification of critical weights, DeTrans effectively reduces transfer
accuracy from 82.95% to 10.87% for the STL10 to CIFAR10 transfer with VGG-11. In contrast, the
SOTA methods only degrade accuracy to ∼14%. Additionally, the transferability of ResNet-18 under
DeTrans protection is also reduced by up to 64.43%. The success of DeTrans can be attributed to the
optimization of critical weights achieved through the bi-level optimization process.

Table 8: The results of defending against cross-domain transfer on natural image datasets. The left of
⇒ is the source domain, and the right side is the target domain (unseen during protection).

CIFAR10 ⇒ STL10 STL10 ⇒ CIFAR10 Avg. Drop

VGG-11

Baseline 62.04 82.95 /
SL 11.25 42.61 45.56

NNSplitter 61.48 82.65 0.43
DeTrans 10.35±0.56 10.82±0.79 61.91

VGG-13 NTL 14.8 14.9 /
CUTI 14.0 13.3 /

ResNet-18

Baseline 63.14 86.83 /
SL 11.67 42.93 47.68

NNSplitter 62.37 86.14 0.73
DeTrans 10.91±0.43 10.19±0.67 64.43

G ANALYSIS OF NAIVE OPTIMIZATION

In the application of naive optimization can lead to a back-and-forth process between the protector and
the attacker. Initially, the protector modifies critical weights in the pre-trained model to degrade its
accuracy in the target domain. Subsequently, the attacker extracts the model and performs fine-tuning
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to improve its accuracy. This iterative exchange resembles a strategic online game, where each side
responds to the actions of the other.

The resulting effect is depicted in Figure 8, where both sides experience drastic and non-converging
changes in their losses, even when extending the training epoch from 50 to 100. In contrast, the
bi-level optimization approach implicitly considers the attacker’s actions, strategically thinking ahead
by anticipating future steps, leading to improved performance.
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Figure 8: The loss of naive optimization.
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