
Decentralized Convex Finite-Sum Optimization
with Better Dependence on Condition Numbers

Yuxing Liu 1 Lesi Chen 2 Luo Luo 1 3

Abstract
This paper studies decentralized optimization
problem, where the local objective on each node
is an average of a finite set of convex functions
and the global function is strongly convex. We
propose an efficient stochastic variance reduced
first-order method that allows the different nodes
to establish their stochastic local gradient estima-
tor with different mini-batch sizes per iteration.
We prove the upper bound on the computation
time of the proposed method contains the depen-
dence on the global condition number, which is
sharper than the previous results that only depend
on the local condition numbers. Compared with
the state-of-the-art methods, we also show that
our method requires less local incremental first-
order oracle calls and comparable communication
cost. We further perform numerical experiments
to validate the advantage of our method.

1. Introduction
We study the distributed optimization problem

min
x∈Rd

f(x) ≜
1

m

m∑
i=1

fi(x) (1)

over a connected and undirected network with m nodes,
where the global objective f : Rd → R is strongly convex,
and every local function fi : Rd → R on node i has the
form of

fi(x) ≜
1

n

n∑
j=1

fi,j(x) (2)

1School of Data Science, Fudan University, Shanghai, China
2Institute for Interdisciplinary Information Sciences, Tsinghua
University, Beijing, China 3 Shanghai Key Laboratory for Contem-
porary Applied Mathematics, Shanghai, China. Correspondence
to: Luo Luo <luoluo@fudan.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

where each component function fi,j : Rd → R is smooth
and convex, and n is number of components on every node.
We focus on first-order decentralized optimization methods
that desire all the m nodes to minimize the global objective
cooperatively, which allows each node to access its local
incremental first-order oracle (LIFO) and communicate with
its neighbors. This problem setting is very popular in train-
ing machine learning models with large amounts of data
samples.

First-order methods for decentralized convex optimization
have been extensively studied in recent years. The decen-
tralized gradient descent (DGD) method (Yuan et al., 2016)
incorporates the communication steps into the full-batch
gradient descent with diminishing stepsizes, leading to the
sublinear convergence rates. The linear convergent meth-
ods can be achieved by introducing the gradient tracking
step (Nedic & Ozdaglar, 2009; Qu & Li, 2017; Shi et al.,
2015), which maintains the gradient estimator of the global
objective function and iterates with the fixed stepsize. The
seminal? work of Scaman et al. (2017) provided the lower
bounds for the running time and communication rounds of
the full-batch first-order methods for decentralized strongly
convex optimization. Scaman et al. (2017) also proposed
the multi-step dual accelerated (MSDA) method by apply-
ing Chebyshev acceleration (Arioli & Scott, 2014) in dual
formulation, which results the optimal time complexity and
communication complexity in terms of the accuracy, the
maximum condition number of local functions and the spec-
tral gap of the network. However, MSDA requires accessing
the dual gradients of the local functions, which is potentially
expensive. Later, Kovalev et al. (2020b); Li & Lin (2021);
Song et al. (2023) developed dual-free methods that match
the upper complexity bounds of MSDA but only require
accessing the gradients of primal local functions. Recently,
Ye et al. (2023) proposed the multi-consensus decentralized
accelerated gradient descent (Mudag) to further improve
the condition number dependence in the upper complexity
bounds from the local functions to the global objective.

Stochastic first-order methods are widely used to speed up
training large-scale machine learning models, which can
take advantage of the finite-sum structure in the objective to
establish efficient iteration schemes. The stochastic variance

1

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

reduced methods (Defazio et al., 2014; Johnson & Zhang,
2013; Kovalev et al., 2020a; Schmidt et al., 2017; Zhang
et al., 2013) establish the gradient estimator by involving the
exact first-order information at the snapshot point. which
leads to optimal incremental first-order oracle complexity
(Agarwal & Bottou, 2015; Woodworth & Srebro, 2016) by
integrating with the negative momentum (Allen-Zhu, 2017;
Kovalev et al., 2020a; Qian et al., 2021). For decentral-
ized finite-sum problem (1), Li et al. (2020); Mokhtari &
Ribeiro (2016); Xin et al. (2020); Ye et al. (2020) designed
variance reduced methods to improve the computation ef-
ficiency for large n, while their dependence on condition
number and spectral gap do not match the full-batch meth-
ods (Kovalev et al., 2020b; Scaman et al., 2017; Song et al.,
2023; Ye et al., 2023). Later, Hendrikx et al. (2020) ap-
plied Catalyst acceleration (Lin et al., 2018) to improve
the condition number and spectral gap dependence. Conse-
quently, Hendrikx et al. (2021) provided lower bounds for
computation time complexity and communication complex-
ity, and proposed a dual-based method to match their lower
bounds. More recently, Li et al. (2022b) applied Katyusha
acceleration (Allen-Zhu, 2017) to achieve dual-free methods
which match the upper complexity bounds of Hendrikx et al.
(2021). However, the condition number dependence in the
analysis of existing decentralized stochastic first-order meth-
ods are based on the local functions. The potential tighter
complexity bounds by considering the condition number
dependence of the global function have not been studied.

In this paper, we propose computation efficient stochastic
decentralized algorithm (CESAR), which establishes the
local stochastic variance-reduced gradient estimators with
non-uniform sampling based on the heterogeneity of the
individual functions. In contrast to existing decentralized
stochastic methods that fix the mini-batch size for all nodes
(Hendrikx et al., 2021; Li et al., 2020; 2022b; Mokhtari &
Ribeiro, 2016; Xin et al., 2020; Ye et al., 2020), the mecha-
nism of proposed CESAR allows different nodes to access
their stochastic local gradients with different mini-batch
sizes in per iteration. Our theoretical analysis proves such
strategy leads both computation time complexity and com-
munication complexity to contain the dependence on global
condition number, resulting tighter upper bounds than previ-
ous stochastic methods that only depend on local condition
numbers (Hendrikx et al., 2021; Li et al., 2020; 2022b;
Mokhtari & Ribeiro, 2016; Xin et al., 2020; Ye et al., 2020).
We observed that these upper bounds of CESAR match the
corresponding lower bounds if we take the global condition
number into consideration. We also show CESAR enjoys
sharper upper bound on LIFO complexity. Note that the
computation time and the LIFO complexity of CESAR do
not simply correspond to each other, since the mini-batch
sizes on different nodes may not be identical. We also show
the superiority of CESAR through experiments.

2. Preliminaries and Related Work
This section first formally introduces notations and settings
for our problem, then provides a review of related work.

2.1. Preliminaries

We use ∥ · ∥ to present the Euclidean norm of a vector and
the Frobenius norm of a matrix. We denote the aggregated
variable as

x = [x1, · · · , xm]⊤ ∈ Rm×d and x̄ =
1

m
1⊤x ∈ R1×d,

where xi ∈ Rd is the local variable on node i and 1 is
the vector of all one entries. We allow the input of func-
tions to be presented as either column vector or row vector,
e.g., fi(xi) and f(x̄).

We introduce the following assumptions on the decentral-
ized finite-sum optimization problem (1).
Assumption 2.1. We assume each component function
fi,j(·) isLi,j-smooth, each local function fi(·) isLi-smooth
and the global function f(·) is L-smooth, i.e., there exist
constants Li,j , Li, L > 0 such that

fi,j(y)− fi,j(x) ≤⟨∇fi,j(x), y − x⟩+ Li,j

2
∥y − x∥2

fi(y)− fi(x) ≤⟨∇fi(x), y − x⟩+ Li

2
∥y − x∥2

f(y)− f(x) ≤⟨∇f(x), y − x⟩+ L

2
∥y − x∥2

for any x, y ∈ Rd, i ∈ [m] and j ∈ [n].
Assumption 2.2. We assume each component function
fi,j(·) is convex, i.e., it holds that

fi,j(y)− fi,j(x) ≥ ⟨∇fi,j(x), y − x⟩

for any x, y ∈ Rd, i ∈ [m] and j ∈ [n].
Assumption 2.3. We assume the global function f(·) is
µ-strongly convex, i.e., there exists constant µ > 0 such
that

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2

for any x, y ∈ Rd.

The strongly convex assumption ensures that problem (1)
has the unique minimizer x∗ ∈ Rd. We say an aggregate
variable x̂ = [x̂1, . . . , x̂m]⊤ ∈ Rm×d is an ϵ-suboptimal
solution if it satisfies ∥x̂− 1x̄∗∥ ≤ ϵ, where x̄∗ = (x∗)⊤.

Besides the parameter L > 0 for the smoothness of global
objective f(·), Assumption 2.1 implies we can also define
another two smoothness parameters for problem (1), i.e.,

L̄ ≜
1

mn

m∑
i=1

n∑
j=1

Li,j and L̄max ≜ max
i∈[m]

1

n

n∑
j=1

Li,j .

2

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Based on the definitions of L, L̄max and L̄, we define three
corresponding condition numbers for problem (1) as

κ ≜
L

µ
κ̄ ≜

L̄

µ
, and κ̄max ≜

L̄max

µ

which is used to describe the complexity of our methods
which is introduced in later sections. Note that definitions
of κ, κ̄ and κ̄max only require the strong convexity of global
objective f(·). In contrast, the design and the analysis of
existing decentralized accelerated stochastic methods (Hen-
drikx et al., 2021; Li et al., 2022b) depend on the strong
convexity of every local function fi(·), and their complexity
bounds depend on the condition numbers

κmax ≜ max
i∈[m]

Li

µi
and κ̄′max ≜ max

i∈[m]

1

n

n∑
j=1

Li,j

µi
.

Based on above definitions, we refer to κ̄max, κmax and
κ̄′max as the local condition numbers and refer to κ and κ̄ as
the global condition numbers.

We can establish relationships κ ≤ κ̄ ≤ κ̄max ≤ mκ̄′max,

κ ≤ κmax ≤ κ̄′max and κ̄max ≤ mnκ.

In fact, the magnitude of these condition numbers may be
quite different when the local data is heterogeneous. Please
see the example in the following remark.
Remark 2.4. We consider the functions

fi,j(x) =
1

2
x⊤i,jHi,jxi,j +

µi

2
∥x∥22 ,

for x = [x1; . . . ;xm] ∈ R2mn, i ∈ [m] and j ∈ [n],
where xi = [xi,1; . . . ;xi,n] ∈ R2n, xi,j ∈ R2 contains
the (2m(i− 1) + 2j − 1)-th and the (2m(i− 1) + 2j)-th
coordinates of x, and Hi,j = diag(mn(L− µ), 0) ∈ R2×2

with µi=2iµ/(m+1) for some L, µ > 0 such that L≫ µ.
Then the condition numbers hold that

κ =
L

µ
, κ̄ = Θ

(
mnL

µ

)
, κmax = Θ

(
m2L

µ

)
,

κ̄max = Θ

(
mnL

µ

)
and κ̄′max = Θ

(
m2nL

µ

)
.

This example implies different types of condition numbers
may be quite different for large m and n. We show detailed
expressions for these condition numbers in Appendix A.2.

For decentralized optimization, we denote W ∈ Rm×m be
the mixing matrix associated to the network of m nodes.
We impose the following assumption on matrix W .
Assumption 2.5. For the mixing matrix W ∈ Rm×m, we
assume (i) W is symmetric and its entry satisfies wi,j ̸= 0 if
and only if node i and node j are connected in the network.
(ii) 0 ⪯ W ⪯ I,W1 = 1 and null(I −W) = span(1).
(iii) There exists some γ ∈ (0, 1] such that 1− λ2(W) ≥ γ,
where λ2(W) is the second largest eigenvalue of W .

Algorithm 1 FastMix (v0,K)

1: Initialize: v−1 = v0, β =
1−

√
1−λ2

2(W)

1+
√

1−λ2
2(W)

2: for k = 0, . . . ,K

3: vk+1 = (1 + β)Wvk − βvk−1

4: end for
5: Output: vK

We present communication among nodes as multiplication
with matrix W on aggregate variables. We can apply the
multi-consensus step with Chebyshev acceleration to reduce
the consensus error in decentralized optimization, which
is described in Algorithm 1 (Arioli & Scott, 2014; Liu &
Morse, 2011; Saad, 1984; Scaman et al., 2017). Under
Assumption 2.5, it holds the following convergence result
(Song et al., 2023; Ye et al., 2023).

Proposition 2.6. Let v̄ = 1
m1⊤v0 for v0 ∈ Rm×d, then

the output of Algorithm 1 holds that 1
m1⊤vK = v̄ and∥∥vK − 1v̄

∥∥ ≤
√
14
(
1− c1

√
1− λ2(W)

)K ∥∥v0 − 1v̄
∥∥ ,

where c1 = 1− 1/
√
2.

2.2. Related Work

The design and the analysis of most existing decentralized
first-order methods only focus on the complexity of local
condition numbers. For example, Kovalev et al. (2020a);
Li & Lin (2021); Scaman et al. (2017); Song et al. (2023)
proposed the full-batch methods with computation time
complexity of O

(
n
√
κ̄′max log(1/ε)

)
and communication

complexity of O
(√

κmax/γ log(1/ε)
)
, which are optimal

with respect to local condition numbers κ′max and κmax

(Scaman et al., 2017). In a recent work, Ye et al. (2023)
provided the tighter upper bounds of O

(
n
√
κ log(1/ε)

)
and

Õ
(√

κ/γ log(1/ε)
)

for computation time complexity and
communication complexity, which are near-optimal with
respect to the global condition number κ. However, the
global condition numbers dependence in the complexity for
decentralized finite-sum optimization has not been explored.
The best-known decentralized stochastic first-order methods
proposed by Hendrikx et al. (2020); Li et al. (2022b) require
computation time complexity O

(
(
√
nκ̄′max + n) log(1/ε)

)
and communication complexity O

(√
κmax/γ log(1/ε)

)
.

Additionally, Li et al. (2022b) considered the heterogeneity
of the individual functions and established the local gradient
estimators by importance sampling, however, their methods
enforce all nodes access their stochastic local gradients with
identical mini-batch sizes. Intuitively, this may affect the use
of global properties of our problem, since the importance of
local functions on different nodes can be quite different. We
present the upper complexity bounds of existing methods
and compare them with our results in Table 1

3

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Table 1. We summarize the upper complexity bounds on computation time, communication rounds and LIFO calls for proposed CESAR and
existing methods. We use notations Õ(·) and Ω̃(·) to hide the logarithmic factors of m, n and condition numbers.

Methods Computation Time # Communication # LIFO

decentralized full-batch algorithms

MSDA+CA
(Scaman et al., 2017)

O
(
n
√
κ̄′
max log

(
1
ε

))
O
(√

κmax
γ

log
(
1
ε

))
O
(
mn

√
κ̄′
max log

(
1
ε

))
OPAPC

(Kovalev et al., 2020b)
O
(
n
√
κ̄′
max log

(
1
ε

))
O
(√

κmax
γ

log
(
1
ε

))
O
(
mn

√
κ̄′
max log

(
1
ε

))
ACC-GT+CA
(Li & Lin, 2021)

O
(
n
√
κ̄′
max log

(
1
ε

))
O
(√

κmax
γ

log
(
1
ε

))
O
(
mn

√
κ̄′
max log

(
1
ε

))
OGT

(Song et al., 2023)
O
(
n
√
κ̄′
max log

(
1
ε

))
O
(√

κmax
γ

log
(
1
ε

))
O
(
mn

√
κ̄′
max log

(
1
ε

))
Mudag

(Ye et al., 2023)
O
(
n
√
κ log

(
1
ε

))
Õ
(√

κ
γ
log

(
1
ε

))
O
(
mn

√
κ log

(
1
ε

))
Decentralized stochastic methods

DSA
(Mokhtari & Ribeiro, 2016)

O
((

nκ̄′
max +

(κ̄′
max)

4

γ

)
log

(
1
ε

))
O
(

(κ̄′
max)

4

γ
log

(
1
ε

))
O
((m(κ̄′

max)
2

γ2 +mn
)
log

(
1
ε

))
GT-SVRG / GT-SAGA

(Xin et al., 2020)
O
((κ̄2

max
γ2 + n

)
log

(
1
ε

))
O
((κ̄2

max
γ2 + n

)
log

(
1
ε

))
O
((mκ̄2

max
γ2 +mn

)
log

(
1
ε

))
DVR+Catalyst

(Hendrikx et al., 2020)
Õ
((√

nκ̄′
max + n

)
log

(
1
ε

))
Õ
(√

nκ2
max

κ̄′
maxγ

log
(
1
ε

))
Õ
((

m
√
nκ̄′

max +mn
)
log

(
1
ε

))
PMGT-LSVRG

(Ye et al., 2020)
O
((

κ̄max + n
)
log

(
1
ε

))
Õ
(

κ̄max+n√
γ

log
(
1
ε

))
O
((

mκ̄max +mn
)
log

(
1
ε

))
ADFS

(Hendrikx et al., 2021)
O
((√

nκ̄′
max + n

)
log

(
1
ε

))
O
(√

κmax
γ

log
(
1
ε

))
O
((

m
√
nκ̄′

max +mn
)
log

(
1
ε

))
Acc-VR-EXTRA+CA

(Li et al., 2022b)
O
((√

nκ̄′
max + n

)
log

(
1
ε

))
O
(√

κmax
γ

log
(
1
ε

))
O
((

m
√
nκ̄′

max +mn
)
log

(
1
ε

))
CESAR

Theorem 3.7
Õ
((√

nκ̄max
m

+
√
κ+ n

)
log

(
1
ε

))
Õ
(√

κ
γ
log

(
1
ε

))
O
((√

mnκ̄max +mn
)
log

(
1
ε

))

3. The Algorithm and Main Results
This section proposes the computation efficient stochastic
decentralized algorithm (CESAR) and provides theoretical
analysis for its upper complexity bounds.

3.1. The Algorithm

We present the details of CESAR in Algorithm 2, which
extends the techniques of variance reduction (Johnson &
Zhang, 2013; Zhang et al., 2013) and negative momentum
(Allen-Zhu, 2017; Kovalev et al., 2020a; Qian et al., 2021)
to decentralized optimization.

The computational efficiency of CESAR mainly comes from
our local gradient estimator, i.e.,

vti = uti +

n∑
j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)
, (3)

where uti is the local gradient estimator for node i at the

snapshot point wt
i and ξt+1

i,j is distributed to

ξt+1
i,j ∼ Bernoulli(qi,j), (4)

with

qi,j = min

(
1,

bLi,j

mnL̄max

)
and b =

√
mnκ̄max

κ
. (5)

At the t-th iteration, node i establishes the estimator vti by ac-
cessing local stochastic gradients ∇i,jf(x

t
i) and ∇i,jf(w

t
i)

for all j ∈ [n] such that ξt+1
i,j = 1. This implies the number

of LIFO calls on node i can be written as

Y t
i = 2

n∑
j=1

ξt+1
i,j , (6)

which is a random variable. Therefore, our sample sizes for
different nodes are not fixed. If all Li,1, . . . , Li,n are small,
the node i may even skip any LIFO computation at some
iteration. On the other hand, the nodes contain individual

4

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

functions with large smoothness parameters Li,j will tend
to perform more LIFO computation, which indicates our
strategy indeed uses potential heterogeneity among nodes
and finally leads to better complexity dependence.

Recall that all nodes perform the computation in parallel,
then the total computation time for achieving all of the local
estimators vt1, . . . , v

t
m relies on the node that requires the

maximum number of LIFO calls at the t-th iteration, which
takes the computation time complexity of

max
i∈[m]

Y t
i = 2 max

i∈[m]

n∑
j=1

ξt+1
i,j . (7)

Based on the specifically designed variance-reduction
scheme, we employ the Katyusha-like acceleration (Allen-
Zhu, 2017) in to achieve better convergence. We also in-
corporate the multi-consensus steps (Ye et al., 2023) with
gradient tracking (Nedic & Ozdaglar, 2009; Qu & Li, 2017;
Shi et al., 2015) and Chebyshev acceleration (Arioli & Scott,
2014; Liu & Morse, 2011; Saad, 1984; Scaman et al., 2017)
into our algorithm, which results the global condition num-
ber dependence in convergence rate.

3.2. The Complexity Analysis

In this subsection, we upper bound the expectation of the
random variable maxi∈[m] Y

t
i defined in equation (7) and

provide the convergence analysis for CESAR (Algorithm 2),
which indicates the superiority of our method in theoretical.

3.2.1. COMPUTATION TIME OF PER ITERATION

We start our analysis from the Chernoff bound for Bernoulli
variables (Motwani & Raghavan, 1995; Zhang, 2023).
Lemma 3.1. Suppose random variables X1, ..., Xn are
independent and each of Xi is distributed to Bernoulli(pi)
for some pi ∈ [0, 1]. We let X =

∑n
j=1Xj and ν = E[X].

Then for any δ > 0, it holds

P (X ≥ (1 + δ)ν) ≤
(

exp(δ)

(1 + δ)1+δ

)ν

. (8)

Based on Lemma 3.1, we achieve the following upper bound
for the sum of Bernoulli variables with high probability.
Lemma 3.2. Suppose random variables Z1, . . . , Zm are
distributed to Zi =

∑n
j=1Xi,j for all i ∈ [m], where

the random variables X1,1, . . . Xm,n are mutually indepen-
dent and each of Xi,j is distributed to Bernoulli(pi,j) for
some pi,j ∈ [0, 1]. Then it holds

P
(
∃i ∈ [m], Zi ≥ 2emax

{
E[Zi], (lnmn)

2
})

≤ 1

mn
.

Recall that it always holds Y t
i ≤ 2n for all i ∈ [m], then

applying Lemma 3.2 results the following upper bound of
the expectation of maxi∈[m] Y

t
i .

Algorithm 2 CESAR
1: Input: the initial point w̄0, probabilities p and qi,j for

all i ∈ [m] and j ∈ [n], numbers of consensus steps K
and Kout, total iterations number T , and parameters η,
θ1, θ2 and σ.

2: y0 = z0 = w0 = 1w̄0, v−1 = s−1 = 0

3: g0 = u0 = [∇f1(w̄0);∇f2(w̄0); · · · ;∇fm(w̄0)]

4: for t = 0, . . . , T

5: xt = θ1z
t + θ2w

t + (1− θ1 − θ2)y
t

6: parallel for i = 1, . . . ,m do

7: ξt+1
i,j ∼ Bernoulli(qi,j)

8: vti = uti +

n∑
j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)

9: end parallel for

10: st = FastMix
(
st−1 + vt − vt−1,K

)
11: zt+1 = FastMix

(
1

1 + ησ

(
ησxt + zt− η

L
st
)
,K

)
12: yt+1 = FastMix

(
xt + θ1(z

t+1 − zt),K
)

13: ζt+1 ∼ Bernoulli(p)

14: parallel for i = 1, . . . ,m do

15: wt+1
i =

{
yti , if ζt+1 = 1

wt
i , otherwise

16: gt+1
i =

{
∇fi(wt+1

i), if ζt+1 = 1

gti , otherwise

17: end parallel for

18: ut+1 = FastMix
(
ut + gt+1 − gt,K

)
19: end for

20: Output: yout = FastMix(yT ,Kout) .

Theorem 3.3. Following notations of (4)–(6), we have

E
[
max
i∈[m]

Y t
i

]
≤O

(√
nκ̄max

mκ
+ (lnmn)2

)
.

Theorem 3.3 implies that CESAR takes the computation
time of Õ

((√
nκ̄max/m+n

)
/
√
κ
)

to achieve vt1, . . . , v
t
m.

Additionally, the step

gt+1
i =

{
∇fi(wt+1

i), if ζt+1 = 1,

gti , otherwise,

with ζt+1 ∼ Bernoulli(p) requires the computation time
of O(np) in expectation. Therefore, the overall expected

5

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

computation time per iteration can be upper bounded by

Õ

(√
nκ̄max

mκ
+ np

)
.

We provide detailed proofs for Lemma 3.2 and Theorem 3.3
in Appendix F, which cannot be achieved through simple
calculations like the analysis of fixed mini-batch size.

3.2.2. CONVERGENCE ANALYSIS

The convergence analysis of CESAR (Algorithm 2) is based
on considering the mean vectors

z̄t =
1

m

m∑
i=1

zti , w̄t =
1

m

m∑
i=1

wt
i and ȳt =

1

m

m∑
i=1

yti .

We define the corresponding Lyapunov function as follows

V t ≜ Zt + Yt +Wt, (9)

where

Zt ≜
L(1 + ησ)

2η

∥∥z̄t − x̄∗
∥∥2 , Yt ≜

1

θ1
(f(ȳt)− f(x̄∗))

Wt ≜
θ2
pλθ1

(f(w̄t)− f(x̄∗)) and η, σ, λ, θ1, θ2 > 0.

Note that here λ is an constant that only appears in our
analysis. Besides the Lyapunov function V t, we also need
to consider the consensus error aroused from the decentral-
ized setting, which leads to more complicated analysis than
accelerated variance-reduced methods on a single machine
(Allen-Zhu, 2017; Kovalev et al., 2020a; Qian et al., 2021).

We first provide the recursion for V t by involving consensus
error ∥xt − 1x̄t∥2 and ∥wt − 1w̄t∥2.

Lemma 3.4. Under Assumption 2.1, 2.2, 2.3 and 2.5,
we run Algorithm 2 by taking qij as (5), η = 1/(13θ1),
σ = µ/L, λ ∈ [1/2, 1) and θ1, θ2 ∈ (0, 1/2). Then it holds

E
[
V t+1

]
≤ βV t +

√
2ηL̂2V t

(1 + ησ)mL

∥∥xt − 1x̄t
∥∥

+

(
12LL̂

b
+

2L̂2

b

)
·
(∥∥xt − 1x̄t

∥∥2 + ∥∥wt − 1w̄t
∥∥2) ,

where we denote L̂ = maxi∈[m],j∈[n] Li,j and

β = max

{
1

1 + ησ
, 1−

(
θ1 + θ2 −

θ2
λ

)
, 1− p(1− λ)

}
.

We bound the consensus error by introducing the vector

rt =
L

m

[1

L2
∥ut − 1ūt∥2, 1

L2

∥∥st − 1s̄t
∥∥2

,

∥zt − 1z̄t∥2, ∥yt − 1ȳt∥2
]⊤

∈ R4.

We apply Proposition 2.6 to analyze the communication
steps in CESAR, which leads to the following results on
consensus error.

Lemma 3.5. Under the settings of Lemma 3.4, we run
Algorithm 2 by specifically taking K =

⌈
(log(1/ρ))/

√
γ
⌉

with 1/ρ = O (poly(m,n, κ)). Then it holds

E
[
rt+1

]
≤ ρ2

(
Art + ht

)
for some matrix A ∈ R4×4 and vector ht ∈ R4 such that

∥A∥ ≤ 40m3n3

b

and∥∥ht∥∥ ≤48m3n3

b
max

{
2

13θ1
,
65θ1
6θ2

}
· (V t+1 + V t)

+
(66 + 324ρ2)m3n3

b

∥∥wt − 1w̄t
∥∥2

+
324ρ2m3n3

b

∥∥wt+1 − 1w̄t+1
∥∥2 .

Remark 3.6. The notation of “≤” between vectors means
that each corresponding scalar entry has less than or equal
to relationship. The explicit expressions of A and ht are so
complicated and we present them in Appendix C.2.

By connecting the above two lemmas, we obtain the main
convergence results for CESAR.

Theorem 3.7. Under Assumption 2.1, 2.2, 2.3 and 2.5, we
run Algorithm 2 by taking

p = max

{
1

2
√
κ
,
κ̄max

2κb

}
, b =

√
mnκ̄max

κ
,

qi,j = min

{
1,

bLi,j

mnL̄max

}
, η =

1

13θ1
,

σ =
µ

L
, λ ∈

[
2

3
, 1

)
, θ1 =

1

2
√
κ
, θ2 =

κ̄max

2κb

and setting K by following Lemma 3.5. Then it holds

E
[
V t +

∥∥rt∥∥] ≤ 2αt
(
V 0 +

∥∥r0∥∥) ,
where

α =1−min

{
η

κ
,
θ1 + θ2 − θ2/λ

2
,
p(1− λ)

2

}

=1−Θ

(
1√
κ

)
.

3.2.3. UPPER COMPLEXITY BOUNDS

Based on Theorem 3.3 and 3.7, we achieve upper complexity
bounds for CESAR as follows.

6

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Table 2. We summarize the lower complexity bounds on computation time, communication rounds and LIFO calls. Note that we present
the lower bounds by considering different types of condition numbers.

Condition Numbers Computation Time # Communication # LIFO

κmax and κ̄′
max

(Hendrikx et al., 2021)
Ω
((√

nκ̄′
max + n

)
log

(
1
ε

))
Ω
(√

κmax
γ

log
(
1
ε

))
–

κ, κ̄max and κ̄
Theorem 4.1, 4.2 and 4.3

Ω
((√

nκ̄max
m

+
√
κ+ n

)
log

(
1
ε

))
Ω
(√

κ
γ
log

(
1
ε

))
Ω
((√

mnκ̄+mn
)
log

(
1
ε

))

Corollary 3.8. Under the assumptions and the settings of
Theorem 3.7, we can achieve an ϵ-suboptimal solution of
Problem (1) by Algorithm 2 with T = O(

√
κ log(1/ϵ)) and

Kout = Õ(
√
1/γ), which takes computation time complex-

ity of Õ
(
(
√
nκ̄max/m+

√
κ+ n) log(1/ϵ)

)
, communica-

tion complexity of Õ(
√
κ/γ log(1/ϵ)) and LIFO complexity

of O ((
√
mnκ̄max +mn) log(1/ϵ)) in expectation.

All of the complexity bounds in Corollary 3.8 are tighter (no
worse) than the results of the state-of-the-art decentralized
first-order methods (Table 1), which can be verified by the
relationships among condition numbers shown in Section 2:

• Compared with best-known stochastic methods ADFS
(Hendrikx et al., 2021) and ACC-VR-EXTRA+CA (Li
et al., 2022b), all of the computation time complexity,
the communication complexity and the LIFO complexity
of CESAR are no worse, since it holds that κ ≤ κmax

and κmax ≤ κ̄′max. Furthermore, our complexity bounds
may be much tighter when the data is heterogeneous,
such as the example shown in Remark 2.4.

• Compared with the best-known full-batch methods
Mudag (Ye et al., 2023), our method has the no worse
computation time complexity and LIFO complexity,
and the comparable communication complexity, since
it holds that κ̄max ≤ mnκ. In the case of κ̄max ≈ κ
and m,n ≫ 1, our computation time complexity and
LIFO complexity are much tighter.

4. The Lower Bounds and Discussion
We show the lower complexity bounds on communication
and computation time in the following theorems.
Theorem 4.1. Let γ ∈ (0, 1], κ ≥ 1 and n ∈ N. There
exist a mixing matrix W ∈ Rm×m with m ≥

√
3/γ and

m× n functions fi,j : ℓ2 → R such that each fi,j is convex
and smooth, function f ≜ 1/(mn)

∑m
i=1

∑n
j=1 fi,j is µ-

strongly convex and L-smooth such that κ ≥ L/µ. Then any
black-box procedure for achieving an ϵ-suboptimal solution
of Problem (1) needs at least the communication rounds
of Ω

(√
κ/γ log(1/ε)

)
.

Theorem 4.2. Let κ, κ̄max ≥ 1 and m,n ∈ N. There
exist a mixing matrix W ∈ Rm×m and m × n functions
fi,j : ℓ2 → R such that each fi,j is convex and smooth, func-

tion f ≜ 1/(mn)
∑m

i=1

∑n
j=1 fi,j is µ-strongly convex and

L-smooth such that κ̄max ≥ maxi∈[m]

∑n
j=1 Li,j/(nµ),

where Li,j is the smooth parameter of fi,j . Then any
black-box procedure for achieving an ϵ-suboptimal solu-
tion of Problem (1) needs at least the computation steps
of Ω

((
n+

√
nκ̄max/m+

√
κ
)
log(1/ε)

)
.

The black-box procedure in the above theorems is followed
by the definition of Hendrikx et al. (2021). Due to the space
limitation, we present its details in Appendix D. Note that
the computation step in our description is the procedure
where several nodes access their own local LIFO in parallel,
which corresponds to the computation time complexity and
is different from the overall LIFO complexity.

We then provide the lower bound on LIFO complexity by
following the analysis in non-distributed settings (Agarwal
& Bottou, 2015; Woodworth & Srebro, 2016).

Theorem 4.3. Let γ ∈ (0, 1], κ̄ ≥ 1 and m,n ∈ N.
There exist a mixing matrix W ∈ Rm×m and m× n func-
tions fi,j : ℓ2 → R such that each fi,j is convex and smooth,
function f ≜ 1/(mn)

∑m
i=1

∑n
j=1 fi,j is µ-strongly convex

and L-smooth such that κ̄ ≥ 1/(mn)
∑m

i=1

∑n
j=1 Li,j/µ,

where Li,j is the smooth parameter of fi,j . Then any black-
box procedure for achieving an ϵ-suboptimal solution of
Problem (1) needs at least Ω((mn +

√
mnκ̄) log(1/ε))

LIFO calls.

We compare our lower complexity bounds with related work
in Table 2. The results in Theorem 4.1 and 4.2 nearly match
the corresponding upper bounds in Corollary 3.8. However,
lower bound on LIFO complexity in Theorem 4.3 depends
on κ̄, while the upper bound in CESAR 3.8 depends on
κ̄max. This implies the results in this work cannot lead to
the optimality of LIFO complexity. How to fill the gap
between κ̄ and κ̄max is still an open problem.

We consider the case of n = 1, which ignores the finite-
sum structure in local functions. Then CESAR has com-
munication complexity of Õ (

√
κ log(1/ϵ)) and computa-

tion time complexity of Õ (
√
κ log(1/ϵ)), which nearly

match the corresponding upper bounds of near-optimal full-
batch first-order methods Mudag (Ye et al., 2023). In this
case, CESAR has the local first-order oracle complexity

7

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

0.5 1 1.5

Computation 10
4

10
-5

10
0

O
p
ti
m

a
l
G

a
p

Mudag

Acc-VR-DIGing

Acc-VR-EXTRA

CESAR

0 0.5 1 1.5

Communication 10
4

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
l
G

a
p

Mudag

Acc-VR-DIGing

Acc-VR-EXTRA

CESAR

1 2 3 4

LIFO 10
6

10
-5

10
0

O
p
ti
m

a
l
G

a
p

Mudag

Acc-VR-DIGing

Acc-VR-EXTRA

CESAR

Figure 1. The empirical results for logistic regression on dataset “a9a”.

2 4 6 8

Computation 10
3

10
-5

10
0

O
p
ti
m

a
l
G

a
p

Mudag

Acc-VR-DIGing

Acc-VR-EXTRA

CESAR

0 0.5 1 1.5

Communication 10
4

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
l
G

a
p

Mudag

Acc-VR-DIGing

Acc-VR-EXTRA

CESAR

0.5 1 1.5 2 2.5

LIFO 10
6

10
-5

10
0

O
p
ti
m

a
l
G

a
p

Mudag

Acc-VR-DIGing

Acc-VR-EXTRA

CESAR

Figure 2. The empirical results for logistic regression on dataset “w6a”.

Table 3. The condition numbers of the problem in experiments.

κ κmax κ̄max κ̄′
max

a9a 1.58× 104 1.70× 104 3.50× 104 3.50× 104

w6a 6.59× 103 1.46× 105 2.06× 105 2.06× 105

of O((
√
mκ̄max +m) log(1/ϵ)), which is sharper than the

complexity of O(m
√
κ log(1/ϵ)) in Mudag when condition

numbers satisfy κ̄max ≤ mκ. Intuitively, CESAR encour-
ages most nodes to completely skip local gradient computa-
tion in some iterations, however, Mudag always requires all
of the nodes to perform the local gradient computation in ev-
ery iteration. In this view, CESAR takes less overall energy
consumption in computation, which is more friendly to ap-
plications in networks within the limited computational re-
sources, such as wireless sensors (Rabbat & Nowak, 2004),
mobile devices (Wang et al., 2020) and smart home appli-
ances (Joo & Choi, 2017). We then consider the case of
m = 1, which is the finite-sum optimization on a single ma-
chine. Then CESAR has the incremental first-order oracle
complexity of O

(
(
√
mnκ̄+mn) log(1/ε)

)
, matching the

result of near-optimal first-order method Katyusha (Allen-
Zhu, 2017) in non-distributed setting.

5. Numerical Experiments
In this section, we provide the numerical experiments to
compare the performance of CESAR with baseline methods

Mudag (Ye et al., 2023), Acc-VR-EXTRA and Acc-VR-
DIGING (Li et al., 2022a). We consider the problem of
ℓ2-regularized logistic regression, which is formulated by

min
x∈Rd

f(x) ≜
1

m

m∑
i=1

fi(x) with fi(x) =
1

n

n∑
j=1

fi,j(x)

and fi,j(x) = log
(
1 + exp(−bi,ja⊤i,jx)

)
+
µ

2
∥x∥22 ,

where ai,j ∈ Rd is the feature vector of the j-th sample on
the i-th node, bi,j ∈ {−1, 1} is the corresponding label and
µ > 0 is the hyperparamter.

We conduct our experiments on datasets “a9a” and “w6a”
(Chang & Lin, 2011) and let µ = 10−4 and m = 300. We
set the mixing matrix W to be associated with a random
graph that each edge is connected with probability 1/30,
which leads to 1− λ2(W) ≈ 0.0382. The condition num-
bers in our problem are listed in Table 3.

We present the experimental results in Figure 1 and 2, where
the optimal gap is defined as 1

m

∑m
i=1 fi(xi) − f∗. The

number of computation corresponds to
∑T−1

t=0 maxi∈[m] Y
t
i

for CESAR and Tb′ for other methods, where Y t
i is defined

in equation (6) and b′ is the batch-size in baseline methods.

We can observe that our CESAR always outperforms the
stochastic methods Acc-VR-DIGing and Acc-VR-EXTRA
in all measures. CESAR also performs better than Mudag
on the complexity of computation and LIFO, and it has a
comparable communication cost to Mudag. All of these
results validate our theoretical analysis. Concretely, the

8

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

gap of communication complexity between CESAR and
baseline algorithms Acc-VR-DIGing and Acc-VR-EXTRA
on “w6a” is much larger than the one in “a9a”, since the
ratio between κmax and κ in “w6a” is larger than the one in
“a9a”. Additionally, the computation complexity and LIFO
complexity of CESAR are much better than baselines, since
both datasets hold κ̄max ≈ κ̄′max, and κ̄max is much smaller
than mκ̄′max.

6. Conclusion
This paper has studied decentralized convex finite-sum op-
timization. We have proposed an accelerated stochastic
variance-reduced first-order algorithm with non-uniform
sampling, which leads to complexity bounds with better
dependence on condition numbers. We have validated our
theory by numerical experiments. In future work, we are
interested in studying decentralized nonconvex optimization
by considering different kinds of condition numbers.

Acknowledgements
This work is supported by National Natural Science Foun-
dation of China (No. 62206058), Shanghai Sailing Program
(22YF1402900), and Shanghai Basic Research Program
(23JC1401000).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agarwal, A. and Bottou, L. A lower bound for the optimiza-

tion of finite sums. In ICML, 2015.

Allen-Zhu, Z. Katyusha: The first direct acceleration of
stochastic gradient methods. In STOC, 2017.

Arioli, M. and Scott, J. Chebyshev acceleration of iterative
refinement. Numerical Algorithms, 66(3):591–608, 2014.

Chang, C.-C. and Lin, C.-J. LIBSVM: a library for support
vector machines. ACM transactions on intelligent systems
and technology (TIST), 2(3):1–27, 2011.

Defazio, A., Bach, F., and Lacoste-Julien, S. SAGA: A
fast incremental gradient method with support for non-
strongly convex composite objectives. Advances in neural
information processing systems, 27, 2014.

Hendrikx, H., Bach, F., and Massoulié, L. Dual-free stochas-

tic decentralized optimization with variance reduction. In
NeurIPS, 2020.

Hendrikx, H., Bach, F., and Massoulie, L. An optimal al-
gorithm for decentralized finite-sum optimization. SIAM
Journal on Optimization, 31(4):2753–2783, 2021.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In NIPS,
2013.

Joo, I.-Y. and Choi, D.-H. Distributed optimization frame-
work for energy management of multiple smart homes
with distributed energy resources. IEEE Access, 5:15551–
15560, 2017.

Kovalev, D., Horváth, S., and Richtárik, P. Don’t jump
through hoops and remove those loops: SVRG and
Katyusha are better without the outer loop. In ALT, 2020a.

Kovalev, D., Salim, A., and Richtárik, P. Optimal and
practical algorithms for smooth and strongly convex de-
centralized optimization. In NeurIPS, 2020b.

Li, B., Cen, S., Chen, Y., and Chi, Y. Communication-
efficient distributed optimization in networks with gradi-
ent tracking and variance reduction. Journal of Machine
Learning Research, 21(1):7331–7381, 2020.

Li, H. and Lin, Z. Accelerated gradient tracking over time-
varying graphs for decentralized optimization. arXiv
preprint arXiv:2104.02596, 2021.

Li, H., Lin, Z., and Fang, Y. Variance reduced EXTRA
and DIGing and their optimal acceleration for strongly
convex decentralized optimization. Journal of Machine
Learning Research, 23:1–41, 2022a.

Li, H., Lin, Z., and Fang, Y. Variance reduced extra and
diging and their optimal acceleration for strongly con-
vex decentralized optimization. The Journal of Machine
Learning Research, 23(1):10057–10097, 2022b.

Lin, H., Mairal, J., and Harchaoui, Z. Catalyst accelera-
tion for first-order convex optimization: from theory to
practice. Journal of Machine Learning Research, 18(1):
7854–7907, 2018.

Liu, J. and Morse, A. S. Accelerated linear iterations for
distributed averaging. Annual Reviews in Control, 35(2):
160–165, 2011.

Mokhtari, A. and Ribeiro, A. DSA: Decentralized dou-
ble stochastic averaging gradient algorithm. Journal of
Machine Learning Research, 17(1):2165–2199, 2016.

Motwani, R. and Raghavan, P. Randomized algorithms.
Cambridge university press, 1995.

9

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Nedic, A. and Ozdaglar, A. Distributed subgradient meth-
ods for multi-agent optimization. IEEE Transactions on
Automatic Control, 54(1):48–61, 2009.

Nesterov, Y. Lectures on convex optimization, volume 137.
Springer, 2018.

Qian, X., Qu, Z., and Richtárik, P. L-SVRG and L-Katyusha
with arbitrary sampling. Journal of Machine Learning
Research, 22(1):4991–5039, 2021.

Qu, G. and Li, N. Harnessing smoothness to accelerate
distributed optimization. IEEE Transactions on Control
of Network Systems, 5(3):1245–1260, 2017.

Rabbat, M. G. and Nowak, R. D. Decentralized source
localization and tracking [wireless sensor networks]. In
ICASSP, 2004.

Saad, Y. Chebyshev acceleration techniques for solving non-
symmetric eigenvalue problems. Mathematics of Compu-
tation, 42(166):567–588, 1984.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié,
L. Optimal algorithms for smooth and strongly convex
distributed optimization in networks. In ICML, 2017.

Schmidt, M., Le Roux, N., and Bach, F. Minimizing finite
sums with the stochastic average gradient. Mathematical
Programming, 162:83–112, 2017.

Shi, W., Ling, Q., Wu, G., and Yin, W. EXTRA: An exact
first-order algorithm for decentralized consensus opti-
mization. SIAM Journal on Optimization, 25(2):944–966,
2015.

Song, Z., Shi, L., Pu, S., and Yan, M. Optimal gradient
tracking for decentralized optimization. Mathematical
Programming, pp. 1–53, 2023.

Wang, M., Xu, C., Chen, X., Zhong, L., Wu, Z., and Wu,
D. O. Bc-mobile device cloud: A blockchain-based de-
centralized truthful framework for mobile device cloud.
IEEE Transactions on Industrial Informatics, 17(2):1208–
1219, 2020.

Woodworth, B. E. and Srebro, N. Tight complexity bounds
for optimizing composite objectives. In NIPS, 2016.

Xin, R., Khan, U. A., and Kar, S. Variance-reduced de-
centralized stochastic optimization with accelerated con-
vergence. IEEE Transactions on Signal Processing, 68:
6255–6271, 2020.

Ye, H., Xiong, W., and Zhang, T. PMGT-VR: A decen-
tralized proximal-gradient algorithmic framework with
variance reduction. arXiv preprint arXiv:2012.15010,
2020.

Ye, H., Luo, L., Zhou, Z., and Zhang, T. Multi-consensus
decentralized accelerated gradient descent. Journal of
machine learning research, 24(306):1–50, 2023.

Yuan, K., Ling, Q., and Yin, W. On the convergence of
decentralized gradient descent. SIAM Journal on Opti-
mization, 26(3):1835–1854, 2016.

Zhang, L., Mahdavi, M., and Jin, R. Linear convergence
with condition number independent access of full gradi-
ents. In NIPS, 2013.

Zhang, T. Mathematical Analysis of Machine Learning
Algorithms. Cambridge University Press, 2023. doi:
10.1017/9781009093057.

10

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Appendix Outlines
In Appendix A, we provide the proofs for relationships for condition numbers and detailed calculation for Remark 2.4.

In Appendix B, C and D, we provide proofs for the complexity analysis of CESAR in Section 3.2, which is organized as
follows:

• In Appendix B, we consider the computation time per iteration discussed in Section 3.2.1.

• In Appendix C.1, we provide the proof of Lemma 3.4, which gives the recursion of Lyapunov function V t.

• In Appendix C.2, we provide the proof Lemma 3.5, which gives the recursion for vector

rt =
L

m

[1

L2

∥∥ut − 1ūt
∥∥2 , 1

L2

∥∥st − 1s̄t
∥∥2 ,∥∥zt − 1z̄t

∥∥2 ,∥∥yt − 1ȳt
∥∥2]⊤.

Additionally, we present the expression of A and et in the statement of Lemma C.15.

• In Appendix C.3, we provide the proof of Theorem 3.7 by applying Lemma 3.4 and Lemma C.15.

• In Appendix C.4, we provide the proof of Corollary 3.8 by applying Theorem 3.3 and 3.7.

• In Appendix D, we provide the proofs for the lower bounds in Section 4.

A. Relationships for the Condition Numbers
Recall that we have defined smoothness parameters

L̄ ≜
1

mn

m∑
i=1

n∑
j=1

Li,j and L̄max ≜ max
i∈[m]

1

n

n∑
j=1

Li,j ,

and the condition numbers

κ ≜
L

µ
, κ̄ ≜

L̄

µ
, κ̄max ≜

L̄max

µ
, κmax ≜ max

i∈[m]

Li

µi
and κ̄′max ≜ max

i∈[m]

1

n

n∑
j=1

Li,j

µi
,

where L, Li and Li,j are the smoothness parameters of f(·), fi(·) and fi,j(·) respectively.

Now, we prove and verify the relationship among these condition numbers and verify the example in Remark 2.4.

A.1. The Inequalities of the Condition Numbers

Based on the definitions, we have the following proposition.

Proposition A.1. Assume that each fi,j(·) is convex and smooth for i ∈ [m] and j ∈ [n]. Then the condition numbers hold
the relationships

κ ≤ κmax ≤ κ̄′max, κ ≤ κ̄ ≤ κ̄max ≤ mκ̄′max and κ̄max ≤ mnκ.

Proof. For the inequality κ ≤ κmax, we first verify the inequalities

L ≤ 1

m

m∑
i=1

Li and Li ≤
1

n

n∑
j=1

Li,j . (10)

We can prove L ≤
∑m

i=1 Li/m by triangle inequality, i.e., it holds

∥∇f(x)−∇f(y)∥ =

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥ ≤ 1

m

m∑
i=1

∥∇fi(x)−∇fi(y)∥ ≤ 1

m

m∑
i=1

Li ∥x− y∥ .

11

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

for any x, y ∈ Rd, which suggests that f(·) is
∑m

i=1 Li/m-smooth and it implies that L ≤
∑m

i=1 Li/m. Since each fi(·) is
µi-strongly convex, which means

fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩+ µi

2
∥y − x∥2

for any x, y ∈ Rd. Therefore, by summing up above inequalities for i = 1, . . . ,m, we have

f(y) =
1

m

m∑
i=1

fi(y) ≥
1

m

m∑
i=1

(
fi(x) + ⟨∇fi(x), y − x⟩+ µi

2
∥y − x∥2

)
=f(x) + ⟨∇f(x), y − x⟩+ 1

2

m∑
i=1

µi

m
∥y − x∥2 .

(11)

Therefore, we conclude f(·) is
∑m

i=1 µi/m-strongly convex, which implies that µ ≥
∑m

i=1 µi/m. By Hölder’s inequality,
we have

m∑
i=1

Li =

m∑
i=1

Li

µi
· µi ≤ max

i∈[m]

Li

µi
·

m∑
i=1

µi.

After rearrangement, we obtain

κ =
L

µ
≤
∑m

i=1 Li∑m
i=1 µi

≤ max
i∈[m]

Li

µi
= κmax.

For the inequality κmax ≤ κ̄′max, we can obtain that Li ≤
∑n

j=1 Li,j/n for all i ∈ [m] by the result of (10). Then the
definitions of κmax and κ̄′max leads to κmax ≤ κ̄′max.

For the inequality κ ≤ κ̄, we connect two inequalities in that (10) to obtain L ≤ 1/(mn)
∑m

i=1

∑n
j=1 Li,j . Then the

definitions of κ and κ̄ leads to κ ≤ κ̄.

For the inequality κ̄ ≤ κ̄max, we directly follow the definitions of κ̄ and κ̄max to achieve
∑m

i=1

∑n
j=1 Li,j/(mn) ≤

maxi∈[m]

∑n
j=1 Li,j/n. This inequality is equivalent to κ̄ ≤ κ̄max.

For the inequality κ̄max ≤ mκ̄′max, from (11) we know that f is
∑m

i=1 µi/m-strongly convex. Thus we can obtain that
µi ≤

∑m
i=1 µi ≤ mµ for all i ∈ [m], which results

κ̄max =
maxi∈[m]

∑n
j=1 Li,j

nµ
=

∑n
j=1 Li∗,j

nµ
≤
∑n

j=1 Li∗,j

nµi∗/m
≤ max

i∈[m]

m
∑n

j=1 Li,j

nµi
= mκ̄′max.

where we define i∗ = argmaxi∈[m]

∑n
j=1 Li,j .

For the inequality κ̄max ≤ mnκ, it follows from the fact that

0 ≤ fi,j(y)− fi,j(x)− ⟨∇fi,j(x), y − x⟩ ≤ mn (f(y)− f(x)− ⟨∇f(x), y − x⟩) ≤ mn · L
2
∥y − x∥2

for all x, y ∈ Rd and i ∈ [m], j ∈ [n], where the first inequality is based on the fact that each fi,j(·) is convex. This implies
that each fi,j is mnL-smooth and Li,j ≤ mnL. Thus we have

κ̄max = max
i∈[m]

∑n
j=1 Li,j

nµ
≤ mnL

µ
= mnκ.

Now, we have finished the proof.

12

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

A.2. The Example in Remark 2.4

In Remark 2.4, we have defined functions

fi,j(x) =
1

2
x⊤i,jHi,jxi,j +

µi

2
∥x∥22 ,

for x = [x1; . . . ;xm] ∈ R2mn, i ∈ [m] and j ∈ [n], where xi = [xi,1; . . . ;xi,n] ∈ R2n, xi,j ∈ R2 contains the
(2m(i − 1) + 2j − 1)-th and the (2m(i − 1) + 2j)-th coordinates of x, and Hi,j = diag(mn(L − µ), 0) ∈ R2×2 with
µi=2iµ/(m+ 1) for some L > 0 and µ > 0 such that L/µ≫ 1.

Note that each fi,j(·) is quadratic function, which means their Hessian are fixed. Therefore, we can calculate the condition
numbers based on the Hessians of fi,j(·), fi(·) and f(·). We provide the details as follows.

The Hessian of fi,j(·) has the form of

∇2fi,j(·) = diag(µi, . . . , µi,mn(L− µ) + µi, µi . . . , µi),

where only the 2n(i− 1) + 2j − 1-th diagonal entry is mn(L− µ) + µi and the others are µi. This implies fi,j(·) is Li,j

smooth with Li,j = mn(L− µ) + µi.

Then we have

∇2fi(·) =
1

n

n∑
j=1

∇2fi,j(·) = diag(µi, . . . , µi,m(L− µ) + µi, µi . . . ,m(L− µ) + µi, µi, . . . , µi),

where only (2n(i− 1) + 2j − 1)-th diagonal entry with j ∈ [n] is m(L− µ) + µi and the others are µi. This implies fi(·)
is Li-smooth with Li = m(L− µ) + µi and µi-strongly convex.

We also have

∇2f(·) = 1

m

m∑
i=1

∇2fi(·) = diag

(
(L− µ) +

1

m

m∑
i=1

µi,
1

m

m∑
i=1

µi, . . . , (L− µ) +
1

m

m∑
i=1

µi,
1

m

m∑
i=1

µi

)
=diag (L, µ, . . . , L, µ) ,

where the last step is based on the fact

1

m

m∑
i=1

µi =
1

m

m∑
i=1

2µi

m+ 1
=

2µ

m(m+ 1)

m∑
i=1

i =
2µ

m(m+ 1)
· m(m+ 1)

2
= µ.

This implies f(·) is L-smooth and µ-strongly convex.

Noticing that the maximum of Li/µi and
∑n

j=1 Li,j/µi is obtained by i = 1. Now we achieve the condition numbers

κ =
L

µ
, κ̄ =

mn(L− µ) + µ

µ
=
mnL

µ
−mn+ 1 = Θ

(
mnL

µ

)
,

κmax =
L1

µ1
=
mL

µ1
=
m(m+ 1)L

2µ
= Θ

(
m2L

µ

)
,

κ̄max =
mn(L− µ) + µm

µ
=
mnL

µ
−mn+

2m

m+ 1
= Θ

(
mnL

µ

)
,

κ̄′max =

∑n
j=1 L1,j

µ1
=
m(m+ 1)nL

2µ
= Θ

(
m2nL

µ

)
.

B. The Proofs in Section 3.2.1
We first prove Lemma 3.2 by applying Lemma 3.1, then we prove Theorem 3.3 by using Lemma 3.2.

13

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

B.1. The Proof of Lemma 3.2

Proof. We first consider the random variable Z =
∑n

j=1Xj , where X1, . . . , Xn are are mutually independent and each
of Xj is distributed to Bernoulli(pj) for some pj ∈ [0, 1]. We denote ν = E[Z] =

∑n
j=1 pj and a ∈ R be a constant such

that a ≥ e2. We consider the cases of Z as follows:

(a) If ν ≥ ln a, we apply Lemma 3.1 for t ≥ 2eν, it holds that

P(Z ≥ t) ≤ 2−t.

This implies

P(Z ≥ 2eν) ≤ 2−2eν ≤ 2−2e ln a ≤ 1

a2
.

(b) If 1 ≤ ν ≤ ln a, it holds

P (Z ≥ t ln a) ≤P (Z ≥ tν)
t≜(1+δ)

= P (Z ≥ (1 + δ)ν)

(8)

≤
(

eδ

(1 + δ)1+δ

)ν

=

(
et

ett

)ν

≤ 1

a2
,

where we set t ≥ 2e ln a. Thus, in this case, the extra term is of order ln a compared to case (a).

(c) If ν < 1, we let X ′
1 ∼ Bernoulli(p′1) with p′1 = 1− ν+E[X1] and Z ′ =

∑n
j=2Xj +X

′
1. It is clear that for any t ≥ 0,

it holds

P(Z ≥ t) ≤ P(Z ′ ≥ t).

As we have E[Z ′] = 1, it holds that

P (Z ≥ t ln a) ≤ P (Z ′ ≥ t ln a) ≤ 1

a2
,

where the last inequality is based on case (b) by taking t ≥ 2e ln a.

Since each Zi follows the same distribution as Z, combining above three cases and Boole’s inequality leads to

P
(
∃i ∈ [m], Zi ≥ max

{
2eE[Zi], 2e(ln a)2

})
≤

m∑
i=1

P
(
Zi ≥ max

{
2eE[Zi], 2e(ln a)2

})
=

m∑
j=1

min
{
P (Zj ≥ 2eE[Zj]) ,P

(
Zj ≥ 2e(ln a)2

)}
≤

m∑
j=1

1

a2
=
m

a2
.

We complete the proof by taking a = mn.

B.2. The Proof of Theorem 3.3

Proof. Recall that Y t
i = 2

∑n
j=1 ξ

t+1
i,j , where ξt+1

i,j ∼ Bernoulli(qi,j). Then using Lemma 3.2, we obtain

P
(
max
i∈[m]

Y t
i ≥ 4emax

{
max
i∈[m]

E[Y t
i], (lnmn)

2

})
≤ 1

mn
.

14

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Since each Yi is upper bounded by 2n, we have

E
[
max
i∈[m]

Y t
i

]
≤4emax

{
max
i∈[m]

E[Y t
i], (lnmn)

2

}
+

1

mn
· 2n

=4emax

max
i∈[m]

n∑
j=1

qi,j , (lnmn)
2

+
2

m

=4emax

max
i∈[m]

n∑
j=1

qi,j , (lnmn)
2

+
2

m

=4emax

{√
nκ̄max

mκ
, (lnmn)2

}
+

2

m

=O

(√
nκ̄max

mκ
+ (lnmn)2

)
,

which concludes the proof.

C. Proof of Section 3.2.2
In this section, we focus on analyzing Lyapunov function

V t ≜ Zt + Yt +Wt,

where

Zt ≜
L(1 + ησ)

2η

∥∥z̄t − x∗
∥∥2 , Yt ≜

1

θ1
(f(ȳt)− f(x∗)) and Wt ≜

θ2
pλθ1

(f(w̄t)− f(x∗)).

Our convergence analysis is more complicated than the counterpart of L-Katyusha (Kovalev et al., 2020a; Qian et al., 2021),
since we have to address the additional consensus error aroused from the decentralized setting.

C.1. Proof of Lemma 3.4

We first provide some useful lemmas.

Lemma C.1 (Nesterov (2018)). Under Assumption 2.1 and 2.3, it holds that

1

2Li,j
∥∇fi,j(x)−∇fi,j(y)∥2 ≤ fi,j(x)− fi,j(y)− ⟨∇fi,j(y), x− y⟩, (12)

for all i ∈ [m], j ∈ [m] and x, y ∈ Rd.

Lemma C.2. Given n independent random vectors x1, . . . , xn such that E [xi] = 0 for all i ∈ [n], then it holds

E

[∥∥∥ n∑
i=1

xi

∥∥∥2] =

n∑
i=1

E
[
∥xi∥2

]
(13)

Proof. It holds that

E

[∥∥∥ n∑
i=1

xi

∥∥∥2] =

n∑
i=1

E
[
∥xi∥2

]
+
∑
i ̸=j

E [⟨xi,xj⟩]

=

n∑
i=1

E
[
∥xi∥2

]
,

where the last equality is because that x1, . . . , xn are independent and E [xi] = 0.

15

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Lemma C.3. The vectors s̄t, ūt and ḡt in Algorithm 2 satisfy

s̄t =
1

m

m∑
i

vti with Eξt+1
i,j

[s̄t] =
1

m

m∑
i=1

∇fi(xti) (14)

and

ūt = ḡt =
1

m

m∑
i

∇fi(wt
i). (15)

Proof. Applying Proposition 2.6 to the update rules of Algorithm 2 directly finishes the the proof.

Lemma C.4. Under the settings of Lemma 3.4, Algorithm 2 holds that∥∥∥∇f(x̄t)− Eξt+1
i,j

[s̄t]
∥∥∥ ≤

maxi∈[m] Li√
m

∥∥xt − 1x̄t
∥∥ , (16)

where Li is the smoothness parameter of fi(·).

Proof. We have

∥∥∥∇f(x̄t)− Eξt+1
i,j

[s̄t]
∥∥∥2 =

∥∥∥∥∥ 1

m

m∑
i=1

(
∇fi(xt

i)−∇fi(x̄t)
)∥∥∥∥∥

2

≤ 1

m

m∑
i=1

∥∥∇fi(xti)−∇fi(x̄t)
∥∥2

≤ 1

m

m∑
i=1

L2
i

∥∥xti − x̄t
∥∥2

=
maxi∈[m] L

2
i

m

∥∥xt − 1x̄t
∥∥2 ,

where the first equality is based on Lemma C.3.

Then we provide some lemmas for the mean vectors. The following Lemma C.5 is important to our analysis, which
guarantees the appropriate smoothness dependence for sample complexity.

Lemma C.5. Under the settings of Lemma 3.4, it holds that

E
ξt+1
i,j

[∥∥s̄t −∇f(x̄t)
∥∥2

]
≤12L̄max

b

(
f(w̄t)− f(x̄t)−

〈
∇f(x̄t), w̄t − x̄t〉)+ C1 ·

∥∥xt − 1x̄t
∥∥2

+ C2 ·
∥∥wt − 1w̄t

∥∥2
, (17)

where

C1 =
12L̄L̂

b
+

2L̂2

m
, C2 =

12L̄L̂

b
and L̂ = max

i∈[m],j∈[n]
Li,j . (18)

Proof. We have

Eξt+1
i,j

[∥∥∥s̄t −∇f(x̄t)2
∥∥∥2]

=Eξt+1
i,j


∥∥∥∥∥∥ūt + 1

m

m∑
i=1

n∑
j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)
−∇f(x̄t)

∥∥∥∥∥∥
2


(15)
= Eξt+1

i,j


∥∥∥∥∥∥ 1

m

m∑
i=1

∇fi(wt
i) +

1

mn

m∑
i=1

n∑
j=1

ξt+1
i,j

qi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)
−∇f(x̄t)

∥∥∥∥∥∥
2


16

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

(14)
= Eξt+1

i,j


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

[
ξt+1
i,j

qi,j
(∇fi,j(xti)−∇fi,j(wt

i))− (∇fi,j(xti)−∇fi,j(wt
i))

]
+ (Eξt+1

i,j
[s̄t]−∇f(x̄t))

∥∥∥∥∥∥
2


≤2Eξt+1
i,j


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

[
ξt+1
i,j

qi,j
(∇fi,j(xti)−∇fi,j(wt

i))− (∇fi,j(xti)−∇fi,j(wt
i)

]∥∥∥∥∥∥
2
+ 2

∥∥∥Eξt+1
i,j

[s̄t]−∇f(x̄t)
∥∥∥2,

where the inequality is based on Young’s inequality. Then we consider the two terms on the right hand side separately. First,
based on Lemma C.4, we have

2
∥∥∥Eξt+1

i,j
[s̄t]−∇f(x̄t))

∥∥∥2 (16)

≤
2maxi∈[m] L

2
i

m

∥∥xt − 1x̄t
∥∥2 ≤ 2L̂2

m

∥∥xt − 1x̄t
∥∥2 .

Then we consider the first term.

2Eξt+1
i,j


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

[
ξt+1
i,j

qi,j
(∇fi,j(xti)−∇fi,j(wt

i))− (∇fi,j(xti)−∇fi,j(wt
i)

]∥∥∥∥∥∥
2


(13)
=

2

m2n2

m∑
i=1

n∑
j=1

Eξt+1
i,j

∥∥∥∥∥ξ
t+1
i,j

qi,j
(∇fi,j(xti)−∇fi,j(wt

i))− (∇fi,j(xti)−∇fi,j(wt
i))

∥∥∥∥∥
2


=
2

m2n2

m∑
i=1

n∑
j=1

1− qi,j
qi,j

∥∥∇fi,j(xti)−∇fi,j(wt
i)
∥∥2

≤ 6

m2n2

m∑
i=1

n∑
j=1

1− qi,j
qi,j

[∥∥∇fi,j(xti)−∇fi,j(x̄t)
∥∥2 + ∥∥∇fi,j(x̄t)−∇fi,j(w̄t)

∥∥2 + ∥∥∇fi,j(w̄t)−∇fi,j(wt
i)
∥∥2]

(12)

≤ 12

m2n2

m∑
i=1

n∑
j=1

(
1− qi,j
qi,j

Li,j

(
fi,j(w̄

t)− fi,j(x̄
t)−

〈
∇fi,j(x̄t), w̄t − x̄t

〉)
+ L2

i,j

(∥∥xti − x̄t
∥∥2 + ∥∥wt

i − w̄t
∥∥2))

≤ 12

m2n2

m∑
i=1

n∑
j=1

1− qi,j
qi,j

Li,j

(
fi,j(w̄

t)− fi,j(x̄
t)−

〈
∇fi,j(x̄t), w̄t − x̄t

〉)
+ C2 ·

(∥∥wt − 1w̄t
∥∥2 + ∥∥xt − 1x̄t

∥∥2)
≤ 12

mnb

m∑
i=1

n∑
j=1

(1− qi,j)L̄
(
fi,j(w̄

t)− fi,j(x̄
t)−

〈
∇fi,j(x̄t), w̄t − x̄t

〉)
+ C2 ·

(∥∥wt − 1w̄t
∥∥2 + ∥∥xt − 1x̄t

∥∥2)
≤12L̄max

b

(
f(w̄t)− f(x̄t)−

〈
∇f(x̄t), w̄t − x̄t

〉)
+ C2 ·

(∥∥wt − 1w̄t
∥∥2 + ∥∥xt − 1x̄t

∥∥2) ,
where the second inequality is based on the fact that L̂ ≥ Li,j for all i ∈ [m] and j ∈ [n] and the second last inequality
holds because of we take qi,j = min{1, bLi,j/(mnL̄max)}. Other inequalities are based on Young’s inequality. Then by
combining the three inequalities we have

Eξt+1
i,j

[∥∥∥s̄t −∇f(x̄t)2
∥∥∥2] ≤12L̄max

b

(
f(w̄t)− f(x̄t)−

〈
∇f(x̄t), w̄t − x̄t

〉)
+ C2 ·

(∥∥wt − 1w̄t
∥∥2 + ∥∥xt − 1x̄t

∥∥2)
+

2L̂2

m

∥∥xt − 1x̄t
∥∥2 ,

which concludes the proof.

Next, we provide some lemmas by following the analysis on non-distributed methods (Kovalev et al., 2020a; Qian et al.,
2021). For the completeness, we also give their detailed proofs.
Lemma C.6. Under the settings of Lemma 3.4, we have〈

s̄t, x∗ − z̄t+1
〉
+
µ

2

∥∥x̄t − x∗
∥∥2 ≥ L

2η

∥∥z̄t − z̄t+1
∥∥2 + Zt+1 − 1

1 + ησ
Zt. (19)

17

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Proof. Based on the definition of zt+1, we have

zt+1 Alg. 2
=

1

1 + ησ

(
ησxt + zt − η

L
st
)
,

which means
η

L
s̄t = ησ(x̄t − z̄t+1) + (z̄t − z̄t+1).

It further implies that〈
s̄t, z̄t+1 − x∗

〉
=µ
〈
x̄t − z̄t+1, z̄t+1 − x∗

〉
+
L

η

〈
z̄t − z̄t+1, z̄t+1 − x∗

〉
=
µ

2

(∥∥x̄t − x∗
∥∥2 − ∥∥x̄t − z̄t+1

∥∥2 − ∥∥z̄t+1 − x∗
∥∥2)

+
L

2η

(∥∥z̄t − x∗
∥∥2 − ∥∥z̄t − z̄t+1

∥∥2 − ∥∥z̄t+1 − x∗
∥∥2)

≤µ
2

∥∥x̄t − x∗
∥∥2 + L

2η

(∥∥z̄t − x∗
∥∥2 − (1 + ησ)

∥∥z̄t+1 − x∗
∥∥2)− L

2η

∥∥z̄t − z̄t+1
∥∥2 ,

which concludes the proof.

Lemma C.7. Under the settings of Lemma 3.4, we have

1

θ1

(
f(ȳt+1)− f(x̄t)

)
− 1

24Lθ1

∥∥s̄t −∇f(x̄t)
∥∥2 ≤ L

2η

∥∥z̄t+1 − z̄t
∥∥2 + 〈s̄t, z̄t+1 − z̄t

〉
. (20)

Proof. We have

L

2η

∥∥z̄t+1 − z̄t
∥∥2 + ⟨s̄t, z̄t+1 − z̄t⟩

=
1

θ1

(
L

2ηθ1

∥∥θ1(z̄t+1 − z̄t)
∥∥2 + ⟨s̄t, θ1(z̄t+1 − z̄t)⟩

)
=

1

θ1

(
L

2ηθ1

∥∥ȳt+1 − x̄t
∥∥2 + 〈s̄t, ȳt+1 − x̄t

〉)
=

1

θ1

(
L

2ηθ1

∥∥ȳt+1 − x̄t
∥∥2 + 〈∇f(x̄t), ȳt+1 − x̄t

〉
+
〈
s̄t −∇f(x̄t), ȳt+1 − x̄t

〉)
=

1

θ1

(
L

2

∥∥ȳt+1 − x̄t
∥∥2 + 〈∇f(x̄t), ȳt+1 − x̄t

〉
+
L

2

(
1

ηθ1
− 1

)∥∥ȳt+1 − x̄t
∥∥2 + 〈s̄t −∇f(x̄t), ȳt+1 − x̄t

〉)
≥ 1

θ1

(
f(ȳt+1)− f(x̄t) +

L

2

(
1

ηθ1
− 1

)∥∥ȳt+1 − x̄t
∥∥2 + 〈s̄t −∇f(x̄t), ȳt+1 − x̄t

〉)
≥ 1

θ1

(
f(ȳt+1)− f(x̄t)− ηθ1

2L(1− ηθ1)

∥∥s̄t −∇f(x̄t)
∥∥2)

=
1

θ1

(
f(ȳt+1)− f(x̄t)− 1

24L

∥∥s̄t −∇f(x̄t)
∥∥2) ,

where the first inequality is because of Assumption 2.1, the last inequality uses Young’s inequality in the form of

⟨a, b⟩ ≥ −∥a∥2

2β
− β ∥b∥2

2
with β =

ηθ1
L(1− ηθ1)

and the last equality is because of the setting η = 1/(13θ1).

Lemma C.8. Under the settings of Lemma 3.4, we have

E
[
Wt+1

]
= (1− p)Wt +

θ2
λ
Yt.

18

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Proof. From Algorithm 2, we know that

E
[
f(w̄t+1)

]
= (1− p)f(w̄t) + pf(ȳt).

Then from the definition of Wt and Yt, we directly finish the proof.

Using the above lemmas, we prove Lemma 3.4 as follows.

Proof of Lemma 3.4. Combining Lemma C.4, C.5, C.6, C.7 and C.8, we obtain

f(x∗) ≥f(x̄t) +
〈
∇f(x̄t), x∗ − x̄t

〉
+
µ

2

∥∥x̄t − x∗
∥∥2

=f(x̄t) +
µ

2

∥∥x̄t − x∗
∥∥2 + 〈∇f(x̄t), x∗ − z̄t + z̄t − x̄t

〉
=f(x̄t) +

µ

2

∥∥x̄t − x∗
∥∥2 + 〈∇f(x̄t), x∗ − z̄t

〉
+
θ2
θ1

〈
∇f(x̄t), x̄t − w̄t

〉
+

(1− θ1 − θ2)

θ1

〈
∇f(x̄t), x̄t − ȳt

〉
=f(x̄t) +

θ2
θ1

〈
∇f(x̄t), x̄t − w̄t

〉
+

(1− θ1 − θ2)

θ1
(f(x̄t)− f(ȳt))

+ E
[µ
2

∥∥x̄t − x∗
∥∥2 + 〈s̄t, x∗ − z̄t+1

〉
+
〈
s̄t, z̄t+1 − z̄t

〉]
+
〈
∇f(x̄t)− E[s̄t], x∗ − z̄t

〉
(19)

≥ f(x̄t) +
θ2
θ1

〈
∇f(x̄t), x̄t − w̄t

〉
+

(1− θ1 − θ2)

θ1
(f(x̄t)− f(ȳt))

+ E
[
Zt+1 − 1

1 + ησ
Zt

]
+ E

[〈
s̄t, z̄t+1 − z̄t

〉
+
L

2η

∥∥z̄t − z̄t+1
∥∥2]

+
〈
∇f(x̄t)− E[s̄t], x∗ − z̄t

〉
(20)

≥ f(x̄t) +
θ2
θ1

〈
∇f(x̄t), x̄t − w̄t

〉
+

(1− θ1 − θ2)

θ1
(f(x̄t)− f(ȳt))

+ E
[
Zt+1 − 1

1 + ησ
Zt

]
+ E

[
1

θ1

(
f(ȳt+1)− f(x̄t)

)
− 1

24Lθ1

∥∥s̄t −∇f(x̄t)
∥∥2]

+
〈
∇f(x̄t)− E[s̄t], x∗ − z̄t

〉
(17)

≥ f(x̄t) +
θ2
θ1

〈
∇f(x̄t), x̄t − w̄t

〉
+

(1− θ1 − θ2)

θ1
(f(x̄t)− f(ȳt)) + E

[
Zt+1 − 1

1 + ησ
Zt

]
+ E

[
1

θ1

(
f(ȳt+1)− f(x̄t)

)
− θ2
θ1

(
f(w̄t)− f(x̄t)−

〈
∇f(x̄t), w̄t − x̄t

〉)]
+
〈
∇f(x̄t)− E[s̄t], x∗ − z̄t

〉
− C1

24Lθ1

∥∥xt − 1x̄t
∥∥2 − C2

24Lθ1

∥∥wt − 1w̄t
∥∥2

=f(x̄t) +
(1− θ1 − θ2)

θ1
(f(x̄t)− f(ȳt))− 1

1 + ησ
Zt − θ2

θ1
(f(w̄t)− f(x̄t))

+ E
[
Zt+1 +

1

θ1

(
f(ȳt+1)− f(x̄t)

)]
+
〈
∇f(x̄t)− E[s̄t], x∗ − z̄t

〉
− C1

24Lθ1

∥∥xt − 1x̄t
∥∥2 − C2

24Lθ1

∥∥wt − 1w̄t
∥∥2 ,

where the first inequality is because of Assumption 2.3, the second inequality uses the convexity of f(·), and the last
inequality is obtained by θ2 = L̄max/(2Lb). Note that the notations ofC1 andC2 follow the definitions in (18). Furthermore,
the procedure of Algorithm 2 and Proposition 2.6 implies

x̄t = θ1z̄
t + θ2w̄

t + (1− θ1 − θ2)ȳ
t and z̄t − x̄t =

θ2
θ1

(x̄t − w̄t) +
1− θ1 − θ2

θ1
(x̄t − ȳt).

19

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Combining all the above results, we obtain

E
[
Zt+1 + Yt+1

]
≤ 1

1 + ησ
Zt + (1− θ1 − θ2)Yt +

θ2
θ1

(f(w̄t)− f∗)

−
〈
∇f(x̄t)− E[s̄t], x∗ − z̄t

〉
+

C1

24Lθ1

∥∥xt − 1x̄t
∥∥2 + C2

24Lθ1

∥∥wt − 1w̄t
∥∥2 .

Based on the definition of Wt, we achieve

E
[
Zt+1 + Yt+1

]
≤ 1

1 + ησ
Zt + (1− θ1 − θ2)Yt + pλWt

+
∥∥∇f(x̄t)− E[s̄t]

∥∥∥∥x∗ − z̄t
∥∥+ C1

24Lθ1

∥∥xt − 1x̄t
∥∥2 + C2

24Lθ1

∥∥wt − 1w̄t
∥∥2 .

Finally, we use Lemma C.8 to achieve

E[V t+1] = E
[
Zt+1 + Yt+1 +Wt+1

]
≤ 1

1 + ησ
Zt + (1− θ1 − θ2)Yt + pλWt + (1− p)Wt +

θ2
λ
Yt

+
∥∥∇f(x̄t)− E[s̄t]

∥∥∥∥x∗ − z̄t
∥∥+ C1

24Lθ1

∥∥xt − 1x̄t
∥∥2 + C2

24Lθ1

∥∥wt − 1w̄t
∥∥2

=
1

1 + ησ
Zt +

(
1−

(
θ1 + θ2 −

θ2
λ

))
Yt + (1− p(1− λ))Wt

+
∥∥∇f(x̄t)− E[s̄t]

∥∥∥∥x∗ − z̄t
∥∥+ C1

24Lθ1

∥∥xt − 1x̄t
∥∥2 + C2

24Lθ1

∥∥wt − 1w̄t
∥∥2

≤ 1

1 + ησ
Zt +

(
1−

(
θ1 + θ2 −

θ2
λ

))
Yt + (1− p(1− λ))Wt

+
∥∥∇f(x̄t)− E[s̄t]

∥∥∥∥x∗ − z̄t
∥∥+ C1

24Lθ1

∥∥xt − 1x̄t
∥∥2 + C2

24Lθ1

∥∥wt − 1w̄t
∥∥2

(16)

≤ max

{
1

1 + ησ
,

(
1−

(
θ1 + θ2 −

θ2
λ

))
, (1− p(1− λ))

}
︸ ︷︷ ︸

β

V t +

√
2ηL̂2V t

(1 + ησ)mL

∥∥xt − 1x̄t
∥∥

+

(
12LL̂

b
+

2L̂2

b

)
·
[∥∥xt − 1x̄t

∥∥2 + ∥∥wt − 1w̄t
∥∥2] ,

where the last inequality is obtained by the definition of Vt.

C.2. Proof of Lemma 3.5

The main idea for analyzing the consensus error is establishing the recursion for

rt =
L

m

[
η2

L2

∥∥ut − 1ūt
∥∥2 , η2

L2

∥∥st − 1s̄t
∥∥ ,∥∥zt − 1z̄t

∥∥2 ,∥∥yt − 1ȳt
∥∥2]⊤ ,

There are actually extra consensus error terms ∥xt − 1x̄t∥2 and ∥wt − 1w̄t∥2. These terms can be bounded by the recursion
of rt and we present the process in proof of Theorem 3.7. Recall that we have defined

L̂ ≜ max
i∈[m],j∈[n]

Li,j ,

which satisfies

mnL ≥ L̂ ≥ L̄max ≥ L. (21)

We first provide lemmas for the proof of Lemma 3.5.

20

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Lemma C.9. Under the notations and settings of Lemma 3.5, we have∥∥xt+1 − 1x̄t+1
∥∥2 ≤3θ21

∥∥zt+1 − 1z̄t+1
∥∥2 + 3θ22

∥∥wt+1 − 1w̄t+1
∥∥2 + 3(1− θ1 − θ2)

2
∥∥yt+1 − 1ȳt+1

∥∥2 ,∥∥ut+1 − 1ūt+1
∥∥2 ≤2ρ2

∥∥ut − 1ūt
∥∥2 + 2ρ2

∥∥gt+1 − gt
∥∥2 ,∥∥st+1 − 1s̄t+1

∥∥2 ≤2ρ2
∥∥st − 1s̄t

∥∥2 + 2ρ2
∥∥vt+1 − vt

∥∥2 ,∥∥zt+1 − 1z̄t+1
∥∥2 ≤ 3ρ2η2σ2

(1 + ησ)2
∥∥xt − 1x̄t

∥∥2 + 3ρ2
1

(1 + ησ)2
∥∥zt − 1z̄t

∥∥2 + 3ρ2η2

(1 + ησ)2L2

∥∥st − 1s̄t
∥∥2 ,∥∥yt+1 − 1ȳt+1

∥∥2 ≤3ρ2
∥∥xt − 1x̄t

∥∥2 + 3ρ2θ21
∥∥zt+1 − 1z̄t+1

∥∥2 + 3ρ2θ21
∥∥zt − 1z̄t

∥∥2 .
Proof. The upper bounds of

∥∥xt+1 − 1x̄t+1
∥∥,
∥∥zt+1 − 1z̄t+1

∥∥ and
∥∥yt+1 − 1ȳt+1

∥∥ hold by combining Young’s inequality
and Proposition 2.6. The upper bounds of

∥∥ut+1 − 1ūt+1
∥∥ and

∥∥st+1 − 1s̄t+1
∥∥ can be obtained in the same way. We only

provide the details for
∥∥ut+1 − 1ūt+1

∥∥ as follows. We have

∥∥ut+1 − ūt+1
∥∥2 =

m∑
i=1

∥∥ut+1
i − ūt+1

∥∥2
≤ρ2

m∑
i=1

∥∥(uti − ūt) +
(
gt+1
i − gti −

(
ḡt+1 − ḡt

))∥∥2
≤2ρ2

m∑
i=1

∥∥uti − ūt
∥∥2 + 2ρ2

m∑
i=1

∥∥(gt+1
i − gti −

(
ḡt+1 − ḡt

))∥∥2
≤2ρ2

m∑
i=1

∥∥uti − ūt
∥∥2 + 2ρ2

m∑
i=1

∥∥gt+1
i − gti

∥∥2
=2ρ2

∥∥ut − 1ūt
∥∥2 + 2ρ2

∥∥gt+1 − gt
∥∥2 ,

where the first inequality is because of Proposition 2.6 and the last inequality is based on the fact

m∑
i=1

∥ai − ā∥22 ≤
m∑
i=1

∥ai∥22 .

for {ai ∈ R1×d}mi=1 and ā =
∑m

i=1 ai/m.

Lemma C.10 (Expected consensus error of wt). Under the settings of Lemma 3.5, it holds that

E
[∥∥wt+1 − 1w̄t+1

∥∥2] = t∑
s=1

p(1− p)t−sE
[
∥ys − 1ȳs∥2

]
. (22)

Proof. At the t-th iteration where t = 0, . . . , we have

Eζt

[∥∥wt+1 − 1w̄t+1
∥∥2] = (1− p)

∥∥wt − 1w̄t
∥∥2 + p

∥∥yt − 1ȳt
∥∥2 .

We can obtain from this recursion that

E
[∥∥wt+1 − 1w̄t+1

∥∥2] = t∑
s=0

p(1− p)t−sE
[
∥ys − 1ȳs∥2

]
+ (1− p)t+1

∥∥w0 − 1w̄0
∥∥2 .

Then as initialization implies
∥∥w0 − 1w̄0

∥∥2 =
∥∥y0 − 1ȳ0

∥∥2 = 0, this leads to the desired result.

Lemma C.11. Under the settings of Lemma 3.5, it holds that

∥∥gt+1 − gt
∥∥2 ≤4L̂2

∥∥wt+1 − 1w̄t+1
∥∥2 + 8L̂mpλθ1

θ2
Wt+1 + 4L̂2

∥∥wt − 1w̄t
∥∥2 + 8L̂mpλθ1

θ2
Wt.

21

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Proof. We have

∥∥gt+1 − gt
∥∥2 =

m∑
i=1

∥∥gt+1
i − gti

∥∥2 ≤ 2

m∑
i=1

∥∥∇fi(wt+1
i)−∇fi(x∗)

∥∥2 + 2

m∑
i=1

∥∥∇fi(wt
i)−∇fi(x∗)

∥∥2 .
We also have ∥∥∇fi(wt

i)−∇fi(x∗)
∥∥2 =

∥∥∇fi(wt
i)−∇fi(w̄t) +∇fi(w̄t)−∇fi(x∗)

∥∥2
≤ 2

∥∥∇fi(wt
i)−∇fi(w̄t)

∥∥2 + 2
∥∥∇fi(w̄t)−∇fi(x∗)

∥∥2
≤ 2L̂2

∥∥wt
i − w̄t

∥∥2 + 2
∥∥∇fi(w̄t)−∇fi(x∗)

∥∥2
(12)

≤ 2L̂2
∥∥wt

i − w̄t
∥∥2 + 4L̂(fi(w̄

t)− fi(x
∗)).

Combining the above results, we achieve

∥∥gt+1 − gt
∥∥2 ≤2

m∑
i=1

∥∥∇fi(wt+1
i)−∇fi(x∗)

∥∥2 + 2

m∑
i=1

∥∥∇fi(wt
i)−∇fi(x∗)

∥∥2
≤

m∑
i=1

4L̂2
∥∥wt+1

i − w̄t+1
∥∥2 + 8L̂(fi(w̄

t+1)− fi(x
∗)) +

m∑
i=1

4L̂2
∥∥wt

i − w̄t
∥∥2 + 8L̂(fi(w̄

t)− fi(x
∗))

=4L̂2
∥∥wt+1 − 1w̄t+1

∥∥2 + 8L̂m(f(w̄t+1)− f(x∗)) + 4L̂2
∥∥wt − 1w̄t

∥∥2 + 8L̂m(f(w̄t)− f(x∗))

=4L̂2
∥∥wt+1 − 1w̄t+1

∥∥2 + 8L̂mpλθ1
θ2

Wt+1 + 4L̂2
∥∥wt − 1w̄t

∥∥2 + 8L̂mpλθ1
θ2

Wt.

Next, we target to bound ∥vt − 1v̄t∥2, which is decomposed into two parts.

Lemma C.12. Under the settings of Lemma 3.5, it holds that

∥∥ut
∥∥2 =

m∑
i=1

∥∥uti∥∥2 ≤ 3
∥∥ut − 1ūt

∥∥2 + 3L̂2
∥∥wt − 1w̄t

∥∥2 + 6L̂mpλθ1
θ2

Wt.

Proof. We have

m∑
i=1

∥∥uti∥∥2 =

m∑
i=1

∥∥(uti − ūt) + (ūt −∇f(w̄t)) + (∇f(w̄t)−∇f(x∗))
∥∥2

≤
m∑
i=1

(
3
∥∥uti − ūt

∥∥2 + 3
∥∥ūt −∇f(w̄t)

∥∥2 + 3
∥∥∇f(w̄t)−∇f(x∗)

∥∥2)
(12)

≤ 3
∥∥ut − 1ūt

∥∥2 + 3

m∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

(∇fj(wt
j)−∇fj(w̄t))

∥∥∥∥∥∥
2

+ 3

m∑
i=1

(2L̂(fi(w̄
t)− fi(x

∗))

≤ 3
∥∥ut − 1ūt

∥∥2 + 3

m

m∑
i=1

m∑
j=1

∥∥∇fj(wt
j)−∇fj(w̄t)

∥∥2 + 3

m∑
i=1

(2L(fi(w̄
t)− fi(x

∗))

(21)

≤ 3
∥∥ut − 1ūt

∥∥2 + 3L̂2

m

m∑
i=1

m∑
j=1

∥∥wt
j − w̄t

∥∥2 + 3

m∑
i=1

(2L(f(w̄t)− fi(x
∗))

= 3
∥∥ut − 1ūt

∥∥2 + 3L̂2
∥∥wt − 1w̄t

∥∥2 + 6L̂mpλθ1
θ2

Wt,

where the first and third inequalities are based on Young’s inequality.

22

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Lemma C.13. Under the settings of Lemma 3.5, it holds that

m∑
i=1

Eξt+1
i,j


∥∥∥∥∥∥

n∑
j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)∥∥∥∥∥∥

2


≤3mnL̂2

b

(∥∥xt − 1x̄t
∥∥2 + ∥∥wt − 1w̄t

∥∥2)+ 12m2nL̂

b
max

{
2

13θ1
,
2θ1
θ2

}
V t.

Proof. It holds that

m∑
i=1

Eξt+1
i,j


∥∥∥∥∥∥

n∑
j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)∥∥∥∥∥∥

2


≤ 1

n

m∑
i=1

n∑
j=1

Eξt+1
i,j

∥∥∥∥∥ξ
t+1
i,j

qi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)∥∥∥∥∥

2
 =

1

n

m∑
i=1

n∑
j=1

1

qi,j

∥∥∇fi,j(xti)−∇fi,j(wt
i)
∥∥2

≤ 3

n

m∑
i=1

n∑
j=1

1

qi,j

(∥∥∇fi,j(xti)−∇fi,j(x̄t)
∥∥2 + ∥∥∇fi,j(x̄t)−∇fi,j(w̄t)

∥∥2 + ∥∥∇fi,j(wt
i)−∇fi,j(w̄t)

∥∥2)
≤ 3

n

m∑
i=1

n∑
j=1

1

qi,j

(
L2
i,j

∥∥xti − x̄t
∥∥2 + L2

i,j

∥∥wt
i − w̄t

∥∥2 + ∥∥∇fi,j(x̄t)−∇fi,j(w̄t)
∥∥2) ,

where the first and second inequality are based on Young’s inequality. In the third inequality, we use smoothness of fi,j(·).
In the second last inequality, we use the convexity of f(·). Then we consider the terms separately. First, we can obtain the
consensus error terms as

3

n

m∑
i=1

n∑
j=1

1

qi,j

(
L2
i,j

∥∥xti − x̄t
∥∥2 + L2

i,j

∥∥wt
i − w̄t

∥∥2)
=
3

n

m∑
i=1

n∑
j=1

L2
i,j

qi,j

(∥∥xti − x̄t
∥∥2 + ∥∥wt

i − w̄t
∥∥2)

(a)

≤ 3mL̂2

b

m∑
i=1

n∑
j=1

(∥∥xti − x̄t
∥∥2 + ∥∥wt

i − w̄t
∥∥2)

=
3mnL̂2

b

(∥∥xt − 1x̄t
∥∥2 + ∥∥wt − 1w̄t

∥∥2) ,
where the step (a) is based on the setting qi,j = min

{
1, bLi,j/(mnL̄max)

}
and facts mn ≥ b and L̂ ≥ L̄max that leads to

Li,j

qi,j
= Li,j ·max

{
1,
mnL̄max

bLi,j

}
= max

{
Li,j ,

mnL̄max

b

}
≤ mnL̂

b
. (23)

Then we consider that

3

n

m∑
i=1

n∑
j=1

1

qi,j

∥∥∇fi,j(x̄t)−∇fi,j(w̄t)
∥∥2

≤ 3

n

m∑
i=1

n∑
j=1

1

qi,j

(
2
∥∥∇fi,j(x̄t)−∇fi,j(x∗)

∥∥2 + 2
∥∥∇fi,j(w̄t)−∇fi,j(x∗)

∥∥2)
(12)

≤ 12

n

m∑
i=1

n∑
j=1

Li,j

qi,j

(
(fi,j(x̄

t)− fi,j(x
∗)) + (fi,j(w̄

t)− fi,j(x
∗))
)

23

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

(23)

≤ 12mL̂

b

m∑
i=1

n∑
j=1

(
(fi,j(x̄

t)− fi,j(x
∗)) + (fi,j(w̄

t)− fi,j(x
∗))
)

=
12m2nL̂

b

(
(f(x̄t)− f(x∗)) + (f(w̄t)− f(x∗))

)
≤12m2nL̂

b

(
(f(z̄t)− f(x∗)) + (f(ȳt)− f(x∗)) + 2(f(w̄t)− f(x∗))

)
≤12m2nL̂

b

(
L

2

∥∥z̄t − x∗
∥∥2 + (f(ȳt)− f(x∗)) + 2(f(w̄t)− f(x∗))

)
=
12m2nL̂

b

(
2η

1 + ησ
Zt + θ1Yt +

2pλθ1
θ2

Wt

)
≤12m2nL̂

b
max

{
2

13θ1
,
2θ1
θ2

}
V t,

where the fourth inequality is based on the fact that f(·) is convex. Then by combining the above results, we can obtain that

m∑
i=1

Eξt+1
i,j


∥∥∥∥∥∥

n∑
j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)∥∥∥∥∥∥

2


≤3mnL̂2

b

(∥∥xt − 1x̄t
∥∥2 + ∥∥wt − 1w̄t

∥∥2)+ 12m2nL̂

b
max

{
2

13θ1
,
2θ1
θ2

}
V t,

which concludes the proof.

Lemma C.14. Under the settings of Lemma 3.5, it holds that

E
[∥∥vt+1 − vt

∥∥2] ≤12
∥∥ut+1 − 1ūt+1

∥∥2 + 12mnL̂2

b

∥∥xt+1 − 1x̄t+1
∥∥2 + 24mnL̂2

b

∥∥wt+1 − 1w̄t+1
∥∥2

+ 12
∥∥ut − 1ūt

∥∥2 + 12mnL̂2

b

∥∥xt − 1x̄t
∥∥2 + 24mnL̂2

b

∥∥wt − 1w̄t
∥∥2

+
24m2nL̂

b
max

{
2

13θ1
,
5θ1
2θ2

}
· (V t + V t+1).

Proof. It holds that

E
[∥∥vt

∥∥2] = m∑
i=1

E


∥∥∥∥∥∥uti +

n∑
j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)∥∥∥∥∥∥

2


≤
m∑
i=1

E

2∥∥uti∥∥2 + 2

∥∥∥∥∥∥
n∑

j=1

ξt+1
i,j

nqi,j

(
∇fi,j(xti)−∇fi,j(wt

i)
)∥∥∥∥∥∥

2


≤6
∥∥ut − 1ūt

∥∥2 + 6mnL̂2

b

∥∥xt − 1x̄t
∥∥2 + 12mnL̂2

b

∥∥wt − 1w̄t
∥∥2

+
12m2nL̂

b
max

{
2

13θ1
,
5θ1
2θ2

}
· V t,

where the last inequality is because of Lemma C.12 and C.13. Then we can obtain the desired result by using the fact use
the fact that ∥vt+1 − vt∥2 ≤ 2∥vt+1∥2 + 2 ∥vt∥2.

Substituting the result of Lemma C.11 and Lemma C.14 into Lemma C.9, we obtain the result of Lemma 3.5. Here, we
rewrite Lemma 3.5 by including the detailed expressions of A and ht.

24

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Lemma C.15. Under the settings of Lemma 3.4, we run Algorithm 2 by taking

K =

⌈
log(1/ρ)

√
γ

⌉
with 1/ρ = O (poly(m,n, κ)) .

Then it holds
E
[
rt+1

]
≤ ρ2

(
A · rt + ht

)
, (24)

where

A =


2 0 0 0

24(1 + 2ρ2) a22 a23 a24

0 3η2

(1+ησ)2
3+9θ2

1η
2σ2

(1+ησ)2
9(1−θ1−θ2)

2η2σ2

(1+ησ)2

0
9ρ2η2θ2

1

(1+ησ)2 6θ21 +
9ρ2θ2

1+27ρ2θ4
1η

2σ2

(1+ησ)2 3(1− θ1 − θ2)
2 +

27ρ2θ2
1(1−θ1−θ2)

2η2σ2

(1+ησ)2


and

ht =



8L̂2

Lm

(
∥wt − 1w̄t∥2 +

∥∥wt+1 − 1w̄t+1
∥∥2)+ 16L̂θ1pλ

Lθ2
(Wt+1 +Wt)

h2

9η2σ2θ2
2L

(1+ησ)2m ∥wt − 1w̄t∥2(
9θ22 +

27ρ2η2σ2θ2
2θ

2
1

(1+ησ)2

)
L
m ∥wt − 1w̄t∥2

 ,
with

a22 =2 +
9ρ2η2θ21
(1 + ησ)2

+
27ρ4η2θ21(1− θ1 − θ2)

2

(1 + ησ)2

a23 =
72mnL̂2θ21

bL2

(
1 +

ρ2(3 + 9θ21η
2σ2)

(1 + ησ)2
+ ρ2(1− θ1 − θ2)

2

(
6 +

9ρ2 + 27ρ2θ21η
2σ2

(1 + ησ)2

))
a24 =

72mnL̂2(1− θ1 − θ2)
2

bL2

(
1 +

9ρ2θ21η
2σ2

(1 + ησ)2
+ ρ2(1− θ1 − θ2)

2

(
3 +

27ρ2θ21η
2σ2

(1 + ησ)2

))
h2 =

48(1 + 3
2θ

2
2)nL̂

2

bL

(∥∥wt − 1w̄t
∥∥2 + ∥∥wt+1 − 1w̄t+1

∥∥2)+ 48m2nL̂

bL
max

{
2

13θ1
,
21θ1
2θ2

}
· (V t+1 + V t)

+
648ρ2nL̂2θ22

bL

(
η2σ2θ21

(1 + ησ)2
+ (1− θ1 − θ2)

2 +
3ρ2η2σ2(1− θ1 − θ2)

2θ21
(1 + ησ)2

)∥∥wt − 1w̄t
∥∥2 .

Additionally, we have

∥A∥ ≤ 91m3n3

b
(25)

and∥∥ht∥∥ <48m3n3

b
max

{
2

13θ1
,
65θ1
6θ2

}
(V t+1 + V t) +

(66 + 324ρ2)nL̂2

bL

∥∥wt − 1w̄t
∥∥2 + 324ρ2nL̂2

bL

∥∥wt+1 − 1w̄t+1
∥∥2

≤48m3n3

b
max

{
2

13θ1
,
65θ1
6θ2

}
(V t+1 + V t) +

(66 + 324ρ2)m2n3L

b

∥∥wt − 1w̄t
∥∥2

+
324ρ2m2n3L

b

∥∥wt+1 − 1w̄t+1
∥∥2 .

(26)

C.3. Proof of Theorem 3.7

Proof. We prove this theorem by induction. We assume that

E
[
V t
]
≤

max

(
1− 1

2
ησ, 1− 1

2

(
θ1 + θ2 −

θ2
λ

)
, 1− 1

2
p(1− λ)

)
︸ ︷︷ ︸

α


t (
V 0 +

∥∥r0∥∥) (27)

25

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

and
E
[∥∥rt∥∥] ≤ αt

(
V 0 +

∥∥r0∥∥) (28)

holds when t ≤ k and are going to prove it holds for t = k + 1. It should be straightforward that the two assumptions hold
when t = 0. We use the notation A and ht by following Lemma C.15.

Based on Lemma C.15 and Lemma 3.4, we need to first deal with additional consensus error
∥∥wt+1 − 1w̄t+1

∥∥2 and∥∥xt+1 − 1x̄t+1
∥∥2 for t = 0, · · · , k. From the simple observation that 1− p/2 ≤ α, we can first obtain an estimation that

for t = 0, · · · , k,

E
[∥∥wt+1 − 1w̄t+1

∥∥2] (22)
=

t∑
s=1

p(1− p)t−sE
[
∥ys − 1ȳs∥2

]
≤m
L

t∑
s=1

p(1− p)t−sE [∥rs∥]
(28)

≤ m

L

t∑
s=1

p(1− p)t−sαs
(
V 0 +

∥∥r0∥∥) .
We can further obtain that

t∑
s=1

p(1− p)t−sαs =p

t∑
s=1

(
1− p

α

)t−s

αt ≤ p

t∑
s=1

(
1− 2

3
p

)t−s

αt ≤ 3

2
αt, (29)

where the first inequality is based on the fact that α ≤ 1− p/2 and p ≤ 1/2. Therefore, by plugging in, we can obtain that
for t = 0, . . . , k,

E
[∥∥wt+1 − 1w̄t+1

∥∥2] (29)

≤ 3m

2L
αt
(
V 0 +

∥∥r0∥∥) , (30)

As equation (30) might be loose, we then seek an even tighter bound for
∥∥wt+1 − 1w̄t+1

∥∥2. By Lemma C.15, we can
obtain that for all t = 1, · · · , k + 1, it holds that

E
[∥∥rt∥∥]

(24)

≤ E
[
ρ2
∥∥A · rt−1 + ht−1

∥∥] ≤ E
[
ρ2 ∥A∥

∥∥rt−1
∥∥+ ρ2

∥∥ht−1
∥∥]

(25),(26),(27)

≤ ρ2E
[
91m3n3

b
αt−1

(
V 0 +

∥∥r0∥∥)+ 48m3n3

b
max

{
2

13θ1
,
65θ1
6θ2

}
(V t + V t−1)

]
+ ρ2E

[
(66 + 324ρ2)m2n3L

b

∥∥wt−1 − 1w̄t−1
∥∥2 + 324ρ2m2n3L

b

∥∥wt − 1w̄t
∥∥2]

(30)

≤ ρ2
[
91m3n3

b
αt−1 +

96m3n3αt−1

b
max

{
2

13θ1
,
65θ1
6θ2

}
+

(66 + 648ρ2)m3n3

b
· 3
2
αt−1

]
·
(
V 0 +

∥∥r0∥∥)
≤ 2750m3n3ρ2αt

b
·
(
V 0 +

∥∥r0∥∥) ,
(31)

where the last inequality holds by the setting α > 1/2, b =
√
mnκ̄max/κ, θ1 = 1/(2

√
κ), θ2 = κ̄max/(2bκ) and

1/ρ ≥ 18
√
2. Thus we obtain a sharper upper bound of

∥∥wt+1 − 1w̄t+1
∥∥2 for t = 1, · · · , k, that is

E
[∥∥wt+1 − 1w̄t+1

∥∥2] (22)
=

t∑
s=1

p(1− p)t−sE
[
∥ys − 1ȳs∥2

]
≤ m

L

t∑
s=1

p(1− p)t−sE [∥rs∥]

(31)

≤
t∑

s=1

p(1− p)t−sαs · 2750m
4n3ρ2

bL
·
(
V 0 +

∥∥r0∥∥)
(29)

≤ 4125m4n3ρ2αt

bL
·
(
V 0 +

∥∥r0∥∥) .

(32)

26

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Next, we bound
∥∥xk − 1x̄k

∥∥2 by

E
[∥∥xk − 1x̄k

∥∥2] ≤ 3θ21E
[∥∥zk − 1z̄k

∥∥2]+ 3θ22E
[∥∥wk − 1w̄k

∥∥2]+ 3(1− θ1 − θ2)
2E
[∥∥yk − 1ȳk

∥∥2]
≤ 3m

L
E
[∥∥rk∥∥]+ E

[∥∥wk − 1w̄k
∥∥2]

(31),(32)

≤ 12375m4n3ρ2αk

bL
·
(
V 0 +

∥∥r0∥∥) .
(33)

Furthermore, Cauchy–Schwarz inequality implies

E

√ 2ηL̂2V k

(1 + ησ)mL

∥∥xk − 1x̄k
∥∥ ≤

√
2ηL̂2E[V k]

(1 + ησ)mL
·
√
E
[
∥xk − 1x̄k∥2

]
. (34)

Now we finish bounding all the pieces of consensus error and notice that each piece is multiplied by at least ρ. Denote

β = max

{
1

1 + ησ
, 1−

(
θ1 + θ2 −

θ2
λ

)
, 1− p(1− λ)

}
,

and by substituting the estimation of the pieces above, from Lemma 3.4, we have

E[V k+1]

(27)

≤ E

βV k +

√
2ηL̂2V k

(1 + ησ)mL

∥∥xk − 1x̄k
∥∥+ C1

24Lθ1

∥∥xk − 1x̄k
∥∥2 + C2

24Lθ1

∥∥wk − 1w̄k
∥∥2

(31),(34),(33)

≤ E

βV k +

√
4ηL̂2

(1 + ησ)mL

√
12375m4n3ρ2

bL
· αk

(
V 0 +

∥∥r0∥∥)+ C1

∥∥xk − 1x̄k
∥∥2 + C2

∥∥wk − 1w̄k
∥∥2

24Lθ1


(32),(33)

≤ αk
(
β + ρ · C3 + ρ2 · C4

)
(V 0 +

∥∥r0∥∥),
where

C3 =

√
4ηL̂2

(1 + ησ)mL2
· 12375m

3n3

b
and C4 =

C1

24Lθ1

12375m3n3

b
+

C2

24Lθ1

4125m3n3

b
,

and C1 and C2 are defined at (18). Therefore, above result and the fact α− β = Θ(1/
√
κ) means have

E
[
V k+1

]
≤ αk(V 0 +

∥∥r0∥∥) · (β +

(
1− 1

2
β

))
≤ αk+1(V 0 +

∥∥r0∥∥),
and

E
[∥∥rk+1

∥∥] ≤ αk+1 ·
(
V 0 +

∥∥r0∥∥) ,
by taking ρ > 0 such that 1/ρ = O (poly(m,n, κ)), which finishes the induction. Hence, we have

E
[
V t +

∥∥rt∥∥] ≤ 2

max

(
1− 1

2
ησ, 1− 1

2

(
θ1 + θ2 −

θ2
λ

)
, 1− 1

2
p(1− λ)

)
︸ ︷︷ ︸

α


t (
V 0 +

∥∥r0∥∥) .
for all t. The condition of ρ can be satisfied by taking

K =
log(1/ρ)

√
γ

= O
(
log(poly (mnκ))

√
γ

)
.

Combining the above results, we finish the proof.

27

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

C.4. Proof of Corollary 3.8

Proof. We first prove that CESAR (Algorithm 2) can find an ϵ-suboptimal solution in expectation. We run Algorithm 2 with
the setting of Theorem 3.7 and let

T = O

((
κ

η
+

2

θ1 + θ2 − θ2
λ

+
2

p(1− λ)

)
log

1

ϵ

)
. (35)

Then Theorem 3.7 means

E[f(ȳT)− f(x∗)] ≤ ϵ

2
,

and E
[∥∥yTi − ȳT

∥∥2] ≤ mϵ/L for each i ∈ [m]. Moreover, Proposition 2.6 means step yout = FastMix(yT ,Kout)

with Kout = O
(√

1/α logm
)

(line 20 of Algorithm 2) leads to ȳout = ȳT and

LE
[∥∥youti − ȳout

∥∥2] ≤ ϵ (36)

for each i ∈ [m]. Applying the smoothness of f (Assumption 2.1), we have

f(youti)− f(ȳout) ≤ L

2

∥∥youti − ȳout
∥∥2 ≤ ϵ

2

for each i ∈ [m]. Together we have

f(youti)− f(x∗) =f(youti)− f(ȳout) + f(ȳout)− f(x∗) ≤ ϵ

2
+
ϵ

2
= ϵ

for each i ∈ [m]. This implies that output yout is an ϵ-suboptimal solution in expectation.

Then we analyze the complexity of Algorithm 2 by following the parameter settings of Theorem 3.7. As we set p =
max{θ1, θ2}, when it holds that θ1 > θ2, we set the auxiliary constant λ = 2/3, then we have

2

θ1 + θ2 − θ2
λ

+
2

p(1− λ)
≤ 4

θ1
+

6

θ1
=

10

θ1
.

Else if θ1 ≤ θ2, we set the auxiliary constant λ = 2θ2/(2θ2 + θ1) ∈ [2/3, 1) and can obtain that

2

θ1 + θ2 − θ2
λ

+
2

p(1− λ)
≤ 4

θ1
+

2

θ2(1− λ)
≤ 4

θ1
+

6

θ1
=

10

θ1
.

Therefore, by substituting the parameters setting into (35), we can obtain(
κ

η
+

2

θ1 + θ2 − θ2
λ

+
2

p(1− λ)

)
log

1

ϵ
= O

(√
κ log

1

ϵ

)
and thus

T = O
(√

κ log
1

ϵ

)
.

Then we directly achieve the communication complexity by TK = Õ
(√

κ/γ log(1/ϵ)
)

and the expected LIFO complexity
by T (mnp+

∑m
i=1

∑n
j=1 qi,j) = O ((

√
mnκ̄max +mn) log(1/ϵ)).

Then we consider the computation time. As discussed in Section 3.2.1, it contains the full-batch gradient computation at
snapshot points and mini-batch gradient computation at all points. For the snapshot points, it takes

np · T = O

(
max

{√
nκ̄max

m
,n

}
· log 1

ϵ

)
.

28

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

For the mini-batch costs, it takes

T−1∑
t=0

E
[
max
i∈[m]

Y t
i

]
= O

(√
nκ̄max

m
+

√
κ · (lnmn)2

)
,

where we bound E
[
maxi∈[m] Y

t
i

]
by using Theorem 3.3.

Summing over above results, we can obtain the overall computation time complexity

Õ

((√
nκ̄max

m
+ n+

√
κ

)
log

1

ϵ

)
,

which finishes the proof.

D. Proof of Section 4
The proofs for lower complexity bounds in Section 4 follow the construction of Hendrikx et al. (2021, Theorem 4.1 and
Corollary 4.3). We modify the instances of Hendrikx et al. (2021) by considering different condition numbers κ, κ̄max

and κ̄.

D.1. Black-box Procedure

We use the notion of black-box procedure by following the definition of Hendrikx et al. (2021) and we present its details for
completeness. The following definition does not include the oracles of dual gradient and proximal operation, since we focus
on dual-free methods.

Specifically, we consider the black-box procedure for distributed algorithms on a system of m nodes, that respect:

• Local Memory: Each node i ∈ [m] has a local memory Mi,t at time t. The values in this local memory can only
come from either local computation MC

i,t or communication MG
i,t, so that for all i ∈ [m], Mi,t ⊆ MC

i,t ∪MG
i,t.

• Local Computation: Each node i can, at time t, compute ∇fi,ξt,i(x), where ξt,i ∈ [n] can be arbitrarily chosen by the
algorithm and x ∈ Mi,t−1. This is equivalent to that

MG
i,t = Span

({
x,∇fi,ξt,i(x) : x ∈ Mi,t−1

})
.

• Local Communication: Each node i can, at time t, share a value to its neighbours so that for all i ∈ [m],

MC
i,t = Span

 ⋃
j∈N (i),τ∈[t−1]

Mj,t−τ

 .

• Output Value: Each node i must, at time t, specify one vector xti in its memory as the local output of the algorithm,
that is, for all i ∈ [m], xti ∈ Mi,t.

D.2. Proof of Theorem 4.1

Proof of Theorem 4.1. We consider the network of m nodes associated to graph G = {V, E}, where V is the set of nodes
and E is the set of edge. We let Q be a subset of V and Qc

∆ = {v ∈ V : dis(v,Q) ≥ ∆}, where dis(v,Q) is the distance
from v to Q, i.e. the smallest distance between v and node v′ ∈ Q, where we assume the distance between neighbour nodes
is 1. Denote the number of nodes in Q and Qc

∆ as |Q| and |Qc
∆|, and assume that |Q| ≥ |Qc

∆| without loss of generality.

For any L, µ > 0 such that L/µ ∈ [1, κ]. we define the functions ψQ
i : ℓ2 → R as

ψQ
i (y) =

1

2|Q|

[
µ

3
∥y∥2 + L− µ

4
(yTM1y − eT1 y)

]
, if i ∈ Q

29

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

ψQ
i (y) =

1

2|Qc
∆|

[
µ

3
∥y∥2 + L− µ

4
yTM2y

]
, if i ∈ Qc

∆

ψQ
i (y) =

µ

6(m− |Qc
∆| − |Q|)

∥y∥2 , otherwise,

where M1 is the infinite block diagonal matrices with
[
1 −1
−1 1

]
, M2 =

[
1 0
0 M1

]
and e1 = [1, 0, 0, . . .] ∈ ℓ2.

Then we can construct the individual functions fi,j : ℓn2 → R, and objective function f : ℓn2 → R as

fi,j(x) = ψQ
i (xj) and f(x) =

1

mn

m∑
i=1

n∑
j=1

fi,j(x),

where x = [x1; . . . ;xn] ∈ ℓn2 and each xj ∈ ℓ2.

We can verify that f(·) is L/(mn)-smooth and µ/(mn)-strongly convex since it holds 0 ⪯ M1,M2 ⪯ 2I . Thus, the
condition number in our construction satisfies κ ≥ L/µ.

Next, we consider the solution of minx∈ℓn2
f(x). We start from the analysis for the solution of problem miny∈ℓ2 ψ(y)

where ψ(y) = (1/m)
∑m

i=1 ψ
Q
i (y). The definition of ψQ

i (·) implies

ψ(y) =
1

m

m∑
i=1

ψQ
i (y) =

L− µ

8

(
y⊤(M1 +M2)y − e⊤1 y

)
+
µ

2
∥y∥22 .

Since ψ(·) is strongly convex, it has the unique minimizer y∗ = [y∗(0), y∗(1), . . .]⊤. The optimality condition ∇ψ(y∗) = 0
implies we have

µy∗k +
L− µ

4
[2y∗(k)− y∗(k − 1)− y∗(k + 1)] = 0

for all k ≥ 1 and y∗(0) = 1. By induction, we can show that y∗(k) = qk with q = (
√
L/µ− 1)/(

√
L/µ+ 1).

We can further obtain that the minimizer x∗ = [x∗1; . . . ;x
∗
n] ∈ ℓn2 of f(·) satisfies that x∗j = y∗ for all j ∈ [n]. For a

sequence {xti}mi=1 with xti = [xti,1; . . . ;x
t
i,n] ∈ ℓn2 and xti,j ∈ ℓ2 generated by a black-box optimization procedure as defined

in Section D.1 with x0i = 0 for i ∈ [m], we then have

m∑
i=1

n∑
j=1

∥∥xti,j − x∗j
∥∥2 ≥

m∑
i=1

n∑
j=1

∑
l≥kj(t)

∥∥x∗j (l)∥∥2 =

m∑
i=1

n∑
j=1

q2kj(t)

1− q2
=

n∑
j=1

mq2kj(t)

1− q2
,

where kj(t) is the first index such that xti,j(l) = 0 for all nodes i ∈ [n] and l ≥ kj(t). Then it holds that

E

[
∥xt − x∗∥2

∥x0 − x∗∥2

]
= E

 m∑
i=1

n∑
j=1

∥∥xti,j − x∗j
∥∥2∥∥x0i,j − x∗j
∥∥2
 ≤ m(1− q)

1− q2

n∑
j=1

E
[
q2kj(t)

]
(37)

since we have x0i,j = 0 and x∗i,j = y∗ for all i ∈ [m], j ∈ [n]. Note that the upper bound on kj(t) leads to the lower bound
on the expected error. Based on (37), we can provide a lower bound for communication round complexity as follows.

Consider time t and corresponding kj(t). We here discuss the time t′ > t such that kj(t′) = kj(t) + 2. Let us first provide
some straightforward intuition. For initial point x = 0 ∈ ℓ2, to make x(l + 1) non-zero, the structure of M1 and M2 means
we require x(l) non-zero; then ensure it is in the memory of node i ∈ Q and call a LIFO on the node if l is odd (or node
i′ ∈ Qc

∆ if l is even). It is clear that any LIFO (or equivalently, local computation) on fi,j(·) with i /∈ Q ∪Qc
∆ is not helpful

to increase kj(t).

Suppose. kj(t) is odd and there exists vector x ∈ ℓ2 with x(kj(t)) ̸= 0 in the memory of node i ∈ Q. To achieve
kj(t

′) = kj(t) + 2, we have to first call an oracle of fi,j(·), i.e. do local computation, on the node such that at time t′′ we
have kj(t′′) = kj(t)+ 1. Then the message with (kj(t)+ 1)-th coordinate nonzero generated at node i must be sent to node

30

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

i′ ∈ Qc
∆. Then we can call the oracle on fi′,j(·) for i′ ∈ Qc

∆ and at time t′ we have kj(t′) = kj(t) + 2. This procedure
takes at least ∆ communication rounds. By the message with (kj(t) + 2)-th coordinate nonzero generated at node i′ sent
back, it costs at least another ∆ communication rounds to let nodes in Q receive the message. When kj(t) is even, this
procedure starts from a node i′ ∈ Qc

∆ is almost the same as the case of odd kj(t). Since we have kj(0) = 1 and kj(t) ≤ 2
for all t < ∆, we have

kj(t) ≤ 2 +
t

∆
. (38)

Combining (37) and (38), we have

(1− q2)

(1− q)mn
E

 m∑
i=1

n∑
j=1

∥∥xti,j − x∗j
∥∥2∥∥x0i,j − x∗j
∥∥2
 ≥

(
1− 2√

κ+ 1

)4+ 2t
∆

,

where we use

q = 1− 2√
L/µ+ 1

= 1− 2√
κ+ 1

.

Therefore, finding an ϵ-suboptimal solution requires at least communication round complexity of

Ω

(√
κ∆ log

(
1

ϵ

))
.

Based on the constructing of Scaman et al. (2017), when m ≥
√
3/γ, there exists a linear graph such that ∆ = Θ(

√
1/γ).

Thus, we can obtain the lower complexity bound on communication as

Ω

(√
κ

γ
log

(
1

ϵ

))
.

D.3. Proof of Theorem 4.2

Proof of Theorem 4.2. We consider the cases of κ ≤ nκ̄max/m and κ ≥ nκ̄max/m separately.

(a) First case: κ ≤ nκ̄max/m. We employ the similar analysis in the proof of Theorem 4.1. Here, we give the details for
completeness.

We consider the network of m nodes associated to graph G = {V, E}, where V is the set of nodes and E is the set of edge.
We let Q be a subset of V and Qc

∆ = {v ∈ V : dis(v,Q) ≥ ∆}, where dis(v,Q) is the distance from v to Q. Denote the
number of nodes in Q and Qc

∆ as |Q| and |Qc
∆|, and assume that |Q| ≥ |Qc

∆|.

For any L, µ > 0 such that L/µ ∈ [1, κ]. We define the functions ψQ
i : ℓ2 → R as

ψQ
i (y) =

1

2|Q|

[
µ

3
∥y∥2 + L− µ

4
(yTM1y − eT1 y)

]
, if i ∈ Q

ψQ
i (y) =

1

2|Qc
∆|

[
µ

3
∥y∥2 + L− µ

4
yTM2y

]
, if i ∈ Qc

∆

ψQ
i (y) =

µ

6(m− |Qc
∆| − |Q|)

∥y∥2 , otherwise,

where M1 is the infinite block diagonal matrices with
[
1 −1
−1 1

]
, M2 =

[
1 0
0 M1

]
and e1 = [1, 0, 0, . . .] ∈ ℓ2.

Then we can construct the individual functions fi,j : ℓn2 → R, and objective function f : ℓn2 → R as

fi,j(x) = ψQ
i (xj) and f(x) =

1

mn

m∑
i=1

n∑
j=1

fi,j(x),

31

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

where x = [x1; . . . ;xn] ∈ ℓn2 and each xj ∈ ℓ2.

We can verify that f(·) is L/(mn)-smooth and µ/(mn)-strongly convex since it holds 0 ⪯ M1,M2 ⪯ 2I . Thus, the
condition number in our construction satisfies that

κ ≥ L/µ and κ̄max ≥ 1

n
max
i∈[m]

n∑
j=1

Li,j
µ

mn

=
mnL

|Q|µ
.

Next, we consider the solution of minx∈ℓn2
f(x). We start from the analysis for the solution of problem miny∈ℓ2 ψ(y)

where ψ(y) = (1/m)
∑m

i=1 ψ
Q
i (y). The definition of ψQ

i (·) implies

ψ(y) =
1

m

m∑
i=1

ψQ
i (y) =

L− µ

8

(
y⊤(M1 +M2)y − e⊤1 y

)
+
µ

2
∥y∥22 .

Since ψ(·) is strongly convex, it has the unique minimizer y∗ = [y∗(0), y∗(1), . . .]⊤. The optimality condition ∇ψ(y∗) = 0
implies we have

µy∗k +
L− µ

4
[2y∗(k)− y∗(k − 1)− y∗(k + 1)] = 0

for all k ≥ 1 and y∗(0) = 1. By induction, we can show that y∗(k) = qk with q = (
√
L/µ− 1)/(

√
L/µ+ 1).

For a sequence {xti}mi=1 with xti = [xti,1; . . . ;x
t
i,n] ∈ ℓn2 and xti,j ∈ ℓ2 generated by a black-box optimization procedure as

defined in Section D.1 with x0i = 0 for i ∈ [m], the minimizer x∗ = [x∗1; . . . ;x
∗
n] ∈ ℓn2 of f(·) satisfies that x∗j = y∗ for all

j ∈ [n]. We then have
m∑
i=1

n∑
j=1

∥∥xti,j − x∗j
∥∥2 ≥

m∑
i=1

n∑
j=1

∑
l≥kj(t)

∥∥x∗j (l)∥∥2 =

m∑
i=1

n∑
j=1

q2kj(t)

1− q2
=

n∑
j=1

mq2kj(t)

1− q2
,

where kj(t) is the first index such that xti,j(l) = 0 for all nodes i ∈ [n] and l ≥ kj(t). Then it holds that

E

[
∥xt − x∗∥2

∥x0 − x∗∥2

]
= E

 m∑
i=1

n∑
j=1

∥∥xti,j − x∗j
∥∥2∥∥x0i,j − x∗j
∥∥2
 ≤ m(1− q)

1− q2

n∑
j=1

E
[
q2kj(t)

]
(39)

since we have x0i,j = 0 and x∗i,j = y∗ for all i ∈ [m], j ∈ [n]. Note that the upper bound on kj(t) leads to the lower bound
on the expected error. Then based on (39), we can provide a lower bound for computation step complexity as follows.

Without loss of generality, we consider the initial point x0 = 0. The definition of M1 and M2 results that only the LIFO
call (or local computation) at nodes i ∈ Q can increase kj(t) when kj(t) is odd (and only the LIFO call on i′ ∈ Qc

∆ can
increase kj(t) when kj(t) is even). Furthermore, kj(t) can only be changed by calling the LIFO of the component j on
node i (for odd kj(t)) or i′ (for even kj(t)). Thus, we can upper bound kj(t) by the number of LIFO calls of component j
for all i ∈ [m] are called. Since at one computation step, a node i can only call LIFO of one component fi,ξi(t), we have

kj(t) ≤ 1 +

t∑
l=1

∑
i∈Q

1(ξi(t) = j) +

t∑
l=1

∑
i′∈Qc

∆

1(ξi′(t) = j)

where 1(·) is the indicator function. This leads to

n∑
j=1

kj(t) ≤n+

n∑
j=1

t∑
l=1

∑
i∈Q

1(ξi(t) = j) +

n∑
j=1

t∑
l=1

∑
i′∈Qc

∆

1(ξi′(t) = j)

≤n+ |Q|t+ |Qc
∆|t ≤ n+ 2|Q|t.

By Jensen’s inequality, we obtain

1

n

n∑
j=1

q2kj(t) ≥ q
2
n

∑n
j=1 kj(t) ≥ q2+4|Q|t. (40)

32

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Combining (39) and (40) and taking |Q| = |Qc
∆| = 1, we have

(1− q2)

(1− q)mn
E

 m∑
i=1

n∑
j=1

∥∥xti,j − x∗i,j
∥∥2∥∥x0i,j − x∗i,j
∥∥2
 ≥

(
1− 2n√

nκ̄max/m+ n

)2+ 4t
n

,

where we use

q = 1− 2n

n
√
L/µ+ n

= 1− 2n√
n|Q|κ̄max/m+ n

.

Thus, we require at least

Ω

((√
nκ̄max

m
+ n

)
log

(
1

ϵ

))
computation steps to achieve an ϵ-suboptimal solution when nκ̄max/m ≥ κ.

(b) Second case: κ ≥ nκ̄max/m. In this case, we aim to prove a lower bound of Ω (
√
κ log (1/ϵ)) on computation steps

to achieve an ϵ-suboptimal solution. Note that when m ≤ n, from Proposition A.1, it is clear that nκ̄max/m ≥ κ, thus it
should be categorized to the case (a). Hence, we focus on the case of m > n.

We consider the instance that all fi,j are identical. This means we have fi,j(·) = f(·) for all i ∈ [m], j ∈ [n], where
f : ℓ2 → R. For any L-smooth and µ-strongly convex function f(·), also fi,j(·), we have

κ = κ̄max =
L

µ
, and thus

nκ̄max

m
=

n

m
κ ≤ κ.

Since we set fi,j(·) = f(·) for all i ∈ [m] and j ∈ [n], the problem can be regarded as minimizing f(·) on a single
machine by full-batch methods. In this case, the complexity of computation steps corresponds to the complexity of
deterministic first-order algorithms. From the well-known lower bound analysis of Nesterov (2018), we have the lower
bound Ω (

√
κ log(1/ϵ)).

Combining above two cases, we obtain the lower bound on computation steps

Ω

((√
nκ̄max

m
+

√
κ+ n

)
log

(
1

ϵ

))
.

D.4. Proof of Theorem 4.3

We first provide a lower bound for finite-sum problem on single machine by following Agarwal & Bottou (2015); Nesterov
(2018); Woodworth & Srebro (2016).

Lemma D.1. Let κ̄ ≥ 1 and n ∈ N. There exist n functions fj : ℓn2 → R such that each fj is smooth and convex and
objective function f ≜ 1/n

∑n
j=1 fj is µ-strongly convex such that κ̄ ≥

∑n
j=1 Lj/(nµ), where Lj is the smoothness

parameter of fj(·) for all j ∈ [n]. Then for any black box procedure, finding a point x ∈ ℓn2 such that E[∥xt − x∗∥2] ≤ ε
requires at least

Ω

((√
nκ̄+ n

)
log

(
1

ε

))
incremental first-order oracle calls, where x∗ is the minimizer of f(·).

Proof. We first construct individual functions fj : ℓn2 → R and objective function f as

fj(x) = ψ(xj) and f(x) =
1

n

n∑
j=1

fj(x),

33

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

where x = [x1; . . . ;xn] ∈ ℓn2 with xj ∈ ℓ2 for all j ∈ [n]. We define ψ : ℓ2 → R as

ψ(y) =
L− σ

8

(
y⊤My − e⊤1 y

)
+
σ

2
∥y∥22 ,

where M =

[
1

M0

]
and M0 =


2 −1
−1 2 −1

−1 2 −1
.

 is an infinite tridiagonal matrix and σ > 0

We can verify 0 ⪯ M ⪯ 4I , which implies f(·) is σ/n-strongly convex and each fj(·) is L-smooth. Thus, it holds
that κ̄ ≥ nL/µ.

Similar to the proof of Theorem 4.1, we can obtain that the minimizer of ψ(·) is y∗ = [y∗(1); y∗(2); . . .] ∈ ℓ2 with
the k-th coordinate being y∗(k) = qk, where q = (

√
L/σ − 1)/(

√
L/σ + 1). It implies the minimizer of f(·) is

x∗ = [x∗1; . . . ;x
∗
n] ∈ ℓn2 with x∗j = y∗ for each j ∈ [n].

Without loss of generality, we assume the initial point is x0 = 0. Then it holds that

n∑
j=1

∥∥xtj − x∗j
∥∥2 ≥

n∑
j=1

∑
l≥kj(t)

∥∥x∗j (l)∥∥2 =
n∑

j=1

q2kj(t)

1− q2
, (41)

where kj(t) is the first index such that xtj(l) = 0 for all l ≥ kj(t). From x0 = 0 we have that
∥∥x0j − x∗j

∥∥2 = 1/(1− q) for
all j ∈ [n], thus it holds that

E

[
∥xt − x∗∥2

∥x0 − x∗∥2

]
= E

 n∑
j=1

∥∥xtj − x∗j
∥∥2∥∥x0j − x∗j
∥∥2
 ≥ 1− q

1− q2

n∑
j=1

E
[
q2kj(t)

]
.

We then give lower bound on E
[
q2kj(t)

]
. The structure of M means to make the (k + 1)-th coordinate xj(k + 1) be

non-zero requires that xj(k) is non-zero and call incremental first-order oracle ∇fj(·). Thus we can obtain that

kj(t) ≤
t∑

l=1

1 {ζ(t) = j} ,

where ζ(t) be the index of incremental first-order oracle which is accessed at the t-th step. Then it holds that

n∑
j=1

kj(t) ≤
t∑

l=1

n∑
j=1

1 {ζ(t) = j} = t.

Using Jensen’s inequality, we have

1

n

n∑
j=1

qkj(t) ≥ q
1
n

∑n
j=1 kj(t) ≥ q

t
n . (42)

By substituting (42) into (41), we can obtain that

E

[
∥xt − x∗∥2

∥x0 − x∗∥2

]
≥ 1− q

1− q2

n∑
j=1

E
[
q2kj(t)

]
≥ n(1− q)

1− q2

n∑
j=1

q
2t
n .

Since q = (
√
L/σ − 1)/(

√
L/σ + 1) and κ̄ ≥ nL/σ, we need at least

Ω

((√
nκ̄+ n

)
log

(
1

ε

))
first-order oracle calls to achieve E[∥xt − x∗∥2/

∥∥x0 − x∗
∥∥2] ≤ ε.

34

Decentralized Convex Finite-Sum Optimization with Better Dependence on Condition Numbers

Applying Lemma D.1, we can prove Theorem 4.3 straightforwardly.

Proof of Theorem 4.3. Consider the instance in the proof of Lemma D.1, but with m × n individual functions. Then it
suggests the lower complexity bound

Ω

((√
mnκ̄+mn

)
log

(
1

ϵ

))
.

on incremental first-order oracle calls.

In decentralized optimization, we allocate the m × n individual functions fi,j for i ∈ [m] and j ∈ [n] in the proof of
Lemma D.1 on a fully connected network with m nodes. Then it leads to the lower complexity bound

Ω

((√
mnκ̄+mn

)
log

(
1

ϵ

))
.

on local first-order oracle complexity.

35

