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Abstract

Real-world time series are often governed by com-
plex nonlinear dynamics. Understanding these un-
derlying dynamics is crucial for precise future
prediction. While deep learning has achieved
major success in time series forecasting, many
existing approaches do not explicitly model the
dynamics. To bridge this gap, we introduce
DeepEDM, a framework that integrates nonlin-
ear dynamical systems modeling with deep neu-
ral networks. Inspired by empirical dynamic
modeling (EDM) and rooted in Takens’ theorem,
DeepEDM presents a novel deep model that learns
a latent space from time-delayed embeddings,
and employs kernel regression to approximate
the underlying dynamics, while leveraging effi-
cient implementation of softmax attention and
allowing for accurate prediction of future time
steps. To evaluate our method, we conduct com-
prehensive experiments on synthetic data of non-
linear dynamical systems as well as real-world
time series across domains. Our results show
that DeepEDM is robust to input noise, and out-
performs state-of-the-art methods in forecasting
accuracy. Our code is available at: https://
abrarmajeedi.github.io/deep_edm.

1. Introduction

Time series forecasting is fundamental across multiple do-
mains including economics, energy, transportation, and
meteorology, where accurate predictions of future events
guide critical decision-making. Deep learning has recently
emerged as the dominant approach, driven by its ability to
leverage large datasets and capture intricate nonlinearity.
While deep models excel in prediction accuracy, they often
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treat time series data as abstract patterns, and fall short in
considering the underlying processes that generate them.
Addressing this blind spot of deep models is important, be-
cause at its core, time series data is not merely sequences of
numbers; rather, these data represent the dynamic behavior
of complex systems, encoding the interplay of various fac-
tors over time. Indeed, many real-world time series data can
be treated as manifestations of time-variant dynamics (Brun-
ton et al., 2022). Therefore, understanding the underlying
systems can unlock more effective forecasting strategies.

Dynamical systems modeling characterizes the evolution
of deterministic or stochastic processes governed by under-
lying dynamics, thereby offering an appealing solution for
time series forecasting. However, if a system is not speci-
fied, forecasting requires solving the challenging problem
of inferring the underlying dynamics from observations. To
address this, Empirical Dynamical Modeling (EDM) (Sugi-
hara & May, 1990), a data-driven approach built on Takens’
theorem (Takens, 1981b; Sauer et al., 1991), was developed
to recover nonlinear system dynamics from partial observa-
tions of states. EDM leverages time-delayed embeddings
to topologically reconstruct the system’s state space from
observed time series, which can then be used for forecasting.
While EDM has demonstrated success in real-world appli-
cations (Ye et al., 2015; Sugihara et al., 2012), it assumes
noise-free data, requires separate modeling for individual
sequences, and imposes constraints over its forecasting hori-
zon, significantly limiting its broader practical applicability.

To bridge the gap, we propose a novel framework—
DeepEDM that integrates EDM and deep learning, address-
ing EDM’s key limitations and introducing a new family
of deep models for time series forecasting. Specifically,
DeepEDM constructs time-delayed version of the input
sequence, and projects them into a learned latent space
that is more robust to noise. It further employs kernel re-
gression implemented using highly efficient softmax atten-
tion (Vaswani et al., 2017), followed by a learned decoder,
to model the latent dynamics and predict future values. Im-
portantly, DeepEDM is fully differentiable, and thus can be
learned end-to-end from large-scale data.

DeepEDM connects traditional EDM and modern deep
learning. On one hand, it significantly extends EDM by im-
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proving robustness against measurement noise, enabling the
learning of a single parametric model to generalize across
sequences, and supporting longer forecasting horizons. On
the other hand, it integrates the rigor of dynamical systems
modeling with the flexibility and scalability of deep learn-
ing, leading to a variant of Transformer model for time
series forecasting, and providing theoretic insights for other
Transformer-based models (Liu et al., 2024a; Nie et al.,
2023; Chen et al., 2025).

Our main contributions are thus three folds. First, we pro-
pose DeepEDM, a novel framework inspired by dynamical
systems modeling that leverages time-delayed embeddings
for time series forecasting. Second, DeepEDM, grounded
in Takens’ theorem, addresses key limitations of EDM, and
sheds light on prior Transformer-based time series models.
Third, extensive experiments on synthetic datasets and real-
world benchmarks, demonstrate state-of-the-art forecasting
performance of DeepEDM.

2. Related Work

2.1. Deep Learning for Times Series Forecasting

There has been major progress in time series forecasting
thanks to deep learning. Early approaches predominantly
consider Recurrent Neural Networks (RNNs), especially
Long Short-Term Memory (LSTM) networks (Hochreiter &
Schmidhuber, 1997; Yu et al., 2017), which are adept at cap-
turing long-term dependencies. Subsequent developments,
such as LSTNet (Lai et al., 2018) and DeepAR (Salinas
et al., 2020), integrate recurrent and convolutional struc-
tures to enhance forecasting accuracy. Temporal Convo-
lutional Networks (TCNs) (Bai et al., 2018), and methods
like MICN (Wang et al., 2023a) and TimesNet (Wu et al.,
2023), leverage multi-scale information and adaptive re-
ceptive fields, improving multi-horizon forecasting capa-
bilities. Recent works find that Multi-Layer Perceptrons
(MLPs) can achieve competitive performance. Notably,
TimeMixer (Wang et al., 2024a) presents a sophisticated
MLP-based architecture that incorporates multi-scale mix-
ing, outperforming previous MLP models such as DLin-
ear (Zeng et al., 2023) and RLinear (Li et al., 2023).

Transformer-based (Vaswani et al., 2017) models have
shown to be highly effective for long-term forecasting (Chen
et al., 2025). Architectures like Reformer (Kitaev et al.,
2020), Pyraformer (Liu et al., 2021), Autoformer (Wu et al.,
2021), and Informer (Zhou et al., 2021) have enhanced the
scalability and efficiency of attention mechanisms, adapt-
ing them for longer range time series forecasting. Sub-
sequent innovations such as PatchTST (Nie et al., 2023),
which proposes a patching-based channel independent ap-
proach along with instance normalization (Ulyanov et al.,
2016), and iTransformer (Liu et al., 2024a), which utilizes a

channel-wise attention framework, have further improved
the forecasting performance of attention-based models.

2.2. Learning Dynamical Systems for Forecasting

Learning dynamical systems for time series forecasting has
garnered considerable interest within the research commu-
nity. Many prior works builds on Koopman’s theory (Brun-
ton et al., 2022), which represents a nonlinear system
with a linear operator in an infinite-dimensional space.
Examples includes Koopman Autoencoder (Lusch et al.,
2018; Takeishi et al., 2017) and K-Forecast (Lange et al.,
2021). Both approximate the Koopman operator in a high-
dimensional space to effectively model nonlinear dynamics.
These approaches enable scalable forecasting for complex
systems by simultaneously learning the measurement func-
tion and the Koopman operator.

Recent developments, including Koopa (Liu et al.,
2024b) and Deep Dynamic Mode Decomposition (Deep-
DMD) (Alford-Lago et al., 2022), extend this frame-
work. Koopa enhances the forecasting of nonlinear systems
through a modular Fourier filter combined with a Koopman
predictor. Together, these components hierarchically disen-
tangle and propagate time-invariant and time-variant dynam-
ics. DeepDMD employs deep learning to traditional DMD,
facilitating the identification of coordinate transformations
that linearize nonlinear system dynamics, thus capturing
complex, multiscale dynamics effectively. A more recent
work, Attraos (Hu et al., 2024), has explored alternative
perspectives through chaos theory and attractor dynamics.

2.3. Empirical Dynamical Modeling

EDM (Chang et al., 2017; Sugihara & May, 1990) presents
an approach to model nonlinear dynamics that is different
from the aforementioned works. Rooted in Takens’ theo-
rem (Takens, 1981b), EDM relies on delay-coordinate em-
beddings to reconstruct the underlying attractor, thereby
preserving the essential topological properties of the origi-
nal dynamical system. Unlike Koopman, which linearizes
nonlinear dynamics in a carefully chosen high dimensional
space (approximation to an infinite-dimensional space),
EDM can topologically reconstruct system dynamics us-
ing low dimensional observations, or even with a scalar
observation at each time step (Takens, 1981b; Sauer et al.,
1991). EDM is thus particularly attractive for real-world
problems with limited observation of the system states.

2.4. Chaotic Time Series Forecasting

A related research direction focuses on forecasting chaotic
time series via state space reconstruction, mirroring the un-
derlying principles of EDM. Pioneering work by Farmer and
Sidorowich (Farmer & Sidorowich, 1987) introduced local
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approximation techniques within reconstructed state spaces
using delay embeddings, facilitating short-term predictions.
Subsequent studies explored the application of feedforward
neural networks for learning direct mappings from recon-
structed phase states to future states (Karunasinghe & Liong,
2006). Recurrent neural networks, particularly Echo State
Networks (ESNs) (Jaeger & Haas, 2004), have also shown
promise, with adaptations like robust ESNs (Li et al., 2012)
addressing the inherent sensitivity of chaotic signals to noise
and outliers. However, a significant gap remains: the devel-
opment of a fully differentiable, end-to-end trainable neural
network architecture that seamlessly integrates dynamical
systems theory with deep learning methodologies.

3. DeepEDM for Time Series Forecasting

We consider time series generated by discrete-time nonlin-
ear dynamical systems, though all derivations can be readily
extended to continuous-time systems. A discrete-time non-
linear dynamical system is defined as a recurrence relation
in which a nonlinear function ® governs the evolution of
the state variables x; € R at time step ¢:

Ti+1 = ‘i’(l‘t) (1)

Oftentimes, the states of the system x; can not be directly
observed and the governing equation ® is unknown. Instead,
a common assumption is that measurements y; of the states
x; can be acquired using

Yt = h(.’Et) =+ €, (2)

where h is an unknown measurement function that maps a
system state x; to its observation y; with a time-invariant
stochastic noise €.

Our goal is time series forecasting, i.e., predicting future
observations yr4 1.7+ g based on existing ones y1.7. Y1.7
often referred to as the lookback window with length T', and
yr+1:.7+H as predictions with its forecasting horizon H.
Without knowing the governing equation ® or the measure-
ment function h, this forecasting problem is very challeng-
ing even with a small amount of noise e. In what follows, we
introduce the theoretic background, present our approach,
and describe its practical instantiation.

3.1. Preliminaries: Takens’ Theorem and EDM
Takens’ Theorem

Takens’ theorem establishes the feasibility to “recover” the
underlying dynamics defined by ®, without knowing the
observation function h and assuming zero noise (i.e., € = 0).
In this case, forecasting becomes straightforward and only
involves forwarding the uncovered dynamics. Intuitively,
the theorem states that if ®, h and the state space of z
are constrained, the dynamics can be topologically recon-

structed, perhaps surprisingly, even with univariate measure-
ments yi.,. With slight abuse of notations, we now restate
Takens’ theorem in our setting.

Theorem 3.1. (Takens, 1981a) Let M be a compact mani-
fold of dimension d defining the space of states x and assume
the observed time series data is univariate, i.e., y € R. For
pairs of dynamics ® and observation function h, where
® : M — M is a C? smooth diffeomorphism, i.e., ®
must be bijective and both ® and its inverse ® 1 are C*
smooth, and h : M — R is a C? smooth function, it is
a generic property that H(®,h) : M — R2! defined
by (h(z), h(®(2)), h(®*(2)), ..., h(®*!(x)) is an immer-
sion, i.e., H is injective and both H and H~" are differen-
tiable.

The (2d+1)-D vectors {(h(z), h(®(z)), ..., h(®*(2))}
thus preserve the topology of the states z;. By setting
T = X494, it iS easy to note that these vectors are
{[Yt—2d, Yt—2d+1, - - -, Yt] }» i.€., a time-delayed version of
the observed time series. The theorem thus states that given
a time series of 1D measurement y,, its time delayed ver-
sion §1.4, Gt = (Yt—2d, Yt—2d+1, ---, Y¢) has a similar topol-
ogy with the states x(.;. Therefore, we can instead model
the induced dynamics of 7y.; to recover properties of the
underlying dynamics of x1., as illustrated in Figure 1(a).

It is worth noting that Takens’ theorem has two restrictive as-
sumptions: (1) the state space must be a compact manifold;
and (2) measurements are univariate. Recent developments
have extended the theorem to more general settings, account-
ing for the state space as a compact invariant set within finite
Euclidean space (Sauer et al., 1991), or the measurements
as multivariate vectors (Deyle & Sugihara, 2011).

Empirical Dynamic Modeling (EDM)

Built on Takens’ theorem, EDM (Sugihara & May, 1990;
Dixon et al., 1999; Sugihara et al., 2012; Chang et al., 2017)
provides a computational method to reconstruct a system’s
state space from time series of its univariate measurements.
We now briefly describe EDM with Simplex projection,
which lays the foundation for our approach.

Simplex projection assumes univariate measurements y;.7
and considers its time-delayed version g;.r with ¢, €
R24+1 e, time-delayed by 2d + 1 steps. To forecast a
future time step y7a¢ (At > 1), it first finds 2d + 2 near-
est neighbors {gn; }, € [1,...,2d + 2| for §r using a pre-
specific similarity metric, i.e., a kernel function k(g,9’)".
These nearest neighbors {§y, } are assumed to define a sim-
plex in the 2d+1-D space of g, i.e., a geometric structure
that generalizes a triangle (in 2D) or a tetrahedron (in 3D)
to arbitrary dimensions. y74 A, is then predicted by a linear

'"The original method in (Sugihara & May, 1990) used the
radial basis function kernel k(9, 9') = exp(—||9 — ¥ ||*/202)
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Figure 1. (a) Takens’ theorem in action. The state space of an unknown nonlinear dynamical system is reconstructed using time-delayed
embeddings from observed time series measurements (noise free). (b) Overview of DeepEDM. Time-delayed embeddings are constructed
to model the system’s underlying state space. These embeddings are then mapped into a learned latent space that is robust to measurement
noise. Forecasting is performed via kernel regression followed by a learned decoder, where soft nearest neighbors for regression are
defined in the latent space. This model, resembling the key idea of EDM, is fully differentially and thus can be learned from end-to-end.

re-weighting on this simplex, given by

d 1 2d+2
pred

= Sedtz Wi * YN;+At, 3)
Yriae ZfiTQ w; ; YNi+At
where the weight is given by w; = k (7, gn,). Again, N;
indexes the 2d + 2 nearest neighbors of §:, and yn,+A¢
denotes the observed data At steps after N;. We note that
Equation (3) can be viewed as the Nadaraya-Watson esti-
mator using 2d + 2 nearest neighbors, where the regressor
connects the input of g, to its output of yx, +A¢.

Simplex projection can be also considered as a locally linear
approximation to the manifold of the time-delayed observa-
tions ¢, which is topologically equivalent to the state space
of x. The key assumption is that ¢;.7 sufficiently covers
the manifold, such that the nearest neighbors {gy, } of g
correspond to underlying states similar to x;. This assump-
tion allows an empirical approximation of forwarding ®
for forecasting, using the the future data of these nearest
neighbors (yn, +a¢). However, it also imposes a practical
constraint: the forecasting horizon (H) must be significantly
shorter than the length of the lookback window (7).

3.2. Our Approach: DeepEDM

Despite its success (Ye et al., 2015; Sugihara et al., 2012),
EDM with Simplex projection has three key limitations.
First, it assumes noise-free measurements, leading to sig-
nificant performance degradation when forecasting in the
presence of noise. Second, it models each sequence inde-
pendently, disregarding patterns shared across time series.
Third, it imposes a constraint that the forecasting horizon
must be much shorter than the lookback window.

To address these limitations, we present DeepEDM, a novel
deep model that builds on the key idea of EDM, leveraging
strengths from both paradigms. DeepEDM, as shown in
Figure 1(b), consist of (1) a base forecasting model that gen-
erates initial predictions, relaxing the constraint on forecast-

ing horizon; (2) a learned encoder to embed time-delayed
time series into a latent space, gaining robustness against
input noise; (3) a kernel regression to predict future data in
the latent space, re-assembling Simplex projection while al-
lowing for efficient and differentiable implementation; and
(4) a decoder to output the final predictions and mitigate
noise. Collectively, DeepEDM is fully differentiable and
enables end-to-end learning of a single parametric model
for forecasting that generalizes across time series, avoiding
per-sequence modeling in EDM.

To simplify our notations, we describe DeepEDM in the con-
text of univariate time series forecasting in this section. For
multivariate time series, DeepEDM is applied channel-wise,
meaning a single DeepEDM model is shared across individ-
ual variates — a strategy widely used in prior works (Nie
et al., 2023; Zeng et al., 2023). We now introduce individual
components, present the training scheme, and discuss links
to Transformer-based models.

Modeling

Initial prediction. DeepEDM starts with a simple, base
prediction model f(-) (e.g., a linear model or an MLP). f(-)
takes the input of the lookback window yq.7 with y; € R
(univariate or a single channel in a multivariate time series),
and outputs the predictions y? for H steps

Ypivren = fyir). )

This initial prediction allows us to concatenate the lookback
window y1.7 and the predicted window y4. 1.7 p» forming
a new time series [y1.7, y§+1:T+ ). DeepEDM will now
operate on this extended sequence and further refine the
initial prediction, bypassing EDM’s constraint on the fore-
casting horizon. This is particularly helpful for long-term
forecasting, where 1" might be smaller than H.

Time delay and encoding. DeepEDM further time-delays
the extended sequence [y1.7, Y%, 1.7 ;7)> and considers a
learned encoder Enc(+) to project the time-delayed signals
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into a latent space. Formally, this is given by

Y1+ = D(Yrr, Y10 w); 07), )

zur+H = Enc (Jr.7+H) ,

where D(-; 1) denotes a time delay operator with d7 delay
steps—a hyperparameter of DeepEDM. ¢, is thus the time-
delayed embedding of the concatenated sequence. Note that
zero padding is added before the sequence to preserve the
temporal dimension. The encoder Enc(-) is realized using
a neural network with learnable parameters. Enc(-) is de-
signed to extract features from the time-delayed embeddings
of an input sequence, enabling meaningful comparisons
among these embeddings with noisy measurements.

Simplex projection with kernel regression. DeepEDM
further employs kernel regression for prediction, extending
the key idea of Simplex projection in EDM. While Simplex
projection finds K (= d; + 1) nearest neighbors — an opera-
tion that is not differentiable, we propose to instead leverage
all data points, again using the Nadaraya—Watson estimator.
In this case, we rely on the choice of the kernel &(-,-) to
down-weight irrelevant data. Formally, this is expressed as

T

1
- - k(zt, 21) - Geat, (6)
Zszl k(zt7 Zt’) ;

where t' € [T, T + H — At] and we simply set At = 1 for
a single-step forward prediction. We choose k(z¢, 2p/) =
exp((zt, z;)/T) with 7 to control its decay, and leverage
highly optimized softmax attention for efficient implemen-
tation (with 7 as the temperature in softmax). While 7 can
be learned from data, we empirically find that doing so has
minimal impact on overall performance, and keep 7 = 1.

gt'+At =

Notably, unlike Simplex projection (Eq. 3), which predicts
a scalar corresponding to a single step in a univariant time
series, our kernel regression (Eq. 6) predicts a vector of size
o representing the time-delayed version of the time series.

Prediction decoding. Finally, DeepEDM decodes the out-
put ygfjfil:TJrH based on §r41.7+ g using a decoder Dec(-)

d _
Yrarren = Dec (Jrirrim), @)

where Dec(+) is realized with a lightweight neural network
with learnable parameters. Dec(-) learns to reconstruct the
predicted time series from its time-delayed version and,
crucially, denoises the output to mitigate the effects of mea-
surement noise introduced during kernel regression.

Training

DeepEDM includes learnable parameters in the base model
f (), the encoder Enc(-), and the decoder Dec(+). Our learn-
ing objective is to jointly optimize these parameters to min-
imize prediction errors on the training set. Omitting sub-

scripts for simplicity, our training loss is defined as:

L=y =™+ =N |[Vy = V"™, ®)
_ﬁ/_/ —E/_/
err td

where V denotes the first order finite difference and A is
the balancing coefficient. Namely, our loss minimizes the
L, norm of the prediction errors (L) and its temporal
differences (Ly). We also find it helpful to consider an
adaptive A following (Xiong et al., 2024), especially for
long-term forecasting problems. Further details of our loss
function can be found in the Appendix A.2.

Discussion

Relationships to Transformer-based models. DeepEDM
shares a strong conceptual connection with Transformer
models widely used in time series forecasting. Specifi-
cally, the notion of time-delay embedding in EDM and
DeepEDM can be viewed as a special case of local win-
dow patching (Nie et al., 2023). Moreover, the combination
of encoder, kernel regression, and decoder resembles the
structure of a Transformer block with self-attention (Chen
et al., 2025), albeit with distinct definitions of queries, keys,
and values. From this perspective, DeepEDM can be in-
terpreted as a Transformer-like model with input patching,
which refines initial predictions from a simple base model.
Indeed, patching, Transformer architectures, and cascaded
prediction have all been proven to be highly effective for
time series forecasting.

3.3. Model Instantiation

Base prediction model, encoder, and decoder. The base
predictor f(-) is realized using a multilayer perceptron
(MLP) shared across all variates. Given historical input
y € RPXT_ £(.) maps d-th variate’s time series yq € RT,
to a prediction 3!, € R*, yielding the initial prediction
y? € RP*H  Subsequently, the lookback y and the initial
forecast y? are concatenated and time delayed by dr steps,
resulting in §j1.7 g € RPXOrx(T+H),

The encoder Enc(-) is instantiated as a single linear operator
shared across all variates. It operates on the time-delayed se-
quence §jy.74 i € RPXOTX(T+H) '\where each delay vector
of dimension d7 is linearly projected to a learnable latent
with dimension M > Jr, resulting in the embeddings
21 g € RPXMX(T+HH) This lightweight Enc(-) seeks
to preserve the local geometry of the time-delay embed-
ding while enabling expressive comparisons in the latent
space used for kernel regression (Eq. 6), which generates
the time-delayed prediction yri1.74H.

The decoder Dec(-) maps the time-delayed forecast
Urs1:74+m € RPXMXH back to the original time series
space. It is implemented using a lightweight MLP shared
across all channels. For each channel, the (M x H) latent
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Figure 2. DeepEDM block can be stacked, with each subsequent
block iteratively refines the prediction of the previous one.

matrix is first flattened into a vector, which is then passed
through the MLP to produce the final forecast in R, yield-
ing the output yP € RP*H Dec(-) aims to reconstruct
the forecast using its noisy time-delayed version.

DeepEDM block. We combine the time delay operation,
encoder, kernel regression, and decoder into a DeepEDM
block, as shown in Figure 2. This block receives the his-
torical input y € RP*7 in tandem with an initial forecast
y? € RPXH produced by the base predictor, and predicts fu-
ture time series ¢! € RP*H  Importantly, the DeepEDM
block is stackable: the output of one block serves as the
input forecast to the next, enabling the model to iteratively
refine its predictions. To improve gradient flow and training
stability, we introduce skip connections from the initial fore-
cast P to the final output 4%, modulated by a learnable
gating function implemented as a simple linear layer.

Our full model. Our DeepEDM model consists of a
base predictor f(-), followed by several stacked DeepEDM
blocks. Given a lookback window y, the base predictor
generates a coarse forecast y?, which is successively refined
through stacked DeepEDM blocks. All components are
differentiable and jointly trained with our loss in Eq. 8.

4. Experiments and Results

We evaluate DeepEDM across a wide range of synthetic
and real-world benchmarks. Our initial evaluations leverage
synthetic datasets derived from well-established nonlinear
dynamical systems, allowing us to systematically analyze
DeepEDM'’s capacity to capture complex temporal depen-
dencies. Further, we compare DeepEDM against state-of-
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Figure 3. Results with synthetic data from Lorenz systems. We
plot MSE under varying prediction lengths on non-Chaotic (top)
and chaotic (bottom) Lorenz. DeepEDM significantly outperforms

baselines in both chaotic and non-chaotic regimes.

the-art deep models on real-world datasets spanning diverse
domains, including weather, electricity, traffic, and finance.
Finally, we provide extensive analysis to assess DeepEDM’s
ability to generalize to unseen time series, and to study its
key design choices. Due to space limits, part of our re-
sults, along with extended benchmarks and visualization,
are provided in the Appendix.

4.1. Experiments on Synthetic Data

We evaluate DeepEDM on synthetic time series generated
from (1) non-chaotic Lorenz (Lorenz, 1963), (2) chaotic
Lorenz (Lorenz, 1963), and (3) chaotic Rossler (Rossler,
1976) systems. Lorenz and Rossler systems are widely used
to study chaotic and non-chaotic dynamics.

Simulation, setup, and baselines. To simulate noisy data,
we inject Gaussian noise N(0,02;..) of various magni-
tudes of o0ise € {0.0,0.5,1.0,1.5,2.0,2.5} to the 3 afore-
mentioned systems, resulting in a total of 18 synthetic
datasets (see Appendix A.7). We benchmark DeepEDM
against three baselines, including EDM with Simplex,
Koopa (a deep model integrating Koopman theory), and
iTransformer (Transformer-based). Since Simplex is inher-
ently a univariate forecasting method, we run it indepen-
dently on each variate and aggregate the results to obtain
multivariate forecasts. The performance is reported by mean
squared error (MSE) and mean absolute error (MAE).

Results. Figure 3 shows the forecasting results of all meth-
ods across noise levels and prediction horizons. In the low-
noise and non-chaotic settings, all methods exhibit compa-
rable performance. However, as noise increases, EDM with
Simplex degrades sharply, while DeepEDM remains robust,
achieving lower MSE across all conditions. It also outper-
forms Koopa and iTransformer by a small but meaningful
margin (see Table 11 in Appendix). In chaotic regimes,
DeepEDM’s advantage is more pronounced, consistently
outperforming Simplex at all horizons and surpassing Koopa
and iTransformer for longer forecasts. These results under-
score DeepEDM'’s robustness in noisy, chaotic environments
while exceeding both classical EDM and modern baselines.
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Table 1. Multivariate forecasting results with different forecast lengths H € {24, 36, 48,60} for ILI and H € {48, 96, 144, 192} for
others. We set the lookback length 7" = 2H. Bold indicates the best performance, while 2nd best is underlined. In case of a draw, both

models are considered winners. Gray represents dynamical systems. Source: When available, results are taken directly from (Liu et al.,

2024b); otherwise reproduced using their official code run with reported metrics averaged over 5 runs with different random seeds.

Models Ours Koopa KNF Attraos CycleNet

iTransformer PatchTST TimeMixer

DLinear FITS MICN Naive

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MAE

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

48
96
144
192

0.324 0.357 0.336 0.377 0.876 0.709 0.341 0.371 0.331 0.370 0.343
0.365 0.384 0.371 0.405 0.975 0.744 0.387 0.402 0.389 0.404 0.392
0.388 0.398 0.405 0.418 0.801 0.662 0.415 0.422 0.415 0.422 0.424
0.407 0.421 0.416 0.429 0.941 0.744 0.429 0.434 0.433 0.436 0.446

ETThl

0.380
0.411
0.430
0.449

0.337 0.375 0.336 0.375 0.343 0.371 0.344 0.370 0.375 0.406
0.372 0.393 0.388 0.405 0.379 0.393 0.381 0.395 0.406 0.429
0.394 0.412 0.413 0.421 0.393 0.403 0.396 0.406 0.437 0.448
0.416 0.439 0.443 0.447 0.407 0.416 0.405 0.414 0.518 0.496

1.268 0.695
1.294 0.713
1.316 0.725
1.325 0.733

48
96
144
192

0.225 0.288 0.226 0.300 0.385 0.376 0.230 0.301 0.238 0.305 0.243
0.289 0.333 0.297 0.349 0.433 0.446 0.302 0.350 0.306 0.357 0.302
0.324 0.362 0.333 0.381 0.441 0.456 0.355 0.383 0.350 0.388 0.346
0.351 0.377 0.356 0.393 0.528 0.503 0.373 0.399 0.377 0.407 0.383

ETTh2

0.314
0.356
0.386
0.409

0.344 0.374
0.432 0.422
0.484 0.448
0.534 0.472

0.223 0.297 0.230 0.302 0.226 0.305 0.227 0.298 0.260 0.336
0.300 0.353 0.298 0.350 0.294 0.351 0.287 0.341 0.343 0.393
0.346 0.390 0.339 0.383 0.354 0.397 0.315 0.363 0.374 0.411
0.383 0.406 0.359 0.406 0.385 0.418 0.334 0.376 0.455 0.464

48
96
144
192

0.277 0.318 0.283 0.333 1.026 0.792 0.312 0.353 0.283 0.336 0.314
0.288 0.328 0.294 0.345 0.957 0.782 0.314 0.355 0.302 0.353 0.304
0.308 0.344 0322 0.366 0.921 0.760 0.332 0.368 0.327 0.368 0.331
0.322 0.353 0337 0.378 0.896 0.731 0.349 0.378 0.346 0.382 0.345

ETTml

0.358
0.354
0.373
0.383

0.286 0.336 0.302 0.349 0.322 0.355 0.324 0.357 0.294 0.353
0.299 0.346 0.299 0.348 0.309 0.346 0.310 0.346 0.306 0.364
0.325 0.363 0.326 0.365 0.327 0.359 0.326 0.358 0.342 0.390
0.343 0.375 0.345 0.378 0.337 0.365 0.338 0.365 0.386 0.415

1.165 0.638
1.214 0.665
1.246 0.682
1.261 0.690

48
96
144
192

0.133 0.221 0.134 0.226 0.621 0.623 0.139 0.236 0.123 0.216 0.139
0.169 0.248 0.171 0.254 1.535 1.012 0.174 0.259 0.164 0.249 0.181
0.203 0.271 0.206 0.280 1.337 0.876 0.209 0.284 0.212 0.286 0.214
0.224 0.289 0.226 0.298 1.355 0.908 0.233 0.302 0.231 0.302 0.238

ETTm2

0.234
0.269
0.294
0.310

0.135 0.231 0.136 0.229 0.144 0.240 0.145 0.242 0.131 0.238
0.171 0.255 0.174 0.257 0.172 0.256 0.172 0.257 0.197 0.295
0.205 0.282 0.207 0.284 0.200 0.276 0.200 0.277 0.210 0.297
0.221 0.294 0.229 0.297 0.219 0.290 0.220 0.291 0.248 0.328

0.220 0.295
0.267 0.328
0.307 0.352
0.340 0.371

48
96
144
192

0.161 0.247 0.130 0.234 0.175 0.265 0.192 0.268 0.120 0.215 0.134
0.137 0.232 0.136 0.236 0.198 0.284 0.150 0.244 0.127 0.222 0.134
0.145 0.239 0.149 0.247 0.204 0.297 0.151 0.246 0.138 0.232 0.146
0.151 0.244 0.156 0.254 0.245 0.321 0.154 0.249 0.146 0.241 0.155

ECL

0.226
0.230
0.240
0.249

0.147 0.246 0.142 0.235 0.158 0.241 0.203 0.279 0.156 0.271
0.143 0.241 0.134 0.227 0.153 0.245 0.154 0.248 0.165 0.277
0.145 0.241 0.145 0.235 0.152 0.245 0.152 0.246 0.163 0.274
0.147 0.240 0.163 0.255 0.153 0.246 0.154 0.247 0.171 0.284

1.543 0.925
1.588 0.946
1.605 0.953
1.596 0.951

48
96
144
192

0.042 0.142 0.042 0.143 0.128 0.271 0.045 0.147 0.044 0.144 0.045
0.088 0.205 0.083 0.207 0.294 0.394 0.093 0.213 0.089 0.209 0.095
0.133 0.255 0.130 0.261 0.597 0.578 0.151 0.274 0.144 0.267 0.154
0.178 0.301 0.184 0.309 0.654 0.595 0.205 0.323 0.207 0.322 0.212

Exchange

0.148
0.219
0.283
0.334

0.044 0.144 0.043 0.143 0.043 0.145 0.054 0.180 0.117 0.248
0.085 0.204 0.084 0.203 0.084 0.220 0.113 0.261 0.108 0.251
0.132 0.260 0.146 0.270 0.132 0.253 0.133 0.258 0.152 0.301
0.174 0.300 0.196 0.316 0.178 0.299 0.182 0.305 0.187 0.331

0.042 0.139
0.081 0.196
0.122 0.244
0.167 0.289

48
96
144
192

0.448 0.286 0.415 0.274 0.621 0.382 0.612 0.396 0.437 0.290 0.369
0.383 0.259 0.401 0.275 0.645 0.376 0.439 0.300 0.406 0.276 0.365
0.380 0.258 0.397 0.276 0.683 0.402 0.423 0.294 0.402 0.275 0.373
0.387 0.262 0.403 0.284 0.699 0.405 0.421 0.295 0.402 0.275 0.374

Traffic

0.257
0.259
0.266
0.267

0.426 0.286 0.445 0.283 0.488 0.352 0.704 0.419 0.496 0.301 2.641 1.057
0.413 0.283 0.406 0.277 0.485 0.336 0.457 0.306 0.511 0.312 2.715 1.077
0.405 0.278 0.391 0.263 0.452 0.317 0.432 0.293 0.498 0.309 2.739 1.084
0.404 0.277 0.424 0.293 0.438 0.309 1.313 0.776 0.494 0.312 2.747 1.085

48
96
144
192

0.138 0.168 0.126 0.168 0.201 0.288 0.149 0.191 0.129 0.171 0.137
0.157 0.192 0.154 0.205 0.295 0.308 0.168 0.214 0.155 0.203 0.169
0.174 0.210 0.172 0.225 0.394 0.401 0.184 0.231 0.171 0.223 0.187
0.191 0.226 0.193 0.241 0.462 0.437 0.202 0.249 0.192 0.243 0.206

Weather

0.174
0.215
0.234
0.253

0.140 0.179 0.131 0.174 0.156 0.198 0.157 0.200 0.157 0.217 0.194 0.193
0.160 0.206 0.155 0.205 0.186 0.229 0.187 0.231 0.187 0.250 0.259 0.254
0.174 0.221 0.173 0.223 0.199 0.244 0.199 0.244 0.197 0.257 0.284 0.274
0.195 0.243 0.193 0.243 0.217 0.261 0.217 0.261 0.214 0.270 0.309 0.292

24
36
48
60

1.799 0.797 1.621 0.800 3.722 1432 - - 2.188 0.940 1.966
1.655 0.768 1.803 0.855 3.941 1.448 - - 2.113 0.949 1.827
1.616 0.789 1.768 0.903 3.287 1.377 2.437 1.084 1.849 0.919 1.748
1.719 0.831 1.743 0.891 2.974 1.301 2.341 1.064 1.872 0.932 2.077

ILT

0.888
0.865
0.908
0.999

2.063 0.881 2.147 0.899 2.624 1.118 3.311 1.311 4.380 1.558 6.213 1.622
2.178 0.943 1.892 0.894 2.693 1.156 3.112 1.232 3.314 1.313 7.714 1.906
1.916 0.896 1.874 0.915 2.852 1.229 3.156 1.290 2.457 1.085 7.851 1.952
1.981 0.917 2.187 0.991 2.554 1.144 3.337 1.280 2.379 1.040 6.885 1.788

1% Count 36 5 0 0 11

6

2 0 2 7 0 8

Note: The official code of Attraos (Hu et al., 2024) does not support H = {24, 36} for ILI dataset. Therefore, we report these
entries as empty rather than extensively modifying their code to make it work.

Additional results, including those for the Rossler system,
are provided in Appendix A.7.
4.2. Experiments on Forecasting Benchmarks

Moving forward, we conduct comprehensive evaluations on
standard time series forecasting benchmarks.

Datasets. We consider both multivariate and univariate time
series forecasting. For multivariate forecasting, we eval-

uate on 10 real-world datasets: ETThl, ETTh2, ETTml,
ETTm2 (Zhou et al., 2021), National Illness (ILI) (Lai
et al., 2018), Solar-Energy (Lai et al., 2018) (see ap-
pendix), Electricity (see appendix), Traffic (PeMS) (Wu
et al., 2021), Weather (Wetterstation) (Wu et al., 2021), and
Exchange (Lai et al., 2018). For univariate forecasting, we
leverage the well-established M4 dataset (Makridakis et al.,
2020) (see appendix), which contains 6 subsets of period-
ically collected univariate marketing data. These datasets
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encompass different domains and exhibit diverse temporal
patterns, allowing for a robust assessment.

Setup. Our experimental protocol adheres to the pre-
processing methods and data split ratios established by
prominent prior works such as TimesNet (Wu et al., 2023)
and Koopa (Liu et al., 2024b). For all experiments, we
use the Time-Series-Library (Wang et al., 2024b) to en-
sure consistency and comparability. For our main results,
we adopt the adaptive lookback windowing approach from
Koopa (Liu et al., 2024b), where the lookback window
length T is set to twice the forecast horizon H. We also
report results with lookback window search in the appendix.

Baselines. We consider a set of strong baselines. While em-
phasizing comparisons with dynamical system-based meth-
ods such as Koopa (Liu et al., 2024b), Attraos (Hu et al.,
2024) and KNF (Wang et al., 2023b), we also include other
popular baselines. These include MLP-based models like
TimeMixer, FITS, and DLinear, as well as Transformer-
based models such as iTransformer and PatchTST. Addi-
tionally, we also benchmark the Naive baseline as described
by (Hewamalage et al., 2023) (i.e. predicting the last value
of lookback window as forecast) to provide the simplest
benchmark to assess relative performance.

Results. Our main results are summarized in Table 1
(see variance in Appendix Table 10). DeepEDM achieves
state-of-the-art performance on the multivariate forecasting
benchmarks, winning on 36 metrics compared to 5 for the
next-best dynamical system-based method, Koopa, and 11
for the strongest deep learning model, CycleNet (Lin et al.,
2024). These results highlight DeepEDM'’s effectiveness
and versatility across diverse domains. Notably, DeepEDM
excels at the MAE metric, which is less sensitive to outliers,
suggesting a stronger ability to capture underlying trends.
Interestingly, the Naive baseline, outperforms all models
in case of Exchange (Stocks) dataset, consistent with find-
ings of (Hewage et al., 2020), thus revealing the blind spots
of many forecasting models. Beyond multivariate settings,
DeepEDM also exhibits strong performance in univariate
forecasting on the M4 dataset (see Appendix A.3).

4.3. Further Analyses
Generalization to Unseen Time Series

Rationale. Time series forecasting benchmarks typically
employ temporal splits for evaluation, that is, training on
earlier time steps and testing on later ones. To evaluate
the generalization across sequences, we considers a more
challenging setting: splitting across different time series
(i.e., channels) within the same dataset.

Setup and datasets. In addition to the standard temporal
train-test split, we also partition the time series (variates)
in ETT, Exchange, and Weather into disjoint training and

Table 2. Generalization to unseen time series. Each model is
trained on a subset of sequences and evaluated on disjoint, unseen
sequences from the same dataset. DeepEDM achieves the best
MAE and MSE in 39 out of 48 settings.

Models Ours Koopa PatchTST iTransformer

MSE MAE MSE MAE MSE MAE MSE MAE

48 1 0.2182  0.2980 0.2383 0.3190 0.2312  0.3090 0.2474 0.3190
96 | 0.2230 0.3120 0.2382 0.3270 0.2601 0.3370 0.2535 0.3340
144 | 0.2285 0.3190 0.2598 0.3420 0.2567 0.3380 0.2634 0.3420
192 | 0.2510 0.3400 02555 0.3420 0.2637 0.3430 0.2702  0.3480

ETThl

48 | 0.0931 0.1850 0.1181 02160 0.1114 0.2090 0.1107 0.2110
96 | 0.1377 0.2260 0.1517 0.2440 0.1653 0.2590 0.1555 0.2510
144 1 0.1795 0.2640 0.1979 0.2850 0.2265 0.2980 0.1914 0.2760
192 | 0.1956 0.2770 02115 0.2950 0.2297 0.3170 0.2209 0.2970

ETTh2

48 | 0.2068 0.2680 0.2377 0.2960 0.2208 0.2830 0.2305 0.2910
96 | 0.2141 0.2780 0.2337 03020 0.2090 0.2840 0.2386  0.3020
144 | 0.2142 0.2880 0.2518 0.3180 0.2134 0.2960 0.2590 0.3180
192 | 0.2194 0.2980 0.2454 0.3200 0.2212 0.3070 0.2512  0.3200

ETTml

48 | 0.0544 0.1470 0.0641 0.1640 0.0710 0.1740 0.0892 0.1950
96 | 0.0659 0.1590 0.0814 0.1820 0.0768 0.1750 0.0861 0.1890
144 | 0.0784 0.1710 0.0920 0.1910 0.0917 0.1880 0.1004 0.1990
192 | 0.1024 0.1940 0.1073 0.2060 0.1115 0.2050 0.1074 0.2070

ETTm2

48 | 0.0388 0.1290 0.0459 0.1420 0.0431 0.1370 0.0428 0.1390
96 | 0.0783 0.1860 0.0936 0.2120 0.0828 0.1930 0.0912  0.2030
144 | 0.1330 0.2390 0.1725 0.2820 0.1279 0.2490 0.1772  0.2800
192 | 0.1754  0.2780 02706 0.3560 0.1667 0.2840 0.2136 0.3140

Exchange

48 1 0.2915 02440 0.3479 0.2780 0.3030 0.2410 0.3967 0.2870
96 | 02977 0.2510 0.3142 0.2760 0.2934 0.2620 0.4462 0.3260
144 | 0.2928 0.2520 0.3101 0.2820 0.2841 0.2570 0.4085 0.3220
192 | 02917 0.2630 0.3261  0.2900 0.2907 0.2620 0.4393  0.3430

Weather

testing sets, ensuring no overlap in sequence identity. For
the ETT datasets, which contain 7 sequences, we train on
sequences 0—2 using only timesteps from the standard train-
ing split, and test on sequences 4-6 using the standard test
split. This 3 : 3 split is necessary as several baseline models
are unable to handle differing input dimensions between
training and testing. Similarly, for the Exchange dataset (8
sequences), we train on the first 4 sequences and test on the
last 4. For the Weather dataset (21 sequences), we train on
sequences 0-9 and test on sequences 10-19.

Baselines. We compare DeepEDM to three representative
baselines, including Koopa, iTransformer, and PatchTST.
The forecasting horizon H varies over {48, 96,144,192},
with the lookback window set to 2H in all cases.

Results. Table 2 shows the results. DeepEDM leads the
performance in both MAE and MSE, ranking first in 39 out
of 48 settings. The results demonstrate DeepEDM’s ability
to generalize across different time series.

Robustness to Measurement Noise

Rationale. We hypothesize that DeepEDM’s learned latent
space functions as a noise-robust kernel that more accurately
preserves the local neighborhood structure of the underly-
ing state space than time-delay embeddings. We conduct
experiments with simulated date to verify this hypothesis.

Simulation and setup. We simulate trajectories using a
chaotic Lorenz system with o = 10.0, p = 28.0, 8 = 2.667,
and initial conditions: (0.0,1.0,1.05), where the ground-
truth states x;, € R? are known. To satisfy the univariate
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Table 3. Model design ablation. We evaluate the effects of progressively incorporating key components into our model, with metrics
averaged over four prediction lengths and three random seeds (o0 shown). Each successive addition yields consistent improvements

across most metrics relative to the preceding configuration.

Dataset | Linear \ MLP \ MLP+EDM \ Full Model
MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.1646+0.0001  0.2528+0.0001 | 0.1616+0.0005 0.2532+0.0004 | 0.1491+0.0003 0.2409+0.0001 | 0.1487+0.0003 0.2404-0.0004
ETThl 0.3805+0.0004  0.3907+0.0003 | 0.3782+0.0000 0.3915+0.0001 | 0.3782+0.0010 0.3939+0.0002 | 0.3702+0.0033 0.3897-+0.0020
ETTh2 0.2951+0.0004  0.3403+0.0003 | 0.2910+0.0010 0.3377+0.0005 | 0.3017+0.0039  0.3433+0.0019 | 0.2954+0.0031 0.3391+0.0014
ETTml 0.3168+0.0004  0.3449+0.0004 | 0.3123+0.0002 0.3442+0.0001 | 0.3019+0.0003 0.3378+0.0002 | 0.2984+0.0004 0.3357-0.0003
ETTm2 0.1838+0.0002  0.2602+0.0001 | 0.1836+0.0002 0.2598+0.0001 | 0.1830+0.0011  0.2585+0.0008 | 0.1817+0.0015 0.2572-+0.0008
Traffic 0.5001+0.0001  0.3226+0.0007 | 0.4521+0.0016 0.3104+0.0014 | 0.3930+0.0023 0.2683+0.0015 | 0.4001+0.0004 0.2663+0.0001
Exchange 0.1097+0.0004  0.2247+0.0005 | 0.1110+0.0015 0.2262+0.0011 | 0.1122+0.0023 0.2278+0.0019 | 0.1090+0.0011  0.2247+0.0015
ILI 2.0240+0.0540 0.9271+0.0163 | 1.9827+0.0762 0.8864+0.0271 | 1.6857+0.0311  0.7977+0.0091 | 1.6779+0.03901  0.7935+0.0087
Weather 0.1955+0.0003  0.2249+0.0011 | 0.1899+0.0002 0.2198+0.0003 | 0.1660+0.0007  0.2002+0.0007 | 0.1651+0.0004 0.1989-0.0004

#Improvements Baseline 14 13 17

#Degradations ) 4 5 1

Table 4. Robustness to noise. We compare time-delayed embed-
dings with our learned kernel for K -nearest neighbor retrieval on
simulated data, reporting mean recall as the evaluation metric.

Recall (clean) Recall (noisy)

-

Time-delayed Learned (ours) | Time-delayed Learned (ours)
1 0.707 0.990 0.082 0.849
K=1| 5 0.986 0.990 0.257 0.957
10 0.998 0.990 0.396 0.973
7 0.545 0.586 0.220 0.527
K=7 | 14 0.728 0.753 0.368 0.622
28 0.896 0.857 0.564 0.730

embedding requirement of Takens’ theorem, we consider a
measurement function that takes a single dimension of x;
as y¢. All experiments are run independently for each of the
3 dimensions, and the averaged metrics are reported. For
each time step ¢, we identify K nearest neighbors in the
state space using Euclidean distance, and treat them as the
ground-truth. We then retrieve top K neighbors using: (i)
time-delay embeddings of ¥, or (ii) via distances computed
with the learned kernel in Eq. 6. We compare the retrieved
neighbors against the ground-truth, and report mean recall.
This is done across K (€ [1,7]) and similar to Section 4.1
under two noise settings: (i) noise-free, and (ii) with additive
Gaussian noise (0,055 = 2.9).

Results. As shown in Table 4, both methods achieve high
recall under noise-free conditions. However, when noise
is introduced, recall for the time-delay embedding drops
sharply. In contrast, our learned kernel degrades more grace-
fully, maintaining significantly higher recall. This suggests
that the latent space preserves the topological structure of
the true state space more effectively in the presence of noise.
Our DeepEDM thus offers robustness to input noise, provid-
ing a key advantage over EDM in real-world applications.

Model Design Ablation

Rationale. We conduct an ablation study to evaluate the
contribution of each component in DeepEDM.

Setup and datasets. We begin with a minimal baseline
consisting of a single linear layer, and incrementally add:

(1) a multilayer perceptron (MLP) (w. MSE loss), (2) EDM
blocks (w. MSE loss), and finally (3) the full model (w.
optimized loss). This ablation allows us to isolate and quan-
tify the impact of each component on overall forecasting
performance. All ablation experiments are conducted on 9
standard multivariate time series benchmark datasets, using
4 different prediction lengths per dataset. Each setting is
repeated with 3 random seeds. We report MSE and MAE,
averaged across both prediction lengths and seeds, to ensure
statistically robust and comprehensive evaluation. Addi-
tional ablations on the effects of the L;4 loss, as well as
the choice of lookback length, time delay, and embedding
dimensions, can be found in Appendix A.S.

Results. Table 3 summarizes the main ablation results (full
results in Appendix Table 12 and Table 9). The simple lin-
ear baseline performs the worst, confirming the inadequacy
of linear models for nonlinear temporal dynamics. Intro-
ducing an MLP leads to a moderate improvement, while
the inclusion of EDM blocks yields significant gains across
most datasets—demonstrating their effectiveness in captur-
ing nonlinear and multiscale interactions. Incorporating
optimized loss further refines performance, indicating the
benefit of aligning the optimization objective with dynam-
ical structure. Our results provide clear empirical support
for each design choice in DeepEDM.

5. Conclusion

In this paper, we presented DeepEDM, a novel framework
that integrates dynamical systems modeling and deep neu-
ral networks for time series forecasting. By leveraging
time-delayed embeddings and kernel regression in a latent
space, DeepEDM effectively captures underlying dynamics
with noisy input, delivering state-of-the-art performance
across synthetic and real-world benchmarks. Future work
should explore the more advanced S-map (Chang et al.,
2017) method within EDM, for even greater flexibility in
modeling nonlinear dynamics.
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A. Appendix

This appendix provides additional details on several aspects of our study. First, we provide more details on the terminology
essential for the background on our method (A.1). Next, we outline the details of the implementation, optimization, and
training of DeepEDM (A.2). Further, we describe experiments conducted on the short-term forecasting M4 benchmark (A.3)
and results from the standard lookback searching setting for long-term forecasting (A.4). Additionally, we include detailed
results of experiments studying the impact of lookback length (A.5.1), sensitivity to time delay and embedding dimension
(A.5.2), loss function (A.5.3) and stability of our results (A.6). Finally, we elaborate on the synthetic data experiments (A.7).

A.1. Terminology and Definitions

Definition A.1 (Manifold). A manifold M of dimension d is a topological space that is locally homeomorphic to R, which
means that every point in M has a neighborhood that resembles an open subset of R?. If M has a smooth structure, allowing
for differentiation, it is called a smooth manifold.

Definition A.2 (Smooth Map). A function f : M — N between smooth manifolds is called smooth if it has continuous
derivatives of all orders in local coordinates.

Definition A.3 (Homeomorphism). A function f : X — Y between topological spaces is a homeomorphism if it is a
continuous bijection with a continuous inverse. This ensures that X and Y have the same topological structure.

Definition A.4 (Diffeomorphism). A diffeomorphism is a smooth function f : M — N between smooth manifolds that is
bijective and has a smooth inverse. If such a map exists, M and N are said to be diffeomorphic, meaning they have the same
smooth structure.

Definition A.S (Immersion). A smooth map f : M — N is an immersion if its differential df), : T,M — Ty, N is
injective at every point p € M. If f is also injective as a function, it is called an injective immersion.

Definition A.6 (Submanifold). A subset.S C R™ is a submanifold if it is a manifold itself and the inclusion map i : §' <— R™
is an embedding. This means that S locally resembles a lower-dimensional Euclidean space and inherits a smooth structure
from R™.

Definition A.7 (Embedding). An embedding of a smooth manifold M into R™ is a smooth injective immersion that is also
a homeomorphism onto its image. This means that the map preserves both the local differential structure and the topology
of M, ensuring that M is faithfully represented in R™ without self-intersections or distortions.

Definition A.8 (Generic Choice). A property is said to hold for a generic choice of a parameter (such as the delay 7 or
observation function h) if it holds for all choices in a residual subset of the parameter space. Residual sets are dense in the
appropriate function space and contain a countable intersection of open dense sets, meaning that “almost every” choice
satisfies the property in a topological sense.

A.2. Implementation Details

Implementation: Similar to most of the baselines, we developed DeepEDM within the popular Time-Series-Library
benchmarking repository (Wu et al., 2023; Wang et al., 2024b) to ensure methodological consistency with baseline
approaches in data preprocessing, splitting, and evaluation metrics (MSE and MAE). We also ensure our implementation is
free of the “drop last” bug as reported by (Qiu et al., 2024) that can artificially inflate evaluation metrics.

In our implementation, the base predictor f is instantiated as an MLP with 1 to 3 layers, each followed by a non-linear
activation and dropout. The number of DeepEDM blocks is also varied between 1 and 3 based on dataset size, with larger
datasets benefiting from increased expressivity through deeper architectures.

Normalization: Following prior work (Li et al., 2023; Liu et al., 2024b; Nie et al., 2023), we also apply reversible instance
normalization (Kim et al., 2022) to the input history and output predictions.

Loss function: The primary optimization objective for the DeepEDM model is minimizing the error between the predicted
forecast and true forecast mathematically formalized as:

1 H
_ ., pred
Log = T Eﬂ i — v | )

where y; signifies the actual value and ¢y

; d represents the value predicted by the model at timestep ¢. For the long-term
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forecasting tasks, we follow (Xiong et al., 2024) in optimizing the first temporal difference errors (L) defined as:

1

£m4;§ UV, VYD) (10)

=

Here, Vy;.; and Vyfff denote the true and predicted first differences (i.e. y;41 — vy and yffll —of redy), respectively. The

function ¢ evaluates the mean absolute error for these differences, thus focusing on the accuracy of sequential changes of the
series. Further following the methodology proposed by (Xiong et al., 2024), we also consider the balance between these loss
components using A, defined as:

1 H e
A=g > 1(sen(Vyers) # sen(VyiE) (11)
i=1

Here sgn refers to the Signum function. The final composite loss function L is then computed as a weighted sum of L., and
L4, modulated by A:

L= Lo+ (1N - L (12)

The parameter \ dynamically adjusts the weighting between the L., and L based on the frequency of sign changes between
the actual and predicted differences, promoting higher fidelity in capturing dynamic temporal patterns. For more details on
L4 loss, we refer the readers to (Xiong et al., 2024).

In our experiments, we set Ler to Mean Absolute Error (MAE) for the benchmarking tasks. We hypothesize that MAE is
more suitable because DeepEDM aims to model the underlying dynamics and thus focusing on the general trend aligns
better with this objective, avoiding excessive sensitivity to noisy outliers. However, for ECL and Traffic datasets which have
high dimensionality and are generally noisier, MAE does not perform competitively. For these specific cases, we instead set
Lerr to Mean Squared Error (MSE) loss.

Training: DeepEDM is trained for 250 epochs using the AdamW (Loshchilov & Hutter, 2017) optimizer with a learning
rate of 0.0005 and a batch size of 32. Following standard practices in time-series forecasting, an early stopping mechanism
based on validation set performance metrics is implemented to mitigate overfitting.

A.3. Short-term Forecasting Experiments and Results

We now present the comprehensive evaluation results of the DeepEDM on the popular short-term univariate forecasting
M4 benchmark. This benchmark consists of six datasets, each corresponding to a different frequency: yearly, quarterly,
monthly, weekly, daily, and hourly. For our experiments, we follow the standard setup of all the reported baselines, where
the lookback length is set to twice the forecast length H € [6, 48]. Consistent with prior works, DeepEDM is optimized
using the SMAPE loss function.

Metrics: Following standard baselines, we use the Symmetric Mean Absolute Percentage Error (SMAPE), MAPE (Mean
Absolute Percentage Error), Mean Absolute Scaled Error (MASE), and overall weighted average (OWA) metrics to evaluate
the forecasting performance. For brevity, we only provide the formulation of these metrics and refer the reader to (Oreshkin
et al., 2020) for more details:

2 i 4 1 Ur-+i
SMAPE — 290 Z ||yT+ U744 MAPE — 100 Z lyr+i — 74 |,

yT-H‘ + |yT+z|’ ‘yT+z|
H ~
1 i— i 1 SMAPE MASE
MASE = 3~ — U  OWA=3 {s * MAS
i=1 TTH—m Zj:m+1 ‘yj — yj—m| MAPEn;ive2 MASEnaive2

Results: The results of our experiments, summarized in Table 5, demonstrate that DeepEDM outperforms the dynamical
modeling-based methods on all subsets. It also surpasses all methods within the three subsets grouped under the “others”
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category, while delivering competitive performance across other subsets. The notable success in the “others” category
can be attributed to the typically longer sequences found in these subsets, which better facilitate the reconstruction of the
underlying dynamical system. In contrast, other subsets contain shorter sequences, which pose challenges to effective
system reconstruction. Nonetheless, DeepEDM again exhibits competitive performance (best Weighted Average SMAPE
for all datasets) across this benchmark, further showcasing its capabilities.

Table 5. Univariate forecasting results on M4 dataset. The M4 dataset comprises six datasets, three of which are included in the “Others”
category. These three subsets generally contain longer sequences, allowing our method to perform better and achieve superior performance
compared to all other methods on these subsets. All prediction lengths are in [6, 48]. Baseline results are from Koopa (2024b) and
TimeMixer (2024a). Bold represents the best values while underline represents 2nd best. Gray represents dynamical modeling based
methods.

Models  DeepEDM Koopa KNF TimeMixer TimesNet N-HiTS N-BEATS™ PatchTST FiLM LightTS DLinear FED. Stationary Auto. Pyra. In.

> SMAPE| 13243 13.35213.986 13.206 13.387 13.418 13.436 16463 17.431 14.247 16.965 13.728 13.717 13.974 15.530 14.727
5 MASE | 2973 2997 3.029 2.916 2.996 3.045 3.043 3967 4.043 3.109 4.283 3.048 3.078 3.134 3.711 3.418
> | OWA 0.779 0.786 0.804 0.776 0.786  0.793  0.794 1.003 1.042 0.827 1.058 0.803 0.807 0.822 0.942 0.881
Z SMAPE| 10.04 10.15910.343 9.996 10.100 10.202 10.124  10.644 12.925 11.364 12.145 10.792 10.958 11.338 15.449 11.360
?:; MASE | 1.177 1.189 1.202 1.166 1.182  1.194 1.169 1.278 1.664 1328 1.520 1.283 1.325 1.365 2.350 1.401
& | OWA 0.885 0.895 0.965 0.825 0.890 0.899  0.886 0949 1.193 1.000 1.106 0.958 0.981 1.012 1.558 1.027
E‘ SMAPE| 12.547 12.730 12.894 12.605 12.670 12.791 12.677 13399 15.407 14.014 13.514 14260 13.917 13.958 17.642 14.062
= | MASE| 0.933 0953 1.023 0.919 0933 0969  0.937 1.031 1.298 1.053 1.037 1.102 1.097 1.103 1913 1.141
§ OWA 0.873 0901 0985 0.869 0.878 0.899  0.880 0949 1.144 0981 0956 1.012 0998 1.002 1.511 1.024
4 SMAPE| 4.339 4861 4753 4.564 4891 5.061 4.925 6.558 7.134 15880 6.709 4.954 6302 5.485 24.786 24.460
< | MASE | 3.042 3.124 3.138 3.115 3302 3216 3391 4511 509 11434 4953 3.264 4.064 3.865 18.581 20.960
O | oWA 0936 1.004 1.019 0.982 1.035 1.040 1.053 1.401 1.553 3474 1.487 1.036 1304 1.187 5.538 5.879
B g‘) SMAPE| 11.695 11.863 12.126 11.723  11.829 11.927 11.851 13.152 14.863 13.525 13.639 12.840 12.780 12.909 16.987 14.086
) 8| MASE 1.566 1.595 1.641 1.559 1.585 1.613 1.559 1.945 2207 2111 2095 1.701 1.756 1.771 3.265 2.718
£ <| OWA 0.841 0.858 0.874 0.840 0.851 0.861 0.855 0998 1.125 1.051 1.051 0918 0930 0939 1.480 1.230

* The original paper of N-BEATS (2020) adopts a special ensemble method to promote the performance. For fair comparison, authors of TimeMixer (2024a)
removed the ensemble and only compared the pure forecasting models.

A.4. Long-term Forecasting with Lookback Search

In this section, we present the forecasting results under the lookback search setting, commonly adopted in recent works such
as TimeMixer (Wang et al., 2024a). This setting allows models to select an optimal lookback length from a predefined set,
ensuring a fair comparison while potentially benefiting methods that can leverage longer historical dependencies. In this
setting, each model is evaluated on four prediction horizons (H € [96, 192, 336, 720]), with the best-performing lookback
chosen from [96, 192, 336, 512].

While this setup provides flexibility, it can be particularly challenging for dynamical systems-based methods like DeepEDM,
which rely on sufficiently long lookbacks to reconstruct the underlying attractor accurately. Some configurations require
forecasting 720 steps into the future using only 512 steps of history, a scenario that may not always capture the full
state-space dynamics. Nonetheless, as shown in Table 6, DeepEDM demonstrates strong performance, achieving 45 wins
compared to 34 for the second-best model, further highlighting its robustness even under challenging settings.

A.5. Ablation Studies

In addition to the component-wise ablation presented in the main paper, we conduct further experiments to evaluate
additional design choices underlying DeepEDM.

A.5.1. ABLATION STUDY ON LOOKBACK LENGTH

In this section, we present an ablation study to investigate the impact of varying the lookback length 7" on forecasting
performance, evaluated across three datasets: ETThl, ETTm2, and Exchange. The results, shown in Figure 4 plot the Mean
Squared Error (MSE) against input sequence lengths, with the prediction horizon fixed at H = 96. Across the datasets,
we observe that increasing the lookback window improves forecasting accuracy up to a threshold, typically at T' = 512.
Beyond this point, performance degrades, with further increases in lookback length resulting in higher errors. This decline is
attributed to a distribution shift, where the model starts to capture data points from the past that no longer align with the
distribution of more recent data, introducing irrelevant or outdated information that negatively impacts forecast quality.

Notably, our model consistently outperforms the compared benchmarks across varying input sequence lengths, demonstrating
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Table 6. Multivariate forecasting results under the lookback search setting. Bold indicates the best performance, while underline indicates
the 2nd best. Baseline results are taken from (Wang et al., 2024a) while Naive was reproduced by us.

Ours TimeMixer PatchTST  TimesNet Crossformer MICN FiLM DLinear FEDformer Stationary Autoformer Naive
MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

Models

96 [0.145 0.183]0.147 0.197
192 [0.189 0.226|0.189 0.239(0.194
336 |0.240 0.267[0.241 0.280
720 0.322(0.310 0.330 0.311
Avg [0.222 0.249|0.222 0.262[0.241
96 [0.178 0.199]0.167 0.220
192 [0.191 0.2090.187 0.249
336 |0.206 0.216(0.200 0.243
720 0.2450.215 0.250 0.220

Avg 0.217[0.192 0.244 0.204

96 [0.133 0.129 0.2240.129 0.222
192 0.140 0.220(0.147 0.240
336 0.161 0.255(0.163 0.259
720 0.194 0.2870.197 0.290
Avg 0.156 0.246|0.159 0.253
96 0.360 0.252(0.360 0.249(0.360 0.249 0.410
192 |0.375 0.375 0.250(0.379 0.252
336 0.385 0.270(0.392 0.264
720 0.430 0.281(0.432 0.286
Avg 0.387 0.262(0.391 0.264
96 0.356 0.384/0.361 0.390
192 [0.398 0.414 0.405 0.416
336 |0.419 0.425 0.429(0.422
720 |0.434 0.451|0.445 0.460
Avg [0.402 0.419]0.411 0.423
9% 0.332[0.271 0.330]0.274
192 0.374 0.314 0.231 0.322
336 0.393(0.332 0.329 0.384
720 0.342 0.408|0.379 0.422
Avg 0.381(0.316 0.384(0.324 0.381
96 [0.289 0.331[0.291 0.340
192 [0.321 0.351|0.327 0.365
336 |0.361 0.377(0.360 0.381
720 |0.414 0.406|0.415 0.417
Avg [0.346 0.366|0.348 0.375
96 [0.164 0.245[0.164 0.254 0.165
192 [0.221 0.287 0.295 0.222
336 (0.270 0.321 0.274 0.329
720 10.347 0.371(0.359 0.383
Avg [0.251 0.306|0.256 0.315
“Count 45 34 8 2 0 0 0 0 0 0 0 0
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Figure 4. Impact of lookback length on forecast accuracy. The prediction horizon is fixed at H = 96, while the input sequence length
T € {192,288,336,512, 720} is varied to assess its effect on forecasting performance. Increasing the lookback window generally
improves accuracy up to a certain point; however, excessively long lookbacks can introduce irrelevant information or noise, ultimately
degrading performance.

its robustness in different temporal contexts. This study highlights the importance of a balanced lookback window in
optimizing forecasting models. While short windows may lack sufficient context, excessively long windows risk overfitting
to irrelevant historical trends. Our results suggest that a moderate lookback window length (e.g., T' = 512) offers the best
trade-off between context and relevance, as evidenced by the performance drop beyond this threshold.

A.5.2. SENSITIVITY TO TIME DELAY AND EMBEDDING DIMENSION

We conducted additional experiments to investigate the sensitivity of DeepEDM to two key hyperparameters that govern
the time-delay embedding: the embedding dimension 7 and the delay interval 7. Together, these parameters define how
historical observations are mapped into the delay-coordinate space. Specifically, a time-delay embedding with d7 = 3 and
7 = 1 yields a 3-dimensional vector x; = [x4, 21, T+—2], while 7 = 3 and 7 = 2 results in X; = [2¢, Tt—2, Tr—_4]-

In our main experiments, 7 is fixed to 1, and J7 is selected empirically per dataset. To assess the robustness of the model,
we perform ablation studies by varying one parameter while keeping the other fixed. For the dr-sensitivity experiments, we
fix 7 = 1 and vary d7 € {2,3,4,5}. For the T-sensitivity experiments, we fix ;7 = 3 and explore 7 € {1,2,3,4}.

Effect of Embedding Dimension dp. The impact of the embedding dimension 7 is summarized in Table 7. The results
show that its influence is highly dataset-dependent. In several cases, performance remains relatively stable across different
values of 7, indicating that the underlying system may be either intrinsically low-dimensional or already adequately
represented by the chosen embedding. When the dynamics lie on a low-dimensional manifold, larger values of 7 become
redundant. Conversely, in high-dimensional systems, small 7 may lead to underembedding, resulting in similar but
suboptimal performance across configurations. These observations align with classical results from delay-coordinate
embedding theory.

Effect of Delay Interval 7. Table 8 presents the results for varying the delay interval 7. We observe that 7 = 1 consistently
yields the best or near-best performance across all datasets. This is also the case considered in Takens’ theorem. Nevertheless,
determining the optimal pair (d7, 7) remains an open problem. Developing principled strategies for joint selection may
further improve model accuracy, which we leave for future work.

A.5.3. ABLATION STUDY ON THE L0OSS FUNCTION

To study the role of the loss function, we compare the full DeepEDM model trained with our full loss function to a variant
trained solely with standard MSE. The results of this experiment, detailed in Table 9, reveal that while incoporating L4 loss
generally leads to lower errors, MSE occasionally performs comparably or even slightly better—suggesting complementary
strengths. Importantly, the full model consistently delivers the best overall performance.
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Table 7. Ablation on m i.e. embedding size

Dataset

op =

or =5

op =17

or =11

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MAE

ETThl

48
96
144
192

0.3288
0.3656
0.3922
0.4064

0.3587
0.3835
0.3993
0.4152

0.3224
0.3708
0.3881
0.4046

0.3561
0.3865
0.3978
0.4147

0.3245
0.3688
0.3886
0.4017

0.3576
0.3843
0.3980
0.4132

0.3240
0.3686
0.3915
0.4258

0.3582
0.3858
0.3995
0.4327

0.3583
0.3866
0.4000
0.4526

ETTh2

48

96
144
192

0.2263
0.2917
0.3307
0.3523

0.2886
0.3341
0.3635
0.3783

0.2276
0.2870
0.3225
0.3516

0.2902
0.3320
0.3603
0.3764

0.2238
0.2881
0.3224
0.3450

0.2871
0.3328
0.3611
0.3741

0.2231
0.2905
0.3270
0.3505

0.2872
0.3335
0.3631
0.3763

0.2869
0.3344
0.3666
0.3765

ETTml

48
96
144
192

0.2822
0.2902
0.3104
0.3226

0.3223
0.3287
0.3441
0.3533

0.2827
0.2874
0.3084
0.3200

0.3224
0.3273
0.3445
0.3523

0.2775
0.2878
0.3041
0.3213

0.3191
0.3277
0.3428
0.3524

0.2782
0.2904
0.3087
0.3257

0.3175
0.3290
0.3439
0.3545

0.3182
0.3280
0.3422
0.3537

ETTm2

48
96
144
192

0.1344
0.1689
0.1991
0.2272

0.2219
0.2473
0.2707
0.2886

0.1334
0.1692
0.2048
0.2244

0.2213
0.2478
0.2727
0.2890

0.1335
0.1697
0.1974
0.2248

0.2211
0.2483
0.2685
0.2881

0.1332
0.1691
0.2023
0.2288

0.2212
0.2478
0.2722
0.2904

0.2211
0.2470
0.2727
0.2911

Exchange

48
96
144
192

0.0429
0.0894
0.1348
0.1801

0.1429
0.2087
0.2586
0.3035

0.0418
0.0854
0.1298
0.1931

0.1404
0.2026
0.2529
0.3144

0.0429
0.0825
0.1326
0.1785

0.1414
0.2008
0.2553
0.2996

0.0443
0.0861
0.1427
0.1854

0.1458
0.2039
0.2664
0.3085

0.1433
0.2061
0.2560
0.3000

Weather

48
96
144
192

0.1404
0.1600
0.1741
0.1910

0.1695
0.1948
0.2099
0.2262

0.1421
0.1573
0.1735
0.1910

0.1735
0.1916
0.2092
0.2263

0.1371
0.1579
0.1741
0.1911

0.1668
0.1927
0.2096
0.2263

0.1396
0.1578
0.1749
0.1911

0.1686
0.1920
0.2098
0.2263

0.1753
0.1919
0.2094
0.2264

Table 8.

Ablation on 7.

Dataset

T=1

T=2

MSE

MAE

MSE

MAE

MSE

MAE

48
96
144
192

ETThl

0.3246
0.3689
0.3885
0.4017

0.3575
0.3844
0.3980
0.4129

0.3270
0.3663
0.3902
0.4038

0.3589
0.3839
0.3988
0.4164

0.3270
0.3653
0.3911
0.4090

0.3602
0.3836
0.3985
0.4194

48
96
144
192

ETTh2

0.2238
0.2882
0.3224
0.3450

0.2871
0.3333
0.3611
0.3741

0.2269
0.2885
0.3290
0.3541

0.2879
0.3331
0.3652
0.3787

0.2240
0.2875
0.3316
0.3583

0.2870
0.3326
0.3653
0.3803

48
96
144
192

ETTml

0.2782
0.2869
0.3053
0.3213

0.3195
0.3282
0.3439
0.3523

0.2795
0.2901
0.3094
0.3209

0.3189
0.3288
0.3457
0.3527

0.2804
0.2866
0.3079
0.3203

0.3198
0.3279
0.3452
0.3530

48
96
144
192

ETTm2

0.1337
0.1700
0.1965
0.2220

0.2212
0.2485
0.2684
0.2871

0.1342
0.1704
0.1967
0.2246

0.2222
0.2485
0.2690
0.2881

0.1346
0.1706
0.1952
0.2231

0.2230
0.2479
0.2681
0.2873

48
96
144
192

Exchange

0.0429
0.0829
0.1340
0.1769

0.1414
0.2011
0.2567
0.2991

0.0426
0.0835
0.1336
0.1773

0.1412
0.2020
0.2564
0.2992

0.0423
0.0838
0.1317
0.1789

0.1410
0.2023
0.2547
0.2999

48
96
144
192

Weather

0.1371
0.1581
0.1741
0.1938

0.1668
0.1926
0.2096
0.2280

0.1397
0.1580
0.1740
0.1969

0.1690
0.1931
0.2096
0.2310

0.1406
0.1587
0.1749
0.1956

0.1695
0.1938
0.2110
0.2308

18



LETS Forecast: Learning Embedology for Time Series Forecasting

Table 9. Ablation study on the loss function.

Dataset DeepEDM DeepEDM (with MSE loss)
MSE MAE MSE MAE

48 | 0.1610 0.2470 0.1591 0.2463

g 96| 01370 0.2320 0.1330 0.2322
=144 | 0.1450 0.2390 0.1466 0.2393
192 | 0.1510 0.2440 0.1528 0.2458

48 | 0.3240 0.3570 0.3322 0.3738

E 96 | 0.3650 0.3840 0.3697 0.3982
= | 144 | 0.3880 0.3980 0.3990 0.4095
192 | 0.4070 0.4210 0.4061 0.4205

© 48 | 0.0420 0.1420 0.0415 0.1403
::%D 96 | 0.0880 0.2050 0.0827 0.2025
& 144 | 0.1330 0.2550 0.1297 0.2552
192 | 0.1780 0.3010 0.1739 0.3000

48 | 0.2250 0.2880 0.2265 0.2958

E 96 | 0.2890 0.3330 0.2885 0.3430
T | 144 | 0.3240 0.3620 0.3242 0.3679
192 | 0.3510 0.3770 0.3547 0.3888

48 | 0.4480 0.2860 0.4374 0.2863

% 96 | 0.3830 0.2590 0.3757 0.2608
& | 144 | 0.3800 0.2580 0.3781 0.2615
192 | 0.3870 0.2620 0.3809 0.2644

48 | 0.2770 0.3180 0.2820 0.3319

E 96 | 0.2880 0.3280 0.2882 0.3425
T | 144 | 03080 0.3440 0.3106 0.3581
192 | 0.3220 0.3530 0.3233 0.3646

- 48 | 0.1330 0.2210 0.1350 0.2309
E| 96| 0.1690 0.2480 0.1676 0.2548
5| 144 | 0.2030 0.2710 0.1991 0.2774
192 | 0.2240 0.2890 0.2205 0.2924

_ | 48101380 0.1680 0.1376 0.1774
é; 96 | 0.1570 0.1920 0.1551 0.1998
£ | 144 | 0.1740 0.2100 0.1733 0.2201
192 | 0.1910 0.2260 0.1909 0.2392

A.6. Stability of Results

To assess the robustness of our main results on the standard multivariate forecasting benchmark (Table 1), we evaluate the
stability of each metric by computing its standard deviation across five independent random seeds. The detailed results
are presented in Table 10. As shown, the standard deviations are consistently low across most datasets, indicating that
DeepEDM yields stable and reliable forecasts. As expected, the ILI dataset, being much smaller, exhibits relatively higher
variance.

A.7. Additional Details on Synthetic Data Experiments

Data Generation: To systematically analyze model performance under deterministic yet unpredictable systems, we
generate synthetic datasets for both chaotic and non-chaotic dynamical systems. Non-chaotic systems exhibit predictable
behavior, where small variations in initial conditions result in only minor deviations in long-term trajectories. In contrast,
chaotic systems, despite being governed by deterministic rules, exhibit extreme sensitivity to initial conditions, leading to
exponentially diverging trajectories over time. A canonical example of deterministic chaos, the Lorenz system, is governed
by a set of nonlinear differential equations that give rise to a strange attractor, characterized by a series of bifurcations and
highly sensitive trajectory evolution (Figure 5, middle row).

To capture distinct dynamical regimes of the Lorenz system, we generate two configurations: (i) Chaotic behavior:
o = 10.0, p = 28.0, f§ = 2.667 and initial conditions: (0.0, 1.0,1.05) (ii) Non-chaotic behavior: ¢ = 10.0, p = 9,
£ = 2.667, and initial conditions: (10.0, 10.0, 10.0). For the Rossler system, we generate one chaotic configuration using
a=0.2,b=0.2,c = 5.7 and initial conditions: (1.,1.,1.).
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Table 10. Standard deviation of the main results (Table 1) over five seeds across different forecast horizons: H € {48, 96, 144,192}
for all datasets, except ILI, where H € {24, 36,48,60}. The results demonstrate stability, with consistently low standard deviations
across datasets. However, the ILI dataset, being significantly smaller, naturally exhibits relatively higher variance, particularly for shorter
forecast horizons.

Forecast Length (H)
Dataset ‘ H, ‘ H, ‘ H, ‘ Hs

OMSE OMAE | OMSE OMAE | OMSE OMAE | OMSE OMAE
ECL 0.0007 0.0006 | 0.0006 0.0004 | 0.0008 0.0008 | 0.0003 0.0005
ETThl 0.0015 0.0009 | 0.0038 0.0008 | 0.0017 0.0006 | 0.0055 0.0050
ETTh2 0.0018 0.0009 | 0.0013 0.0012 | 0.0081 0.0033 | 0.0077 0.0036
ETTm1 | 0.0010 0.0005 | 0.0006 0.0005 | 0.0020 0.0005 | 0.0014 0.0008
ETTm2 | 0.0004 0.0003 | 0.0010 0.0005 | 0.0028 0.0016 | 0.0023 0.0013
Traffic 0.0033  0.0008 | 0.0007 0.0009 | 0.0008 0.0007 | 0.0012 0.0012
Exchange | 0.0006 0.0013 | 0.0021 0.0020 | 0.0038 0.0036 | 0.0041 0.0026
ILI 0.1383 0.0272 | 0.0642 0.0104 | 0.0380 0.0103 | 0.0621 0.0141
Weather | 0.0007 0.0009 | 0.0003 0.0003 | 0.0005 0.0003 | 0.0005 0.0003

The initial conditions were selected to ensure trajectories remain well-defined and not excessively perturbed even under
the highest noise settings. Further to systematically evaluate model performance in presence of noise, we simulate noisy
conditions by introducing Gaussian noise N (0,02 ,..), With 00ise € {0.0,0.5,1.0,1.5,2.0,2.5} with higher 0,,0ise

denoting higher levels of noise. This results in a total of 18 synthetic datasets (3 systems X 6 noise levels). The underlying
dynamical systems and noise levels are illustrated in Figure 5.

Experimental Setup: Each synthetic dataset is divided into sequential non-overlapping training, validation, and testing
splits. The models are trained on their respective training sets and evaluated on the test sets, with validation sets used for
early stopping to mitigate overfitting.

All learning-based models are trained to forecast a fixed number of future steps (96 steps) based on a fixed lookback window
(192 steps). The performance of each model is assessed based on its ability to forecast accurately over varying lengths (p)
and under different noise conditions. Specifically, while models are trained with a forecast length of 48 steps, only the first p
steps of each forecast are considered during testing. This evaluation strategy ensures a consistent and unbiased comparison
across different prediction lengths and models.

Results: Table 11 details the quantitative results of our experiments on synthetic datasets under varying noise levels (0 p,0;s¢)
and prediction horizons (H) across three dynamical systems. DeepEDM consistently delivers the lowest MSE and MAE,
demonstrating superior forecast performance, particularly in noisy and chaotic regimes.

Chaotic datasets: Chaotic regimes pose significant challenges for long-term forecasting due to their inherent complexity,
leading to relatively high errors. Despite these challenges, DeepEDM handles forecasting far more effectively than the
baseline methods. At o = 2.5 and H = 48, its MSE (17.267) is 40% lower than Koopa (28.804), 45% below iTransformer
(31.599), and 60% below Simplex (43.548). This advantage is also evident in the no-noise regime (0,055 = 0, H = 48),
where DeepEDM achieves an MSE of 10.467—outperforming Koopa (18.978) by 44.85%, iTransformer (18.531) by
43.52%, and Simplex (30.985) by 66.22%. DeepEDM also demonstrates consistent superiority on the Rossler system,
particularly in terms of MAE, further reinforcing its robustness against noise and its ability to model complex nonlinear
dynamics.

Non-chaotic datasets: In the simpler non-chaotic setting with no noise, all the baselines perform comparably, however as the
noise level increases DeepEDM still maintains a competitive edge. For instant, at ¢ = 2.0,,0;sc and H = 48, it achieves
an MSE of 0.048—18% lower than Koopa (0.059) and 6% lower than iTransformer (0.051), while Simplex deteriorates
drastically to 3.921.

In summary, across all three systems, DeepEDM outperforms both classical EDM methods and learning based baselines,
showecasing its resilience under noise and across varying prediction horizons.

20



LETS Forecast: Learning Embedology for Time Series Forecasting

Figure 5. Visualization of the synthetic datasets: Non-chaotic Lorenz (top row), chaotic Lorenz (middle row), and chaotic Rossler (bottom
row) systems. As the noise level increases (from left to right), forecasting future states becomes progressively more challenging. Pink
dots indicate the new attractor under the current regime, while the light blue denotes the original attractor for reference.
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Table 12. Full ablation table

Dataset Linear MLP ‘ MLP+EDM Full Model
Metric MSE MAE MSE MAE MSE MAE MSE MAE
48 | 0.1980+0.0001  0.2704+0.0004 | 0.1889+0.0000 0.2673+0.0001 | 0.1591+0.0001  0.2463+0.0002 | 0.1607+0.0011  0.2470+0.0009
a8 96 | 0.1534+0.0002 0.2463+0.0003 | 0.1511+0.0028 0.2478+0.0024 | 0.1380+0.0001  0.2322+0.0001 | 0.1377+0.0008  0.2317-0.0006
= 144 | 0.1526+0.0001  0.2461+0.0002 | 0.1531+0.0016 0.2494+0.0019 | 0.1466+0.0002  0.2393+0.0003 | 0.1459+0.0008  0.2392+0.0009
192 | 0.1545+0.0001  0.2486-+0.0002 | 0.1533+0.0008 0.2483+0.0014 | 0.1528+0.0008  0.2458+0.0005 | 0.1507+0.0003 0.2438+0.0007
48 | 0.3412+0.0012  0.3630+0.0015 | 0.3369+0.0006 0.3654+0.0003 | 0.3280+0.0006 0.3599+0.0002 | 0.3236+0.0012 0.3566-+0.0004
= 96 | 0.3759+0.0014 0.3866+0.0012 | 0.3712+0.0007 0.3861+0.0007 | 0.3687+0.0034 0.3873+0.0007 | 0.3622+0.0033  0.3831+0.0004
E 144 | 0.3953+0.0009 0.4005+0.0009 | 0.3961+0.0011  0.4031+0.0014 | 0.3981+0.0041  0.4022+0.0019 | 0.3885+0.0026 0.3977+0.0006
192 | 0.4096+0.0009 0.4125+0.0013 | 0.4085+0.0010 0.4113+0.0015 | 0.4180+0.0033 0.4261+0.0017 | 0.4064-+0.0074a 0.4213+0.0070
48 | 0.2258+0.0003  0.2913+0.0002 | 0.2237+0.0009 0.2907+0.0003 | 0.2265+0.0022 0.2886+0.0010 | 0.2256+0.0021  0.2875+0.0011
a 96 | 0.2838+0.0002 0.3331+0.0002 | 0.2807+0.0002  0.3310:£0.0004 | 0.2935+0.0040 0.3367+0.0023 | 0.2882+0.0013  0.3329+0.0017
) 144 | 0.3202+0.0008  0.3580+0.0003 | 0.3161+0.0020 0.3546+0.0011 | 0.3317+0.0022 0.3676+0.0018 | 0.3195+0.0009 0.3604+0.0016
192 | 0.3505+0.0017 0.3787+0.0008 | 0.3434+0.0035 0.3745+0.0015 | 0.3551+0.0084 0.380340.0033 | 0.3483+0.0099 0.3757+0.0047
48 | 0.3045+0.0006  0.3346+0.0003 | 0.304540.0004 0.3346+0.0004 | 0.2766+0.0009 0.3178+0.0004 | 0.2768+0.0007 0.3184+0.0007
E 96 | 0.3043+0.0015 0.3377+0.0011 | 0.3035+0.0010 0.3367+0.0004 | 0.2924+0.0017 0.3305+0.0010 | 0.2885+0.0003  0.3279-0.0006
5 144 | 0.3218+0.0002  0.3492+0.0001 | 0.3129+0.0009 0.3470+0.0002 | 0.3106+0.0016 0.3463+0.0010 | 0.3070-+0.0024  0.3437+0.0007
192 | 0.3364+0.0007 0.3581+0.0008 | 0.3282+0.0004 0.3583+0.0002 | 0.3279+0.0012  0.3566+0.0004 | 0.3213+0.0008 0.3527+0.0011
o 48 | 0.1439+0.0002  0.2334+0.0000 | 0.1437+0.0003 0.2335+0.0001 | 0.1338+0.0006 0.2221+0.0008 | 0.1330+0.0006 0.2210+0.0005
] 96 | 0.171840.0003 0.2510+0.0001 | 0.1717+0.0002 0.2510+0.0001 | 0.1710+0.0028 0.2502+0.0022 | 0.1686-+0.0013  0.2478+0.0006
E 144 | 0.1993+0.0004 0.2708+0.0001 | 0.1993+0.0009 0.2695+0.0003 | 0.2011+0.0042 0.271140.0027 | 0.2020+0.0042 0.2714+0.0025
192 | 0.2201+0.0002 0.2855+0.0002 | 0.2198+0.0002 0.2852+0.0001 | 0.2261+0.0040 0.2908+0.0029 | 0.2234+0.0027 0.2886+0.0016
48 | 0.6978+0.0005 0.4131+0.0004 | 0.5621+0.0012 0.3636+0.0003 | 0.4374+0.0053 0.2863+0.0013 | 0.4501+0.0008 0.2859-+0.0011
& 96 | 0.4508+0.0006 0.2985+0.0013 | 0.4241+0.0024 0.2974+0.0023 | 0.3757+0.0015 0.2608+0.0014 | 0.3828+0.0006  0.2596-0.0004
& 144 | 0.4300+0.0007  0.2912+0.0015 | 0.4112+0.0013 0.2871+0.0012 | 0.3781+0.0014 0.2615+0.0016 | 0.3804+0.0011  0.2582+0.0009
192 | 0.4219+0.0004 0.2876+0.0012 | 0.4111+0.0047 0.2933+0.0040 | 0.3809-+0.0019  0.2644+0.0020 | 0.3870+0.0017 0.2616+0.0018
8 48 | 0.0430+0.0003  0.1428+0.0006 | 0.0423+0.0001  0.1409+0.0000 | 0.0427+0.0003 0.1422+0.0007 | 0.0422+0.0003 0.1411+0.0006
£ 96 | 0.0841+0.0004 0.2018+0.0006 | 0.0853+0.0018 0.2029+0.0021 | 0.0853+0.0014 0.2037+0.0010 | 0.0870+0.0024 0.2044+0.0023
5 144 | 0.1301+0.0000 0.2526-+0.0002 | 0.1314+0.0010 0.2550+0.0011 | 0.1370+0.0062 0.2603+0.0056 | 0.1319+0.0053 0.2546+0.0049
192 | 0.1818+0.0017 0.3018+0.0017 | 0.1849+0.0047 0.3061+0.0025 | 0.1838+0.0038 0.3053+0.0023 | 0.1751+0.0024  0.2989+0.0004
24 | 2.2266+0.0111  0.9375+0.0049 | 2.2114+0.0117 0.8901+0.0066 | 1.8514+0.1304 0.8193+0.0150 | 1.7489+0.1807 0.7896-+0.0362
= 36 | 2.0815+0.00908 0.9264+0.0023 | 1.9350+0.0201  0.8443+0.0107 | 1.5775+0.0185 0.7606+0.0040 | 1.6405+0.0709 0.7690-+0.0157
- 48 | 1.8621+0.0000 0.9020+0.0011 | 1.6525+0.0327 0.8133+0.0130 | 1.6184+0.0798 0.7868+0.0169 | 1.6149+0.0572 0.7880+0.0138
60 | 1.9258+0.1907 0.9425+0.0583 | 2.1317+0.2852 0.9979+0.1007 | 1.6955+0.0934 0.8241+0.0290 | 1.7072+0.0921  0.827440.0209
s 48 | 0.1665+0.0012  0.1919+0.0029 | 0.1618+0.0012 0.1870+0.0013 | 0.1396+0.0020 0.1705+0.0028 | 0.1382+0.0010 0.1683+0.0013
,35; 96 | 0.1938+0.0006 0.2218+0.0014 | 0.193140.0004 0.2196+0.0005 | 0.1566+0.0004 0.1917+0.0005 | 0.1571+0.0001  0.1917-+0.0001
2 144 | 0.2033%0.0004  0.2341+0.0006 | 0.1863+0.0009 0.2214+0.0008 | 0.1752+0.0006 0.2105+0.0006 | 0.1739+0.0003  0.2093+0.0002
192 | 0.2185+0.0005 0.2518+0.0014 | 0.2182+0.0006 0.2512+0.0001 | 0.1924+0.0015 0.2281+0.0012 | 0.1913+0.0007 0.2263+0.0003
#Improvements Baseline 55 52 54
#Degradations 17 20 18
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