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Abstract
Knowledge distillation (KD) is an effective
method for model compression and transferring
knowledge between models. However, its effect
on model’s robustness against spurious correla-
tions, shortcuts and task-irrelevant features that
degrade performance on out-of-distribution data
remains underexplored. This study investigates
the effect of knowledge distillation on natural lan-
guage inference (NLI) and image classification
tasks, with a focus on the transferability of “debi-
asing” capabilities from teacher models to student
models. Through extensive experiments, we il-
lustrate several key findings: (i) the effect of KD
on debiasing performance depends on the under-
lying debiasing method, the relative scale of the
models involved, and the size of the training set;
(ii) KD effectively transfers debiasing capabili-
ties when teacher and student are similar in scale
(number of parameters); (iii) KD may amplify the
student model’s reliance on spurious features, and
this effect does not diminish as the teacher model
scales up; and (iv) although the overall robustness
of a model may remain stable post-distillation,
significant variations can occur across different
types of biases; and Given the above findings, we
propose three effective solutions to improve the
distillability of debiasing methods: developing
high quality data for augmentation, implement-
ing iterative knowledge distillation, and initializ-
ing student models with weights obtained from
teacher models.

1. Introduction
Machine learning models are susceptible to biases or spuri-
ous correlations in datasets, commonly known to as “short-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

cuts” or “dataset biases”. Models that rely on shortcuts can
achieve high performance on in-domain test sets or over-
represented groups by exploiting superficial correlations
between features and labels. However, these models suffer
significant performance degradation on out of distribution
or challenging test data, such as swapped subject and ob-
ject (McCoy et al., 2019) in natural language understanding,
or under-represented groups, such as “Male” subjects with
“Blond Hair” (Liu et al., 2015) in image classification.

Despite recent advancements in bias mitigation (Guo et al.,
2023; Chew et al., 2024; Li et al., 2023; Cheng & Amiri,
2024) and knowledge distillation (Stanton et al., 2021; Sul-
tan, 2023), their integration is largely unexplored. This work
studies the following research questions (RQs):

• RQ1: To what extent can knowledge distillation trans-
fer debiasing capabilities between models?

• RQ2: Can knowledge distillation train less biased
models compared to standard training?

• RQ3: Do different debiasing methods show consistent
patterns in task performance and debiasing effective-
ness before and after knowledge distillation?

Answering these questions will help us understand the ef-
ficacy of knowledge distillation in handling dataset biases,
its underlying mechanisms, and its role in developing new
training methods for bias mitigation.

We answer these questions by designing and conducting an
empirical analysis on natural language understanding and
image classification tasks. Our analyses show that: (i) the
effect of knowledge distillation on debiasing performance
depends on the underlying debiasing method, the relative
scale of the models involved, and the size of the training set;
(ii) knowledge distillation effectively transfers debiasing
capabilities when teacher and student are similar in scale
(number of parameters); (iii) knowledge distillation may
amplify the student model’s reliance on spurious features,
and this effect does not diminish as the teacher model scales
up; and (iv) although the overall robustness of a model may
remain stable post-distillation, significant variations can
occur across different types of biases; and (v) consistent
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transfer patterns sometimes emerge, such as performance
gap between teacher and student on out-of-distribution
(OOD) data, suggesting the possibility of predictable
changes in robustness after distillation. Given the above
findings, we propose three effective solutions to improve the
distillability of debiasing methods: developing high quality
data for augmentation, implementing iterative knowledge
distillation, and initializing student models with weights
obtained from teacher models.

The contributions of this paper are:

• to the best of our knowledge, we present the first study
to investigate the effect of knowledge distillation on
model robustness against dataset biases, and analyze
the distillability of bias mitigation methods across both
language and vision tasks;

• our analysis reveals unique patterns in how knowledge
distillation affects robustness to spurious correlations
across different backbones and debiasing methods; and

• we propose three strategies to improve the distillability
of debiasing methods and provide insights for future
development of bias mitigation techniques.

2. Knowledge Distillation and Debiasing
2.1. Problem Formulation

We investigate the effect of knowledge distillation (KD) on
debiasing methods. We define distillability of debiasing
methods as the amount of performance maintained before
and after distilling a debiased model. We define contribution
of KD as the performance improvement gained by training
a debiasing method with KD over training without KD.

2.2. Notation and Training Setup

Let f and g denote models trained without knowledge dis-
tillation and with knowledge distillation respectively. In
this paper, we use subscript T and S to denote teacher and
student scales respectively. As illustrated in Figure 1, we
train the following models for each debiasing method Mi:
(i) we train Mi from scratch for both teacher and student
scales to obtain fT and fS , see Figure 1(a). (ii) Then for
every scale T > S, we distill the knowledge from fT to
gT −>S , see Figure 1(b). Given a debiasing method M and
the three models obtained above (fT , fS , and gT −>S ), we
conduct the following comparisons:

• C1: Teacher (fT ) vs. Student (gT −>S). This com-
parison reveals if knowledge distillation can distill
debiasing capability between models and if it affects
model’s robustness to spurious correlations, which an-
swers RQ1 (§4).

• C2: Non-KD vs. KD, realized by comparing fS vs.
gT −>S . This comparison demonstrates if training bias
mitigation networks can benefit from external knowl-
edge from teacher models, which answers RQ2 (§5).

• C3: Comparison between debiasing methods (Mi

vs. Mj). This comparison provides insights into dif-
ferences between debiasing methods, which answers
RQ3 (§6).

We note that when T = S, C1 and C2 are essentially the
same comparison. To avoid duplicate discussion, we will
present results when T = S in C2.

3. Experimental Setup
For consistency and fair comparison with previous debiasing
works in NLU (Jeon et al., 2023; Reif & Schwartz, 2023)
and image classification (Kirichenko et al., 2023; LaBonte
et al., 2023; Li et al., 2023), we adopt commonly used
experimental setups, including choice of backbone models,
datasets, evaluation protocols, and debiasing methods. In
addition, all experiments are repeated three times with
different random seeds to account for any stochastic effect.

Backbones We conduct experiments on a series of
BERT (Devlin et al., 2019; Turc et al., 2019), T5 (Tay
et al., 2022), ResNet (He et al., 2016), and ViT (Doso-
vitskiy et al., 2021) backbones of different scales, shown in
Table 1. These backbones are chosen for several reasons:
BERT and ResNet are commonly employed in prior works,
which enables consistent comparisons. In addition, ViT and
T5 are commonly used backbones for vision and language
tasks, but relatively less experimented in prior debiasing
works, which allows investigating the generalizability of our
findings beyond existing research. Finally, each backbone
is associated with a series of publicly available pre-trained
checkpoints of different scales, with consistent network ar-
chitecture and pre-training data, which enables cross-scale
distillation and comparisons.

Table 1. Different scales of backbones in our experiments. h and
d denote number of hidden layers and size of hidden dimension
respectively. T, S, M, B, L refer to Tiny, Small, Medium, Base and
Large version of the backbone. See Appendix for more details.

SCALE
BERT T5 RESNET VIT

h d h d h d h d

T 2 128 4 256 18 512 12 192
S 4 256 8 384 34 512 12 384
M 8 512 16 512 50 2048 12 768
B 12 768 24 768 101 2048 24 1024
L 24 1024 48 1024 152 2048 32 1280
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(c) Comparative Analysis

(a) W/o Knowledge Distillation

C2: Non-KD vs. KDC1: Teacher vs. Student C3: Debiasing methods & Backbones
VSVS VS VS

(b) W/ Knowledge Distillation

: Non-distilled model

: Without KD

: With KD

: Debiasing method

: Distilled model

: Debiasing methodT5

Figure 1. Framework for the analysis of distillability of debiasing methods. (a) training from scratch: we train a debiasing method Mi

from scratch without knowledge distillation on different scales (teacher T and student S such that T > S) to obtain models fT , fS
respectively. (b) Training with knowledge distillation: we apply knowledge distillation to transfer knowledge from teacher (fT ) to
student (gT −>S ). (c) Assessment: C1 determines if knowledge distillation can transfer the debiasing capability from teacher (fT ) to
student (gT −>S ), C2 determines the contribution of knowledge distillation in training a debiased model, and C3 compares different
debiasing methods and backbones under knowledge distillation.

Evaluation To provide a comprehensive evaluation of
robustness against spurious correlations, we compare the
teacher fT and the student gT −>S from the following per-
spectives:

• Performance on in-domain test set (ID, ↑): This
is the average performance on in-domain test set. A
robust model should achieve high performance on this
set to demonstrate general capability.

• Performance on out-of-domain test set / worst-
group samples (OOD, ↓): For text datasets, we evalu-
ate models on OOD test sets, comprised with specially
crafted hard samples (McCoy et al., 2019). Such sam-
ples require real task-related signals to predict, where
biased models fall short. For image datasets, sam-
ples are divided into groups based on their label and
spurious attributes. The worst performance on all sub-
groups indicates the robustness to spurious correla-
tions (Yang et al., 2023).

• Spurious gap (Spu. Gap, ↓): This metric calculates
the performance gap between ID and OOD, which
quantifies a model’s vulnerability to spurious correla-
tions. Ideally, a robust model should have high perfor-
mances on both ID and OOD with a small spurious gap.

• Centralized Kernel Alignment (CKA) CKA is a
commonly adopted technique to measure the similarity
between activation matrices or hidden representations
of neural networks (Kornblith et al., 2019; Cortes
et al., 2012). Following previous work (Raghu et al.,
2021; Nguyen et al., 2021), we use CKA by first
probing the intermediate representations from each
layer and then comparing all pairwise similarities
between representations of the teacher and student
models, under linear kernel CKA.

Similarly, we compare KD and Non-KD as above. We
compute F1 score on QQP and accuracy on other datasets.

Datasets We use the following datasets

• CelebA (Liu et al., 2015) consists of 16k images
of celebrity faces, where the objective is to predict
“Blond Hair” given “Male” as a spurious attribution.

• Waterbird (Sagawa et al., 2020) consists of synthetic
images of birds from CUB dataset (Wah et al., 2011)
and backgrounds (land & water) from Places (Zhou
et al., 2018) dataset. The objective is to correctly infer
“land bird” or “water bird,” given the background as
misleading information.

• MNLI (Williams et al., 2018) consists of 39k natural
language inference (NLI) samples from various do-
mains, where the objective is to classify relationship
between a premise and a hypothesis as “Entailment”,
“Contradiction”, or “Neutral”. Previous studies dis-
cover that models are prone to negation words, lexical
overlap, and sub-sequence biases in NLI task (Naik
et al., 2018; Mendelson & Belinkov, 2021). We use
HANS (McCoy et al., 2019) as the out-of-distribution
test set (OOD) and SNLI (Bowman et al., 2015) as the
transfer test set (Transfer), detailed below.

• QQP (Sharma et al., 2019) is a paraphrase identifica-
tion (PI) dataset with 43k samples, where the objective
is to predict if two questions are paraphrases of each
other. Similar to MNLI, models are likely to be mislead
by lexical overlap between two questions. We exploit
PAWS (Zhang et al., 2019) as the out-of-distribution
test set (OOD) and MRPC (Dolan & Brockett, 2005)
as the transfer test set (Transfer), detailed below.

Debiasing Methods Experiments are conducted on a
comprehensive list of commonly used debiasing meth-
ods, each of which is designed with special formula-
tion and assumptions. We use (a) Empirical Risk Mini-
mization (ERM) (standard training without debiasing tech-
niques, (b) HypothesisOnly-PoE (Karimi Mahabadi et al.,

3
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Figure 2. C1: Teacher vs. Student: average performance gaps
between teacher and student models on ID, OOD, and Spurious
Gap across text datasets. X-axis and Y-axis show the scale of stu-
dent (S) and teacher (T ) respectively: tiny (T), small (S), medium
(M), big (B), and large (L). Each cell shows the performance gap
between corresponding scales of a teacher and a student. See Ap-
pendix D for detailed results.

2020), (c) WeakLearner-PoE (Sanh et al., 2021), (d) Ker-
nelWhitening (Gao et al., 2022), (e) AttentionPoE (Wang
et al., 2023), (f) σ-Damp (Puli et al., 2023), (g) Deep-
FeatReweight (Kirichenko et al., 2023), and (h) PerSam-
pleGrad (Ahn et al., 2023). The above debiasing methods
have a wide coverage of existing algorithms, ranging from
auxiliary biased model-based debiasing, to disentanglement
of representations. Meanwhile, they can handle multiple
types of shortcuts at the same time, without overfitting to
a specific bias. Details of these methods are provided in
Appendix A.

4. RQ1: Distillability of Debiasing Methods
We first examine if KD can effectively distill the debiasing
capability from teachers to students of different scales.

Students become more biased than teachers We ob-
serve that teachers consistently achieve better performance
than their smaller scale students on ID and OOD test sets
after knowledge distillation. The positive values in Fig-
ure 2 show that although KD encourages students to mimic
their teachers in the logit space, it may undesirably increase
student’s susceptibility to spurious correlations in datasets
as the teacher’s in-domain and debiasing capabilities are
not effectively transferred to the student. The prediction
agreement between teacher and student models show simi-
lar trend, where the student generally aligns with the teacher
on ID but often largely diverges from the teacher on OOD.
Furthermore, the extent of knowledge loss after distillation
varies depending on the relative scales of the teacher and
student models. For example, as depicted in Figure 2, when
S is tiny (S = T), more debiasing power is lost, shown by
mostly positive values in spurious gap. When T is large (T
= L), more ID knowledge is lost, shown by mostly negative
values in spurious gap. The results show that if a teacher
model learns a partially debiased representation but still
retains residual biases, the student might amplify this bias
rather than mitigate it.
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Figure 3. C1: Teacher vs. Student: density of predicted proba-
bility on text datasets. On OOD, students has larger deviation in
prediction confidence than teachers. See Appendix D for detailed
results.

Students show diverse distribution shifts in predicted
probabilities To understand the influence of KD on the
debiasing capabilities of students, we investigate the out-
put probability distribution PC(y = 1). Our findings show
that KD significantly alter the predicted probability distribu-
tion, despite its training objective of matching output logits.
This perturbation is often larger on OOD than ID test sets,
which explains the larger performance drop observed in stu-
dents compared to their teachers on OOD, as illustrated in
Figure 3. We also observed that teachers tend to provide
slightly more confident predictions on ID while more mod-
erate predictions on OOD. Such behavior is not successfully
transferred to students through KD. Such distinct behaviors
on different samples may encourage models to overfit to
data distributions of the training sets or to over-represented
groups, which can effectively amplify reliance on shortcuts
over robust features. In addition, the training sets of teachers
often contain biased examples or do not equally represent all
sub-groups, which leads students to inherit and potentially
amplify these biases. Consequently, students often perform
worse than their teachers on OOD.

Students and teachers show different attention on ID
and OOD To have a deeper understanding of the teacher-
student divergence, we further probe the internal representa-
tions when making predictions on ID and OOD data. Results
shows that after distillation, students try to mimic teachers
on ID (left). The earlier layers of students follow earlier
layers of teachers, and similarly mid and later layers. This
indicates that KD can transfer knowledge of ID data from
the larger teachers into smaller students. Pn OOD (right),
however, we observe similar pattern but it is not fully pre-
served. In particular, it is challenging for the mid and later
layers of the students to follow closely to those of the teach-
ers, which explains the performance degradation on OOD
after KD, see Figure 5.

Potential for new debiasing capabilities for students be-
yond teacher abilities We compare prediction agreement
between teacher and student models. When T is large (T

4
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Figure 4. C1: Teacher vs. Student: prediction agreement on text
datasets. Left: varying S (X-axis) given a fixed large teacher (T =
L). Right: varying T (X-axis) given a fixed tiny student (S = T).
Agreement increases as the scale of teacher and student get closer.
See Appendix D for detailed results.

= L), we observe an increase in prediction agreement as S
scales up, with consistently higher agreement on ID than
OOD, as shown in the left plot in Figure 4. Conversely,
when S is tiny (S = T), the prediction agreement diminishes
as T scales up, with higher agreement on OOD than ID, the
right plot in Figure 4. The imperfect agreement between
teacher and student contradicts with the foundational as-
sumptions of knowledge distillation, which assumes that
students should closely mimic their teachers. However, in-
terestingly, this unexpected behavior may not always lead
to performance degradation. Sometimes it enables students
to generalize to out of domain data. In particular, there are
instances where students make correct predictions where
their teachers do not, see the left plot in Figure 10. Students
can sometimes outperform their teachers perhaps because
they may learn additional patterns during the knowledge
distillation process, which allows them to generalize better
than their teachers. The above result suggests that students
may sometimes acquire debiasing capabilities that surpass
those of their teachers, which we believe is a novel avenue
for robust model training.

Larger teachers do not guarantee more robust students
Our findings show that a more capable teacher does not guar-
antee a less biased student in debiasing tasks. With a fixed
student scale (as seen in the columns of Figure 2), increasing
the teacher’s scale does not consistently reduce performance
gap or spurious gap. Sometimes, a larger teacher may de-
grade the debiasing capability of the student. For example,
when S = T, increasing the teacher scale from M to B in-
creases the spurious gap from 6.5 to 8.1 on ERM, i.e. a more
biased model. Moreover, when when S = T, increasing T
result in a drop of teacher-student agreement, indicating that
the student fails to follow the teacher, see right plot in Fig-
ure 4. We attribute this finding to two reasons. Firstly, the
capabilities of students are substantially bounded by their
scale, and using a much larger and capable teacher may
exceed the student’s capacity for effective learning (Cho &
Hariharan, 2019). Secondly, training students with debias-
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Figure 5. C1: Teacher vs. Student: Centered Kernel Alignment
on ID (left) and OOD (right). Highers values indicate higher
similarity. X-axis and Y-axis refer to the layers of teacher (T ) and
student (S) respectively. See Appendix D for detailed results.

ing objectives and knowledge distillation at the same time
results in optimization problem, which may trap students’
parameters in local optima and affect their robustness to
spurious correlations.

Students with similar scales to their teachers learn better
The effectiveness of debiasing ability transfer through dis-
tillation is greatly affected by the scale similarity between
teacher and student. As the teacher and the student become
similar in scale (near the diagonal cells in Figure 2), the dif-
ferences on test set performance and spurious gaps decrease.
However, a larger mismatch in scale (far from diagonal)
results in more pronounced differences, see Figure 2. Simi-
larly, the teacher-student agreement increases as T and S
align more closely, see Figure 4. This is likely because
models of similar scales have comparable expressive power
and extracts similar features, which can lead to more effec-
tive knowledge transfer, better bias mitigation, and higher
prediction agreement.

5. RQ2: Distillation vs. Standard Training
We asses if training with knowledge distillation (KD) can
improve a model’s debiasing performance compared to stan-
dard training (Non-KD).

Non-KD is less biased than KD Our results show that de-
biasing models trained from scratch (Non-KD) have lower
ID performance than those trained with KD. However, the
Non-KD models achieve almost no changes on OOD, lead-
ing to smaller spurious gaps, see Figure 6. We hypothesize
that the distillation objective of matching logits, despite
effective on ID, may potentially inject additional spurious
correlations and distract the model from prioritizing robust
features, as the teacher is not fully unbiased.

KD does not improve generalization An interesting find-
ing is that both Non-KD and KD have similar average
prediction agreements on both ID and OOD. However,

5
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Figure 6. C2: Non-KD vs. KD: average performance gap between
teacher and student on ID, OOD, and Spurious Gap across text
datasets. X-axis and Y-axis show the scale of student (S) and
teacher (T ) respectively: : tiny (T), small (S), medium (M), big
(B), and large (L). Each cell shows the performance gap of the
corresponding scales of a teacher and a student. See Appendix D
for detailed results.
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Figure 7. C2: Non-KD vs. KD: density of predicted probability
on text datasets. On OOD, KD has larger deviation in prediction
confidence than Non-KD. See Appendix D for detailed results.

the agreement on OOD varies significantly depending on
dataset, debiasing method, and backbone model. This sug-
gests that training solely with the original data (Non-KD)
is sufficiently effective for debiasing, and introducing exter-
nal knowledge via KD does not yield significant improve-
ments. This result can be attributed to KD’s impact on
model confidence; models trained with KD tend to produce
more confident predictions than models trained without KD,
see Figure 7, which is key to degenerate performance on
OOD (Utama et al., 2020; Sanh et al., 2021). Such overcon-
fidence could be a critical factor in degraded performance
on OOD tasks. Moreover, such minimal contribution of KD
remains unchanged even when stronger external knowledge
(a larger teacher) or a more capable learner (a larger student)
is used, see Figure 8.

6. RQ3: Effect of Debiasing Methods
We assess the effect of different debiasing methods and
backbones on our earlier findings.

Different transfer patterns across methods Our results
show that the transfer patterns are heavily influenced by
the formulation of debiasing method. For example, logit-
based PoE methods, such as HypothesisOnly-PoE and
WeakLearner-PoE, show similar trends in performance
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Figure 8. C2: Non-KD vs. KD: prediction agreement on text
datasets. Left: varying S (X-axis) given a fixed teacher with T
= L. Right: varying T (X-axis) given a fixed student with T = T.
Agreement does not increase significantly as T and S scale up.
See Appendix D for detailed results.

changes and spurious gaps, in contrast to the representation
disentanglement method (KernelWhitening), see Figure 9.

Sensitivity to backbones The distillability of KD appears
to varies with the architecture of the backbones and random-
ness in the training. KernelWhitening and WeakLearner-
PoE are two methods particularly sensitive to the scale of
backbone and random seeds, which controls factors such as
data sampling and ordering.

Robustness to different biases transfer differently We
observe that OOD and Transfer show different transfer pat-
terns, where performance gap on Transfer exhibit much
larger variations the student scales up, see Figure 9. This
suggests that smaller students may outperform larger ones
on OOD, indicating that during KD, larger students may be-
come more prone to certain biases (OOD) but more resilient
to others.

Universal transfer patterns in debiasing methods A
number of debiasing methods show consistent changes in
robustness after KD, which suggest the potential for an
empirical universal transfer pattern. Specifically on text
datasets, the performance gap between teacher and student
models on OOD and Transfer Spurious Gap fall in the range
of [0, 5] and [-5, 0] respectively, see Figure 9. Such change
in performance is consistent across different scales of T and
S , which allows for predictable performance after KD. Sim-
ilarly, the performance gap between models trained using
Non-KD and KD remains stable on OOD, falling in range
[-1, 1] across different scales.

7. Potential Solutions
Based on the above analyses, we summarize the key findings
on distilling debiasing models as follows:

• Training distribution significantly affect successful dis-
tillation of debiasing capabilities.
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• Student models with similar scale to their teachers can
better obtain debiasing knowledge from their teachers.

• The objectives of KD may introduce additional opti-
mization challenges, especially with the presence of
debiasing objectives.

To further improve the distillability of debiasing methods,
we propose three solutions:

Data augmentation (DA) There is broad evidence that
models becomes biased by relying on spurious features in
the training set (Wu et al., 2022; Ahn et al., 2023), which
is amplified by misrepresentation of specific classes or la-
beling errors. Prior studies have highlighted the important
role of data in knowledge distillation (Stanton et al., 2021).
Based on these prior studies and our findings, we hypothe-
size that providing high quality data and augmenting data
size can improve the process of distilling the debiasing capa-
bility from teacher to student. For text datasets, we employ
the data generated by Seq-Z filtering (Wu et al., 2022) as
training set for both teacher and student models. For image
datasets, we employ training and validation sets where the
sub-groups are equally represented (Kirichenko et al., 2023).

Iterative knowledge distillation (IKD) Our results in-
dicate that the transfer of debiasing capabilities is more
effective between teachers and students of similar scales.
Therefore, we propose to leverage Iterative Knowledge Dis-
tillation (IKD) (Liu et al., 2023): given a teacher of scale
SN , we first distill it to a student of scale SN−1, where
SN−1 is the closest neighbor of SN in scale. Then the
newly-distilled student acts as a teacher and transfer the
knowledge to a model of smaller scale SN−2, where SN−2

is the closest neighbor of SN−1 in scale. We repeat this
process iteratively by gradually decreasing student scale,
such that the knowledge can be transferred smoothly from
a large scale model to a small scale model. This step-wise
approach enables a smooth knowledge transfer from larger
to smaller scale models, and potentially improves debiasing
effectiveness at each step.

Initialize student with teacher weights (Init) Previous
research by Stanton et al. (2021) has discovered that initial-
izing a student model with the weights of its teacher can
increase their centered kernel alignment (Kornblith et al.,
2019) in activation space. This approach can head-start the
student model with a stronger debiasing capability from the
teacher. It can also help alleviate potential optimization ob-
stacles and stuck in local optima. If the teacher and student
models are of the same scale, we initialize the student with
the teacher parameters. If the teacher is larger, we initialize
the student with the first few layers of the teacher.

Table 2. Improvement of distillability. Vanilla refers to standard
knowledge distillation, DA, IKD, and Init represent data augmen-
tation, iterative knowledge distillation, and initialization of student
with teacher weights (Init) as our three solutions to improve the
distillability of debiasing methods.

DIFF IN ID
(↓)

OOD
(↓)

SPU.
GAP
(↓)

ID
(↓)

OOD
(↓)

SPU.
GAP
(↓)

TEACHER - STUDENT NON KD - KD

VANILLA 5.1 7.3 12.7 1.4 0.7 2.2
+ DA 2.3 5.4 8.2 0.2 0.2 0.5
+ IKD 3.6 5.9 9.9 1.0 0.5 1.6
+ INIT. 4.7 6.5 11.5 1.3 0.7 2.0

Results Table 2 shows that all three solutions result in
improved distillability. Specifically, on spurious gap be-
tween teacher and student, data augmentation (DA), iter-
ative knowledge distillation (IKD), and initialization with
teacher weights (Init) yield performance gains of 4.5, 2.8,
1.2 absolute points compared to vanilla KD across datasets
and backbones respectively. On spurious gap between Non-
KD and KD, DA, IKD, and Init outperforms vanilla KD
by 1.7, 0.6 and 0.2 absolute points respectively. We find
that DA achieves the largest improvement, since the root
cause of spurious correlations come from the underlying
dataset (Chen et al., 2018). Debiasing the dataset itself can
benefit all training methods including knowledge distilla-
tion. As noted by previous work (Stanton et al., 2021), Init
may facilitate teacher-student agreement in activation space,
but result in non-significant gains, which aligns with our
findings as well.

8. Related Work
Bias mitigation in NLU: Debiasing approaches usually
employ a biased model to inform the training of a robust
model (Clark et al., 2019; Karimi Mahabadi et al., 2020;
Sanh et al., 2021; Utama et al., 2020; Cheng et al., 2024).
Other methods aim at learning debiased or robust represen-
tations (Gao et al., 2022; Lyu et al., 2022; Wang et al., 2023;
Jeon et al., 2023; Reif & Schwartz, 2023), or removing
bias-encoding parameters (Meissner et al., 2022; Yu et al.,
2023). Other works include measurement of bias of specific
words with statistical test (Gardner et al., 2021), generating
non-biased samples (Wu et al., 2022), identification of bias-
encoding parameters (Yu et al., 2023), when bias mitigation
works (Ravichander et al., 2023), and bias transfer from
other models (Jin et al., 2021).

Bias mitigation in vision: In vision, worst-group perfor-
mance is measured as a sign of model robustness. Several
works investigates how to learn debiased models from fail-
ure cases (Nam et al., 2020), biased representations (Bahng
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Figure 9. C3: Comparison Between Debiasing Methods: performance gap between Teacher and Student (Above), Non-KD and KD
(Lower) on text datasets. Detailed results are shown in Appendix.
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Figure 10. C1: Teacher vs. Student (Left) and C2: Non-KD
vs. KD (Right): correctly predicted examples on OOD on text
datasets.

et al., 2020), multiple biased models (Kim et al., 2022), and
by simply re-training the last layer of a neural model (i.e.
the classification layer) with additional equally represented
data (Kirichenko et al., 2023; LaBonte et al., 2023). Li et al.
(2023) showed that multiple spurious features can occur
in a dataset, while suppressing one may inevitably boost
another one. Other perspectives for debiasing include causal
attention (Wang et al., 2021), building uniform margin clas-
sifiers (Puli et al., 2023), using representations from earlier
layers (Tiwari et al., 2024), and neural collapse (Wang et al.,
2024), where feature space collapses into a stable geometric
structure that results in robustness and generalizability.

Knowledge distillation: Knowledge Distillation (KD) is
initially proposed to transfer knowledge from a larger model
(teacher) to a smaller model (student), by encouraging the
student to follow the teacher on prediction logits (Hinton
et al., 2015), learned features (Romero et al., 2015; Wang
et al., 2020), attention map (Zagoruyko & Komodakis, 2017;
Chen et al., 2021), activation patterns (Huang & Wang,
2017; Heo et al., 2019). Later works discovered that KD can
be viewed as a special form of regularization similar to label
smoothing (Szegedy et al., 2016), providing no task-specific
knowledge. However, on text classification tasks, whether
KD can regularize the student depends on the choice of
teacher model (Sultan, 2023), which may result in opposite
model confidence between teacher and student compared to
label smoothing. Stanton et al. (2021) discovers that opti-

mization and dataset details are crucial to matching students
to teachers, and such matching does not guarantee better gen-
eralization ability of students. Xue et al. (2023) investigates
cross-modal KD, where the teacher functions on a differ-
ent modality or extra modalities than student. The authors
proposes modality fusing hypothesis, which claims that
modality decisive features are critical for the effectiveness of
cross-modal KD. However, despite briefly discussed (Cho &
Hariharan, 2019; Tiwari et al., 2024), the potential of knowl-
edge distillation to transfer debiasing capabilities across
different modalities and backbone models remains underex-
plored and poorly understood in existing work.

9. Conclusion
We present the first study on the distillability of debias-
ing capabilities between neural models, and the extent of
bias transfer through knowledge distillation (KD). We eval-
uate eight popular debiasing methods and five scales of
backbones on four datasets. Extensive experiments show
that vanilla KD does not consistently preserve debiasing
capabilities; in many cases, student models become more
reliant on spurious correlations than their teachers; the ef-
fectiveness of debiasing transfer depends on model scale
similarity–distillation works best when teacher and student
models are comparable in complexity; and larger teachers
do not always yield more robust students, which indicates
the need for targeted debiasing strategies in KD. We propose
three solutions–data augmentation, iterative KD, and student
initialization–which significantly improve the distillability
of debiasing methods and contribution of KD on debiasing.

In future we will investigate self-distilled debiasing, where
the student iteratively distills knowledge from itself rather
than relying on a fixed teacher. A potential improvement
is to explicitly guide the student using counterfactual data
augmentation during distillation.
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Impact Statement
Our research focuses on mitigating dataset biases in text and
vision datasets, and understanding why debiasing methods
may fail under knowledge distillation. The broader impacts
of our work are in advancing dataset fairness and potentially
enhancing decision-making based on data. Our work con-
tributes to improving the accuracy and reliability of NLP
and vision models, as well as their trust and adoption.
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A. Details on Debiasing Methods
Experiments are conducted on a comprehensive list of commonly used debiasing methods, each of which is designed with
special formulation and assumptions.

• Empirical Risk Minimization (ERM) is the standard training method that minimizes the empirical risk on a dataset.
This is akin to fine-tuning a pre-trained model on a dataset using cross-entropy loss with no debiasing strategy, which
works for both image and text datasets.

• HypothesisOnly-PoE (Karimi Mahabadi et al., 2020) assumes the hypothesis part of NLI datasets contains biases. It
trains a hypothesis-only (biased) model to measure the bias of each sample, and uses Product-of-Experts (PoE) (Hinton,
2002) to adjust the confidence of the debiased model according to the confidence of the biased model. This approach is
evaluated on text datasets.

• WeakLearner-PoE (Sanh et al., 2021) leverages weak learners to capture and model bias, including bias of unknown
type. It trains a 2-layer BERT as a biased model and exploits PoE to train the debiased model. This approach is
evaluated on text datasets.

• KernelWhitening (Gao et al., 2022) aims at learning isotropic sentence embeddings with disentangled robust and
spurious representations, with Nyström kernel (Xu et al., 2015). This approach is evaluated on text datasets.

• AttentionPoE (Wang et al., 2023) assumes that the attention to [CLS] token in text classification is biased and
introduces PoE on attention weights to learn robust attention patterns for bias mitigation. This approach is evaluated on
text datasets.

• σ-Damp (Puli et al., 2023) assuming the standard cross-entropy loss encourages models to prioritize shortcuts over
robust features, this model proposes to scale the loss by a temperature. This approach is evaluated on image datasets.

• DeepFeatReweight (Kirichenko et al., 2023) discovers that simply retraining the last layer of a neural model–the
classification layer in supervised tasks–on top of the existing biased feature extractor is good strategy for bias mitigation.
This approach is evaluated on image datasets.

• PerSampleGrad (Ahn et al., 2023) trains a debiased model with non-uniform sampling probability, obtained from
per-sample gradient norm of a biased model. This approach is evaluated on image datasets.

B. Implementation details
We follow previous debiasing works for implementation details. For text datasets, we train each debiasing method with
Adam optimizer, learning rate 5e− 5, 5 epochs, both KD and Non-KD. For image datasets, we train each debiasing method
with Adam optimizer, learning rate 4e− 5, 100 epochs, both KD and Non-KD. For all other hyperparameters, we follow
each debiasing method’s best-performing setting.

C. Results on Image Datasets
On image datasets, we observe similar results on text datasets. Specifically, we see that KD fall short on distilling the
debiasing capabilities. Such ability is transferred more smoothly as teacher and student get similar in scale.

D. Detailed Results on Debiasing Methods and Backbones
We present the detailed results of individual debiasing method and backbone below.
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Figure 11. C1: Teacher vs. Student: average performance gaps between teacher and student models on ID, OOD, and Spurious Gap
across image datasets. X-axis and Y-axis show the scale of student (S) and teacher (T ) respectively. Each cell shows the performance gap
between corresponding scales of a teacher and a student.
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Figure 12. C2: Non-KD vs. KD: average performance gaps between Non-KD and KD models on ID, OOD, and Spurious Gap across
image datasets. X-axis and Y-axis show the scale of student (S) and teacher (T ) respectively. Each cell shows the performance gap
between corresponding scales of a teacher and a student.

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

V
al

u
e
s

Figure 13. C2: KD vs. Non-KD: Centralized Kernel Alignment. Highers values indicate higher similarity. X-axis and Y-axis refer to the
layers of KD (S) and Non-KD (fS ) respectively.
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Figure 14. C1: Teacher vs. Student: average performance gaps between teacher and student models on ID, OOD, and Spurious Gap on
BERT.
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Figure 15. C1: Teacher vs. Student: average performance gaps between teacher and student models on ID, OOD, and Spurious Gap on
T5.
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Figure 16. C1: Teacher vs. Student: average performance gaps between teacher and student models on ID, OOD, and Spurious Gap on
ResNet.
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Figure 17. C1: Teacher vs. Student: average performance gaps between teacher and student models on ID, OOD, and Spurious Gap on
ViT.
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Figure 18. C1: Teacher vs. Student: prediction agreement on BERT. Left: varying S (X-axis) given a fixed teacher with T = L. Right:
varying T (X-axis) given a fixed student with T = T. Agreement increases as the scale of teacher and student get closer.

18


