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Abstract

Neuroradiology studies often suffer from lack of sufficient data to properly train deep learn-
ing models. Generative Adversarial Networks (GANs) can mitigate this problem by gen-
erating synthetic images to augment training datasets. However, GANs sometimes are
unstable and struggle to produce high-fidelity images. An alternative solution is Diffusion
Probabilistic Models, but these models require extensive computational resources. Addi-
tionally, most of the existing generation models are designed to generate the entire image
volumes, rather than the regions of interest (ROIs) such as the tumor region. Research
shows that it is easier to classify tumor types based on ROIs than the entire image vol-
umes. To this end, we present a class-conditioned ROI generation framework that combines
a vector-quantization GAN and a class-conditioned masked Transformer to generate high-
resolution and diverse 3D brain tumor ROIs. We further propose a temporal-agnostic
masking strategy to effectively learn relationships between semantic tokens in the latent
space. Our experiments demonstrate that the proposed method can generate high-quality
3D MRIs of brain tumor regions for both low- and high-grade glioma (LGG/HGG) in
the BraTS 2019 dataset. Using the generated data, our approach demonstrates superior
performance compared to several baselines in a downstream task of brain tumor type clas-
sification. Our proposed method has the potential to facilitate accurate diagnosis of rare
brain tumors using MRI-based machine learning models.

Keywords: Generative Adversarial Networks, Transformer, Image Generation, 3D MRI,
Data Augmentation

1. Introduction

Gliomas are the most frequent primary adult brain tumor types within the central nervous
system (Menze et al., 2014; Bakas et al., 2017). Among all variations of gliomas, high-grade
glioma (HGG) accounts for the majority of cases, and low-grade glioma (LGG) accounts
for less common cases. For both variations, a commonly used technique for diagnosing is
the multi-parametric Magnetic Resonance Imaging (MRI) equipped with different sequences
such as T1-, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) (Menze et al.,
2014). Each modality provides distinct biological information about the tumor, aiding
radiologists in determining the tumor type. However, distinguishing between HGG and
LGG remains challenging, and misdiagnosis may lead to suboptimal prognoses (Mzoughi
et al., 2020).
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In recent years, deep learning-based methods have proven to be one of the effective
ways for adult brain tumor classification tasks using brain MR images (Ge et al., 2020; Hao
et al., 2021; Namdar et al., 2022; Tandel et al., 2020). However, the requirement for large
training datasets poses challenges in medical imaging, especially for rare diseases such as
LGG, leading to potential overfitting and poor generalization to unseen datasets. Several
works aim to mitigate the imbalanced data problem. One line of work is to use the transfer
learning approach by pre-training models on huge datasets (i.e., ImageNet), and then fine-
tuning them on domain-specific datasets (Ghazal et al., 2022; Tak et al., 2023; Ullah et al.,
2022). Another line of work is to synthesize MRIs using Generative Adversarial Network
(GAN) (Volokitin et al., 2020; Kwon et al., 2019; Sun et al., 2020; Xia et al., 2020) or
Diffusion-based methods (Khader et al., 2022; Peng et al., 2022a; Dorjsembe et al., 2023;
Sanchez et al., 2022) to alleviate the need for extensive datasets. However, GANs for
image generation can be unstable, produce blurry images, and encounter mode collapse
problems (Kwon et al., 2019). As an alternative approach, Diffusion Probabilistic models
have been proposed and demonstrated superior performance over GANs (Müller-Franzes
et al., 2022), but these methods are extremely computationally expensive when synthesizing
full-resolution MRIs, thus posing challenges in both the training and inference stage. More
recently, autoregressive transformer models have attracted increasing attention in image
generation tasks (Esser et al., 2021a,b; Huang et al., 2023). The key idea behind such models
is to obtain discretized feature maps from a Vector-Quantization GAN (VQGAN) model
and then use the transformer model to learn the compositions. Autoregressive transformers
have been extended to medical images (Pinaya et al., 2023; Tudosiu et al., 2022; Zhou
et al., 2023), to unconditionally generate brain MR images. However, one limitation of
these models is the lack of conditioning; separate models need to be trained for different
tasks, which becomes time-consuming and resource-intensive. Therefore, a condition-based
image generation model is important for practical applications in real clinical settings.
Moreover, a group of works (Sajjad et al., 2019; Mzoughi et al., 2020; Srinivasan et al.,
2023) have demonstrated the effectiveness of using the tumor region of interest (ROI) for
classifying tumor types because ROIs contain less information than the whole-image that
may negatively affect the results. Hence, this work aims to explore generating different
brain MRI tumor ROIs based on their pathology labels. To this end, we introduce the first
class-conditional generation framework for synthesizing 3D brain tumor MRI ROIs. Our
model is built upon the previous work (Zhou et al., 2023) and extended to a conditional
generation paradigm. Our framework has three modules: a 3D-VQGAN image encoder to
extract high-level feature maps while concurrently learning the importance score for each
region in the feature maps; an Exponential Moving Averages(EMA) codebook with l2-norm
lookup for converting feature maps into discrete semantic tokens (Peng et al., 2022b); and
a temporal-agnostic masked transformer to learn the relationships between discrete tokens.
We evaluated our proposed method in the BraTS 2019 dataset and demonstrated superior
performance over several baselines on both image generation quality and the downstream
HGG vs. LGG classification task. Our contributions are as follows: (1). We propose
the first image generation framework for different tumor types based on the given class label.
(2). We use a classifier-guidance approach to learn the importance score for each region
in the encoded feature maps. (3). We propose a novel temporal-agnostic hybrid masking
strategy which uses the importance score to mask tokens to prevent any information leakage.
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(4). Experiments show our proposed method outperforms several baselines in both image
generation quality and the downstream classification task.

2. Materials and Methods

2.1. Model Architecture

We adopted and extended the VQGAN (Esser et al., 2021b) and recently proposed 3D-
VQGAN (Zhou et al., 2023) with some modifications detailed below for class-conditional
generation of brain tumor ROIs.

Figure 1: Detailed overview of the proposed method. Our method contains two mod-
ules, Top: a 3D-VQGAN model to encode 3D inputs, generate importance score
for each region, and further quantize to discrete tokens. Bottom left: a class-
conditional masked transformer to capture the long-term dependency via mask
token modeling based on the importance score and class label information. Bot-
tom right: difference between random and our proposed masking strategy.

Stage 1. 3D-VQGAN: The first stage is shown at the top of Figure 1. We train all
modules presented to learn efficient data representation through a reconstruction task in
this stage. Our encoder, decoder, and discriminator follow the same design as in (Zhou
et al., 2023), except we replace batch normalization with group normalization to stabilize
the training process for small batch sizes (Wu and He, 2018).
Importance Score Map: We use a lightweight scoring network f before quantization to
assign an importance score for each region in encoded feature maps. Let the encoded map
with size ze ∈ RH×W×Dp×nz where H,W,Dp, nz denote the height, width, depth, and the
number of feature maps, respectively. Then, for each region ri ∈ Rnz , its score is defined
by si = f(ri), where i = 1, ...,H ×W ×Dp. The larger the score si is, the more important
the feature region ri is. To learn f , we use a classifier-guidance approach by using an
auxiliary MLP-based classifier fcls after f to classify tumor types (e.g., HGG vs. LGG).
We hypothesize that regions with the higher scores (i.e., important regions) are the key to
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differentiating between two tumor types, and thus by optimizing both f and fcls, the model
can identify important feature regions that are specific to either LGG or HGG tumors.

Quantization: In the quantization step, the latent feature maps are quantized by replacing
each one with its closest corresponding vector in codebook C. Formally, we train a learnable
codebook C = {ci}Ki=1 that transforms feature vectors ze to K := H × W × Dp discrete
tokens cq, q ∈ [1,K] by the nearest neighbor search in C, and each token cq includes an
embedding vector cz ∈ Rnz . We use the l2 normalization for codebook lookup, as done in
(Yu et al., 2021). Finally, we stack K quantized feature vectors back to the original latent
shape and feed it into the decoder D to produce reconstructed images.

Stage 2. Class-conditional Masked Transformer: In this stage, we propose a novel
temporal-agnostic hybrid masking strategy based on importance scores computed in
Stage 1, which is inspired by DropBlock (Ghiasi et al., 2018) and BERT (Devlin et al., 2018).
The 3D images are initially represented in the latent space, and the encoder E, decoder D,
and codebook C are fixed, with only the transformer being trained. The encoded feature
map ze of sizeH×W×Dp×nz is quantized into a set of L discrete tokens, where L = H×W×
Dp. We first set the masking ratio α and randomly sample N = L×α tokens to be masked.
These tokens are then divided into two equal subsets: N1 and N2, which denote the number
of important tokens and unimportant tokens to be masked based on their importance score.
Let Y = {yi}Li=1 be the raster-scan linearized discrete tokens and each of yi associates with
their importance score si. The importance score and the corresponding tokens are sorted
in descending order, denoted as Y

′
. For N1 important tokens, we randomly sample ⌈N1

2 ⌉
tokens from the top-k = 25% of Y

′
. For each selected token, we also mask along with their

spatial or temporal neighborhood tokens. Unlike random masking, this blockwise masking
around each selected token prevents information leakage from neighbors, enhancing the
model’s learning ability on important tokens and preventing short-cut learning. The special
[MASK] token is used to mask out these important tokens and their associated blocks. For
N2 unimportant tokens, we randomly sample them from the remaining (1− k)×Y

′
tokens

and replace them with N2 randomly selected tokens from the codebook C. Importantly,
we ensure that N1 and N2 are non-overlapping (N1 ∩ N2 = ∅). We denote M = {mi}Li=1

be the mask for each of the discrete tokens, where mi = 1 if the token i is unmasked and
mi = 0 if the token i is masked out. Finally, we prepend a class label indicating HGG
or LGG sample at the start of each indices sequence. During training, the objective is to
reconstruct the masked tokens using unmasked ones. The introduced noise from masked-
out tokens is hypothesized to enhance the transformer model’s ability to learn relationships
between semantic tokens, improving overall robustness. The proposed masking strategy
and its difference between random masking is depicted in the bottom right of Figure 1.

Classification: For the downstream classification task between LGG and HGG tumor
types, we use a standard 3D ResNet-50 model (Hara et al., 2017) that takes 3D tumor
ROIs as inputs and outputs two class probabilities for two tumor types.

2.2. Loss Function

We employ the same loss function as done in (Zhou et al., 2023). We use a combination of
the pixel differences loss (Lpixel), perceptual loss (Lperp) (Johnson et al., 2016), GAN-based
feature matching loss (Lmatch) (Ge et al., 2022), 3D image gradient loss (Lgrad), codebook
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loss (Lcodebook) (Esser et al., 2021b), and the discriminator loss (LDis) in the first stage. See
Equation (1) and Equation (2) for details.

Lpixel = ∥x− x̂∥1, Lperp =
6∑

j=1

∥f i(xj)− f i(x̂j)∥22, Lmatch = ∥f i
Dis(x)− f i

Dis(x̂)∥1,

Lgrad = ∥∇(A(x))−∇(A(x̂))∥22 + ∥∇(R(x))−∇(R(x̂))∥22 + ∥∇(S(x))−∇(S(x̂))∥22

(1)

LDis = Ex∼pd [max(0, 1−D(x))] + Ex̂∼pd̂
[max(0, 1 +D(x̂)],

Lcodebook = ∥sg[E(x)]− cz∥22 + β∥sg[cz]− E(x)∥22
(2)

Where x is the original image and x̂ is the reconstructed image, ∇(·) computes the
x- and y-direction gradients of the image, A(x), R(x), S(x) represents slicing over Axial,
Coronal and Sagittal plane, respectively. Additionally, we use the standard cross-entropy
loss Lce between class logits and class labels for our auxiliary classifier fcls. Aggregating
all the loss terms together yields the loss objective in Equation (3) for the first stage of the
framework:

min
E,D,C

(max
Dis

(LDis))

min
E,D,C

C1 ∗ (λ1Lpixel + λ2Lperp + λ3Lmatch + λ4Lgrad + λ5Lcodebook) + C2 ∗ Lce

(3)

Where λi, i ∈ [1, 5] is the weighting factor between different loss terms. We follow
previous publications (Ge et al., 2022; Khader et al., 2022) to set λ1 = λ3 = 4 and λ2 =
λ5 = 1. We also set λ4 = 4 and β in Lcodebook to be 1. C1 and C2 are balancing factors
between the main task and auxiliary task, we empirically set C1 = 0.8 and C2 = 0.2.

For the transformer model, we use the cross entropy loss between the reconstructed
token sequence and the ground truth token sequence as shown in Equation (4) to optimize
the transformer.

Ltransformer = −EY∈D(
∑

∀i,mi=0

logp(yi|YM )) (4)

Where D is the training dataset, YM denotes the unmasked tokens, thus the masked
tokens can conditioned on these unmasked tokens during training.

2.3. Data and Preprocessing

We used the FLAIR sequence data from the BraTS 2019 dataset (Bakas et al., 2017, 2018;
Menze et al., 2014). The data contains 259 HGG patients and 76 LGG patients. We
used this dataset since it is the latest version of the dataset which provides labels for the
brain tumor pathology classification, i.e., HGG vs. LGG. We reshaped the data from
240×240×155 to 128×128×128 and normalized all pixel intensities in [−1, 1]. To achieve
this, we first remove all zero-valued slices in both the brain images and the segmentations,
since we are interested in the slices with the brain tumor present. Then, we obtain the
ROIs by multiplying the images with masks. Finally, we center-crop the region based on
the segmentation mask to a target size of 128× 128× 128.
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3. Experiments

For the first stage of the proposed 3D-VQGAN-cond model, we train for 10k epochs with
an initial learning rate of 0.0001 and cosine decay to 0 for all sub-modules, a mini-batch
size of 3, and with the Adam optimizer (Kingma and Ba, 2014). We set the codebook size
K = 1024. For the second stage, we train the transformer for 5k epochs using a learning
rate of 4.5e−06, a mini-batch size of 3, and the AdamW optimizer (Loshchilov and Hutter,
2017). We set the mask ratio α = 0.5. We randomly held out 25 patients from both HGG
and LGG as a standalone test set. The rest of the data is used to train our model.

To assess the usability of our generated data, we conducted two sets of classification
experiments: Experiment (1). We aimed to determine if models trained on synthetic data
are better than those trained without or only using a portion of synthetic data. Following the
approach in (Zhou et al., 2023), we compared our classification model pre-trained with both
synthetic LGG and HGG to one pre-trained with real HGG and synthetic/real LGG. We use
the same amount of data for pre-training and the same data for fine-tuning. Experiment
(2). Our goal was to investigate whether increasing the number of synthetic data for pre-
training enhances classification performance. We generated 250 synthetic HGG and LGG
from baseline models and our proposed model to pre-train the classification model. The
data for fine-tuning remained consistent. More details can be found in Appendix A. The
ablations on the top-k ratio can be found in Appendix B due to page limit.
Baseline Model & Comparison. For comparison of image generation results, we consider
five state-of-the-art methods, 3D-WGAN-GP (Gulrajani et al., 2017), 3D-αWGAN (Kwon
et al., 2019), 3D-Med-DDPM (Dorjsembe et al., 2023), Medical Diffusion (Khader et al.,
2022) and 3D-VQGAN (Zhou et al., 2023). We re-implemented the Medical Diffusion to
make it class-conditioned (Medical Diffusion-C) which can be jointly trained on LGG and
HGG data, as our class-conditioned baseline. Other baselines were rerun separately for
two data classes. For classification, we establish a baseline where we only use traditional
augmentations, ensuring a fair comparison with other methods. We evaluate the quality of
generated MRI ROIs using three commonly used metrics in previous publications (Kwon
et al., 2019; Peng et al., 2022a; Dorjsembe et al., 2023; Zhou et al., 2023): maximum
mean discrepancy (MMD) (Gretton et al., 2012), multi-slice structure similarity (MS-SSIM)
(Rosca et al., 2017), and the Fréchet Inception Distance (FID) (Heusel et al., 2017). FID
score is computed in three views (Axial, Coronal, Sagittal) to reflect the nature of medical
images. The classification performance is evaluated using AUC, F1-Score, and Accuracy.
Generating Synthetic MRI Data. To generate 3D tumor ROIs, we start with a class
token, either 0 for LGG or 1 for HGG, and then have the transformer model predict and
complete the rest of the indices. Next, we obtain the embedding vectors of each index from
the codebook C and then feed them into decoder D to produce the final images. For other
baselines, we follow the exact procedure as stated in their paper.

4. Results and Discussions

4.1. Results for Generated Images

In Figure 2, we compare LGG and HGG ROIs generated by baseline models and our pro-
posed method. The center three slices in the Axial plane are shown for better visual quality.
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We observed that both 3D-WGAN-GP and 3D-αWGAN produce images that lack detail
and exhibit major artifacts. 3D-Med-DDPM and Medical Diffusion/-C introduce noise and
checkerboard artifacts. Generated images from both 3D-VQGAN and our proposed method
contain the detailed attributes of the tumor and exhibit high image fidelity. Quantitative
metrics are computed over 250 generated HGG and LGG samples as shown in Table 1. It
can be seen that our proposed method performs best in terms of preserving diversity based
on the MS-SSIM score. For the MMD score on LGG data, our method outperforms all
methods except 3D-αWGAN, which we argue that this is not a fair comparison because it
exhibits a severe mode collapse problem (99.4 in MS-SSIM). For the MMD score on HGG
data, our method is slightly worse than Medical Diffusion/-C, but it still outperforms other
baselines. For FID, our method consistently outperforms on FID-A score, and the other
two FID-S and FID-C scores are very close to the best performance. It is also worth not-
ing that all baselines except Medical Diffusion-C are trained separately, whereas ours and
Medical Diffusion-C are trained jointly on both LGG and HGG data. Our performance
1) outperforms Medical Diffusion-C in most of the quantitative metrics, and 2) exceeds or
is on par with other baselines indicating our method can effectively learn and distinguish
between two tumor types and significantly reduce the time needed to train separate models.
More visualizations can be found in Appendix C.

Figure 2: Qualitative comparison between generated and real LGG and HGG ROIs. We
show the center three consecutive slices in the Axial plane for each ROI sample.
Zoom in for a better view.

4.2. Classification Results

We trained a classification model to validate the efficacy of the proposed 3D-VQGAN-cond
model in distinguishing between HGG and LGG brain tumor types. Table 2 shows the
classification results for Experiments (1) and (2) from Section 3. For Experiment (1), we
showed that the model pre-trained with both synthetic HGG and LGG data outperforms
all baselines, including the model trained with traditional augmentations and trained only
on synthetic LGG data. This highlights the substantial improvement in classification per-
formance achieved through pre-training with synthetic data, alleviating the demand for
extensive real data to train effective classification models. For Experiment (2), we demon-
strated that the classification performance improves when the number of synthetic data
used for pre-training increases. These results collectively indicate that synthetic ROI data
can be effectively used to pre-train deep models and only a small amount is needed for fine-
tuning. In addition, the improvements from both experiments are statistically significant
(two-sided t-test p < 0.05) compared to the previous SOTA (3D-VQGAN), which further
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Table 1: Quantitative results of class-conditioned generation. Values in ‘()’ are the absolute
difference to the real MS-SSIM score (85.3 for LGG, 88.6 for HGG).

Method MMD (104) ↓ MS-SSIM (%) FID-A ↓ FID-C ↓ FID-S ↓
LGG Results

3D-WGAN-GP 1.98 93.4 (8.1) 65.9 55.4 45.5
3D-αWGAN 1.61 99.4 (14.1) 79.3 69.1 73.6

3D-Med-DDPM 1.83 93.3 (8.0) 62.6 46.5 43.3
Medical Diffusion 1.78 92.9 (7.6) 31.6 30.5 37.1

Medical Diffusion-C 1.72 89.8 (4.5) 26.2 32.6 37.2
3D-VQGAN 1.79 92.7 (7.4) 24.1 31.4 36.1

3D-VQGAN-cond 1.72 87.9 (2.6) 23.7 32.9 35.2

HGG Results

3D-WGAN-GP 2.44 97.5 (8.9) 53.5 50.2 50.6
3D-αWGAN 2.34 98.9 (10.3) 122.3 145.7 153.1

3D-Med-DDPM 2.50 95.9 (7.3) 84.6 61.4 58.6
Medical Diffusion 1.41 89.4 (0.8) 30.0 26.3 23.2

Medical Diffusion-C 1.44 90.7 (2.1) 32.3 27.2 20.5
3D-VQGAN 1.63 90.6 (2.0) 32.1 29.3 31.4

3D-VQGAN-cond 1.57 88.5 (0.1) 29.1 24.4 26.3

validate that both LGG and HGG samples generated by our proposed 3D-VQGAN-cond
model have better image quality and fidelity compared to other baselines. More results can
be found in Appendix D.

Table 2: Results for all experiments as described in Section 3. We run all for three trials
and report as mean±standard deviation. Trad. Aug. is the short for traditional
augmentations.

(a) Experiment (1)
Method AUC F1-Score Accuracy

Trad. Aug. 0.66±0.03 0.63±0.03 0.59±0.03

3D-WGAN-GP 0.64±0.08 0.62±0.05 0.56±0.01
3D-αWGAN 0.70±0.09 0.59±0.09 0.58±0.06

3D-Med-DDPM 0.69±0.03 0.64±0.01 0.61±0.06
Medical Diffusion 0.71±0.09 0.62±0.07 0.59±0.02

Medical Diffusion-C 0.66±0.03 0.65±0.02 0.58±0.08
3D-VQGAN 0.72±0.03 0.67±0.02 0.65±0.04

Ours
0.77±0.03∗

(p=0.02)
0.71±0.02∗

(p=0.03)
0.67±0.04

(b) Experiment (2)
Method AUC F1-Score Accuracy

3D-αWGAN 0.71±0.04 0.65±0.02 0.64±0.06

3D-Med-DDPM 0.71±0.09 0.69±0.02 0.65±0.03
Medical Diffusion 0.73±0.04 0.67±0.02 0.61±0.02

Medical Diffusion-C 0.75±0.03 0.68±0.02 0.66±0.03
3D-VQGAN 0.78±0.04 0.71±0.06 0.70±0.06

Ours
0.80±0.02∗

(p=0.04)
0.74±0.02∗

(p=0.03)
0.70±0.01

5. Conclusions

We propose the first class-conditional generation framework for LGG and HGG brain tumor
types based on VQGAN and masked Transformer. The conditional scheme enables gener-
ating different types of tumors in a unified framework, rather than in separate models that
require a large amount of time and resources to train. Our proposed method performs better
or on par with several baseline models in image quality metrics such as MS-SSIM, slice-
wise FID, and MMD. Using the generated data, our method yields the best classification
performance compared to all other baselines.
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Appendix A. Training Details

A.1. Implementation Details of the Scoring Network

The scoring network f is learned using an auxiliary MLP, fcls, through the classifier-
guidance approach we described in Section 2.1. To learn f , we first use the encoder E
to get the latent feature map ze ∈ RH×W×Dp×nz , then for each region ri ∈ Rnz , its score
is defined by si = f(ri), where i = 1, ...,H × W × Dp. Next, we normalize the encoded
feature map, znorme = LayerNorm(ze) and further multiply with the predicted impor-
tance score as modulating factors, z

′
e = znorme ∗ S where S is the set of importance scores

({si}, i = 1, ...,H ×W ×Dp) obtained from f , then fcls takes z
′
e as the input and output

class probabilities.

A.2. Model Training

All programs were implemented in Pytorch, and all models were trained on a single TESLA
V100 GPU. Additionally, we applied the automatic mixed precision in the PyTorch library
during the training process (Subramaniam et al., 2022). The overall training time for
our 3D-VQGAN-cond model takes about 7 GPU days to complete. For our transformer
architecture, we used the same one in (Esser et al., 2021b). Our code is available at here.

For classification, we pre-trained for 50 epochs with a batch size of 8 and a learning
rate of 0.001 with Adam optimizer for all models using synthetic data. These models are
then finetuned using a batch size of 10, and a learning rate of 0.01. For models that do not
involve the use of synthetic data (i.e., traditional augmentation), we trained those with a
batch size of 8 and a learning rate of 0.01 with Adam optimizer. All classification models are
optimized by focal loss (Lin et al., 2017), as we noticed that it is better than the standard
cross entropy loss.

Data Split. As discussed in the main text, we randomly hold out 25 HGG and LGG
patients (50 in total) as the standalone test data. For the rest of the 234 HGG patients
and 51 LGG patients, we design two sets of training data combinations for traditional
and non-traditional augmentation methods. For the traditional augmentation baseline,
we augment the LGG data by rotating 30 degrees, scaling by 1.5 times larger, left-right
flipping, and elastic deformation to form a balanced dataset of 234 cases for both HGG and
LGG. For all other non-traditional augmentation models, we pre-trained on 183 real HGGs
and 183 synthetic LGGs, and then fine-tuned with 51 real HGGs and 51 real LGGs for
Experiment (1) in Section 3 follows the setup in (Zhou et al., 2023); we pre-trained on
250 synthetic HGGs and LGGs, and then fine-tuned with 51 real HGGs and 51 real LGGs for
Experiment (2). We ensure that the data for fine-tuning is the same across experiments
for a fair comparison. Furthermore, during the fine-tuning stage in both experiments, we
used 85% of the data for optimizing the model and the remaining 15% of the data for
validation, and we repeated this process three times to ensure the robustness of our model.
We also ensure that there is no overlap between the validation data in the three runs.
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Appendix B. Ablation Study

B.1. Ablation on top-k ratio

Recall that the top-k ratio acts as the ratio of important tokens of all discrete semantic
tokens obtained from encoded feature maps (e.g., 512 tokens in this work). We argue that
the ratio controls the trade-off between the diversity of generated images and their
quality, i.e., how close is the synthetic to real distribution. If the top-k ratio is small, i.e.,
k = 0, then we treat every token as the unimportant token, and the proposed masking
strategy will degrade to random masking. Random masking poses an issue of information
leakage, impeding the transformer model’s ability to effectively learn relationships between
regions, especially those pertinent to tumors. Therefore, generated images may lack diver-
sity in critical regions, but the overall distribution may be close to the real one. Hence, the
ablation study is conducted on altering the value of k for our proposed 3D-VQGAN-cond
model, we compared k = 0%, k = 25%, and k = 50% and computed the MS-SSIM score
to evaluate the diversity and MMD score to evaluate the distance between distributions, as
shown in Table 3. We fix the overall masking ratio α = 0.5 for all ablations. When k = 0%
(random masking), the MMD score is low but it has a slightly higher MS-SSIM score. For
k = 25%, our method exhibits a slightly higher MMD score compared with k = 0% but
has a significantly lower MS-SSIM score (note that the MS-SSIM score is computed over
1000 randomly selected pairs). When k = 50%, we observed that there is a dramatic per-
formance degradation in the MMD score and the MS-SSIM score seems to have minimal
change compared to k = 25%. To balance this trade-off, we select k = 25% in our study.
We believe block-wise masking on important tokens helps the transformer model better
learn the relationship between other tokens, increasing the possibility of generating diverse
images based on important regions.

Table 3: Ablation study on the top-k ratio used in our masked transformer model. Values
in ‘()’ are the absolute difference to the real MS-SSIM score (85.3 for LGG, 88.6
for HGG).

LGG HGG

top-k ratio MMD (104) ↓ MS-SSIM MMD(104) ↓ MS-SSIM

0% 1.67 89.4 (4.1) 1.46 89.7 (1.1)

25% 1.72 87.9 (2.6) 1.57 88.5 (0.1)

50% 2.14 87.3 (2.0) 1.80 89.2 (0.6)

B.2. Ablation on number of neighbor tokens

We have also conducted ablations on the number of neighbor tokens to be masked around
important tokens, as described in Section 2.1. In our work, we selected only one neighbor-
hood token (we denote as single-side) in either spatial or temporal dimension to be masked,
given that our latent feature maps are relatively compact (8 × 8 × 8), and masking more
tokens around the important one may lose too much feature information for the model to
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be learned and reconstructed effectively during training. In the ablation, we fix the mask
ratio α = 0.5, top-k ratio k = 25%, and mask two neighborhood tokens, i.e., for a given
important token, we mask two more tokens to its left and right in the spatial dimension, or
successor and predecessor tokens in the temporal dimension (we denote as double-sided).
The quantitative results are reported in Table 4, we observed that masking more tokens led
to performance degradation, which validates our claim above.

Table 4: Ablation study on the number of neighbor tokens in our masked transformer model.
Values in ‘()’ are the absolute difference to the real MS-SSIM score (85.3 for LGG,
88.6 for HGG).

LGG HGG

MMD (104) ↓ MS-SSIM MMD(104) ↓ MS-SSIM

single-side 1.72 87.9 (2.6) 1.57 88.5 (0.1)

double-sided 2.07 88.9 (3.6) 1.91 89.9 (1.3)

Appendix C. More on Generated Images

In this section, we provide more visualizations of the generated LGG and HGG from our
proposed method and other baseline methods. The additional visualization of generated
LGG samples from all methods is shown in Figure 3; additional HGG samples visualization
is shown in Figure 4.

We observe that all GAN-based baselines produce images with noise and blurry edges,
and the image quality is low. For the 3D-Med-DDPM, the intensity range in the generated
samples seems to mismatch the real samples, and it looks unreal compared with the real
ROIs. For Medical Diffusion/-C, the generated images suffer from minor checkerboard
artifacts (visible when zoomed in). 3D-VQGAN sometimes produces blurry images (sample
2 in HGG), but overall, the generated images are smooth and do not have any checkerboard
artifacts or noises. Finally, for our method, the images exhibit high-resolution with no noise,
no blurry edges, and no checkerboard artifacts, the contrast inside the generated ROIs looks
very similar to the real ROIs.

We also provide a visualization of the importance score map learned by the proposed
scoring network f in Section 2.1. Visualizing the importance map provides insight into how
the model has learned each region in the latent feature map, as depicted in Figure 5. Lighter
regions indicate higher importance. The score map is obtained by interpolating the original
importance score in the latent space (8× 8× 8) to the original image size and overlay with
the original image. We can observe that our model can effectively identify important regions
within the tumor, and provide a reliable reference for the masked transformer model.
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Figure 3: Additional generated samples of LGG data. We show the center three consecutive
slices in the Axial plane for each ROI sample. Zoom in for a better view.
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Figure 4: Additional generated samples of HGG data. We show the center three consecutive
slices in the Axial plane for each ROI sample. Zoom in for a better view.
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Figure 5: Visualization of importance score map. We show the center three consecutive
slices in the Axial plane and its corresponding importance map for two randomly
selected LGG and HGG samples.
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Appendix D. More on Classification Results

D.1. Full Results

In this section, we provide more details on classification performance, this includes the
additional report of precision and recall scores for all experiments we performed. Results
for Experiment (1) is shown in Table 5 and for Experiment (2) is shown in Table 6.

Table 5: Detailed classification results for Experiment (1). We run all for three trials and
report as mean±standard deviation. Bold values represent the best results, and
Underline values represent the second-best results.

AUC F1-Score Accuracy Precision Recall

Trad. Aug. 0.66±0.03 0.63±0.03 0.59±0.03 0.59±0.07 0.72±0.14

3D-WGAN-GP 0.64±0.08 0.62±0.05 0.56±0.01 0.61±0.05 0.65±0.24
3D-αWGAN 0.70±0.09 0.59±0.09 0.58±0.06 0.63±0.12 0.67±0.28

3D-Med-DDPM 0.70±0.03 0.64±0.01 0.61±0.06 0.62±0.09 0.71±0.13
Medical Diffusion 0.71±0.09 0.62±0.08 0.59±0.02 0.59±0.04 0.71±0.20

Medical Diffusion-C 0.66±0.03 0.65±0.02 0.58±0.08 0.52±0.02 0.76±0.11

3D-VQGAN 0.72±0.03 0.67±0.02 0.65±0.04 0.64±0.08 0.73±0.14
3D-VQGAN-cond (Ours) 0.77±0.03 0.71±0.02 0.67±0.04 0.65±0.05 0.79±0.07

Table 6: Detailed classification results for Experiment (2). We run all for three trials and
report as mean±standard deviation. Bold values represent the best results, and
Underline values represent the second-best results.

AUC F1-Score Accuracy Precision Recall

3D-αWGAN 0.71±0.04 0.65±0.02 0.64±0.06 0.65±0.08 0.68±0.10

3D-Med-DDPM 0.71±0.09 0.69±0.02 0.65±0.03 0.62±0.04 0.77±0.04
Medical Diffusion 0.73±0.04 0.67±0.02 0.61±0.02 0.55±0.04 0.84±0.11

Medical Diffusion-C 0.75±0.03 0.68±0.02 0.66±0.03 0.64±0.04 0.73±0.04

3D-VQGAN 0.78±0.04 0.71±0.06 0.70±0.06 0.69±0.06 0.72±0.07
3D-VQGAN-cond (Ours) 0.80±0.02 0.74±0.02 0.70±0.01 0.66±0.05 0.87±0.13

D.2. Comparison with Transfer Learning

We also compare our proposed method with the traditional transfer learning approach. We
used the MedicalNet (Chen et al., 2019) pre-trained weights in this work. The model was
originally designed for 3D medical image segmentation. Therefore, we adapted the model
for our classification task by replacing its segmentation head with a classification head.
This new head, implemented as a two-layer MLP, takes the latent representations as input
and produces class logits as output for the two tumor types. Due to our computational
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limitations, we opted for the ResNet-34 backbone instead. During transfer learning, we
froze the feature extractor and only trained the new classification head. The results are
included in Table 7. Our method outperforms MedicalNet by a significant margin in all
metrics, demonstrating the effectiveness of our proposed approach. Although there is a
difference with the model backbone we used, we hypothesize that this change would not
dramatically alter the results. This hypothesis is based on the datasets used to pre-train
the model were whole 3D volumes of various organs, including but not limited to the brain.
Moreover, the substantial difference between whole 3D volumes and Regions of Interest
(ROIs) can also affect the results.

Table 7: Comparison between our method’s best performance and transfer learning ap-
proach. Bold values represent the best results. ∗: results computed using ResNet-
34 backbone instead of ResNet-50.

AUC F1-Score Accuracy Precision Recall

MedicalNet∗ 0.61±0.07 0.55±0.03 0.55±0.05 0.58±0.04 0.63±0.05

3D-VQGAN-cond (Ours) 0.80±0.02 0.74±0.02 0.70±0.01 0.66±0.05 0.87±0.13
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