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ABSTRACT

The increased deployment of machine learning inference in various applications has
sparked privacy concerns. In response, privacy-preserving neural network (PNet)
inference protocols have been created to allow parties to perform inference without
revealing their sensitive data. Despite the recent advancements in the efficiency
of PNet, most current methods assume a semi-honest threat model where the data
owner is honest and adheres to the protocol. However, in reality, data owners can
have different motivations and act in unpredictable ways, making this assumption
unrealistic. To demonstrate how a malicious client can compromise the semi-honest
model, we first designed a novel inference manipulation attack against a range of
state-of-the-art private inference protocols. This attack allows a malicious client to
modify the model output using 3⇥ to 8 ⇥ fewer queries relative to the current black-
box attacks and accommodates larger and more complex neural networks. Driven
by the insights gained from our attack, we proposed and implemented RPNet,
a fortified and resilient private inference protocol that can withstand malicious
clients. RPNet integrates a distinctive cryptographic protocol that bolsters security
by weaving encryption-compatible noise into the logits and features of private
inference, thereby efficiently warding off malicious-client attacks. Our extensive
experiments on various neural networks and datasets show that RPNet achieves
⇠ 91.9% attack success rate reduction and increases more than 10⇥ query number
required by malicious-client attacks.

1 INTRODUCTION

Machine-learning-as-a-service (MLaaS) is a powerful method to provide clients with intelligent
services and has been widely adopted for real-world applications (Liu et al., 2017), such as image clas-
sification/segmentation for home monitoring systems (Kuna; Wyze, 2022), intrusion detection (Ashiku
& Dagli, 2021), fraud detection (Raghavan & Gayar, 2019; Mishra et al., 2020). Nevertheless, the
integration of MLaaS into many such applications engenders privacy concerns (Dowlin et al., 2016;
Mishra et al., 2020; Lou et al., 2021). For instance, home monitoring systems like Kuna (Kuna) and
Wyze (Wyze, 2022) utilize neural networks to categorize objects in user home video feeds, such
as vehicles stationed near the user’s residence or identifying visitors’ faces, which may intrude on
personal privacy.

In order to address these privacy concerns, numerous recent studies, as illustrated in Table 1, have
put forth protocols for cryptographic prediction, specifically, private inference over (convolutional)
neural networks, by leveraging various cryptographic primitives, e.g., fully homomorphic encryption
(FHE) (Gentry, 2009). An FHE-based private inference is unique since it enables non-interactive
privacy-preserving machine learning that does not require clients to present during inference. A PNet
allows the user to receive the prediction outcome while simultaneously guaranteeing that neither party
obtains any additional information pertaining to the user’s input or the model’s weight parameters.
Numerous studies, for instance, Brutzkus et al. (2019); Chou et al. (2018); Hesamifard et al. (2019);
Dathathri et al. (2019); Lou & Jiang (2021); Benaissa et al. (2021); Aharoni et al. (2020); Lehmkuhl
et al. (2021), as indicated in Table1, have achieved these assurances. However, all these studies make
an assumption of semi-honest protocol adherence, implying that both the client-side data owner and
server-side model owner comply with the protocol without malicious behaviors.

1



Under review as a conference paper at ICLR 2024

Client

Private 
Inference

Private 
Inference

Client

predict

PNet
PNet

Server

PNet

query

query

predict

Client Client

Private 
Inference

Private 
Inference

query

predict qu
er
y

pr
ed
ict

PN
et

PNet

PNet

Server

query

Figure 1: Client may be malicious in
private inference.

vulnerable to
adversarial examples

requires network
modification

LoLa (Brutzkus et al., 2019)   
Faster CryptoNets (Chou et al., 2018)   
CryptoDL (Hesamifard et al., 2019)   
CHET (Dathathri et al., 2019)   
HEMET (Lou & Jiang, 2021)   
TenSEAL (Benaissa et al., 2021)   
HeLayers (Aharoni et al., 2020)   
RPNet (ours) # #

 =provides property
#=does not provide property

Table 1: Prior private inferences are vulnerable
to malicious-client adversarial examples and need
network modification for higher robustness.

While the majority of the literature adopts the semi-honest threat model, it is fundamentally less prob-
able that all clients will adhere to proper behavior. The server is hosted by a single service provider,
and existing cloud providers employ strict access control, and physical security measures, making
it considerably challenging to circumvent these safeguards. Furthermore, if a service provider is
found to be acting maliciously, the repercussions could be severe due to public accountability Brasser
et al. (2017); Lehmkuhl et al. (2021). In contrast, clients are numerous, operate on diverse setups
under user control, have varying motives, and it suffices that one behaves maliciously as Figure 1
shows. The incentives for a client to cheat are substantial: service providers offer high-stake services
such as intrusion detection, home monitoring systems, and fraud detection. Consequently, a client,
who may be an attacker, could seek to obtain unauthorized access to information or manipulate the
decision-making processes of the MLaaS system to attain personal or financial advantages. The recent
study, MUSE (Lehmkuhl et al., 2021), investigates malicious clients attempting to pilfer models
through queries, but it does not offer solutions for adversarial output manipulation attacks.

To highlight the dangers associated with a malicious client, we introduce a new adversarial output
manipulation attack against semi-honest private inference protocols in Section 3. This attack enables
a malicious client to modify the model’s output using a reduced number of inference queries. With an
efficiency improvement of 3⇥ ⇠ 8⇥ compared to the most effective prediction manipulation attacks
for plaintext inference (Guo et al., 2019; Andriushchenko et al., 2020), this attack demonstrates
that the utilization of semi-honest private inference protocols can significantly enhance a malicious
client’s ability to alter model predictions.

To counteract such amplification of security risk, we introduce RPNet, a robust private inference
protocol designed to function effectively under a client-malicious threat model. In this context, the
server is presumed to maintain semi-honest behavior, while the client may diverge substantially from
the protocol’s stipulations. As we will elaborate in Section 4, adopting this model empowers RPNet
to surpass current state-of-the-art methods in its performance efficiency.

Contributions. We summarize our contributions as follows: (i) We design a novel inference
manipulation attack, denoted by PNet-Attack, against private inference protocols that rely on fully
homomorphic encryption. This attack enables a malicious client to manipulate the model’s output
with 3⇥ ⇠ 8⇥ fewer queries than the state-of-the-art. (ii) We introduce RPNet, a robust private
inference protocol resilient to malicious clients. In designing RPNet, we propose to add cryptography-
compatible noise in the features and logits layer. In addition, we introduce a dynamic noise training
(DNT) technique to further improve the resilience against malicious clients. RPNet increases more
than 10⇥ query numbers compared to prior defense methods, which increases the attack difficulties.
(iii) We provide theoretical analysis on RPNet and our implementation of RPNet is able to decrease
attack success rate by ⇠ 91.88% against malicious clients on various neural networks and datasets.

2 BACKGROUND AND RELATED WORKS

Non-interactive Private Inference. One popular private inference paradigm is based on fully
homomorphic encryption (FHE) (Gentry, 2009), which stands out as FHE-based private inference
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allows non-interactive neural network inference privacy-preserving, i.e. inference on encrypted
data without needing to decrypt it. Compared to interactive private inference based on multi-
party computation Mishra et al. (2020), FHE-based private inference has two main advantages: (1)
non-interactive end-to-end inference and (2) more secure against layer-by-layer attacks, e.g., client-
malicious model extraction attacks. In particular, non-interactive inference is more friendly to clients
who have no powerful machines or high-bandwidth network connections. This is because interactive
private inference has the drawback that the clients must stay online during the computation. We
noticed that many protocols of private inference in Table 1 such as Aharoni et al. (2020); Lehmkuhl
et al. (2021), share a similar workflow where the client sends encrypted data to a server. The server
then transforms a regular neural network (NN) into a Privacy-preserving Network (PNet), which
allows inference on encrypted data without decryption. The original real-number convolution in the
NN is replaced with a fixed-point FHE convolution, and the non-linear ReLU function is swapped for
polynomial-approximated functions like the square function. The inference result remains encrypted
and can only be decrypted by the data owner with a private key, ensuring privacy preservation.

Black-box Inference Manipulation Attacks. The malicious-client attack operates on the principle
that the attacker can access the black-box MLaaS based on private inference, thereby gaining the
capability to manipulate input data to achieve unauthorized access or influence decisions derived
from private inference. Current black-box inference manipulation attacks (Guo et al., 2019; An-
driushchenko et al., 2020), have been validated as effective in producing adversarial examples that can
control the inference output without the necessity for retraining a surrogate model. Specifically, these
methods illustrate how a mathematical tool - the discrete cosine transform (DCT), further detailed
in Appendix - can be employed to shift an image from the spatial domain to the frequency domain.
By initiating a search from lower frequencies and progressing to higher ones, one can effectively
pinpoint an adversarial sample, thereby reducing the number of required queries. Our PNet-Attack
strategy improves the efficiency of attacks by minimizing the number of model queries through a
distinct search order and scheduler.

Resilient Neural Networks against Adversarial-example Attacking Clients. To defend against
query-based black-box attacks, Salman et al. (2020); Byun et al. (2021) show that adding random
noise into the input (Qin et al., 2021) or model (Byun et al., 2021) can defend against attacks without
perceiving the inputs. Also, R&P (Xie et al., 2017) proposes an input random-transform defense
method. RSE (Liu et al., 2018) adds large Gaussian noise into both input and activation and uses
ensembles to avoid an accuracy decrease. PNI (He et al., 2019; Cohen et al., 2019; Salman et al.,
2019) incorporate noise in the training. However, these defense methods sacrifice enormous accuracy.
And the input-transform function in R&P and the ensemble method in RSE introduce a large overhead
for PNet. Rusak et al. (2020) introduces that the model with Gaussian augmentation training could
defend the common corruptions. RND (Qin et al., 2021) extends the methods in (Rusak et al., 2020;
Byun et al., 2021) and achieves the state-of-the-art defense against black-box attacks. However, RND
does not consider the distinct features of PNet, i.e., quantized activation and model, and polynomial
activation that has a significant decay on the added noise of the input, thus restricting the defense
effect on private inference.

Limitations of Existing Attacks and Defenses on PNet. Existing black-box attacks and query-based
defenses for Neural Network (NN) are not transformed well to PNet. Specifically, we use Figure 2(c)
to show that one popular attack SimBA-DCT (Guo et al., 2019) attains ⇠ 80% fewer attack success
rates on PNet than NN for target attack. This motivates us to design PNet-Attack to identify what
adversarial examples are more vulnerable to PNet and how to generate them. Similarly, the encrypted
input and additional encoding of PNet make the defense difficult. First, the encrypted input requires a
black-box input agnostic defense which has not been well-studied. Second, the polynomial activation,
i.e., degree-2 square function, induces a decay effect on the added Gaussian noise of RND method
especially when the absolute value of added noise is less than 1. We use Figure 2(d) to show that
compared to RND-defense in NN, RND in PNet achieves ⇠ 32% lower defense success rate (attack
failure rate). This motivates us to design a robust PNet, RPNet, against adversarial attacks.

3 PNET-ATTACK: ATTACKS ON SEMI-HONEST PRIVATE INFERENCE

Attack Threat Model and Use Case. Our attack strategies are designed to manipulate the output of
private inference to gain unauthorized access, potentially resulting in personal or financial benefits,
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Figure 2: (a) PNet-Attack use case on the privacy-preserving face recognition system. (b) Our RPNet
enables a fast, accurate, and robust PNet (c) and (d) Existing black-box attacks and query-based
defenses for regular NN are not transformed well to PNet.

as seen in intrusion detection systems (Wyze, 2022; Kuna) and fraud detection systems (Raghavan &
Gayar, 2019). These attacks target semi-honest private inference protocols that possess a specific
characteristic: the client’s final output should coincide with the plaintext output of the final linear
layer. Several private inferences, including all the current FHE-based methods (Brutzkus et al., 2019;
Chou et al., 2018; Hesamifard et al., 2019; Dathathri et al., 2019; Lou & Jiang, 2021; Benaissa et al.,
2021; Aharoni et al., 2020; Lehmkuhl et al., 2021), satisfy this condition. In Figure 2(a), we take
a privacy-preserving face-recognition authentication system as an example to illustrate more about
our threat model use case, where a non-admin client attacker aims to obtain admin permission. To
achieve this goal, the attacker has a motivation to find an adversarial noise or example that causes the
system to produce a target-class prediction, e.g., admin, in order to bypass the recognition system.
We use Figure 2(b) to show our RPNet can defend against this attack.

Attack Strategy. To efficiently manipulate the inference, we propose a PNet-Attack method that
is optimized for PNet shown in Algorithm 1. The PNet-Attack method takes one clean image
X 2 Rd⇥d⇥c, true label y, and step size ✏ as inputs, and generates adversarial perturbation �, where
d is the input width or height, c is channel number. We define the prediction score probability
of PNet model as O = Mp(x). Instead of adding perturbation in the spatial domain, we adopt a
more efficient search direction Q in the frequency domain by the existing DCT tool and convert the
frequency-domain perturbation ↵̂t ·Q back to the spatial domain by inverse DCT (IDCT). DCT and
IDCT are defined in Appendix. The key idea of the algorithm is simple, i.e., for any direction Q and
step size ✏, one of x+ IDCT (�t · ✏ ·Q) or x+ IDCT (��t · ✏ ·Q) may decrease O = Mp(x). We
iteratively pick direction basis Q in the ascending order of frequency value ˆxi,j in x̂. Note that we
randomly sample one ˆxi,j when there are multiple entries with an equal value.

The search efficiency of PNet-Attack algorithm is mainly dependent on two components, i.e., arc-
shaped search order Q in the frequency domain and perturbation size schedule �t. In particular,
frequency-domain input x̂ is calculated by DCT (x) for each channel, where the top-left positions of
x̂ have lower frequency values. Since low-frequency subspace adversarial directions have a much
higher density than high-frequency directions, we try to perform the search from lower frequency
to higher frequency before a successful attack. To achieve this goal, we iteratively extract the value
ˆxi,j with the lowest frequency from x̂. To avoid the repeating search, we pop out the ˆxi,j from the

remaining search space x̂ by x̂ = x̂.pop(x) shown in Algorithm 1. The search direction basis Q is
set as ˆxi,j for the t-th query, which means that we only add the perturbation in the position of ˆxi,j

and check if it decreases the prediction probability at the t-th query.

�t = �min +
1
2
(�max � �min)(1 + cos(

t
T

· ⇡)) (1)

Since ˆxi,j with lower frequency may contain more dense information than high-frequency values, we
propose a perturbation size schedule �t to assign larger perturbation size to the positions with lower
frequency, which further improves the search efficiency. For t-th query, the perturbation size ↵t is
defined as the multiplication between �t and frequency-domain perturbation seed ✏. We define the
cosine annealing schedule �t in Equation 1, where �min and �max are the minimum and maximum
coefficients of perturbation size, respectively, and �t 2 [�min,�max], T is the query range cycle.
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4 RPNET: PRIVATE INFERENCE RESILIENT TO MALICIOUS CLIENTS

Algorithm 1 PNet-Attack in Pseudocode

1: Input: image x 2 Rd⇥d⇥c, label y, step size
✏.

2: adversarial perturbation � = 0
3: O = Mp(x), t = 0
4: x̂ = DCT (x) # for each channel
5: while Oy = maxy0Oy0 and t < d

2 do
6: get ˆxi,j with the lowest frequency from x̂.
7: x̂ = x̂.pop( ˆxi,j)
8: Q = Basis( ˆxi,j)
9: for ↵̂t 2 {�t · ✏,��t · ✏} do

10: t++
11: O

0 = Mp(x+ �t + IDCT (↵̂t ·Q))

12: if sign(O0

y �Oy) < 0 then
13: �t+1 = �t + IDCT (↵̂t ·Q)
14: O = O

0

15: break
16: return �

RPNet Design Principle. In contrast to
NN used for plaintext inference, the private
inference-designed PNet exhibits unique charac-
teristics, such as polynomial activation and quan-
tized parameters. Consequently, directly adapt-
ing previous work (Qin et al., 2021)—which
injects Gaussian noise into the input layer—may
not be optimal for PNet. We noticed that pre-
vious work (Qin et al., 2021) displays a dimin-
ished defense impact when applied to private
inference. This can be attributed to the signif-
icant attenuation of the injected noise by the
multi-layer polynomial-approximated activation
in PNet, such as the square function, render-
ing the defense noise virtually ineffective on
the model output, especially for deeper neural
networks. The diminished noise cannot signifi-
cantly influence the final-layer logits, thus reduc-
ing the defense performance of prior work on
PNet. In RPNet, we propose a simple, efficient,
and provably effective method that circumvents
the noise decay issue by adding noise to the output layer. Nonetheless, this strategy might be sus-
ceptible to an average inference attack—a phenomenon we detail in Appendix—particularly when
the injected noise has a zero mean. To counteract this, one can simply use non-zero-mean noise and
integrate it into the final two layers of the network. To further augment the effectiveness of RPNet,
we also introduce a novel dynamic noise training (DNT) technique.

In query-based inference manipulation attacks, the aggressor iteratively introduces a minor disruption
to the input, subsequently inspecting whether consecutive queries yield varying prediction probabili-
ties. If the probability of the objective prediction for the (t+ 1)-th query diminishes compared to the
t-th query, the introduced perturbation is retained. Conversely, the attacker removes the adversarial
disruption. The efficiency of the search heavily relies on the correct determination of the perturbation
search direction, i.e., whether to add or subtract the disruption in each query. Consequently, a defender
can reduce the efficiency of the attack by perturbing the perturbation search direction, thus misleading
the prediction probabilities. Inspired by these observations, we propose a swift and accurate defense
methodology that simply introduces noise to the output probability in each query, resulting in a robust
RPNet. Our RPNet defense approach is designed to achieve two objectives: (i) ensuring that the
introduced defense noise doesn’t significantly alter the prediction probability of the normal dataset,
thus maintaining accuracy, and (ii) ensuring that the introduced defense noise significantly disrupts
the attack search direction, thereby reducing the search efficiency.

RPNet Defense Formulation. We use Equation 2 to define the prediction probability difference of
two queries on PNet, Mp(x+ �t + µt) and Mp(x+ �t), where �t is the accumulated perturbation
at t-th query, µt is the perturbation of t-th query, e.g., IDCT (↵̂t ·Q) if defending PNet-Attack in
Algorithm 1.

Ap(x, t) = Mp(x+ �t + µt)�Mp(x+ �t) (2)

In Equation 3, we define the main step of the proposed RPNet defense. Two noises ��t+1 and ��t

are added into (t + 1)-th query and t-th query, respectively, to disturb the attack search direction.
Those noises are sampled from the same standard Gaussian distribution � ⇠ N (0, 1) and multiplied
by a small factor �. Note that the added noise shares the same encoding method with PNet for correct
decryption of prediction result. The key idea of adding noise in the query result is to disturb the
difference, i.e., Ap(x, t), of two attack queries and mislead the search directions.

Dp(x, t) = (Mp(x+ �t + µt) + ��t+1)� (Mp(x+ �t) + ��t)

= Ap(x, t) + �(�t+1 ��t)
(3)

Specifically, the disturbance success happens when the signs of Ap(x, t) and Dp(x, t) are different.
We use Equation 4 to define the probability of disturbance success (DSP). A higher DSP will induce
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Figure 3: (a) Disturbance success probability S(x, t) for one query. (b) incorrect prediction rate
P (i 6= j), which means the probability of misclassification after adding noise on the confidence
scores. (c) distribution of the difference between the highest predicted score M

i
p and the second

highest predicted score M
j
p .

a lower attack success rate (ASR). Therefore, it is of great importance to understand the factors
impacting the DSP.

S(x, t) = P (sign(Ap(x, t)) 6= sign(Dp(x, t))) (4)

We theoretically analyze and calculate the DSP in Equation 5. According to Equation 3, the only
difference of Dp(x, t) and Ap(x, t) is �(�t+1��t), thus S(x, t) is equal to the probability of adding
�(�t+1 � �t) to change the sign of Ap(x, t). Given the Gaussian distribution �(�t+1 � �t) ⇠
N (0, 2�2), the S(x, t) is equal to 1� �(|Ap(x, t)|; 0, 2�2), where �() is the cumulative distribution
function (CDF) of Gaussian distribution. This is because if Ap(x, t) < 0, the added noise sampled
from N (0, 2�2) should be larger than |Ap(x, t)| to change the sign of Ap(x, t), thus its probability is
1� �(|Ap(x, t)|; 0, 2�2); otherwise, the added noise should larger than |Ap(x, t)| to change the sign
of Ap(x, t), thus the probability is also 1� �(|Ap(x, t)|; 0, 2�2). Therefore, using the CDF equation,
one can calculate the DSP in Equation 5, where erf is Gauss error function. We demonstrate in
Equation 5 that DSP is impacted by two factors, i.e., |Ap(x, t)| and �. DSP has a positive relationship
with � but is negatively relative to |Ap(x, t)|. In Figure 3 (a), we use the shaded area to illustrate the
value of S(x, t).

S(x, t) = 1� �(|Ap(x, t)|; 0, 2�2)

=
1
2
� 1

2
erf(

|Ap(x, t)|
2�

)
(5)

RPNet Analysis. We theoretically analyze the effects of our RPNet defense method on clean
accuracy. When applying our PNet on a n-class classification task, we can define prediction score
as O = {M0

p ,M
1
p , ...,M

n�1
p } for clean data. Since our defense method adds Gaussian noise ��t

to the O, we define the prediction score after our defense method as O
� = {M0

p + ��0
t ,M

1
p +

��1
t , ...,M

n�1
p + ��n�1

t }. The classification results of O and O
� are i = argmax(O) and

j = argmax(O�), respectively. Therefore, RPNet will predict an incorrect classification if i 6= j.
We use Equation 6 to describe the probability of P (i 6= j) that is positively relative to � but negatively
relative to M

i
p �M

j
p . In Figure 3 (b), we use the shaded area to illustrate the value of P (i 6= j). Our

RPNet achieves a tiny P (i 6= j) and a large S(x, t) given a small �, therefore obtaining an accurate
and robust PNet. Figure 3 (c) demonstrates the distribution of M i

p �M
j
p and most of the values are

larger than 0.5 on CIFAR-10. The Mi
p�Mj

p

� > 5 since the � value is < 0.1. Those observations show

that P (i 6= j) is tiny since 1-�(M
i
p�Mj

p

� > 5; 0,�2 = 2) is near zero. Therefore, the defender can
adjust � based on the validation accuracy and misclassification budget obtained in the training to
achieve better defense effectiveness according to Equation 6.

P (i 6= j) = P ((M i
p + ��i

t) < (M j
p + ��j

t))

=
1
2
� 1

2
erf(

M i
p �M j

p

2�
)

(6)
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Algorithm 2 RPNet with DNT
1: Input: RPNet model Mp, training data (x, y).
2: t = 0
3: for i = 1 to epochs do
4: Randomly sample �i 2 [0,�max]
5: for j = 1 to iterations do
6: pred = Mp(x+ �i�t)
7: t++
8: minimize loss(pred, y)
9: update Mp

10: return Mp

RPNet with dynamic noise training (DNT).
By analyzing the Disturbance success proba-
bility S(x, t) in Equation 5 and clean accuracy
decrease rate P (i 6= j) after applying our RP-
Net defense method, we reveal that a larger �
will improve the defense effect but also may
decrease the clean accuracy. To further avoid
the clean accuracy decrease, one can reduce the
noise sensitivity of PNet model or enlarge the
difference between M

i
P and M

j
P in Equation 6.

Inspired by those observations, we additionally
equip our RPNet with dynamic noise training,
denoted by RPNet-DNT, to enable a better balance between clean accuracy and defense effects. We
use Algorithm 2 to describe RPNet-DNT that adds dynamic epoch-wise Gaussian noise �i�t during
each training iteration. Our results in Table 3 show RPNet-DNT attains higher clean accuracy over
RPNet.

5 EXPERIMENTAL SETUP

Datasets and Models. Aligned with recent non-interactive private inference studies Lou & Jiang
(2021); Dathathri et al. (2019); Aharoni et al. (2020), we perform our experiments on MNIST (LeCun
et al., 2010), CIFAR-10 (Krizhevsky et al., 2014), and Diabetic Retinopathy (Gulshan et al., 2016).
For MNIST, we adopt a network with a convolution block and two fully connected layers, as described
in HeLayers (Aharoni et al., 2020). For other datasets, we use a structure with three convolution
blocks and two fully connected layers. Networks are quantized into 8 bits for MNIST, 10 bits for
CIFAR-10, and 16 bits for medical datasets.

Evaluation Metrics. Attack Success Rate (ASR): This is the proportion of successful attacks out of
the total evaluated images. Higher ASR signifies better attack performance. Average Queries: This
represents the mean number of queries for each evaluated image, calculated by dividing the total
number of queries by the total number of images. Fewer average queries suggest a more efficient
attack. Average `2 Norm: This is the mean `2 norm for each adversarial image, derived by dividing
the total `2 norm by the total number of evaluated images. A lower average `2 norm indicates a
smaller adversarial perturbation. Defense Success Rate (DSR): This is the proportion of successful
defenses, equivalent to the attack failure rate. A higher DSR signifies superior defense effectiveness.
Clean Accuracy (ACC): This measures the model’s accuracy on the non-adversarial (clean) data.
Disturbance Success Probability (DSP): This is the likelihood of successfully disrupting the attack
search direction. More implementation details are in Appendix.

5.1 EXPERIMENTAL RESULTS

PNet-Attack Evaluation. In Table 2, the performance of our proposed PNet-Attack is compared
against that of SimBA-DCT and the Square attack on CIFAR-10 and a medical dataset. For CIFAR-10,
the Square attack achieved a targeted attack success rate (ASR) of 71.56%, requiring an average of
301.6 queries and an average `2 norm of 5.44. SimBA-DCT, on the other hand, achieved a slightly
higher ASR of 73.98% with a smaller adversarial size, as indicated by a lower `2 norm of 4.81. In
comparison, our PNet-Attack, even without a perturbation size schedule, improved the ASR by 7.5%
while reducing the average `2 perturbation norm by 0.72 compared to SimBA-DCT. The introduction
of a perturbation size schedule further improved the ASR of PNet-Attack by 12.74%, achieving
an average perturbation `2 norm of 4.87 with only 201.5 average queries. This is a 22.66% ASR
improvement, a 0.61 reduction in average `2 norm, and a reduction of 100.1 queries compared to
the Square attack. Compared to SimBA-DCT, PNet-Attack with a schedule increased the ASR by
20.24% and reduced the average query count by 100.9, while maintaining a similar average `2 norm.
For untargeted attacks, PNet-Attack with a schedule improved the ASR by 8.74% and 16.1% over the
Square attack and SimBA-DCT, respectively. A similar trend was observed with the PNet-Attack on
the medical Diabetic Retinopathy dataset.

Figure 4 (a) and (b) illustrate the attack processes of our PNet-Attack and previous methods on both
the CIFAR-10 and Diabetic Retinopathy datasets. With a similar number of queries, our PNet-Attack
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Table 2: The attack comparisons of PNet-attack and prior works, e.g., SimBA-DCT (Guo et al., 2019)
and Square attack (Andriushchenko et al., 2020) on CIFAR-10 and medical dataset. Untar., Target
means untarget and target attacks, respectively.

Schemes
CIFAR-10 Diabetic Retinopathy

Average Queries Average `2 Success Rate Average Queries Average `2 Success Rate

Untar. Target Untar. Target Untar. Target Untar. Target Untar. Target Untar. Target

Square 100.1 301.6 4.21 5.44 85.64% 71.56% 50.0 99.1 1.47 1.18 64.32% 64.14%
SimBA-DCT 101.6 302.4 2.86 4.81 78.28% 73.98% 51.8 101.0 0.82 0.92 73.28% 51.49%
PNet-Attack 103.4 299.4 2.79 4.09 81.33% 81.48% 50.5 102.5 0.84 0.87 84.36% 63.28%
+Schedule 99.8 201.5 3.61 4.87 94.38% 94.22% 50.4 98.5 1.15 1.31 89.92% 76.48%

with scheduling consistently achieves a higher targeted ASR compared to SimBA-DCT and Square
attack. This improvement can be attributed to the enhanced attack search efficiency realized through
the perturbation scheduling and arc-shaped search order of the PNet-Attack. Additionally, when
the adversarial examples have the same `2 norm, PNet-Attack still manages to reach a higher ASR
compared to other techniques. Specifically, on the CIFAR-10 dataset, PNet-Attack with scheduling
secures an ASR over 20% higher than other methods while maintaining an average `2 norm of
approximately 3.0.

Figure 4: (a, b) Attack success rate v.s. number of queries for different methods. (c, d) Defense
success rate v.s. number of queries for RPNet techniques and previous works.

RPNet Defense Evaluation. Table 3 presents a comparison of the defense effects achieved by
our RPNet and previous methods, including RND and RND-GF, as proposed by (Qin et al., 2021).
For targeted attacks on CIFAR-10, RND achieves a Defense Success Rate (DSR) of 39.22% while
maintaining a clean accuracy of 72.86%. The RND-GF method, which includes Gaussian noise
during training, reaches a defense success rate of 56.33% with an accuracy of 73.71%. In contrast
to RND which incorporates noise into the input, our RPNet method introduces noise into the logits,
which notably enhances the DSR by approximately 30%. This improvement can be attributed to
the fact that adding noise to the input of PNet with a polynomial activation function considerably
diminishes the noise. However, introducing noise to the output bypasses this decay, as substantiated
by our theoretical analysis of RPNet and empirical results. For example, RPNet-DNT registers a
DSR of 91.88% while maintaining a higher clean accuracy of 74.55%. When compared to RND-GF
in the context of targeted attacks on CIFAR-10, RPNet-DNT enhances DSR by 35.55% and clean
accuracy by 0.84%.

Our RPNet and RPNet-DNT demonstrate consistent enhancements during untargeted attacks and
across other medical datasets. Specifically, RPNet-DNT shows a notable increase in untargeted
defense success rate by 52.97% compared to RND-GF on CIFAR-10. Likewise, on the Diabetic
Retinopathy dataset, RPNet exhibits a rise of 14.54% and 39.69% in the targeted and untargeted
defense success rates, respectively, over RND-GF, while achieving a 0.18% increase in clean accuracy.
The injection of noise into the input doesn’t yield significant improvements in defense success rates.
However, the DNT technique notably enhances both the defense success rate and clean accuracy.

Figure 4 (c) and (d) present the defense outcomes of prior works RND, RND-GF, and our techniques,
including RPNet, RPNet+Input noise, and RPNet-DNT with input noise. Notably, all techniques
display a high defense success rate in the initial queries due to the low attack success rate associated
with a limited number of queries. However, as the number of queries increases, the defense success
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Table 3: The defense comparisons of RPNet and prior works, e.g., RND (Qin et al., 2021), RND-
GF (Qin et al., 2021) and Adversarial Training(AT) (Goodfellow et al., 2014), on CIFAR-10 and
medical dataset. ’+Input noise’, and ’+DNT’ represent adding Gaussian noise into the input layer and
using an additional DNT method, respectively, on RPNet.

Schemes
CIFAR-10 Diabetic Retinopathy

Clean Accuracy Average queries Success Rate Clean Accuracy Average queries Success Rate

Untar. Target Untar. Target Untar. Target Untar. Target Untar. Target Untar. Target

RND 72.86% 199.8 301.1 2.03% 39.22% 66.81% 48.5 53.1 15.00% 46.40%
RND-GF 73.71% 204.2 300.4 10.39% 56.33% 67.73% 50.2 49.3 10.08% 59.60%
AT 67.88% 199.5 302.5 49.08% 86.20% 61.37% 50.0 51.3 37.36% 79.05%
RPNet 74.10% 198.2 299.1 56.17% 88.04% 67.91% 51.7 50.1 49.77% 74.14%
+Input noise 73.53% 202.7 300.1 49.69% 83.28% 65.82% 49.3 50.7 36.17% 74.53%
+DNT 74.55% 199.4 299.7 63.36% 91.88% 68.09% 48.9 52.0 66.41% 88.67%

rates of both RND and RND-GF significantly decline. In contrast, our RPNet maintains a high
defense success rate. Similar to RND-GF, the addition of noise to the input layer in RPNet+Input
noise doesn’t result in a significant improvement in defense. This suggests that the input noise might
be diminished by the polynomial activation of PNet. With the incorporation of DNT techniques,
RPNet-DNT further enhances the defense outcomes. It’s important to note that without adding noise
to the output layer, RPNet with input noise and DNT still fails to sustain a high defense effect.

Figure 5 (a) and (b) highlight the superior defense efficiency of RPNet in comparison to RND.
By achieving a higher Disturbance Success Probability in both targeted and untargeted attacks,
RPNet provides an empirical explanation for its heightened defense efficacy. Figure 5 (c) and (d)
demonstrate that RPNet strikes a more effective balance between defense effect and accuracy than
RND-GF. Specifically, for a given � (e.g., 0.1), Figure 5 (c) shows that RPNet realizes a higher
defense success rate than RND-GF. Similarly, Figure 5 (d) indicates that, for the same �, RPNet
achieves a higher clean accuracy. RPNet therefore exhibits less noise sensitivity than RND-GF.

Figure 5: (a, b) RPNet achieves a higher probability of disturbance success probability than prior
work RND. (c, d) RPNet achieves a better balance between defense effect and clean accuracy.

Ablation Study. As depicted in Figure 5 (c) and (d), RPNet outperforms RND-GF in terms of
striking a superior balance between defense proficiency and accuracy. Specifically, for a given �

value (e.g., 0.1), Figure 5 (c) reveals that RPNet yields a higher defense success rate compared to
RND-GF. Meanwhile, Figure 5 (d) indicates that, for an equivalent � value, RPNet secures higher
clean accuracy. Consequently, RPNet demonstrates less sensitivity to noise than RND-GF.

6 CONCLUSION

This work first introduces PNet-Attack, an innovative inference manipulation attack for private
inference protocols reliant on fully homomorphic encryption. The attack necessitates 3⇥ ⇠ 8⇥ fewer
queries than current approaches. Moreover, we present RPNet, a robust private inference protocol
designed to withstand malicious clients, achieved by incorporating cryptography-compatible noise
in the feature and logits layers and deploying a DNT technique. RPNet demands over 10⇥ more
query numbers compared to previous defense methods, substantially elevating the attack difficulty.
Theoretical analysis and empirical testing show that RPNet can diminish the attack success rate by
approximately 91.9% across various neural networks and datasets.
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