
Where does In-context Learning
Happen in Large Language Models?

Suzanna Sia ∗

Johns Hopkins University
ssia1@jh.edu

David Mueller
Johns Hopkins University
dam@cs.jhu.edu

Kevin Duh
Johns Hopkins University
kevinduh@cs.jhu.edu

Abstract

Self-supervised large language models have demonstrated the ability to perform
various tasks via in-context learning, but little is known about where the model
locates the task with respect to prompt instructions and demonstration exam-
ples. In this work, we attempt to characterize the region where large language
models transition from recognizing the task to performing the task. Through a
series of layer-wise context-masking experiments on GPTNEO2.7B, BLOOM3B,
and STARCODER2-7B, LLAMA3.1-8B, LLAMA3.1-8B-INSTRUCT, on Machine
Translation and Code generation, we demonstrate evidence of a "task recognition"
point where the task is encoded into the input representations and attention to
context is no longer necessary. Taking advantage of this redundancy results in
45% computational savings when prompting with 5 examples, and task recognition
achieved at layer 14 / 32 using an example with Machine Translation. Our findings
also have implication for resource and parameter efficient fine-tuning; we observe
a correspondence between fine-tuning performance of individual LoRA layers and
the task recognition layers.

1 Introduction

In-context learning (ICL) refers to the phenomenon in which large generative pretrained transformers
(GPTs) perform tasks with no gradient updates when shown task examples or descriptions in their
context [13, 12]. Recent work on in-context learning has focused on prompt-engineering, treating
GPT models as black boxes and focusing on which examples to provide in-context [53, 14, 21, 22, 57].
However, many of these works apply surface level interventions leaving the internal mechanism of
task recognition in GPT models largely not understood.

In this work, we ask where does in-context Learning occur in GPT models? Our view of In-context
Learning is that of “task recognition" not “task learning" [69, 47]. While in-context learning in GPT
models appears to be generally applicable to any natural language task, to study task location, we
focus on two tasks, Machine Translation (MT) and Code generation, as there is little to no ambiguity
in evaluating whether the model has recognized the task. For MT, the model must generate tokens in
a different language. For Code generation, the model must produce a working program in the correct
programming language. These two tasks are unlikely to be “learnt" from following patterns, and are
more complex than a lookup in associative memory for simple Question-Answer tasks.

We focus on multi-head attention layers as a unit of study, as the self-attention mechanism is designed
to allow the model to attend to it’s context during generation of the target sentence [59]. Using causal
masking over different parts of the context we demonstrate that there exists a "task-recognition" point
after which attention to the context is no longer necessary (Section 4). Concurrent and previous

∗Corresponding Author, suzyahyah@gmail.com and Code Repository https://github.com/
suzyahyah/where_does_in-context-learning_happen_in_LLMs

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/suzyahyah/where_does_in-context-learning_happen_in_LLMs
https://github.com/suzyahyah/where_does_in-context-learning_happen_in_LLMs

work on Task and Function Vectors [32, 58] have also characterised a similar phenomena where the
activations induced by in-context examples can be used to control tasks in the model.

We further characterise this phenomena, by studying the effect of on various ablations of masking
self-attention over the instructions, examples, and even the query sentence itself. We report that not
only is it unnecessary to compute self-attention across the instructions and examples, in later layers
self-attention over the query itself may also be redundant.

This work informs the design of efficient inference and training for LLMs with the following
contributions

1. We discover large computational savings when the context is several times longer than the
test source sentence, a typical phenomena in prompt engineering (Section 5).

2. Parameter efficient fine-tuning corresponding to the phenomena of in-context learning. We
observe that very lightweight fine-tuning of LoRA parameters [34] are most effective at
earlier layers of the model compared to the later ones (Section 6). The effectiveness of the
LoRA training corresponds directly to the layers that occur before the ‘task recognition‘
point.

We further investigate the extent of MT task redundancy using differentiable L0 regularisation to train
discrete attention head gates (Section 5.1) and find that only around 10% of the attention heads can be
fully masked. This indicates that the attention-heads themselves are not redundant, it is attention over
all of the context that can be redundant. This fundamentally differs from the literature in supervised
learning where more than half of the attention heads can be pruned, and Transformers are highly
specialised for particular tasks [61, 44, 7].

2 Background

In-Context Learning was first demonstrated by [13] who showed that GPT-3 could be used to
perform a huge variety of tasks without any task-specific parameters or training, by conditioning the
model’s generation on a prompt which included a few labeled examples of the task of interest. Since
then, interest in using GPT models for ICL has grown significantly [45, 3, 66], with several recent
works introducing methods such as instruction-tuning [55, 63] or chain-of-thought prompting [64] to
improve downstream ICL accuracy. One key characteristic of In-context Learning is its reliance on
prompt examples demonstrating the task that the model should carry out [52].

In-context Learning as Task Recognition. Ostensibly, ICL can work for nearly any task that
can be defined or described in natural language, and therefore has potential for incredibly broad
impact. However, ICL can often still underperform supervised fine-tuning [9], prompting research
in analyzing the mechanisms underlying ICL. One line of work studies in-context learning with
linear functions, typically linear regression, characterizing the learnability of these functions with
ICL [39, 28] and even the learning algorithm a transformer uses [2, 18, 62]. A second body of work
suggests that in-context learning locates existing latent concepts (tasks) which have been already
learnt during pretraining [69, 65]. Notably, [58] describe function vectors which are robust to changes
in context. [30] try to characterise the extent of task recognition from the pre-training data. Although
there have been many studies on task recognition, our work presents a complementary perspective for
task recognition, by demonstrating that there exists a point in the model’s layers where the task has
been located and causal self-attention onto the context is no longer needed for the model to perform
the task.2

Transformer Layers and Self-attention as the Unit of Study. Many works study layers of
the model as a natural unit of analysis for interpretability [33, 20, 48, 24, 8, 54]. We highlight
some of the work which is more closely related to task performance. [68] study the layer-wise
adaptability by a hidden-state variability ratio while [60] study evolution of representations in
MT-supervised transformer models. [49] studies when model layers can be skipped by feeding
intermediate representations into the final output layer of a pre-trained supervised model. Our work

2In our experiments investigating where “task recognition" happens, we consider the actual “task perfor-
mance" score as it could be possible to recognise the task as Machine Translation or Code generation, yet
perform less well on it.

2

adds to this body of work by considering the perspective of when and where layers are responsible
for task location in in-context learning models.

The self-attention mechanism specifically has been highlighted as a source of redundancy by many
previous and concurrent works [10, 46, 31]. This is due to it’s causal structure over the input symbols
under the specific context of the input sequence within it’s context window [51]. In this paper, we
study a major source of causal redundancy in the input, the "prompt examples" that are provided as
input-output demonstrations to the model for "in-context learning".

Transformer overparameterization and redundancy has been an active area of research [19] with
multiple works suggesting to adapt transformer inference depth [36, 15, 25]. While we draw
inspiration from these, our main objective is not to compress models for inference, but to highlight
the redundancy in computing over long context token sequences.

3 Data and Settings

Models We use GPTNEO2.7B [11], BLOOM3B [56], LLAMA3.1-8B and LLAMA3.1-8B-Instruct
in all of our experiments with Machine Translation. For code generation, we used LLAMA3.1-8B-
Instruct[23] and STARCODER2-7B[41]. GPTNEO2.7B has 32 layers and 20 heads, BLOOM3B
has 30 layers and 32 heads, LLAMA2-7B and LLAMA3.1-8B has 32 layers and 32 heads and
STARCODER2 has 30 layers and 24 heads. The checkpoints we use are from Meta AI (for LLAMA)
and the transformers library [67]. STARCODER2 and LLAMA models utilises grouped-query attention
[1], while the rest of the models use “regular" multi-head self-attention.

GPTNEO was trained on The PILE [27], an 825GB text dataset which consists of roughly 98%
English data. Despite being mostly monolingual, The PILE contains Europarl which GPTNEO was
trained on at a document level (rather than a sentence level). Conversely, BLOOM was trained on
the ROOTS corpus [38], a composite collection of 498 datasets that were explicitly selected to be
multilingual, representing 46 natural languages and 13 programming languages. LLAMA training data
consists primarily of common crawl, C4, wikipedia, stackexchange as major sources. STARCODER2
was trained on Github as well as Arxiv and Wikipedia. To our knowledge, there has not been any
reports of sentence level parallel corpora in the training datasets of these models.

Data We test our models using two datasets, FLORES [29] for Translation and HUMANEVAL for
Code generation. For FLORES, we experiment with en↔fr (main paper) and en→pt (appendix).
Prompt examples are drawn from the development set. We evaluate the generations using BLEU
scores, following the implementation from [50]. For HUMANEVAL[16], we evaluate on the execution
accuracy of the generated code using the Pass@1 metric. As HUMANEVAL does not have an explicit
train set, the prompt set is drawn from the Mostly Basic Python Program (MBPP) dataset [4]. To
account for example selection and ordering effects,3 all inference runs were repeated with 5 randomly
sampled prompt example sets.

Prompt Format Our prompts may consist of instructions, examples, both, or none. Importantly,
we adopt neutral delimiters, "Q:" and "A:" to separate the prompt and the start of machine generated
text. This ensures that the models do not have any information from the delimiters on what the task is
and must recognise the task from examples. 4

For the translation task, when no natural language instructions are used the model input will
be Q: {source_sentence} A: Instructions are given in natural language and take the
form: Translate from {L1} to {L2}: Q: {source_sentence} A:, where L1 =
English and L2 = French if the source and target languages are English and French respec-
tively. Examples are given after instructions, and similarly delimited by Q: and A:. See Appendix:
Table 1 for an example.

3In-context learning models have been found to be sensitive to these order effects [42].
4In an earlier exploration, we found that supplying the model with language indicators only, e.g., "English:",

"French:" or "English:", "Python:", was sufficient for strong models (LLAMA3.1-8B and LLAMA3.1-8B-
INSTRUCT) to perform the task without seeing any instructions or examples in the context.

3

Name Instr Ex

ExMask
,Query N Y Q: · · · A: · · · Q: <query> A:

Instr,ExMask
,Query Y Y Translate French to English: Q: · · · A:· · · Q: <query> A:

Instr,ExMask
,Query Y Y Translate French to English: Q: · · · A:· · · Q: <query> A:

Instr,Ex,Query
Mask Y Y Translate French to English: Q: · · · A:· · · Q:<query> A:

Instr,Ex,Query
Mask Y Y Translate French to English: Q: · · · A:· · · Q: <query> A:

Figure 1: (Top): Graphical explanation of Masking the Attention over Instructions and Examples.
The leftmost image has instructions and masks examples (Instr,ExMask), while the right image
has both instructions and examples masked (Instr,ExMask). (Bottom): We demonstrate which
components of the input prompt are masked for each setting that we experiment with. The overline of
the setting name describes which portion of the input is highlighted (and thus masked). N/Y refer
to absence / presence of either Instruction (Instr) or Examples (Ex). Although we are primarily
concerned with the effects of masking out task-identifying context (i.e. instructions and examples), in
some experiments we additionally consider masking out the input query as well.

For the code generation task, when no natural language instructions are used, the model input will
be Q: {program_description}, where the program_description is Instructions are
given in natural language and take the form: "Write a program for the following task:".

4 Where Does In-Context MT happen?

4.1 Analysis Methodology: Layer-from Masking

In-context learning differs from task-specific supervised learning in that, during test time, the desired
task must be identified, or learned, from the context first and then applied to the input. At what stage
in the feed-forward computation does a causal Large Language Model transition from an in-context
learner to a translation or code-generation model? To explore this question, we introduce layer-from
context-masking which masks out all attention weights to the context (instructions, examples, or
queries) from a certain layer onwards (see Figure 1 for a graphical description).

For Causal Decoder-only Transformer Language Models, given each position i, the Attention weight
αij over context positions j, j < i can be computed by a αij = softmax(QKT

√
dk

)ij . Each element in
(QKT) is the dot product between a query vector and key vector qi·kj , where qi = Wqxi, kj = Wkxj

for trained weight matrices Wk and Wq.5 We apply the attention mask over the input so that the
attention score is (qi · kj) +m(j,u). Here, u are the tokens that we wish to mask, and

m(j,u) =

{
0 if xj /∈ u

−∞ if xj ∈ u
layer.j.attn_mask[i, :, :, u(start):u(end)] =

torch.finfo(attn_mask.dtype).min

is implemented in practice as the smallest floating point value for that datatype. All masks operate
from the j-th layer (ℓj) onwards, i.e. masking from ℓ20 means zeroing out attention to all positions

5Readers should note that there is a Wk and Wq weight matrix for each layer and each attention head, but we
omit the notation on this for readability.

4

in u from ℓ20:nℓ
, where nℓ is the total number of layers. To construct Fig 2, we increment ℓj from 1

to nℓ and apply the set of masks {m(j,u)}ℓj :nℓ in each experiment and observe the performance of
the model.

When masking input tokens from layer ℓ, the model must rely on only the information in the hidden
state representations of the remaining, unmasked tokens from layer ℓ+ 1, since representations of
the masked tokens can no longer be incorporated moving forwards; if the unmasked representations
do not already encode enough information to complete the task (e.g., Machine translation) then the
model will fail to generate the correct output. Our intuition is the following: if, at layer ℓ, the model
can perform the target-task without attending to the task context—task-identifying tokens such as
instructions and examples—then information about the task has already been incorporated into the
query representations and the model has identified, or “recognized”, the target-task by layer ℓ.

4.2 Experiments on Layer-from context-masking

In Figure 1 (Table) we show the various masking treatments that we apply to the input in our experi-
ments. We ablate over 3 different task-context masking settings to test the impact of various parts of
the context: providing only task examples and masking them from a given layer (ExMask

,Query);
including the instruction and but only masking out the examples (Instr,ExMask

,Query); and
including instructions but masking them with the examples (Instr,ExMask

,Query). As a control
in our experiments, we also experiment with masking the entire input (Instr,Ex,QueryMask) to
study whether the model needs to attend to any input beyond a certain layer, and with masking only
the query (Instr,Ex,QueryMask) to study whether masking the context vs the query have similar
effects. For each masking setting, we apply the mask from all layers in the model (j = 1, · · · , nℓ)
and observe how task performance is affected at each layer. When examples are provided in-context,
we use 5 examples per prompt and we re-sample these examples to control for variance in example
selection.

4.3 Results

Models do not need to maintain attention over the task context past a certain layer to perform
the task. In all models, we observe that when applying masking from {m(j,u)}ℓ:nℓ over the task
context, models obtain their maximum performance well before the final layer, i.e., when ℓ < nℓ.
The results of our experiment for en→ fr and fr→ en are shown in Figure 2, and additional
experiments for GPTNEO and BLOOM on en→pt and pt→en are shown in Section A.4. Different
models reach this plateau point at different layers: in GPTNEO this point occurs around layer 25, in
BLOOM this point occurs around layer 15-20, and in LLAMA models this occurs around layer 13-15.
As English is the dominant language in most model’s training, models can successfully perform
translation into English upon earlier layers of masking, than translation out of English. Once this
plateau is reached, the models benefits only marginally, if at all, from retaining attention to the
context, suggesting most of the task "location" has already occurred.

We observed that with LLAMA-3.1 models, when masking only task context, there is a jump in
performance from nearly negligible to nearly optimal in the course of a few layers. Conversely, when
the query is masked we see both performance begin to rise much later in the model and the approach
to optimal performance occur much more slowly, often plateauing only a few layers before the end of
the model.

In some models, there may be a point where forward computation is independent of even the
query. There is also a point in the model where it no longer needs access to any input query tokens.
We find this effect to be much less pronounced in GPTNEO2.7B, BLOOM3B and STARCODER on
the code generation task, and thus maybe a characteristic of Llama models training.

There exists critical layers for task location. Prior to the task recognition point, around the
middle layers of the models, moving the context mask up a layer results in a significant increase to
performance. We consider these critical layers, as instead of a gradual increase in performance, we
observe very steep jumps, accounting for more than 80% of the model’s ceiling performance for that
task. We conjecture that the model is locating the correct task during processing in these middle
layers, after which the context is no longer necessary to perform the task.

5

Figure 2: Layer-from context-masking experiments for LLAMA3.1-8B, LLAMA3.1-8B-INSTRUCT
en→fr (main figure), and GPTNEO2.7B, BLOOM3B, en→fr, LLAMA3.1-8B, LLAMA3.1-
8B-INSTRUCT on fr→en. The graphs show translation performance when masking contexts from
the jth layer onwards. Different lines indicate different masking treatments, as described in Figure 1.
The dashed black line is the performance when no masking of the input occurs.

Figure 3: Layer-from context-masking experiments for Starcoder2-3B, Starcoder2-7B, Llama7b,
Llama7b-chat on a text to code generation task. The graphs show translation performance when
masking contexts from the jth layer onwards. Different lines indicate different treatments of the
instruction, as described in Figure 1. The dashed black line is the performance when shown both
examples and instructions without masking.

Overall, our findings suggest a 3-phase process to in-context learning: in the first phase, moving the
mask up makes little difference in performance, which is close to 0. This suggests that the context
has not influenced task location at all. In the second phase, shifting the mask upwards makes a
large difference in performance, suggesting that the model has started to locate the task but can
improve significantly with more processing of the context. Finally, in the third phase, shifting the
mask upwards again has little-to-no effect on the performance, suggesting that the model has fully
recognized the task as translation and no longer requires the context to interpret the task.

6

Figure 4: Layer-from context-masking experiments for GPTNeo and BLOOM on en→fr investigat-
ing number of examples in the ExMask mask setting. The dashed black line refers to no instructions
and no examples.

4.4 Instruction-tuned vs Non-instruction Tuned Models

When comparing non-instruction tuned LLAMA3.1-8B vs instruction-tuned models LLAMA3.1-
8B-INSTRUCTION, we do not observe any noticeable difference in where performance plateaus,
i.e., where the model no longer requires attention over the context. This occurs around layers 16
for both LLAMA models in en → fr and around layer 13 for fr → en. The main difference is
that instruction-tuned model is able to achieve better performance in the earlier layers for the setting
where instructions are present and examples are masked (Instr,ExMask). This is to be expected as
these models are tuned towards following instructions.

Overall we find that the observation of task recognition layers and a task recognition point is present
across both non-instruction tuned and instruction tuned models, and that this presents itself similarly
in both types of models.

4.5 Do models have a distinct task recognition region regardless of the type of task?
(Experiments on Code Generation)

For tasks that the model does not perform fluently, we do not observe a sharp increase at any particular
layer. For instance, for code generation (HUMANEVAL) where the LLAMA2 model performs poorly,
we can observe only a very gradual effect of masking the self-attention layers, and not a distinct
increase as compared to the LLAMA2’s performance on Translation.

However when we consider STARCODER2 while masking instructions or no instructions, i.e., the
Instr,ExMask and ExMask, we again see the same pattern demonstrating the task recognition
phenomena on layer 19 of the 3B model, and layer 20-23 of the 7B model.

To understand Starcoder2’s strong performance on the (Instr,ExMask) condition, investigations
found that the instructions and the test prompt alone contain sufficient information for the model to
recognise that the task is to generate a Python program, even though the model is not instruction
tuned. This happens as the model is very specialised towards code generation and has a strong prior
to generate python code given its prevalence in it’s training data.

4.6 The Role of Instructions vs Examples

In separate experiments, we found that when shown only instructions and no examples, GPTNEO
and BLOOM models are unable to translate, and their performance is nearly at 0 BLEU Score. For
GPTNEO and BLOOM we see that the behavior of the model is similar when no instructions are
present (ExMask) and when instructions are masked (Instr,ExMask). However, if the model is
given complete access to instructions (InstrExMask), it can use the intermediate processing of
examples to reach baseline performance earlier.

7

Figure 5: (Left) Illustration of redundancy in self-attention computation based on our masking
setup (Instr,ExMask

,Query). (Right) Visualisation of attention head masks for GPTNEO
and BLOOM, learned with L0(λ = 0.01) regularisation under a 0-prompt train scheme in
en → fr. A value of 0 (in black) indicates that the attention head is effectively masked out by the
trained attention gate. Around 10% of attention heads are masked out i.e., redundant, with a majority
of them occuring at the later layers for GPTNeo and distributed across layers for BLOOM. fr → en
is availble in Section A.7.1

4.7 Does the Number of Prompts Affect Task Recognition?

In Section 4 we study context-masking with a fixed number of prompts. However, it is not clear if
the number of prompts affects how fast, layer-wise, the model is able to recognize the task. We plot
these results for en→fr in Figure 4, for both GPTNEO and BLOOM. In general, we find that the
number of prompt examples has little effect on which layer the task is recognized at. While there is
some variation in performance when the context is masked around the middle layers of the model,
the final performance plateau occurs at the same layer regardless of the number of prompts.

5 Inference Efficiency

Speeding up transformer inference is of great interest to the community [26]. We highlight the
potential of speeding up inference time as a direct consequence of identifying where task recognition
occurs in the model and redundancy of self-attention processing. In Figure 5, we illustrate self-
attention from the query and generated sequence tokens over itself (Task Processing) and Self-attention
over the prompt Instructions and Examples (Masked). If ceiling performance is achieved, then self-
attention over the previous context becomes redundant (Redundant Self-attention Computation).

Our results indicate that we can achieve significant speedups in inference by removing the processing
of context-tokens all-together after a certain point in the model, with little to no impact on downstream
performance. Let ℓr be the rth layer where we can mask out the attention of the context across
subsequent layers and match the “ceiling" performance. Let k be the number of prompt examples,
where each example consists of a pair of parallel sentences. Then, for a model with nℓ layers, the
amount of processing in terms of speed and memory saved is approximately (nℓ−r)/nℓ×(k/k+1).

Using the example of LLAMA3.1-8B (32 layers) on en→fr, we see from Figure 3 that the model is
very close to it’s ceiling score after processing the examples at layer 14 (ℓ = 14). If we no longer
need to process examples after ℓ = 14, under a prompt size of 5 the savings are approximately
50%.

For instruction-tuned models which are typically deployed in production, even if we assume that
no examples are provided, savings can be non-trivial as very long-form instructions are typically
provided to the model in an attempt to control it’s behavior (prompt engineering).

8

Figure 6: Performance of models ((LLAMA3.1-8B and LLAMA3.1-8B-INSTRUCT for en↔fr)
trained with single LoRA layer, where each point on the x-axis reflects a single trained LoRA layer.
The LoRA layer was trained without instructions, and with causal LM cross-entropy loss over next
token prediction of parallel translation sentences. 400 and 800 refer to the size of the training set.
The layers which are most amenable to lightweight fine-tuning occur in the earlier layers before the
"task recognition" point.

Although we had demonstrated the redundancy of self-attention over the input context, the significance
of this computational savings extends to all components of the transformer during forward inference.
Since all subsequent layers of forward inference no longer rely on computations on previous token
positions, all processing related to those redundant token positions (from the task recognition layer
onwards) can be effectively removed.

Overall, observing redundancy over the context is not surprising. To explain why models can have
such redundancy, we refer to [17] who identify a phenomena where attention heads attend almost
exclusively to delimiter and separator tokens such as [SEP], periods and commas. This is thought
to act as a “no-op" as the value of such tokens in changing the current hidden representation is very
small. Note that it is then possible to mask entire Transformer layers and still achieve a sensible
output due to residual connections in the Transformer architecture at every layer.

5.1 Are There Specialised Attention Heads?

A well established finding for supervised encoder-decoder MT models, is that up to 90% of the
attention heads can be pruned while minimising fall in translation performance [61, 6, 44]. We note
that asking about the extent of pruning is a slightly ill-formed research question, as it depends on the
type of pruning technique used. However broad trends of highly prunable models have been observed
in the supervised MT paradigm. For instance, [5] studied attention-head importance for a broader
set of ICL tasks, finding that the most important heads for ICL occur in the middle layers of the
model. We train discrete attention head gates with L0 regularisation for GPTNEO and BLOOM on
en → fr (see Section A.7.1). Overall, we report that there are no "few" specialised heads, which
directly contrasts with the literature on compression in supervised MT models [61, 44]. Potential
reasons for this difference might be due to cross-entropy loss associated with task tuning for MT vs
non-specific training on large corpora. We leave this as an open question for future work.

6 The Adaptability of Task Layers

The layers prior to "task recognition" should contain information about locating the MT task. To test
this, we further explore the adaptability of these layers by lightweight fine-tuning experiments on
LLAMA3.1-8B and LLAMA3.1-8B-INSTRUCT on en↔fr.

We trained a single Low-rank Adaptation matrix (LoRA; [34]) for each layer of the output projection
while keeping the rest of the network frozen.6 This means there were nℓ individual layers trained for
nℓ experiments in Figure 6, where nℓ is the total number of layers of the model.

The model was shown parallel sentences as input, and layers were trained with no explicit translation
instructions. We split the dev set of FLORES into 400 and 800 training examples and 200 dev
examples, we repeated the experiments with 2 random seeds initialisations. Note that this setup is
designed to tune the layers for task location. It is highly unlikely that the model can learn translation

6We also experimented with the training separate Key, Query and Value LoRA Layers but found this to be
less effective.

9

knowledge from this small amount of supervision. The LoRA layers were trained for up to 50 epochs
with batch size= 32, learning rate= 1e− 4, early stopping patience= 5 and threshold= 0.01, with
α = 32, r = 8 and dropout= 0.05. These values are default and there was no hyper-parameter
optimisation over the training parameters. The cross-entropy loss was computed across the entire
sequence, and we used the best checkpoint on the 200 held out dev examples for evaluation.

Without any fine-tuning, performance is close to 0 because the model will generate sequences
continuing from the source language instead of doing translation. While each layer can be trained
to perform better than no fine-tuning at all, tuning different layers have vastly different impacts
on performance (see Figure 6). In particular, we find that high performing layers occur at the earlier
to middle parts of the network, with the peak occuring strictly before the "task-locating" layers from
Section 4.

6.1 Task Locating Layers are critical for resource efficient fine-tuning

With half the number of training examples (400 instead of 800), the range of trainable layers drop
very greatly. For the more challenging direction of generating in French, en→ fr, reducing the
number of training examples result in none of the layers being successfully fine-tuned for translation
task location. For fr→en, the range of trainable layers is much more concentrated around layers 10
to 15, which occurs just before the ‘task recognition‘ layers as shown in Figure 2.

We demonstrate that in contrast to common fine-tuning wisdom, additional tuning on later layers in
the transformer network has a much smaller impact on final performance, and this is strong correlated
with where the ‘task locating’ layers are in the model. The major reason for this discrepancy from
conventional fine-tuning wisdom, is that we are performing extremely lightweight parameter-efficient
fine-tuning for task location, and not full fine-tuning on large datasets. Our results should thus be
interpreted under the lens of highly resource efficient fine-tuning of layers for task location, and is
fundamentally different from the wisdom of “true" task fine-tuning.

7 Conclusion

We demonstrate evidence that In-context Causal Decoder models locate their task at a specific layers
during forward inference. To study this, we introduced causal masking of self-attention over the
context from layer ℓ onwards (Section 4). The findings generalise across 4 models of different sizes
and in both non instruction-tuned and instruction-tuned models. We further identify certain layers as
task critical, and show that this corresponds to the task recognition point of the model (Section A.9)
and is not influenced by increasing number of examples (Section 4.7) shown to the models.

Our central finding that models do not need to maintain attention over all of the context across
every layer has direct implications for inference efficiency of transformers, with estimated up to 45%
cost-savings for llama model with 5 examples (Section 5).

Contrary to common fine-tuning wisdom, we show that it is sometimes beneficial to target middle
layers for fine-tuning the model which could be associated with task recognition (Section 6). Finally,
we trained attention head gates using differentiable L0 regularisation (Section 5.1), and found that
around 10% of attention heads can be masked. These are mostly distributed across the later layers of
the model, providing some support for the idea that later layers are redundant. Although we have
characterised this phenomena using Machine Translation and Code Generation, we believe that the
broad findings are likely to generalise to other tasks.

7.1 Limitations (and Future Work)

• There is limited exploration of why different models exhibit varying behaviors in terms of their
"task recognition point" and critical layers. Unfortunately, the differences are not due to easily
observable hyperparameters like model size or architecture. To put in another way, why do large
models exhibit different characteristics?

• This paper reports on empirical analysis and observations, and currently lacks a more theoretical
framework that could explain why this phenomena is being observed.

10

Acknowledgments

We would like to thank all the anonymous reviewers for their invaluable comments and suggestions,
as well as Daniel Kashabi and Marc Marone for feedback on earlier drafts.

References
[1] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebron, and S. Sanghai. GQA: Training

generalized multi-query transformer models from multi-head checkpoints. In H. Bouamor,
J. Pino, and K. Bali, editors, Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 4895–4901, Singapore, Dec. 2023. Association for
Computational Linguistics.

[2] E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning algorithm is
in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661, 2022.

[3] E. Akyürek, B. Wang, Y. Kim, and J. Andreas. In-context language learning: Arhitectures and
algorithms. arXiv preprint arXiv:2401.12973, 2024.

[4] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

[5] H. Bansal, K. Gopalakrishnan, S. Dingliwal, S. Bodapati, K. Kirchhoff, and D. Roth. Rethinking
the role of scale for in-context learning: An interpretability-based case study at 66 billion scale.
In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11833–11856,
Toronto, Canada, July 2023. Association for Computational Linguistics.

[6] M. Behnke and K. Heafield. Losing heads in the lottery: Pruning transformer attention in neural
machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2664–2674, 2020.

[7] M. Behnke and K. Heafield. Pruning neural machine translation for speed using group lasso. In
Proceedings of the sixth conference on machine translation, pages 1074–1086, 2021.

[8] I. Ben-Shaul and S. Dekel. Nearest class-center simplification through intermediate layers. In
Topological, Algebraic and Geometric Learning Workshops 2022, pages 37–47. PMLR, 2022.

[9] K. Bhatia, A. Narayan, C. D. Sa, and C. Ré. Tart: A plug-and-play transformer module for
task-agnostic reasoning, 2023.

[10] Y. Bian, J. Huang, X. Cai, J. Yuan, and K. Church. On attention redundancy: A comprehensive
study. In Proceedings of the 2021 conference of the north american chapter of the association
for computational linguistics: human language technologies, pages 930–945, 2021.

[11] S. Black, G. Leo, P. Wang, C. Leahy, and S. Biderman. GPT-Neo: Large scale autoregressive
language modeling with Mesh-Tensorflow, Mar. 2021.

[12] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[14] B. Chen, Z. Zhang, N. Langrené, and S. Zhu. Unleashing the potential of prompt engineering in
large language models: a comprehensive review. arXiv preprint arXiv:2310.14735, 2023.

[15] D. Chen, Y. Li, M. Qiu, Z. Wang, B. Li, B. Ding, H. Deng, J. Huang, W. Lin, and J. Zhou.
Adabert: Task-adaptive bert compression with differentiable neural architecture search. In
International Joint Conference on Artificial Intelligence, 2020.

11

[16] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[17] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does BERT look at? an analysis
of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 276–286, Florence, Italy, Aug. 2019. Association
for Computational Linguistics.

[18] D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei. Why can gpt learn in-context? lan-
guage models implicitly perform gradient descent as meta-optimizers. In ICLR 2023 Workshop
on Mathematical and Empirical Understanding of Foundation Models, 2023.

[19] F. Dalvi, H. Sajjad, N. Durrani, and Y. Belinkov. Analyzing redundancy in pretrained transformer
models. In Conference on Empirical Methods in Natural Language Processing, 2020.

[20] N. De Cao, M. S. Schlichtkrull, W. Aziz, and I. Titov. How do decisions emerge across
layers in neural models? interpretation with differentiable masking. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
3243–3255, 2020.

[21] P. Denny, V. Kumar, and N. Giacaman. Conversing with copilot: Exploring prompt engineering
for solving cs1 problems using natural language. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, pages 1136–1142, 2023.

[22] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and Z. Sui. A survey on
in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[23] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[24] N. Durrani, H. Sajjad, F. Dalvi, and F. Alam. On the transformation of latent space in fine-tuned
nlp models. arXiv preprint arXiv:2210.12696, 2022.

[25] A. Fan, E. Grave, and A. Joulin. Reducing transformer depth on demand with structured dropout.
arXiv preprint arXiv:1909.11556, 2019.

[26] Q. Fournier, G. M. Caron, and D. Aloise. A practical survey on faster and lighter transformers.
ACM Computing Surveys, 55(14s):1–40, 2023.

[27] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, et al. The Pile: An 800GB dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[28] S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What can transformers learn in-context? a
case study of simple function classes. Advances in Neural Information Processing Systems,
35:30583–30598, 2022.

[29] N. Goyal, C. Gao, V. Chaudhary, P.-J. Chen, G. Wenzek, D. Ju, S. Krishnan, M. Ranzato,
F. Guzmán, and A. Fan. The flores-101 evaluation benchmark for low-resource and multilingual
machine translation. 2021.

[30] X. Han, D. Simig, T. Mihaylov, Y. Tsvetkov, A. Celikyilmaz, and T. Wang. Understanding
in-context learning via supportive pretraining data. arXiv preprint arXiv:2306.15091, 2023.

[31] S. He, G. Sun, Z. Shen, and A. Li. What matters in transformers? not all attention is needed.
arXiv preprint arXiv:2406.15786, 2024.

[32] R. Hendel, M. Geva, and A. Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

[33] J. Hewitt and P. Liang. Designing and interpreting probes with control tasks. arXiv preprint
arXiv:1909.03368, 2019.

12

[34] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[35] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[36] Y. Kaya, S. Hong, and T. Dumitras. Shallow-deep networks: Understanding and mitigating
network overthinking. In International conference on machine learning, pages 3301–3310.
PMLR, 2019.

[37] P. Koehn. Europarl: A parallel corpus for statistical machine translation. In Proceedings of
machine translation summit x: papers, pages 79–86, 2005.

[38] H. Laurençon, L. Saulnier, T. Wang, C. Akiki, A. Villanova del Moral, T. Le Scao, L. Von Werra,
C. Mou, E. González Ponferrada, H. Nguyen, et al. The bigscience roots corpus: A 1.6 tb
composite multilingual dataset. Advances in Neural Information Processing Systems, 35:31809–
31826, 2022.

[39] S. Li, Z. Song, Y. Xia, T. Yu, and T. Zhou. The closeness of in-context learning and weight
shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023.

[40] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l_0
regularization. arXiv preprint arXiv:1712.01312, 2017.

[41] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, D. Pykhtar,
J. Liu, Y. Wei, et al. Starcoder 2 and the stack v2: The next generation. arXiv preprint
arXiv:2402.19173, 2024.

[42] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. Fantastically ordered prompts and
where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 8086–8098, Dublin, Ireland, May 2022. Association for Computational Linguistics.

[43] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[44] P. Michel, O. Levy, and G. Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

[45] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell,
Y. Bai, A. Chen, et al. In-context learning and induction heads. arXiv preprint arXiv:2209.11895,
2022.

[46] B. Pan, R. Panda, Y. Jiang, Z. Wang, R. Feris, and A. Oliva. Ia-redΘ2: Interpretability-aware
redundancy reduction for vision transformers. Advances in Neural Information Processing
Systems, 34:24898–24911, 2021.

[47] J. Pan. What in-context learning “learns” in-context: Disentangling task recognition and task
learning. PhD thesis, Princeton University, 2023.

[48] A. Pasad, J.-C. Chou, and K. Livescu. Layer-wise analysis of a self-supervised speech repre-
sentation model. In 2021 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pages 914–921. IEEE, 2021.

[49] J. Phang, H. Liu, and S. R. Bowman. Fine-tuned transformers show clusters of similar represen-
tations across layers. arXiv preprint arXiv:2109.08406, 2021.

[50] M. Post. A call for clarity in reporting bleu scores. arXiv preprint arXiv:1804.08771, 2018.

[51] R. Y. Rohekar, Y. Gurwicz, and S. Nisimov. Causal interpretation of self-attention in pre-trained
transformers. Advances in Neural Information Processing Systems, 36, 2024.

13

[52] O. Rubin, J. Herzig, and J. Berant. Learning to retrieve prompts for in-context learning.
In M. Carpuat, M.-C. de Marneffe, and I. V. Meza Ruiz, editors, Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2671, Seattle, United States, July 2022. Association
for Computational Linguistics.

[53] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha. A systematic survey of
prompt engineering in large language models: Techniques and applications. arXiv preprint
arXiv:2402.07927, 2024.

[54] H. Sajjad, F. Dalvi, N. Durrani, and P. Nakov. On the effect of dropping layers of pre-trained
transformer models. Computer Speech & Language, 77:101429, 2023.

[55] V. Sanh, A. Webson, C. Raffel, S. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler,
A. Raja, M. Dey, M. S. Bari, C. Xu, U. Thakker, S. S. Sharma, E. Szczechla, T. Kim, G. Chh-
ablani, N. Nayak, D. Datta, J. Chang, M. T.-J. Jiang, H. Wang, M. Manica, S. Shen, Z. X.
Yong, H. Pandey, R. Bawden, T. Wang, T. Neeraj, J. Rozen, A. Sharma, A. Santilli, T. Fevry,
J. A. Fries, R. Teehan, T. L. Scao, S. Biderman, L. Gao, T. Wolf, and A. M. Rush. Multi-
task prompted training enables zero-shot task generalization. In International Conference on
Learning Representations, 2022.

[56] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A. S. Luccioni,
F. Yvon, M. Gallé, et al. Bloom: A 176b-parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100, 2022.

[57] S. Sia and K. Duh. In-context learning as maintaining coherency: A study of on-the-fly machine
translation using large language models. arXiv preprint arXiv:2305.03573, 2023.

[58] E. Todd, M. L. Li, A. S. Sharma, A. Mueller, B. C. Wallace, and D. Bau. Function vectors in
large language models. arXiv preprint arXiv:2310.15213, 2023.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[60] E. Voita, R. Sennrich, and I. Titov. The bottom-up evolution of representations in the trans-
former: A study with machine translation and language modeling objectives. arXiv preprint
arXiv:1909.01380, 2019.

[61] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5797–5808, Florence, Italy,
July 2019. Association for Computational Linguistics.

[62] J. von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov, and
M. Vladymyrov. Transformers learn in-context by gradient descent, 2023.

[63] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Naik, A. Ashok, A. S.
Dhanasekaran, A. Arunkumar, D. Stap, E. Pathak, G. Karamanolakis, H. Lai, I. Purohit, I. Mon-
dal, J. Anderson, K. Kuznia, K. Doshi, K. K. Pal, M. Patel, M. Moradshahi, M. Parmar,
M. Purohit, N. Varshney, P. R. Kaza, P. Verma, R. S. Puri, R. Karia, S. Doshi, S. K. Sampat,
S. Mishra, S. Reddy A, S. Patro, T. Dixit, and X. Shen. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pages 5085–5109, Abu Dhabi, United
Arab Emirates, Dec. 2022. Association for Computational Linguistics.

[64] J. Wei, X. Wang, D. Schuurmans, M. Bosma, brian ichter, F. Xia, E. H. Chi, Q. V. Le, and
D. Zhou. Chain of thought prompting elicits reasoning in large language models. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[65] N. Wies, Y. Levine, and A. Shashua. The learnability of in-context learning. arXiv preprint
arXiv:2303.07895, 2023.

14

[66] N. Wies, Y. Levine, and A. Shashua. The learnability of in-context learning. Advances in Neural
Information Processing Systems, 36, 2024.

[67] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019.

[68] S. Xie, J. Qiu, A. Pasad, L. Du, Q. Qu, and H. Mei. Hidden state variability of pretrained
language models can guide computation reduction for transfer learning. arXiv preprint
arXiv:2210.10041, 2022.

[69] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explanation of in-context learning as
implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

15

A Appendix

A.1 Reproducibility

The Machine Translation dataset that we use, FLORES [29] and the code generation datasets
HumanEval[16] are fully open-source and well-known in the community. All models are open-
source and freely available on Huggingface [67]. We used models of "reasonable" size (3B and 7B
parameters) that can be run with consumer or academic grade GPUs, making our work reproducible
to most academic institutions.

A.2 Impact Statement (Ethics and Societal Consequences)

There are no known ethical concerns as these are exploratory studies on open-source LLMs.

A.3 Prompt Format

Translate English to French.
Q: A discomfort which lasts .. A: Un malaise qui dure
Q: HTML is a language for formatting A: HTML est un langage de formatage
... ...
Q: After you become comfortable with formatting .. A:

Table 1: A single continuous input sequence presented to the model for decoding a single test source
sentence “After you become comfortable with formatting..”. Given the entire sequence as input, the
model proceeds to generate the target sequence.

A.4 Additional Results on English & Portugese

In addition to the language pairs en → fr and fr → en, we also run experiments on English
and Portugese language pairs, for en → pt. Due to space limitations, we plot the results of
those experiments here. Overall, we see largely identical trends on both directions of English and
Portugese to what we observe on English and French translation tasks, leading us to conclude that
our conclusions generalize across different translation tasks.

A.5 Autoregressive Decoder only Transformer

The transformer consists of stacked blocks of self-attention, which itself consists of smaller units
of self-attention heads that are concatenated before being fed through a fully connected layer. In
autoregressive decoder-only transformers, training and inference adopts a causal mask, where current
positions are only able to attend to previous timesteps, instead of being able to attend to the entire
input sequence. Unlike encoder-decoder NMT models where source and target sentence have separate
processing transformer blocks, decoder-only means that the same model weights are both used to
“encode" the source sentence and “decode" the target sentence in a single continuous sequence.

A.6 Training with Autoregressive Translation

The original language modeling objective in GPT training involves predicting the entire input token
sequence which consists of both the source and target sentence (shifted by 1 position). We found
this to produce slightly worse results than only minimising the negative log likelihood of predicting
the target sentence to be translated, and not the entire sequence. We consider this autoregressive
translation training.

A.7 L0 Attention Gate Training

Training Details For Section A.8, We train using Adam Optimizer (β1 = 0.9, β2 = 0.999)
with a batch size of 32, and learning rate of 0.001, early stopping patience of 10 and threshold
of 0.01. We initialise attention head gates to be 1 instead of random or 0.5 as this leads to faster
convergence. We experiment with two different training settings, the 0-prompts Train setting

16

Figure 7: Layer-wise Context-masking results on the English → Portugese translation task. Critically,
we see nearly identical trends to what we see in Figure 2 on the English to French translation task,
suggesting our results generalize across language pairs and “tasks".

and the 5-prompts Train setting. As described in Section A.6, we train the model by predicting
only the target sentence, conditioned on the context. In the 0-prompt setting, the context consists of
the instructions and the source sentence to be translated. In the 5-prompt setting, the context consists
of the instructions, 5 prompt examples, and the source sentence to be translated.

In the 0-prompt setting, the conditional prefix consists of the instructions and the source sentence
to be translated. In the 5-prompt setting, the conditional prefix consists of the instruction, 5
source target sentence pairs, and the source sentence to be translated.

Data We used the first 10,000 lines of en→fr from WMT06 Europarl [37] for training.7 To test
the generalisability of trained attention head gates, we use a different test domain, FLORES [29]
to reflect the scarcity of in-domain data. We also test an additional language direction en→pt in
FLORES to see if training can generalise across languages.

Training Details We train using Adam Optimizer (β1 = 0.9, β2 = 0.999) with a batch size of 32,
and learning rate of 0.001. We use a large early stopping patience of 10 and threshold of 0.01, and
train for up to 100 epochs. This is due to the nature of L0 training; we do not expect performance to
improve over many iterations and would like the attention gates to keep training as long as there is
no large loss in performance. We initialise attention head gates to be 1 instead of random or 0.5 as
this leads to much faster convergence and better performance. For the regularisation weight λ, we
search over a hyperparameter set of {0.1, 0.01, 0.001, 0.0001} and found 0.01 performs best on the
validation set.

A.7.1 L0 head masking experiments.

Additional experiments on L0 head masking in the en→ fr direction.

7Data available from https://www.statmt.org/europarl/

17

https://www.statmt.org/europarl/

Figure 8: Visualisation of attention head masks for GPTNeo and BLOOM, learned with L0(λ = 0.01)
regularisation under a 0-prompt train scheme in en → fr. A value of 0 (in black) indicates
that the attention head is effectively masked out by the trained attention gate. Around 10% of attention
heads are masked out i.e., redundant, with a majority of them occuring at the later layers for GPTNeo
and distributed across layers for BLOOM. fr → en is availble in Section A.7.1

A.7.2 Training Attention Head Gates with L0 regularisation

For a scalable approach to pruning, we opt to train self-attention head gates following [61] using
the technique of differentiable L0 regularization [40]. Let the attention head gates g ∈ Rnh×nℓ be
a set of trainable parameters, where nh is the number of attention heads per layer, and nℓ is the
number of layers. Let the original output of each attention head be vj , gated outputs ṽj are obtained
by elementwise multiplication of the gate value gj , i.e., ṽj = gj ⊙ vj . For {(x, y)}n source sentence
(x) and target sentence (y) training pairs, a model f and loss function L, Lp regularisation adds a λ
weighted penalty associated with the complexity of the parameters. 8 The L0 loss is non-differentiable
as it involves raw counts of parameters. As a work around, g can be approximated with random
variables drawn from a Binary concrete distribution [43, 35].9 We refer the reader to [40] for the
relevant technical exposition. Details of training are provided in Section A.7.

A.7.3 Generalisability of L0 gate training

We experiment with 0-prompts and 5-prompts in training and using λ=0 (no regularisation)
and λ=0.01. L0 training for the 0-prompts shows some gains for the 0-prompts test case, and
with no loss on the 5-prompts test case (Table 2). Notably, this persists in en→ pt, a different
language direction from training.

The robustness of translation performance under multiple testing conditions (number of prompts,
datasets, language directions) gives some confidence that the trained discrete attention head gates from
L0 support a general ability to translate (Table 2). In contrast, the soft attention head gates without
regularisation (λ = 0) appear to overfit as they perform well on some conditions but deteriorate in
others.

We observe that 0-prompt training for L0(λ = 0.01) also outperforms 5-prompts which is
slightly suprising since 5-prompts has more information in the prefix to locate the translation task.
One possibility is that the model overfit to the Europarl domain where the training prompts were
drawn from.

A.8 Studying Redundancy via Compression

(Note: This Appendix section is based on LLAMA2-7B models).

8L2 regularisation has the effect of reducing the magnitude of all g, L1 regularisation has the effect of reducing
the magnitude of several attention heads to a very small value (but not exactly 0), while L0 regularisation has the
effect of driving g values to exactly 0.

9The class of Concrete distributions was invented to work around the problem of automatic differentiation of
stochastic computation graphs.

18

Base 0-prompts 5-prompts Base 0-prompts 5-prompts

λ=0 λ= .01 λ=0 λ= .01 λ=0 λ= .01 λ=0 λ= .01

0-prompts 18.3 21.4 20.1 18.9 19.3 6.7 15.7 8.6 13.2 6.4
5-prompts 24.3 24.5 24.1 23.6 24.2 25.9 19.6 25.8 24.3 26.0

Train: en→fr, Test: en→fr Train: en→fr, Test: en→pt

Table 2: Performance when using trained attention head gates for L0 with regularisation λ = .01.
λ = 0 refers to training without regularisation. 0 and 5 prompts were used in the context for training.
We highlight values which are greater or worse than 0.5 BLEU points from baseline. Note that as
these are compression experiments, we do not expect L0 to perform better than baseline.

Figure 9: Layer-wise masking of self-attention heads for GPTNEO2.7B, BLOOM3B, LLAMA and
LLAMA-CHAT on en → fr. The orange and blue dotted lines refer to the baselines (without masking)
of 0 and 5 prompts with instructions. True/False refers to whether there are instructions provided
(True) vs not provided (False). We observe critical layers near the middle and redundant layers
towards the end of the model.

To what extent are there specialised attention heads for MT in the GPT-style models? If there were
specialised heads, we would expect the model to be highly compressable/prunable to a select few
heads. We plot a grid map of learned attention gate values for en→ fr, where 0 indicates that the
head is masked out (Figure 8). We find that most of the masked heads are distributed at the later
layers for GPTNeo and are distributed across layers for BLOOM.

A.9 Characterising Redundancy in Layers

Recently, [54] found that many layers in pre-trained transformers can be dropped with little harm to
downstream tasks; moreover, it is well known neural MT transformer models are known have several
redundant heads which are not necessary during test time [61, 44, 7]. However, it is not clear if the
same trends hold for in-context MT models, and how that redundancy is related to task location versus
task execution. We focus on the task of en→ fr in this set of experiments.

We study the contributions of individual attention-layers by performing a simple layer-wise masking
of all self-attention heads for a single layer. When we mask layer j, we are masking the attention
mechanism of layer j, that is the MLP of layer j acts directly on the output of layer j − 1, rather than
the output of the attention-head of layer j. Doing so allows us to study how critical each layer is,
where critical layers is loosely defined as those that have a large negative impact when masked.

We plot results for each layer all models, using three combinations of {0 examples, no instructions},
{5 examples, instructions}, {5 examples, no instructions} in Figure 9.10

In Section 4, we observed that there are layers for task location. In this section, we observe evidence
that there are critical layers which correspond to the task locating layers, providing support for our
earlier observations.

For instance for LLAMA2-7B en → fr, even in the scenarios when examples are provided, we can
see a dip in performance around layer 15 to 18. Refering back to Figure 2, we see that this is where
most of the task location with large jumps in performance had occurred.

10The combination of {0 examples, no instructions} is not meaningful as the model only receives "Q: <source
sentence> A:" as the input and is not expected to do the translation task.

19

For GPTNeo, we obseve a large set of contiguous layers which significantly decrease performance
at around layer 10 to 15. This also corresponds to where most of the task location (large jumps in
performance) had occurred for this model in Figure 2.

We note that the critical layers in different models have varying degrees of severity. It is not
immediately clear why GPTNEO has such critical layers and suffers compared to the other models,
although we note that this is unlikely to be due to size or model architecture as BLOOM is also around
the same size as GPTNEO and performs more similarly to LLAMA. We suspect that it could be due
to training data or some other factor related to the training dynamics but leave this for future work.

With regard to redundancy, we find that layers can be more safely removed towards the end without a
noticeable loss in performance. We observe that for the less stable models, the model achieves close
to baseline performance by layer-wise masking from ℓ15 for GPTNEO, ℓ26 for BLOOM and ℓ20 for
LLAMA. This suggests that these later layers contain redundancy for translation.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We outline our contributions precisely in our abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss our limitations in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

21

Justification: We do not present theoretical results in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe hyperparameters, models, and methods clearly. Our models are
downloaded from Huggingface and are all opensource.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

Answer: [Yes]
Justification: We will provide access to all of the code used to run experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use publicly available dataset splits and our code will detail precisely what
samples are used during in-context learning.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our core results present error bars over different random seeds and sets of
in-context exemplars when applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information to reproduce all of our experiments (all of
our experiments can be run on consume-grade GPUs such as RTX 6000).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work contains an Impact Statement in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of our data and models are publicly available, and we reference their
sources in the main paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Background
	Data and Settings
	Where Does In-Context MT happen?
	Analysis Methodology: Layer-from Masking
	Experiments on Layer-from context-masking
	Results
	Instruction-tuned vs Non-instruction Tuned Models
	Do models have a distinct task recognition region regardless of the type of task? (Experiments on Code Generation)
	The Role of Instructions vs Examples
	Does the Number of Prompts Affect Task Recognition?

	Inference Efficiency
	Are There Specialised Attention Heads?

	The Adaptability of Task Layers
	Task Locating Layers are critical for resource efficient fine-tuning

	Conclusion
	Limitations (and Future Work)

	Appendix
	Reproducibility
	Impact Statement (Ethics and Societal Consequences)
	Prompt Format
	Additional Results on English & Portugese
	Autoregressive Decoder only Transformer
	Training with Autoregressive Translation
	L0 Attention Gate Training
	L0 head masking experiments.
	Training Attention Head Gates with L0 regularisation
	Generalisability of L0 gate training

	Studying Redundancy via Compression
	Characterising Redundancy in Layers

