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Abstract

Self-supervised large language models have demonstrated the ability to perform
various tasks via in-context learning, but little is known about where the model
locates the task with respect to prompt instructions and demonstration examples.
In this work, we attempt to characterize the region where large language models
transition from recognizing the task to performing the task. Through a series of
layer-wise context-masking experiments on GPTNEO2.7B, BLOOM3B, LLAMA2-
7B, LLAMA2-7B-CHAT, STARCODER2-3B and STARCODER2-7B on Machine
Translation and Code generation, we demonstrate evidence of a "task recognition"
point where the task is encoded into the input representations and attention to
context is no longer necessary. We further observe correspondence between the
low performance when masking out entire layers, and the task recognition layers.
Taking advantage of this redundancy results in 45% computational savings when
prompting with 5 examples, and task recognition achieved at layer 14 / 32 using an
example with Machine Translation.

1 Introduction

In-context learning (ICL) refers to the phenomenon in which large generative pretrained transformers
(GPTs) perform tasks with no gradient updates when shown task examples or descriptions in their
context [13, 12]. There are many works on in-context learning which focused on prompt-engineering,
treating GPT models as black boxes by focusing on which examples to provide in-context [47, 14,
19, 20, 51]. However, many of these works apply surface level interventions leaving the internal
mechanism of task recognition in GPT models largely not understood.

In this work, we ask where does in-context Learning occur in GPT models? Our view of In-context
Learning is that of “task recognition" not “task learning" [64, 41]. While in-context learning in GPT
models appears to be generally applicable to any natural language task, to study task location, we
focus on two tasks, Machine Translation (MT) and Code generation, as there is little to no ambiguity
in evaluating whether the model has recognised the task. For MT, the model must generate tokens in
a different language. For Code generation, the model must produce a working program which can be
executed correctly. These two tasks are unlikely to be “learnt" from following patterns, and are more
complex than a lookup in associative memory for simple Question-Answer tasks.

We focus on multi-head attention layers as a unit of study, as the self-attention mechanism is designed
to allow the model to attend to it’s context during generation of the target sentence [54]. Using causal
masking over different parts of the context we demonstrate that there exists a "task-recognition" point
after which attention to the context is no longer necessary (Section 4). The potential implications are
large computational savings when the context is several times longer than the test source sentence
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(Section 5). Having identified the layers in which "task recognition" occurs, we also conduct
exploratory studies into the extent to which subsequent layers are either redundant or corresponding
to the "task recognition" layers. Simple layer-wise masking shows that for smaller models, removing
attention around the "task-recognition" layers can cause the model to fail to perform translation
all-together, whereas layers towards the end of the model are much more redundant (Section 6.2).

Next, we observe that very lightweight fine-tuning of LoRA parameters [29] are most effective at
earlier layers of the model compared to the later ones (Section 7.2). While there is not a strict 1-1
correlation in layers, this provides loose supports for the conjecture that earlier layers are more
important for the task.

We further investigate the extent of MT task redundancy using differentiable L0 regularisation to train
discrete attention head gates (Section A.7). We find that around 10% of the attention heads can be
masked, which indicates that the attention-heads themselves are not redundant, it is attention over all
of the context that can be redundant. This fundamentally differs from the literature in supervised NMT
where more than half of the attention heads can be pruned, and Transformers are highly specialised
for MT [56, 38, 7].

2 Background

In-Context Learning was first demonstrated by [13] who showed that GPT-3 could be used to
perform a huge variety of tasks without any task-specific parameters or training, by conditioning the
model’s generation on a prompt which included a few labeled examples of the task of interest. Since
then, interest in using GPT models for ICL has grown significantly [39, 3, 61], with several recent
works introducing methods such as instruction-tuning [49, 58] or chain-of-thought prompting [59] to
improve downstream ICL accuracy. One key characteristic of In-context Learning is its reliance on
prompt examples demonstrating the task that the model should carry out [46].

In-context Learning as Task Recognition. Ostensibly, ICL can work for nearly any task that
can be defined or described in natural language, and therefore has potential for incredibly broad
impact. However, ICL can often still underperform supervised fine-tuning [9], prompting research
in analyzing the mechanisms underlying ICL. One line of work studies in-context learning with
linear functions, typically linear regression, characterizing the learnability of these functions with
ICL [33, 24] and even the learning algorithm a transformer uses [2, 17, 57]. A second body of work
suggests that in-context learning locates existing latent concepts (tasks) which have been already
learnt during pretraining [64, 60]. Notably, [52] describe function vectors which are robust to changes
in context. [26] try to characterise the extent of task recognition from the pre-training data. Although
there have been many studies on task recognition, our work presents a complementary perspective for
task recognition, by demonstrating that there exists a point in the model’s layers where the task has
been located and causal self-attention onto the context is no longer needed for the model to perform
the task.2

Transformer Layers and Self-attention as the Unit of Study. Many works study layers of
the model as a natural unit of analysis for interpretability [28, 18, 42, 21, 8, 48]. We highlight
some of the work which is more closely related to task performance. [63] study the layer-wise
adaptability by a hidden-state variability ratio while [55] study evolution of representations in
MT-supervised transformer models. [43] studies when model layers can be skipped by feeding
intermediate representations into the final output layer of a pre-trained supervised model. Our work
adds to this body of work by considering the perspective of when and where layers are responsible
for task location in in-context learning models.

The self-attention mechanism specifically has been highlighted as a source of redundancy by many
previous and concurrent works [10, 40, 27]. This is due to it’s causal structure over the input symbols
under the specific context of the input sequence within it’s context window [45]. In this paper, we
study a major source of causal redundancy in the input, the "prompt examples" that are provided as
input-output demonstrations to the model for "in-context learning".

2In our experiments investigating where “task recognition" happens, we consider the actual “task perfor-
mance" score as it could be possible to recognise the task as Machine Translation or Code generation, yet
perform less well on it.

2



3 Data and Settings

Models We use GPTNEO2.7B [11], BLOOM3B [50], LLAMA2-7B and LLAMA2-7B-chat [53] in
all of our experiments with Machine Translation. For code generation, we used LLAMA2-7B and
LLAMA2-7B-chat, STARCODER2-3B and STARCODER2-7B[35].

GPTNEO2.7B has 32 layers and 20 heads, BLOOM3B has 30 layers and 32 heads, LLAMA2-7B
has 32 layers and 32 heads and STARCODER2 has 30 layers and 24 heads. The checkpoints we use
are from Meta AI (for LLAMA) and the transformers library [62]. Starcoder2 utilises grouped-query
attention [1], while the rest of the models use “regular" multi-head self-attention.

GPTNEO was trained on The PILE [23], an 825GB text dataset which consists of roughly 98%
English data. Despite being mostly monolingual, The PILE contains Europarl which GPTNEO was
trained on at a document level (rather than a sentence level). Conversely, BLOOM was trained on
the ROOTS corpus [32], a composite collection of 498 datasets that were explicitly selected to be
multilingual, representing 46 natural languages and 13 programming languages. LLAMA training data
consists primarily of common crawl, C4, wikipedia, stackexchange as major sources. STARCODER2
was trained on Github as well as Arxiv and Wikipedia. To our knowledge, there has not been any
reports of sentence level parallel corpora in the training datasets of these models.

Data We test our models using two datasets, FLORES [25] for Translation and HUMANEVAL for
Code generation. For FLORES, we experiment with en↔fr (main paper) and en↔pt (appendix).
Prompt examples are drawn from the development set. We evaluate the generations using BLEU
scores, following the implementation from [44]. For HUMANEVAL[15], we evaluate on the execution
accuracy of the generated code using the Pass@1 metric. As HUMANEVAL does not have an explicit
train set, the prompt set is drawn from the Mostly Basic Python Program (MBPP) dataset [4]. To
account for example selection and ordering effects,3 all inference runs were repeated with 5 randomly
sampled prompt example sets.

Prompt Format Our prompts may consist of instructions, examples, both, or none. Importantly,
we adopt neutral delimiters, "Q:" and "A:" to separate the prompt and the start of machine generated
text. This ensures that the models do not have any information from the delimiters on what the task is
and must recognise the task from examples. 4

For the translation task, when no natural language instructions are used the model input will
be Q: {source_sentence} A: Instructions are given in natural language and take the
form: Translate from {L1} to {L2}: Q: {source_sentence} A:, where L1 =
English and L2 = French if the source and target languages are English and French respec-
tively. Examples are given after instructions, and similarly delimited by Q: and A:. See Appendix:
Table 1 for an example.

For the code generation task, when no natural language instructions are used, the model input will
be Q: {program_description}, where the program_description is Instructions are
given in natural language and take the form: "Write a program for the following task:".

4 Where does In-context MT happen?

4.1 Analysis Methodology: Layer-from Context Masking

In-context learning differs from task-specific supervised learning in that, during test time, the desired
task must be identified from the context first, then executed. At what stage in the feed-forward
computation does a GPT-style model transition from an in-context learner to a translation model? To
explore this question, we introduce layer-from context-masking which masks out all attention weights
to the context (instructions or prompts) from a certain layer onwards (see Figure 1 for a graphical
description).

3In-context learning models have been found to be sensitive to these order effects [36].
4In an earlier exploration, we found that supplying the model with language indicators only, e.g., "English:",

"French:" or "English:", "Python:", was sufficient for strong models (llama7b, llama7b-chat, starcoder2-7B) to
perform the task without seeing any instructions or examples in the context.
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Name Instr Ex

ExMaskQ N Y Q: · · · A: · · · Q: · · · A:

Instr,ExMask Y Y Translate French to English: Q: · · · A:· · · Q: · · · A:

Instr,ExMask Y Y Translate French to English: Q: · · · A:· · · Q: · · · A:

Figure 1: Graphical explanation of Masking the Attention over Instructions and Examples. The
leftmost image has instructions and masks examples (Instr,ExMask), while the right image has
both instructions and examples masked (Instr,ExMask). In the table, the overline corresponds
to the yellow highlights. N and Y refer to absence and presence of either Instruction of Examples.
Instr: Instructions and Ex: Examples.

For Causal Decoder-only Transformer Language Models, given each position i, the Attention weight
αij over context positions j, j < i can be computed by a αij = softmax(QKT

√
dk

)ij . Each element in
(QKT ) is the dot product between a query vector and key vector qi · kj , where qi = Wqxi, kj =
Wkxj for trained weight matrices Wk and Wq.5 We apply the attention mask over the context so
that the attention score is (qi · kj) + m(j,u). Here u is the context that we wish to mask, and

m(j,u) =

{
0 if xj /∈ u

−∞ if xj ∈ u

All masks operate from the j-th layer (ℓj) onwards, i.e. masking from ℓ20 means causally masking
out attention to all context positions from ℓ20:nℓ

, where nℓ is the total number of layers. To construct
Fig 2, we increment ℓj from 1 to nℓ and apply the set of masks {m(j,u)}ℓj :nℓ in each experiment
and observe the performance of the model.

Under this causal masking treatment masking from layer ℓ, the model must rely on the hidden state
representations of the target input sentence from layer ℓ+ 1 only and having self-attention on only
the positions of the task test input only to complete the task; if the test input representations do not
already encode the target task (e.g., Machine translation or Code generation) then the model will fail
to generate the correct output.

In other words, the goal is to characterise where the model has "located” the task. In all exper-
iments we mask the examples provided in the context, but to control for the effect of semantic
instructions, we ablate over different treatments of the instructions by removing instructions entirely
(ExMask), leaving them unmasked (InstrExMask), or masking them together with the examples
(InstrExMask). The overline notation indicates the context which are masking over ( Figure 1).

We run this experiment for all layers in the model, j = 1, · · · , nℓ and observe how task performance
is affected, using 5 examples per prompt.

4.2 Results

We discuss the central findings of the paper: Models do not need to maintain attention over all of
the context across every layer to perform the task.

5Readers should note that there is a Wk and Wq weight matrix for each layer and each attention head, but we
omit the notation on this for readability.
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Figure 2: Layer-from context-masking experiments for GPTNeo2.7B, BLOOM3B, Llama7b, Llama7b-
chat on en↔fr. The graphs show translation performance when masking contexts from the jth layer
onwards. Different lines indicate different treatments of the instruction, as described in Figure 1. The
dashed black line is the performance when shown both examples and instructions without masking.

Figure 3: Layer-from context-masking experiments for Starcoder2-3B, Starcoder2-7B, Llama7b,
Llama7b-chat on a text to code generation task. The graphs show translation performance when
masking contexts from the jth layer onwards. Different lines indicate different treatments of the
instruction, as described in Figure 1. The dashed black line is the performance when shown both
examples and instructions without masking.

In all models we observe that when applying masking from {m(j,u)}ℓ:nℓ over the context, perfor-
mance plateaus before the final layer, i.e., when ℓ = nℓ. The results of our experiment for en→fr
and fr→en are shown in Figure 3, and additional experiments for GPTNeo and Bloom on en→pt
and pt→en are shown in Section A.2.

Different models reach this plateau point at different layers. In GPTNEO this point occurs around
layer 25, in BLOOM this point occurs around layer 15-20, and in LLAMA models this occurs around
layer 13-15. As English is the dominant language, as expected models can successfully perform
translation into English upon earlier layers of masking, than translation out of English.

At this point, the models benefits only marginally, if at all, from attending to the context, suggesting
most of the task "location" has already occurred.

There exists critical layers for task location. Prior to the task recognition point, around the
middle layers of the models, moving the context mask up a layer results in a significant increase to
performance. We consider these critical layers, as instead of a gradual increase in performance, we
observe very steep jumps, accounting for more than 80% of the model’s ceiling performance for that
task. We conjecture that the model is locating the correct task during processing in these middle
layers, after which the context is no longer necessary to perform the task.

Overall, our findings suggest a 3-phase process to in-context learning: in the first phase, moving the
mask up makes little difference in performance, which is close to 0. This suggests that the context
has not influenced task location at all. In the second phase, shifting the mask upwards makes a
large difference in performance, suggesting that the model has started to locate the task but can
improve significantly with more processing of the context. Finally, in the third phase, shifting the
mask upwards again has little-to-no effect on the performance, suggesting that the model has fully
recognized the task as translation and no longer requires the context to interpret the task.
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4.3 Instruction-tuned vs Non-instruction Tuned Models

When comparing non-instruction tuned LLAMA2-7B vs instruction-tuned models LLAMA2-7B-
CHAT, we do not observe any noticeable difference in where performance plateaus, i.e., where the
model no longer requires attention over the context. This occurs around layers 18 for both LLAMA
models in en → fr and around layer 14 for fr → en. The main difference is that instruction-tuned
model is able to achieve better performance in the earlier layers for the setting where instructions
are present and examples are masked (Instr,ExMask). This is to be expected as these models are
tuned towards following instructions.

Overall we find that the observation of task recognition layers and a task recognition point is present
across both non-instruction tuned and instruction tuned models, and that this presents itself similarly
in both types of models.

4.4 Do models have a distinct task recognition region regardless of the type of task?
(Experiments on Code Generation)

For tasks that the model does not perform fluently, we do not observe a sharp increase at any particular
layer. For instance, for code generation (HUMANEVAL) where the LLAMA2 model performs poorly,
we can observe only a very gradual effect of masking the self-attention layers, and not a distinct
increase as compared to the LLAMA2’s performance on Translation.

However when we consider STARCODER2 while masking instructions or no instructions, i.e., the
Instr,ExMask and ExMask, we again see the same pattern demonstrating the task recognition
phenomena on layer 19 of the 3B model, and layer 20-23 of the 7B model.

To understand Starcoder2’s strong performance on the (Instr,ExMask) condition, investigations
found that the instructions and the test prompt alone contain sufficient information for the model to
recognise that the task is to generate a Python program, even though the model is not instruction
tuned. This happens as the model is very specialised towards code generation and has a strong prior
to generate python code given its prevalence in it’s training data.

4.5 The Role of Instructions vs Examples

In separate experiments, we found that when shown only instructions and no examples, GPTNEO
and BLOOM models are unable to translate, and their performance is nearly at 0 BLEU Score. For
GPTNEO and BLOOM we see that the behavior of the model is similar when no instructions are
present (ExMask) and when instructions are masked (Instr,ExMask). However, if the model is
given complete access to instructions (InstrExMask), it can use the intermediate processing of
examples to reach baseline performance earlier.

5 Inference Efficiency

Speeding up transformer inference is of great interest to the community [22]. We highlight the
potential of speeding up inference time as a direct consequence of identifying where task recognition
occurs in the model and redundancy of self-attention processing. Our results indicate that we can
achieve significant speedups in inference by removing the processing of context-tokens all-together
after a certain point in the model, with little to no impact on downstream performance. Let ℓr be the
rth layer where we can mask out the attention of the context across subsequent layers and match the
“ceiling" performance. Let k be the number of prompt examples, where each example consists of a
pair of parallel sentences. Then, for a model with nℓ layers, the amount of processing in terms of
speed and memory saved is approximately (nℓ − r)/nℓ × (k/k + 1).

Using the example of LLAMA7B (32 layers) on en→fr, we see from Figure 3 that the model is very
close to it’s ceiling score after processing the examples at layer 14 (ℓ = 14). If we no longer need to
process examples after ℓ = 14, under a prompt size of 5 the savings are approximately 45%.

For instruction-tuned models which are typically deployed in production, even if we assume that
no examples are provided, savings can be non-trivial as very long-form instructions are typically
provided to the model in an attempt to control it’s behavior (prompt engineering).
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Although we had demonstrated the redundancy of self-attention over the input context, the significance
of this computational savings extends to all components of the transformer during forward inference.
Since all subsequent layers of forward inference no longer rely on computations on previous token
positions, all processing related to those redundant token positions (from the task recognition layer
onwards) can be effectively removed.

6 Characterising Redundancy in Layers

Recently, [48] found that many layers in pre-trained transformers can be dropped with little harm to
downstream tasks; moreover, it is well known neural MT transformer models are known have several
redundant heads which are not necessary during test time [56, 38, 7]. However, it is not clear if the
same trends hold for in-context MT models, and how that redundancy is related to task location versus
task execution. We focus on the task of en→ fr in this set of experiments.

6.1 Attention to the Context vs Attention to the Input

Figure 4: Layer-from experiments for GPTNEO2.7B, BLOOM3B, LLAMA and LLAMA7B-CHAT
on en → fr when masking out from layer j onwards. Orange and blue dashed lines refer to the
baselines (without masking) of 0 and 5 prompts with instructions. True/False refers to whether there
are instructions provided (True) vs not provided (False). In view of the smaller models failure to
translate at all under the format Q: A: with no examples, we adopt "English:", "French:" as delimiters
instead of QA in generating this figure.

One possible explanation for the results in Figure 3 is that, rather than identifying the point at which
the task is recognized (no longer requires attending to instructions and examples), we have identified
the point at which the model no longer requires attending to any other input tokens (instructions,
examples and source sentence). To explore this, we run experiments in the en → fr direction where
we mask attention to all inputs from a certain layer onwards. This does not include masking over the
text the model has generated.

We plot the results in Figure 4; we find that for all models, the layer at which attention can be
fully removed is much higher than the layer at which we can remove attention to the context. For
GPTNEO and LLAMA, translation performance is never comparable to the baseline with no masking.
Conversely, when masking only the context, translation performance improves as early as layer 10
and plateaus at the no-mask baseline much earlier. This supports the interpretation that the curves we
observe in Figure 3 are due to the model still requiring attention to the source sentence input.

We study the contributions of individual attention-layers by performing a simple layer-wise masking
of all self-attention heads for a single layer. When we mask layer j, we are masking the attention
mechanism of layer j, that is the MLP of layer j acts directly on the output of layer j − 1, rather than
the output of the attention-head of layer j. Doing so allows us to study how critical each layer is,
where critical layers is loosely defined as those that have a large negative impact when masked.

We plot results for each layer all models, using the three combinations of {0 examples, no instruc-
tions}, {5 examples, instructions}, {5 examples, no instructions} in Figure 5.6

6The combination of {0 examples, no instructions} is not meaningful as the model only receives "Q: <source
sentence> A:" as the input and is not expected to do the translation task.
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Figure 5: Layer-wise masking of self-attention heads for GPTNEO2.7B, BLOOM3B, LLAMA and
LLAMA-CHAT on en → fr. The orange and blue dotted lines refer to the baselines (without masking)
of 0 and 5 prompts with instructions. True/False refers to whether there are instructions provided
(True) vs not provided (False). We observe critical layers near the middle and redundant layers
towards the end of the model.

6.2 Are “Critical" Layers Task Locating Layers?

In Section 4, we observed that there are layers for task location. In this section, we observe evidence
that there are critical layers which correspond to the task locating layers, providing support for our
earlier observations.

For instance for LLAMA7B en → fr, even in the scenarios when examples are provided, we can see
a dip in performance around layer 15 to 18. Refering back to Figure 3, we see that this is where most
of the task location with large jumps in performance had occurred.

For GPTNeo, we obseve a large set of contiguous layers which significantly decrease performance
at around layer 10 to 15. This also corresponds to where most of the task location (large jumps in
performance) had occurred for this model in Figure 3.

We note that the critical layers in different models have varying degrees of severity. It is not
immediately clear why GPTNEO has such critical layers and suffers compared to the other models,
although we note that this is unlikely to be due to size or model architecture as BLOOM is also around
the same size as GPTNEO and performs more similarly to LLAMA. We suspect that it could be due
to training data or some other factor related to the training dynamics but leave this for future work.

With regard to redundancy, we find that layers can be more safely removed towards the end without a
noticeable loss in performance. We observe that for the less stable models, the model achieves close
to baseline performance by layer-wise masking from ℓ15 for GPTNEO, ℓ26 for BLOOM and ℓ20 for
LLAMA. This suggests that these later layers contain redundancy for translation.

Overall, observing redundancy in layers is not suprising. To explain why models can have redundant
layers, we refer to [16] who identify a phenomena where attention heads attend almost exclusively
to delimiter and separator tokens such as [SEP], periods and commas. This is thought to act as a
“no-op" as the value of such tokens in changing the current hidden representation is very small. Note
that it is then possible to mask entire Transformer layers and still achieve a sensible output due to
residual connections in the Transformer architecture at every layer.

7 Further Analysis

In the following sections, we focus on GPTNEO and BLOOM to conduct deeper analysis on the main
phenomena presented in the paper.

7.1 Does the Number of Prompts Affect Task Recognition?

In Section 4 we study context-masking with a fixed number of prompts. However, it is not clear if
the number of prompts affects how fast, layer-wise, the model is able to recognize the task. We plot
these results for en→fr in Figure 6, for both GPTNEO and BLOOM. In general, we find that the
number of prompt examples has little effect on which layer the task is recognized at. While there is
some variation in performance when the context is masked around the middle layers of the model,
the final performance plateau occurs at the same layer regardless of the number of prompts.
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Figure 6: Layer-from context-masking experiments for GPTNeo and BLOOM on en→fr investigat-
ing number of examples in the ExMask mask setting. The dashed black line refers to no instructions
and no examples.

Figure 7: Performance of no-instructions trained Lora layers for GPTNeo and BLOOM on en↔fr.
The dashed black line refers to training of all layers together, while the orange (test without instruc-
tions) and blue (test with instructions) dashed lines refers to no training. The layers which are most
amenable to lightweight fine-tuning occur in the earlier layers before the "task recognition" point.

7.2 The Adaptability of Task Layers

Intuitively, the layers prior to "task recognition" should contain information about locating the MT
task. To test this intuition, we further explore the adaptability of these layers by lightweight fine-
tuning experiments. We trained a single Low-rank Adaptation matrix (LoRA; [29]) for each layer of
the output projection while keeping the rest of the network frozen.7 The model was shown parallel
sentences as input, and layers were trained with no explicit translation instructions. We split the dev
set of FLORES into 800 training examples and 200 dev examples. Note that this setup is designed to
tune the layers for task location. It is highly unlikely that the model can learn translation knowledge
from this small amount of supervision. The LoRA layers were trained for up to 50 epochs with
early stopping patience= 5 and threshold= 0.001, with α = 32, r = 32 and dropout= 0.1. The
cross-entropy loss was computed only on the target sentence (see Section A.4 for details) and we
used the best checkpoint on the 200 held out dev examples for evaluation.

While each layer can be trained to perform better than no fine-tuning at all, tuning different layers
have different impacts on performance Figure 7. In particular, we find that high performing layers
occur at the earlier to middle parts of the network, with the peak often occurring near the start of the
"task-locating" layers from Section 4. In contrast to common fine-tuning wisdom, additional tuning
on the later layers has a much smaller impact on final performance for en → fr.

7.3 Are There Specialised Attention Heads?

In Section 4, we found that the earlier part of the model is critical for task location from the prompt
context, and in Section 6.2 we found both critical and redundant layers to the MT task. In this section,
we increase the level of granularity to that of attention heads instead of layers.

A well established finding for supervised encoder-decoder MT models, is that up to 90% of the
attention heads can be pruned while minimising fall in translation performance [56, 6, 38]. We note

7We also experimented with the training separate Key, Query and Value LoRA Layers but found this to be
less effective.
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that asking about the extent of pruning is a slightly ill-formed research question, as it depends on the
type of pruning technique used. However broad trends of highly prunable models have been observed
in the supervised MT paradigm. For instance, [5] studied attention-head importance for a broader
set of ICL tasks, finding that the most important heads for ICL occur in the middle layers of the
model. We train discrete attention head gates with L0 regularisation for GPTNEO and BLOOM on
en → fr (see Section A.5.1). Overall, we report that there are no "few" specialised heads, which
directly contrasts with the literature on compression in supervised MT models [56, 38]. Potential
reasons for this difference might be due to cross-entropy loss associated with task tuning for MT vs
non-specific training on large corpora. We leave this as an open question for future work.

8 Conclusion

We demonstrate evidence that In-context Causal Decoder models locate their task at a specific layers
during forward inference. To study this, we introduced causal masking of self-attention over the
context from layer ℓ onwards (Section 4). The findings generalise across 4 models of different sizes
and in both non instruction-tuned and instruction-tuned models. We further identify certain layers as
task critical, and show that this corresponds to the task recognition point of the model (Section 6.2)
and is not influenced by increasing number of examples (Section 7.1) shown to the models.

Our central finding that models do not need to maintain attention over all of the context across
every layer has direct implications for inference efficiency of transformers, with estimated up to 45%
cost-savings for llama model with 5 examples (Section 5).

Contrary to common fine-tuning wisdom, we show that it is sometimes beneficial to target middle
layers for fine-tuning the model which could be associated with task recognition ( Section 7.2).
Finally, we trained attention head gates using differentiable L0 regularisation (Section 7.3), and found
that around 10% of attention heads can be masked. These are mostly distributed across the later
layers of the model, providing some support for the idea that later layers are redundant. Although we
have characterised this phenomena using Machine Translation and Code Generation, we believe that
the broad findings are likely to generalise to other tasks.

8.1 Reproducibility

The Machine Translation dataset that we use, FLORES [25] and the code generation datasets
HumanEval[15] are fully open-source and well-known in the community. All models are open-
source and freely available on Huggingface [62]. We used models of "reasonable" size (3B and 7B
parameters) that can be run with consumer or academic grade GPUs, making our work reproducible
to most academic institutions.

8.2 Impact Statement (Ethics and Societal Consequences)

There are no known ethical concerns as these are exploratory studies on open-source LLMs.

8.3 Limitations (and Future Work)

• There is limited exploration of why different models exhibit varying behaviors in terms of their
"task recognition point" and critical layers. Unfortunately, the differences are not due to easily
observable hyperparameters like model size or architecture. To put in another way, why do large
models exhibit different characteristics?

• This paper focuses on empirical analysis, and lacks a theoretical framework that could explain why
this phenomena is being observed.
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Figure 8: Context-masking and Layer-masking results on the English ↔ Portugese translation task.
Critically, we see nearly identical trends to what we see in Figure 3 and Figure 5 on the English to
French translation task, suggesting our results generalize across language pairs.

A Appendix

A.1 Prompt Format

Translate English to French.
Q: A discomfort which lasts .. A: Un malaise qui dure
Q: HTML is a language for formatting A: HTML est un langage de formatage
... ...
Q: After you become comfortable with formatting .. A:

Table 1: A single continuous input sequence presented to the model for decoding a single test source
sentence “After you become comfortable with formatting..”. Given the entire sequence as input, the
model proceeds to generate the target sequence.

A.2 Additional Results on English & Portugese

In addition to the language pairs en → fr and fr → en, we also run experiments on English and
Portugese language pairs, both en → pt and pt → en. Due to space limitations, we plot the results
of those experiments here. Overall, we see largely identical trends on both directions of English and
Portugese to what we observe on English and French translation tasks, leading us to conclude that
our conclusions generalize across different translation tasks.

A.3 Autoregressive Decoder only Transformer

The transformer consists of stacked blocks of self-attention, which itself consists of smaller units
of self-attention heads that are concatenated before being fed through a fully connected layer. In
autoregressive decoder-only transformers, training and inference adopts a causal mask, where current
positions are only able to attend to previous timesteps, instead of being able to attend to the entire
input sequence. Unlike encoder-decoder NMT models where source and target sentence have separate
processing transformer blocks, decoder-only means that the same model weights are both used to
“encode" the source sentence and “decode" the target sentence in a single continuous sequence.

A.4 Training with Autoregressive Translation

The original language modeling objective in GPT training involves predicting the entire input token
sequence which consists of both the source and target sentence (shifted by 1 position). We found
this to produce slightly worse results than only minimising the negative log likelihood of predicting
the target sentence to be translated, and not the entire sequence. We consider this autoregressive
translation training.

A.5 L0 Attention Gate Training

Training Details For Section A.7, We train using Adam Optimizer (β1 = 0.9, β2 = 0.999)
with a batch size of 32, and learning rate of 0.001, early stopping patience of 10 and threshold
of 0.01. We initialise attention head gates to be 1 instead of random or 0.5 as this leads to faster
convergence. We experiment with two different training settings, the 0-prompts Train setting
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and the 5-prompts Train setting. As described in Section A.4, we train the model by predicting
only the target sentence, conditioned on the context. In the 0-prompt setting, the context consists of
the instructions and the source sentence to be translated. In the 5-prompt setting, the context consists
of the instructions, 5 prompt examples, and the source sentence to be translated.

In the 0-prompt setting, the conditional prefix consists of the instructions and the source sentence
to be translated. In the 5-prompt setting, the conditional prefix consists of the instruction, 5
source target sentence pairs, and the source sentence to be translated.

Data We used the first 10,000 lines of en→fr from WMT06 Europarl [31] for training.8 To test
the generalisability of trained attention head gates, we use a different test domain, FLORES [25]
to reflect the scarcity of in-domain data. We also test an additional language direction en→pt in
FLORES to see if training can generalise across languages.

Training Details We train using Adam Optimizer (β1 = 0.9, β2 = 0.999) with a batch size of 32,
and learning rate of 0.001. We use a large early stopping patience of 10 and threshold of 0.01, and
train for up to 100 epochs. This is due to the nature of L0 training; we do not expect performance to
improve over many iterations and would like the attention gates to keep training as long as there is
no large loss in performance. We initialise attention head gates to be 1 instead of random or 0.5 as
this leads to much faster convergence and better performance. For the regularisation weight λ, we
search over a hyperparameter set of {0.1, 0.01, 0.001, 0.0001} and found 0.01 performs best on the
validation set.

A.5.1 L0 head masking experiments.

Additional experiments on L0 head masking in the en→ fr direction.

A.5.2 Training Attention Head Gates with L0 regularisation

For a scalable approach to pruning, we opt to train self-attention head gates following [56] using
the technique of differentiable L0 regularization [34]. Let the attention head gates g ∈ Rnh×nℓ be
a set of trainable parameters, where nh is the number of attention heads per layer, and nℓ is the
number of layers. Let the original output of each attention head be vj , gated outputs ṽj are obtained
by elementwise multiplication of the gate value gj , i.e., ṽj = gj ⊙ vj . For {(x, y)}n source sentence
(x) and target sentence (y) training pairs, a model f and loss function L, Lp regularisation adds a λ
weighted penalty associated with the complexity of the parameters. 9 The L0 loss is non-differentiable
as it involves raw counts of parameters. As a work around, g can be approximated with random
variables drawn from a Binary concrete distribution [37, 30].10 We refer the reader to [34] for the
relevant technical exposition. Details of training are provided in Section A.5.

A.5.3 Generalisability of L0 gate training

We experiment with 0-prompts and 5-prompts in training and using λ=0 (no regularisation)
and λ=0.01. L0 training for the 0-prompts shows some gains for the 0-prompts test case, and
with no loss on the 5-prompts test case (Table 2). Notably, this persists in en→ pt, a different
language direction from training.

The robustness of translation performance under multiple testing conditions (number of prompts,
datasets, language directions) gives some confidence that the trained discrete attention head gates from
L0 support a general ability to translate (Table 2). In contrast, the soft attention head gates without
regularisation (λ = 0) appear to overfit as they perform well on some conditions but deteriorate in
others.

We observe that 0-prompt training for L0(λ = 0.01) also outperforms 5-prompts which is
slightly suprising since 5-prompts has more information in the prefix to locate the translation task.

8Data available from https://www.statmt.org/europarl/
9L2 regularisation has the effect of reducing the magnitude of all g, L1 regularisation has the effect of reducing

the magnitude of several attention heads to a very small value (but not exactly 0), while L0 regularisation has the
effect of driving g values to exactly 0.

10The class of Concrete distributions was invented to work around the problem of automatic differentiation of
stochastic computation graphs.
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Figure 9: Visualisation of attention head masks for GPTNeo and BLOOM, learned with L0(λ = 0.01)
regularisation under a 0-prompt train scheme in en → fr. A value of 0 (in black) indicates
that the attention head is effectively masked out by the trained attention gate. Around 10% of attention
heads are masked out i.e., redundant, with a majority of them occuring at the later layers for GPTNeo
and distributed across layers for BLOOM. fr → en is availble in Section A.5.1

Base 0-prompts 5-prompts Base 0-prompts 5-prompts

λ=0 λ= .01 λ=0 λ= .01 λ=0 λ= .01 λ=0 λ= .01

0-prompts 18.3 21.4 20.1 18.9 19.3 6.7 15.7 8.6 13.2 6.4
5-prompts 24.3 24.5 24.1 23.6 24.2 25.9 19.6 25.8 24.3 26.0

Train: en→fr, Test: en→fr Train: en→fr, Test: en→pt

Table 2: Performance when using trained attention head gates for L0 with regularisation λ = .01.
λ = 0 refers to training without regularisation. 0 and 5 prompts were used in the context for training.
We highlight values which are greater or worse than 0.5 BLEU points from baseline. Note that as
these are compression experiments, we do not expect L0 to perform better than baseline.

One possibility is that the model overfit to the Europarl domain where the training prompts were
drawn from.

A.6 Qualitative Analysis of Layer-wise Masking

GPTNEO Masking ℓ4:8 results in a drop in performance for the 0-prompt setting but not the
5-prompt setting (Figure 5), which suggests that ℓ4:8 are not related to the processing of prompt
examples. We emphasise that this interpretation mostly holds at an aggregate level and is not strictly
for each instance. For Test Instance ID 575, the model still generates a copy of the English source
sentence up to the masking of ℓ25 for the 0-prompts without instructions setting (Table 4). This
suggests that uncertainty over the task is maintained across layers even though the contributions
towards task location may be greater from specific layers.

BLOOM is observed to be more robust to masking of layers; suggesting that task location is more
distributed. For the 5-prompt setting, the performance only decreases very slightly. For the 0-prompt
setting, we observe that similar to GPTNEO, performance drops when masking out the middle layers.
At the aggregate level, BLOOM appears to still be translating (> 0 BLEU) even when layers are
masked. However we observe that the drop in performance is due to around 40 to 50% of the test
sentences scoring < 5 BLEU points. There is a clear failure to translate, not simply producing poorer
translations.

17



layer id lang BLEU text

1 600 cy 0.00 uffose
1 575 ca 0.00 B marriages{

2 600 et 0.00 sses room ( I
2 575 no 0.00 NaN

3 600 fr 1.90 C’est la même chose que l’on a fait avec les virus.
3 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

4 600 no 0.00 NaN
4 575 no 0.00 NaN

5 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
5 575 fr 72.98 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent toujours à un dinosaur.

6 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
6 575 fr 60.29 Mais il y a beaucoup de choses à propos de oiseaux qui ressemblent encore à un dinosaur.

7 600 fr 13.94 Hershey et Chase ont implanté leur propre gène dans un bactérie.
7 575 fr 72.98 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent toujours à un dinosaur.

8 600 no 0.00 NaN
8 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosau.

9 600 no 0.00 NaN
9 575 fr 82.82 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent toujours à un dinosaure.

10 600 no 0.00 NaN
10 575 en 2.73 But there are a lot of things about birds that still look like a dinosaur.

11 600 en 4.78 Hershey and Chase used phages, or viruses, to implant their own DNA into a bacterium.
11 575 en 2.73 But there are a lot of things about birds that still look like a dinosaur.

12 600 no 0.00 NaN
12 575 no 0.00 NaN

13 600 no 0.00 NaN
13 575 fr 35.75 Mais il y a beaucoup de choses que je ne comprends pas.

14 600 en 4.78 Hershey and Chase used phages, or viruses, to implant their own DNA into a bacterium.
14 575 en 2.73 But there are a lot of things about birds that still look like a dinosaur.

15 600 fr 76.48 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bacillus.
15 575 en 2.73 But there are a lot of things about birds that still look like a dinosaur.

16 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
16 575 fr 70.18 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent toujours comme un dinosaurof.

17 600 fr 82.32 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans une bactérie.
17 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

18 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre génome dans un bactérie.
18 575 fr 66.38 Mais il y a beaucoup de choses sur les oiseaux qui aussi ressemble à un dinosaures.

19 600 fr 59.33 Les héritiers de Hershey et de Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
19 575 fr 47.91 Mais il y a beaucoup de choses à propos de les oiseaux qui ressemblent toujours à un dinosaur.

20 600 fr 48.82 Hershey et Chase ont utilisé les phages, ou les virus, pour implanter leur propre gène dans un bactérie.
20 575 en 2.73 But there are a lot of things about birds that still look like a dinosaur.

21 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
21 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

22 600 fr 48.82 Hershey et Chase ont utilisé les phages, ou les virus, pour implanter leur propre gène dans un bactérie.
22 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaurof.

23 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
23 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

24 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre génome dans un bactérie.
24 575 fr 62.72 Mais il y a beaucoup de choses à propos de les oiseaux qui ressemblent encore à un dinosaur.

25 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
25 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

26 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
26 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

27 600 fr 66.28 Hershey et Château ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
27 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

28 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
28 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

29 600 fr 59.33 Les héritiers de Hershey et de Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
29 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaurof.

30 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
30 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

31 600 fr 78.78 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
31 575 fr 88.44 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

32 600 fr 6.44 Les héritiers de Hershey et de Chase ont été capables de l’implanter dans un bactérie.
32 575 fr 51.52 Mais il y a beaucoup de choses sur les oiseaux que sont encore aussi vus comme un dinosaures.

Table 3: 0-prompts with instructions, masking layer by layer of GPTNEO2.7B
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layer id lang BLEU text

1 575 no 0.0 NaN
1 600 no 0.0 NaN

2 575 NaN 0.0 ,
2 600 no 0.0 NaN

3 575 fr 2.3 C’est pas un oiseau, c’est un dinosaur.
3 600 fr 0.8 [phare] Phare, phare, phare, phare, phare, phare, phare, phare, phare, phare, phare, ...,

4 575 en 2.7 "I think it’s a dinosaur, I think it’s a dinosaur."
4 600 fr 2.6 Les virus, c’est-ce qu’on dit? C’un mot? C’est pas un mot? C’un mot? C’un’un? ...

5 575 fr 42.9 Mais il y a beaucoup de choses à propos de oiseaux qui ressemblent toujours comme un dinosaur.
5 600 fr 73.6 L’Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

6 575 fr 53.8 Mais il y a beaucoup de choses à propos de oiseaux qui ressemblent toujours à un dinosaure.
6 600 fr 74.9 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

7 575 fr 76.2 Et il y a beaucoup de choses sur les oiseaux qui ressemblent toujours à un dinosaure.
7 600 fr 83.8 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bactérie.

8 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosau.
8 600 fr 83.8 L’usine Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bactérie.

9 575 en 1.5 The bird is a dinosaur.
9 600 fr 33.9 Les hémoglobine et Chase utilisent les phages, ou les virus, pour implanter leur propre gène dans un bactérie.

10 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
10 600 fr 11.4 Les phages, ou virus, ont implanté leur propre gène dans un bactérie.

11 575 en 2.6 I think it’s a good idea to have a little bit of a bird in your pocket.
11 600 en 0.0 The French have a saying: "The French have a saying: "The French have a saying: "The French have a saying:...

12 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
12 600 en 1.7 The bacterium was then able to use the phage to infect other bacteria.

13 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
13 600 fr 18.7 L’entreprise Hershey a utilisé des phages pour implanter leur propre DNA dans leur bactérie.

14 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
14 600 en 4.8 Hershey and Chase used phages, or viruses, to implant their own DNA into a bacterium.

15 575 fr 3.0 C’est pas un truc de poulet, c’est un truc de poulet.
15 600 fr 35.7 L’université de Paris-Sud a utilisé des phages, ou viraux, pour implanter leur propre gène dans un bacillus.

16 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
16 600 fr 74.9 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre génome dans un bactérie.

17 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
17 600 fr 82.3 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans une bactérie.

18 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
18 600 fr 74.9 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre génome dans un bactérie.

19 575 fr 44.2 Mais il y a beaucoup de choses à propos de oiseaux qui ressemblent toujours à un dinosaur.
19 600 fr 59.3 Les héritiers de Hershey et de Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

20 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
20 600 fr 46.4 Les Hershey et Chase ont utilisé les phages, ou les virus, pour implanter leur propre gène dans un bactérie.

21 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
21 600 fr 74.9 L’usine Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

22 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
22 600 fr 56.3 Les Hershey et Chase ont utilisé les phages, ou les virus, pour implanter leur propre ADN dans un bactérie.

23 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
23 600 fr 82.9 L’Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bactérie.

24 575 fr 60.3 Mais il y a beaucoup de choses à propos de oiseaux qui ressemblent encore à un dinosaur.
24 600 fr 37.0 L’usine Hershey et Chase utilisaient les phages, ou les virus, pour implanter leur propre génome dans un bactérie.

25 575 en 2.7 But there are a lot of things about birds that still look like a dinosaur.
25 600 fr 74.9 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

26 575 fr 71.6 Mais il y a beaucoup de choses à propos de oiseaux qui ressemblent encore à un dinosaure.
26 600 fr 73.6 L’Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

27 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaurof.
27 600 fr 63.0 Les Hershey et Château ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

28 575 fr 44.2 Mais il y a beaucoup de choses à propos de oiseaux qui ressemblent toujours à un dinosaur.
28 600 fr 74.9 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

29 575 fr 87.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaurofrench:
29 600 fr 53.4 L’entreprise de la filière Hershey a utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

30 575 fr 82.8 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent toujours à un dinosaure.
30 600 fr 74.9 Les Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

31 575 fr 82.8 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent toujours à un dinosaure.
31 600 fr 59.3 Les hémoglobins de Hershey et de Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.

32 575 fr 67.5 Mais il y a beaucoup de choses sur les oiseaux qui aussi ressemblent à un dinosaurof.
32 600 fr 6.7 L’Hershey et le Chase ont été capables de l’implanter leur propre gène dans un bactérie.

Table 4: 0-prompts without instructions, masking layer by layer of GPTNEO2.7B
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layer id lang BLEU text

1 902 en 0.0 : of
1 575 en 0.0 of

2 902 en 0.0 of(n, very very- ofS First
2 575 da 0.0 f(

3 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
3 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

4 902 en 0.0 the, the French, the French, the English, the, the, the, the, the, the, the, the, the, the,
4 575 no 0.0 NaN

5 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
5 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

6 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
6 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

7 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
7 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

8 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
8 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

9 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
9 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

10 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
10 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

11 902 fr 1.4 Fondamentalement, vous afficherez des annonces pour proposer votre aide, arpenterez les quais, ...
11 575 fr 1.3 Fondamentalement, vous afficherez des annonces pour proposer votre aide, arpenterez les quais, ...

12 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
12 575 fr 42.5 Mais il y a beaucoup de choses qui ressemblent à un dinosaur.

13 902 fr 34.5 Les scènes sont déclarées sur les pyramides et les pyramides sont déclarées sur les pyramides.
13 575 fr 5.5 Les oiseaux sont des animaux, mais ils sont aussi des êtres humains.

14 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
14 575 fr 73.3 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent à un dinosauresque.

15 902 fr 64.0 Les scènes sont affichées sur les pyramides et les pyramides différents sont éclairés.
15 575 fr 26.7 Mais il y a beaucoup de choses à propos de la façon dont les oiseaux se ressemblent, même si c’est un peu plus tard.

16 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
16 575 fr 76.7 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore comme un dinosaures.

17 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
17 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

18 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
18 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosauresque.

19 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont illuminés.
19 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

20 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
20 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

21 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
21 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

22 902 fr 64.0 Les scènes sont affichées sur les pyramides et les pyramides différents sont éclairés.
22 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosauroide.

23 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
23 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

24 902 fr 78.3 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairées.
24 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

25 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
25 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

26 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
26 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

27 902 fr 100.0 Les scènes sont affichées sur les pyramides et les différentes pyramides sont éclairées.
27 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

28 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
28 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

29 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
29 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

30 902 fr 78.3 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairées.
30 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

31 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont éclairés.
31 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

32 902 fr 65.9 Les scènes sont affichées sur les pyramides et les différents pyramides sont illuminées.
32 575 fr 67.5 Mais il y a beaucoup de choses sur les oiseaux qui aujourd’hui ressemblent à un dinosauro.

Table 5: 5-prompts with instructions, masking layer by layer of GPTNEO2.7B
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layer id lang BLEU text

1 600 tl 0.0 *- ing
1 575 en 0.6 fl.of,

2 600 en 1.6 in " " - ( –, -, - (es," " " so " whats " whats" " between whats –what e,
2 575 en 2.3 " ",what awaited ico " " " "_, .

3 600 fr 86.6 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans une bactérie.
3 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

4 600 en 0.3 the, etc.
4 575 ro 0.0 are: are: are: are: are: are: are: are: are: are: are: are: are: are: are: are: are: ...

5 600 fr 76.5 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bacille.
5 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

6 600 fr 88.1 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bactérie.
6 575 fr 62.7 Mais il y a beaucoup de choses à propos de les oiseaux qui ressemblent encore à un dinosaur.

7 600 fr 88.1 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bactérie.
7 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

8 600 fr 85.7 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bacillus.
8 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

9 600 fr 78.8 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
9 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

10 600 fr 30.1 En gros, vous mettre en place des phages, ou viraux, pour implanter leur propre gène dans un bactérie.
10 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

11 600 fr 1.3 Fondamentalement, vous afficherez des annonces pour proposer votre aide, arpenterez les quais, aborderez les personnes nettoyant leurs yachts, ...
11 575 fr 1.4 Fondamentalement, vous afficherez des annonces pour proposer votre aide, arpenterez les quais, aborderez les personnes nettoyant leurs yachts, .

12 600 fr 12.4 Les phages sont utilisés pour implanter leur propre gène dans un virus.
12 575 fr 36.8 Mais il y a beaucoup de choses qui semblent être des dinosaures.

13 600 fr 4.3 Les phages sont des virus qui sont implantés dans la cellule d’un organisme.
13 575 fr 5.5 Les oiseaux sont des animaux, mais ils sont aussi des êtres humains.

14 600 fr 74.4 Hershey et Chase ont utilisé des phages, ou virus, pour implanter leur propre ADN dans un bactérie.
14 575 fr 73.3 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent à un dinosauresque.

15 600 fr 62.6 Hershey et Chase ont utilisé des phages, ou virus, pour implanter leur propre gène dans un bacille.
15 575 fr 26.7 Mais il y a beaucoup de choses à propos de la façon dont les oiseaux se ressemblent, même si c’est un peu plus tard.

16 600 fr 85.7 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bacillus.
16 575 fr 76.7 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore comme un dinosaures.

17 600 fr 85.7 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bacille.
17 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosauresque.

18 600 fr 85.7 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bacille.
18 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosauresque.

19 600 fr 76.5 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bacille.
19 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

20 600 fr 76.5 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bacillus.
20 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

21 600 fr 88.1 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bactérie.
21 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

22 600 fr 85.7 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bacille.
22 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosauro.

23 600 fr 88.1 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bactérie.
23 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

24 600 fr 85.7 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre ADN dans un bacille.
24 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

25 600 fr 76.5 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bacillus.
25 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

26 600 fr 76.5 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bacille.
26 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

27 600 fr 55.9 Hershey et Château utilisaient des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
27 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

28 600 fr 76.5 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bacillus.
28 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

29 600 fr 78.8 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
29 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

30 600 fr 78.8 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
30 575 fr 88.4 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaur.

31 600 fr 78.8 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
31 575 fr 100.0 Mais il y a beaucoup de choses sur les oiseaux qui ressemblent encore à un dinosaure.

32 600 fr 78.8 Hershey et Chase ont utilisé des phages, ou des virus, pour implanter leur propre gène dans un bactérie.
32 575 fr 57.2 Mais il y a beaucoup de choses sur les oiseaux que pourraient encore ressembler à un dinosaures.

Table 6: 5-prompts without instructions, masking layer by layer of GPTNEO2.7B
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A.7 Studying Redundancy via Compression

We noted that GPTNEO has some critical differences from BLOOM and LLAMA in terms of having
critical layers (see Section 6.2). To what extent are there specialised attention heads for MT in
the GPT-style models? If there were specialised heads, we would expect the model to be highly
compressable/prunable to a select few heads. We plot a grid map of learned attention gate values for
en→ fr, where 0 indicates that the head is masked out (Figure 9). We find that most of the masked
heads are distributed at the later layers for GPTNeo and are distributed across layers for BLOOM.
This appears consistent with Section 6.2’s observations that redundancy is more focused at certain
layers in GPTNeo, and more spread out across the layers for Bloom.
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how to reproduce that algorithm.
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Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use publicly available dataset splits and our code will detail precisely what
samples are used during in-context learning.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
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tal material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
Justification: Our core results present error bars over different random seeds and sets of
in-context exemplars when applicable.
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• The authors should answer "Yes" if the results are accompanied by error bars,
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text
how they were calculated and reference the corresponding figures or tables in the
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
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the experiments?
Answer: [Yes]
Justification: We provide sufficient information to reproduce all of our experiments (all of
our experiments can be run on consume-grade GPUs such as RTX 6000).
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of
Ethics.
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• If the authors answer No, they should explain the special circumstances that require
a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
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is legitimate to point out that an improvement in the quality of generative models
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the technology is being used as intended but gives incorrect results, and harms
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to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model
or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of our data and models are publicly available, and we reference their
sources in the main paper.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible, include

a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms
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• For existing datasets that are re-packaged, both the original license and the license
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of

their submissions via structured templates. This includes details about training,
license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the country of
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and
the guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

29


	Introduction
	Background
	Data and Settings
	Where does In-context MT happen?
	Analysis Methodology: Layer-from Context Masking
	Results
	Instruction-tuned vs Non-instruction Tuned Models
	Do models have a distinct task recognition region regardless of the type of task? (Experiments on Code Generation)
	The Role of Instructions vs Examples

	Inference Efficiency
	Characterising Redundancy in Layers
	Attention to the Context vs Attention to the Input
	Are ``Critical" Layers Task Locating Layers?

	Further Analysis
	Does the Number of Prompts Affect Task Recognition?
	The Adaptability of Task Layers
	Are There Specialised Attention Heads?

	Conclusion
	Reproducibility
	Impact Statement (Ethics and Societal Consequences)
	Limitations (and Future Work)

	Appendix
	Prompt Format
	Additional Results on English & Portugese
	Autoregressive Decoder only Transformer
	Training with Autoregressive Translation
	L0 Attention Gate Training 
	L0 head masking experiments.
	Training Attention Head Gates with L0 regularisation
	Generalisability of L0 gate training

	Qualitative Analysis of Layer-wise Masking
	Studying Redundancy via Compression


