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Abstract—Associated with every separable Hilbert space H and
given localized frame, there exists a natural test function Banach
space H1 and a Banach distribution space H∞ so that H1 ⊂
H ⊂ H∞. In this article we close some gaps in the literature and
rigorously introduce the space H∞ and its weighted variants H∞

w

under minimal assumptions and discuss some of their properties.
In particular, we compare several topologies associated with H∞

w

and show that (H∞
w , ∥ · ∥H∞

w
) is a Banach space.

Index Terms—Localized frame, co-orbit space, distribution
space

I. INTRODUCTION

The theory of distributions (or generalized functions) has
become indispensable in modern mathematics, physics and
engineering, and provides a suitable abstract framework for
the analysis of various problems and the formalization of many
phenomena. A classical example of a distribution space is the
space S ′(Rd) of tempered distributions, i.e. the (anti-linear)
topological dual of the space S(Rd) of Schwartz functions
on Rd. Since S(Rd) ⊂ L2(Rd) ⊂ S ′(Rd) and since both
S(Rd) and L2(Rd) are invariant under the Fourier transform,
the space of tempered distributions is well suited for extending
Fourier theory from L2(Rd) to the distributional setting, and
provides a valuable framework for analyzing various kind of
PDEs [9]. On the other hand, S(Rd) is not a Banach space
and S ′(Rd) not even a Fréchet space [2], which sometimes
makes working with these objects a bit tedious. If one is
less oriented towards derivatives, but more interested in time-
frequency analysis and applications to quantum physics, the
Feichtinger algebra S0(Rd) [5] and its dual space S′

0(Rd),
sometimes called the space of mild distributions [6], serve as
an indisputably useful alternative to the latter, see also [4].
The space S0(Rd) is defined as the space of all elements in
L2(Rd), whose short-time Fourier transform [8] with respect
to the Gaussian (or any other Schwartz function) is in L1(R2d).
In fact, S0(Rd) is not only a Banach space, but even a Banach
algebra under both convolution and pointwise multiplication,
and contains S(Rd) as a norm-dense subspace. Thus S′

0(Rd)
is a Banach space of distributions contained in S ′(Rd). In
particular, one can show that S0(Rd) ⊂ L2(Rd) ⊂ S′

0(Rd)
(such a triple is called a Banach-Gelfand triple), and since
S0(Rd) is invariant under both the Fourier transform and
actions of time-frequency shifts, (S0(Rd),S′

0(Rd)) is widely
considered as the appropriate test function-/distribution space

pair for time-frequency analysis and applications to quantum
physics [4].

In this article we consider a generalization of the Banach
distribution space S′

0(Rd) ⊃ L2(Rd) to the abstract Hilbert
space setting. In analogy to a characterization of S0(Rd) via
Gabor frames [8], Fornasier and Gröchenig defined general
co-orbit spaces Hp

w (1 ≤ p ≤ ∞) associated with a localized
frame in a given Hilbert space H [7]. In fact, for reasonable
weights w, H1

1/w ⊂ H ⊂ H∞
w is a Banach-Gelfand triple,

which (up to norm equivalence) coincides with the triple
S0(Rd) ⊂ L2(Rd) ⊂ S′

0(Rd) in the case of certain Gabor
frames [7]. While the spaces Hp

w (1 ≤ p < ∞) and their
properties have been studied in detail in e.g. [7], a rigorous
discussion of the space H∞

w in [7] was omitted by the authors
”to avoid tedious technicalities”. In the book chapter [1], the
authors gave a more detailed presentation of the space H∞

w ,
−unfortunately containing some small errors. The purpose
of this article is to close these gaps in the literature and
give a detailed presentation of the space H∞

w under minimal
assumptions.

II. PRELIMINARIES

Let H be a separable C-Hilbert space with inner product
⟨·, ·⟩ being conjugate linear in the second slot and let ∥·∥ be
the induced norm. The set X is assumed to be countable and is
used as the index set for the ℓp spaces. A weight w is defined
to be a map from X to R>0. For a sequence (αk)k∈X , the
weighted ℓp-norm is given by

∥(αk)k∈X∥ℓpw := ∥(αkw(k))k∈X∥ℓp .

The space ℓpw consists of all sequences with a finite ℓpw-norm
and is a Banach space. For the pointwise topology, we use the
notation pw.

A. A certain locally convex topology

Let V be a C-vector space with a countable Hamel basis. Let
T be another C-vector space and assume that (T , V ) is a dual
pair with associated nondegenerate sesquilinear form ⟨·, ·⟩T ,V
(being conjugate-linear in the second slot). We equip T with
the Hausdorff locally convex σ(T , V )-topology generated by
the seminorms {|⟨·, v⟩T ,V | : v ∈ V }. Equivalently, we can
replace V by a Hamel basis, to get countably many seminorms
generating the same topology, so that T is metrizable. Let T
denote the topological completion [10] of T , which is again



a metrizable Hausdorff locally convex space. For the sake of
sanity, we make sure that the sesquilinear form ⟨·, ·⟩T ,V can
be uniquely extended. For each v ∈ V , the linear functional

lv : T → C, lv(x) := ⟨x, v⟩T ,V .

is continuous, hence there exists a unique continuous linear
extension lv : T → C [11, Theorem 5.1]. In particular, we
may define the extended sesquilinear form ⟨·, ·⟩T ,V on T ×V
by

⟨x, v⟩T ,V := lv(x).

We easily check for conjugate linearity on the second slot. Let
(xn)

∞
n=1 ⊂ T be a sequence converging to some x ∈ T . Then

⟨x, λu+ v⟩T ,V = lim
n→∞

⟨xn, λu+ v⟩T ,V

= λ lim
n→∞

⟨xn, u⟩T ,V + lim
n→∞

⟨xn, v⟩T ,V

= λ⟨x, u⟩T ,V + ⟨x, v⟩T ,V .

Finally, we make sure that our extended sesquilinear form is
still nondegenerate. Suppose ⟨x, v⟩T ,V = 0 for all v ∈ V . Let
(xn)

∞
n=1 ⊆ T converge to x ∈ T . Then

0 = ⟨x, v⟩T ,V = lim
n→∞

⟨xn, v⟩T ,V (∀v ∈ V ),

so (xn)
∞
n=1 converges to 0 with respect to σ(T , V ), implying

x = 0, since limits in Hausdorff spaces are unique.

B. Frames

A countable family ψ = (ψk)k∈X of vectors in H is called
a frame, if ∑

k∈X

|⟨f, ψk⟩|2 ≍ ∥f∥2 (∀f ∈ H).

We refer to [3] for a comprehensive introduction to frame
theory. Whenever ψ is frame, both the coefficient operator (or
analysis operator), defined as

Cψ : H → ℓ2, Cψf =
(
⟨f, ψk⟩

)
k∈X

and the synthesis operator, defined as

Dψ : ℓ2 → H, Dψc =
∑
k∈X

ckψk,

are bounded and adjoint to one another, where the latter series
converges unconditionally in H. Additionally, Dψ is surjective.
Their composition yields the frame operator

Sψ = DψCψ : H → H, Sψf =
∑
k∈X

⟨f, ψk⟩ψk,

which is bounded, positive, self-adjoint and invertible. Com-
posing the frame operator with its inverse (and vice versa)
yields the frame reconstruction formulae

f =
∑
k∈X

⟨f, ψ̃k⟩ψk =
∑
k∈X

⟨f, ψk⟩ψ̃k (∀f ∈ H). (II.1)

The family ψ̃ =
(
ψ̃k

)
k∈X :=

(
S−1
ψ ψk

)
k∈X is a frame as

well and called the canonical dual frame. More generally, if
ψd = (ψd)k∈X is another frame in H such that (II.1) holds

after replacing each S−1
ψ ψk with ψdk , then ψd is called a dual

frame of ψ. Finally, the cross Gram matrix Gψ̃,ψ associated
with two frames ψ and ψ̃ is given by

Gψ̃,ψ =
[
⟨ψl, ψ̃k⟩

]
k,l∈X .

In fact, Gψ̃,ψ defines a bounded operator on ℓ2 and

Gψ̃,ψ = Cψ̃Dψ.

III. RESULTS

In order to introduce the co-orbit spaces H∞
w we fix the

following assumptions for the remainder of this article:
(1) ψ is a frame for H and ψ̃ a dual frame.
(2) The cross Gram matrix Gψ̃,ψ defines a bounded operator

on ℓ∞w for some fixed weight w.
We explicitly emphasize that conditions (1−2) are met for any
weight w whenever ψ is a Riesz basis and ψ̃ its canonical dual
Riesz basis (and in particular, when ψ = ψ̃ is an orthonormal
basis). Further examples of pairs of dual frames (ψ̃, ψ) and
weights w satisfying (1−2) are given by an intrinsically
localized frame and its canonical dual frame, where w is a
so-called admissible weight, see [7] and the references therein.

Now let H00 := span(ψ̃k)k∈X = Dψ̃(ℓ
00). Since ℓ00

a dense subspace of ℓ2 and Dψ̃ : ℓ2 → H bounded and
onto, we have that H00 is a dense subspace of H. Conse-
quently, (H,H00) is a dual pair with associated nondegenerate
sesquilinear form ⟨·, ·⟩ restricted to H×H00. Next, let H be
the completion of H with respect to the σ(H,H00)-topology,
with induced sesquilinear form ⟨·, ·⟩H,H00 . Then, we define
H∞
w as the subspace of all f ∈ H, for which there exists a

sequence (fn)
∞
n=1 ⊆ H satisfying

σ(H,H00)

lim
n→∞

fn = f and
∣∣⟨fn, ψ̃k⟩∣∣w(k) ≲ 1 (∀k ∈ X,n ∈ N).

Let ⟨·, ·⟩H∞
w ,H00 be the restriction of ⟨·, ·⟩H,H00 to H∞

w ×H00.

A. The coefficient operator

Having defined our space, we can easily define the coeffi-
cient operator with respect to ψ̃.

Definition III.1. We define the coefficient operator as

Cψ̃ : H∞
w → ℓ∞w , f 7→

(
⟨f, ψ̃k⟩H∞

w ,H00

)
k∈X .

By the definition of H∞
w this operator is well-defined and

easily seen to be linear.

Proposition III.2. The coefficient operator is injective.

Proof. Suppose Cψ̃f = 0 for some f ∈ H∞
w . Then

⟨f, ψ̃k⟩H∞
w ,H00 = 0 for all k ∈ X . Since the frame elements

ψ̃k span H00, we must have f = 0, since ⟨·, ·⟩H∞
w ,H00 is

nondegenerate with respect to the first slot.

Since ∥·∥ℓ∞w is a norm and the coefficient operator, as de-
fined above, is injective, we immediately obtain the following.



Corollary III.3. The map

∥·∥H∞
w

: H∞
w → R, ∥f∥H∞

w
:=

∥∥Cψ̃f∥∥ℓ∞w
defines a norm on H∞

w . In particular, Cψ̃ is an isometry.

Proposition III.4. For every f ∈ H∞
w there exists a ∥·∥H∞

w
-

bounded sequence (fn)
∞
n=1 ⊆ H∞

w ∩ H converging to f with
respect to σ(H∞

w ,H00).

Proof. By definition, there exists a sequence (fn)
∞
n=1 ⊂ H

converging to f with respect to σ(H,H00) satisfying∣∣⟨fn, ψ̃k⟩∣∣w(k) ≲ 1 (∀k ∈ X,n ∈ N).

For each n ∈ N, we choose the constant sequence (fn)
∞
m=1

to verify that fn ∈ H∞
w . Indeed,

∥fn∥H∞
w

= sup
k∈X

∣∣⟨fn, ψ̃k⟩∣∣w(k) ≲ 1

for each n ∈ N, as was to be shown.

Next we show that the norm topology is stronger than the
σ(H∞

w ,H00) topology.

Theorem III.5. If a sequence (fn)
∞
n=1 ⊂ H∞

w converges in
norm, then it converges with respect to σ(H∞

w ,H00).

Proof. Without loss of generality, assume that (fn)∞n=1 con-
verges to 0. This means that

lim
n→∞

∥∥Cψ̃fn∥∥ℓ∞w = 0.

This implies for each k ∈ X that

lim
n→∞

∣∣⟨fn, ψ̃k⟩∣∣ = lim
n→∞

|(Cψ̃fn)k| = 0,

as was to be shown.

Remark III.6. The converse of the above statement is not
true. Indeed, let X = N, w = 1 and (en)n∈N = (ψn)n∈N =
(ψ̃n)n∈N be an orthonormal basis for H. Then the se-
quence (fn)

∞
n=1 = (ψn)

∞
n=1 converges to 0 with respect to

σ(H∞
w ,H00) since

lim
n→∞

⟨en, ek⟩H∞
w ,H00 = lim

n→∞
⟨en, ek⟩ = 0.

However, it does not converge in norm since

lim
n→∞

∥en − 0∥H∞
w

= lim
n→∞

sup
k∈N

|⟨en, ek⟩H∞
w ,H00 | = 1.

B. Completeness

The main goal of this article is to show that (H∞
w , ∥ · ∥H∞

w
)

is a Banach space. Before we are able to do so, we need a bit
of work.

Lemma III.7. For each l ∈ X , ψl ∈ H∞
w .

Proof. It suffices to show that
(
⟨ψl, ψ̃k⟩

)
k∈X ∈ ℓ∞w for each

l ∈ X . This is indeed the case, since

sup
k∈X

|⟨ψl, ψ̃k⟩|w(k) = w(l) sup
k∈X

|⟨ψl, ψ̃k⟩|w(k)w(l)−1

≤ w(l) sup
k∈X

∑
m∈X

|⟨ψm, ψ̃k⟩|w(k)w(m)−1

= w(l)
∥∥Gψ̃,ψ(w(m)−1)m∈X

∥∥
ℓ∞w

= w(l)
∥∥Gψ̃,ψ∥∥B(ℓ∞w )

<∞,

where we used that ∥(w(m)−1)m∈X∥ℓ∞w = 1.

Note that the latter shows that ⟨ψl, ψ̃k⟩ and ⟨ψl, ψ̃k⟩H∞
w ,H00

are the same for all k, l ∈ X .

Lemma III.8. Let (fn)
∞
n=1 ⊆ H ∩ H∞

w be a H∞-norm
bounded sequence and fix k ∈ X . Then the sequence(

⟨fn, ψ̃l⟩⟨ψl, ψ̃k⟩
)
l∈X

is dominated by an ℓ1 sequence.

Proof. Recall from the definition of H∞
w that∣∣⟨fn, ψ̃l⟩∣∣w(l) ≤ ∥∥Cψ̃fn∥∥ℓ∞w = ∥fn∥H∞

w
≲ 1 ∀n ∈ N.

This implies that∣∣⟨fn, ψ̃l⟩∣∣∣∣⟨ψl, ψ̃k⟩∣∣ = ∣∣⟨fn, ψ̃l⟩∣∣w(l)∣∣⟨ψl, ψ̃k⟩∣∣w(l)−1

≲
∣∣⟨ψl, ψ̃k⟩∣∣w(l)−1.

To show that the latter is in ℓ1 (with respect to l), we estimate
similarly as in the proof of Lemma III.7:∑

l∈X

∣∣⟨ψl, ψ̃k⟩∣∣w(l)−1

≤ w(k)−1 sup
m∈X

∑
l∈X

∣∣⟨ψl, ψ̃m⟩
∣∣w(m)w(l)−1

≤ w(k)−1
∥∥Gψ̃,ψ∥∥B(ℓ∞w )

.

Now we are able to show that the Gramian matrix is the
identity on the range of Cψ̃ : H∞

w → ℓ∞w .

Theorem III.9. It holds Gψ̃,ψ|R(Cψ̃)
= idR(Cψ̃)

.

Proof. Let f ∈ H∞
w . By Proposition III.4, there exists a H∞

w -
norm bounded sequence (fn)

∞
n=1 ⊆ H ∩H∞

w such that

σ(H∞,H00)

lim
n→∞

fn = f.

Our goal is to show that

(Gψ̃,ψCψ̃f)k = (Cψ̃f)k ∀k ∈ X.

The idea is to replace f by the limit of the sequence (fn)
∞
n=1,

then apply dominated convergence to swap the limit with the
sum. Finally, we apply the frame reconstruction formula (II.1)
to fn. To make the computation simpler, we start from the
inside and move step by step to the outside. First, note that

(Cψ̃f)l = ⟨f, ψ̃l⟩H∞
w ,H00 = lim

n→∞
⟨fn, ψ̃l⟩.



Since ψl ∈ H∞
w by Lemma III.7, this yields

(Cψ̃f)lψl =
(
lim
n→∞

⟨fn, ψ̃l⟩
)
ψl =

H∞
w

lim
n→∞

(
⟨fn, ψ̃l⟩ψl

)
.

Then

⟨(Cψ̃f)lψl, ψ̃k⟩H∞
w ,H00 =

〈
H∞
w

lim
n→∞

(
⟨fn, ψ̃l⟩ψl

)
, ψ̃k

〉
H∞
w ,H00

= lim
n→∞

⟨⟨fn, ψ̃l⟩ψl, ψ̃k⟩

= lim
n→∞

⟨fn, ψ̃l⟩⟨ψl, ψ̃k⟩.

Now, observe that

(Gψ̃,ψCψ̃f)k =
∑
l∈X

⟨ψl, ψ̃k⟩(Cψ̃f)l

=
∑
l∈X

⟨(Cψ̃f)lψl, ψ̃k⟩H∞
w ,H00

=
∑
l∈X

lim
n→∞

⟨fn, ψ̃l⟩⟨ψl, ψ̃k⟩ = (∗).

By Lemma III.8,
(
⟨fn, ψ̃l⟩⟨ψl, ψ̃k⟩

)
l∈X is dominated by an

ℓ1-sequence for each n ∈ N, so we can interchange the sum
and the limit using dominated convergence and obtain

(∗) = lim
n→∞

∑
l∈X

⟨fn, ψ̃l⟩⟨ψl, ψ̃k⟩

= lim
n→∞

〈 ∑
l∈X

⟨fn, ψ̃l⟩ψl︸ ︷︷ ︸
=fn (frame reconstruction)

, ψ̃k

〉

= lim
n→∞

⟨fn, ψ̃k⟩ = ⟨f, ψ̃k⟩H∞
w ,H00 = (Cψ̃f)k.

This shows that Gψ̃,ψCψ̃f = Cψ̃f for all f ∈ H∞
w .

Next, we show that the range of the coefficient operator is
the only set on which the Gramian matrix acts as the identity.

Lemma III.10. Let α ∈ ℓ∞w such that Gψ̃,ψα = α. Then
α ∈ R(Cψ̃).

Proof. Choose a nested sequence (Fn)n∈N of finite subsets of
X such that

⋃
n∈N Fn = X . Let

fn :=
∑
l∈Fn

αlψl ∈ H ∩H∞
w .

Observe that for each k ∈ X∣∣⟨fn, ψ̃k⟩∣∣w(k) =
∣∣∣∣∣
〈∑
l∈Fn

αlψl, ψ̃k

〉∣∣∣∣∣w(k)
≤

∑
l∈Fn

|αl|
∣∣⟨ψl, ψ̃k⟩∣∣w(k)

≤
∑
l∈X

|αl|w(l)w(l)−1
∣∣⟨ψl, ψ̃k⟩∣∣w(k)

≤ ∥α∥ℓ∞w
∑
l∈X

w(l)−1
∣∣⟨ψl, ψ̃k⟩∣∣w(k)

≤ ∥α∥ℓ∞w
∥∥Gψ̃,ψ∥∥B(ℓ∞w )

.

This implies that (fn)
∞
n=1 is H∞

w -bounded. Similarly, we
see that this sequence is a Cauchy sequence with respect to
σ(H∞

w ,H00), since for m ≥ n∣∣⟨fm − fn, ψ̃k⟩
∣∣w(k) ≲ ∑

l∈Fm\Fn

w(l)−1
∣∣⟨ψl, ψ̃k⟩∣∣w(k)

≤
∑

l∈X\Fn

w(l)−1
∣∣⟨ψl, ψ̃k⟩∣∣w(k)

n→∞→ 0.

Also,

αk = (Gψ̃,ψα)k =

〈σ(H∞
w ,H

00)∑
l∈X

αlψl, ψ̃k

〉
H∞
w ,H00

= lim
n→∞

〈∑
l∈Fn

αlψl, ψ̃k

〉
= lim
n→∞

⟨fn, ψ̃k⟩.

Now let

f :=
σ(H∞

w ,H
00)

lim
n→∞

fn ∈ H∞
w .

Then, we see that

Cψ̃f =
(
⟨f, ψ̃k⟩

)
k∈X

=
(
lim
n→∞

⟨fn, ψ̃k⟩
)
k∈X

= (αk)k∈X = α.

Thus we conclude that α ∈ R(Cψ̃).

From the last two results, we obtain the following theorem:

Theorem III.11. Let V := {α ∈ ℓ∞w : α = Gψ̃,ψα}. Then
Cψ̃ : H∞

w → V is an isometric isomorphism.

Finally, we can show the completeness of H∞
w .

Theorem III.12. V is a closed subspace of ℓ∞w . Consequently,
H∞
w is a Banach space.

Proof. Let (αn)∞n=1 ⊆ V be a sequence converging to some
α ∈ ℓ∞w . Since Gψ̃,ψ is bounded on ℓ∞w , we get

Gψ̃,ψα = Gψ̃,ψ

ℓ∞w
lim
n→∞

αn =
ℓ∞w
lim
n→∞

Gψ̃,ψα
n =

ℓ∞w
lim
n→∞

αn = α.

This implies that V is a closed subspace of ℓ∞w . Since, by
Theorem III.11, V is isometrically isomorphic to H∞

w , the
latter is complete as well.
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[7] M. Fornasier and K. Gröchenig. Intrinsic localization of frames. Constr.

Approx., 22(3):395–415, 2005.
[8] K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser,
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