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Abstract

Audio-driven talking video generation has advanced sig-001
nificantly, but existing methods often depend on video-to-002
video translation techniques and traditional generative net-003
works like GANs and they typically generate taking heads004
and co-speech gestures separately, leading to less coher-005
ent outputs. Furthermore, the gestures produced by these006
methods often appear overly smooth or subdued, lacking007
in diversity, and many gesture-centric approaches do not008
integrate talking head generation. To address these lim-009
itations, we introduce DiffTED, a new approach for one-010
shot audio-driven TED-style talking video generation from011
a single image. Specifically, we leverage a diffusion model012
to generate sequences of keypoints for a Thin-Plate Spline013
motion model, precisely controlling the avatar’s animation014
while ensuring temporally coherent and diverse gestures.015
This innovative approach utilizes classifier-free guidance,016
empowering the gestures to flow naturally with the audio in-017
put without relying on pre-trained classifiers. Experiments018
demonstrate that DiffTED generates temporally coherent019
talking videos with diverse co-speech gestures.020

1. Introduction021

Co-speech gestures are an integral part of human com-022
munication, and their importance has fueled the rise of023
co-speech gesture generation. Yet, despite numerous ap-024
proaches [11, 12] for generating gestures and talking avatar025
videos, a critical gap remains: simultaneously producing re-026
alistic gestures and talking head video outputs.027

Audio-driven gesture generation approaches often fo-028
cus solely on the gesture and not with producing rendered029
video results, such as in [11]. Audio-driven gesture genera-030
tion methods have used several different network structures,031
such as LSTMs [5, 14]. Recently, methods using diffusion032
models have been growing in popularity, where these mod-033
els excel in gesture diversity and are able to leverage a va-034
riety of network structures to maintain temporal coherence035

[2, 31]. These methods, while able to produce compelling 036
gestures, still leave the problem of transferring the gestures 037
to images to produce videos or else are limited to the use 038
with virtual avatars. 039

Additionally, gesture generation methods in 3D methods 040
are able to work on the skeleton and thus the translation to 041
video is non-trivial. Though, the skeleton offers several ad- 042
vantages to gesture generation, especially when not tasked 043
with rendering a final video, such as not taking into con- 044
sideration rigid constraints such as limb length. The meth- 045
ods can work with angles and direction vectors and then 046
later apply predefined lengths to limbs to generate realistic- 047
looking skeletal representations [14, 27, 31]. 048

When rendering videos, some method of translating the 049
pose or 3D body must be used but this is non-trivial, espe- 050
cially when considering texture. Methods in 2D can inher- 051
ently use actual people/bodies and operate in image space 052
and thus do not have to perform this transfer. However, 053
without the third dimension depth ambiguity can become an 054
issue. This means that body size or limb length can change 055
from frame to frame and create unrealistic gestures. 056

Using skeletal motion in 2D can be one solution but am- 057
biguous angles in the 2D still provide some challenges. 2D 058
audio-driven video generation methods such as ANGIE [13] 059
learn an unsupervised motion representation rather than the 060
skeleton but it is limited to the front-facing upper torso of 061
the body and has a complex network structure requiring 062
large amounts of data and long training times. 063

In this paper, we propose DiffTED, the first one-shot 064
audio-driven TED-style talking video generation from a sin- 065
gle image with diffusion-generated co-speech gestures. The 066
existing methods [5, 12] rely on video-to-video translation 067
[8, 23] to render end results and as such, are unable to make 068
a one-shot video generation pipeline. We choose to cre- 069
ate a one-shot video generation method to be able to create 070
videos of an arbitrary person with an arbitrary speech audio, 071
rather than be bounded by the training subjects or having to 072
retrain for additional people. We propose instead to uti- 073
lize another approach to facilitate the one-shot video gener- 074
ation, learned 2D keypoints of Thin-Plate Spline (TPS) mo- 075
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Figure 1. Overview of the proposed pipeline: DiffTED. Given a source image and driving audio as input, we generate a gesture sequence,
x0, represented by TPS keypoints using the diffusion model. This sequence of TPS keypoints then serves as input into the video renderer
to transform the source image and produce the final talking video with co-speech gestures.

tion model [30]. With the simple representation of 2D TPS076
keypoints we can utilize a diffusion model such as several077
of the 3D gesture generation methods. Diffusion models078
excel at generating diverse but coherent gesture sequences079
and maintain a relatively simple network structure. Addi-080
tionally, the TPS keypoint representation provides a natural081
path to video generation [30]. Our method moves diffusion082
into the realm of gesture generation to generate learned 2D083
TPS keypoints driven by audio. The audio-driven TPS key-084
points are then used to render each frame individually by085
transforming a single source image. The use of diffusion086
in 2D TPS keypoint generation method allows for the cre-087
ation of compelling and diverse co-speech gestures that can088
be rendered into realistic videos. Our proposed DiffTED089
represents the first one-shot audio-driven co-speech gesture090
video generation method.091

With DiffTED, we can render realistic talking videos092
with co-speech gestures from a single source image of an093
arbitrary person and a driving speech audio of arbitrary094
length, as demonstrated in the results provided in Sec. 4 as095
well as in the supplementary video. Additionally, the source096
code of this work will be released to the public upon paper097
publication.098

The contributions of this paper could be summarized as:099
• We propose DiffTED, the first framework that can achieve100

one-shot audio-driven TED-style talking video generation101
with co-speech gestures. Our framework is built on top of102
the TPS motion model in order to transform the single103
input image with the guidance of co-speech gestures rep-104
resented with 2D TPS keypoints.105

• We introduce a diffusion-based method for the genera-106
tion of 2D TPS keypoints representing co-speech ges-107
tures. We demonstrate that the diffusion method performs108
better than the traditional LSTM-based and CNN-based109

models for the purpose of TPS-warped video generation 110
with co-speech gestures. 111

2. Related Works 112

2.1. Talking Video Generation 113

Existing works [5, 12, 13, 16, 28] synthesize talking video 114
from a sequence of 2D skeletons [5, 16] or 3D models 115
[12] with the rendering process being disjoint from the 116
generation of the gestures. In Speech2Gesture [5] and 117
Speech2Video [12] they generate the gestures using a GAN, 118
however, their methods suffer from a lack of diversity due 119
to problems inherent in GANs like mode collapse. Qian et 120
al. [16] use a VAE to model the distribution of gestures 121
by learning a template vector that is mapped to a gesture 122
sequence. In ANGIE [13], they use an unsupervised mo- 123
tion representation instead of a human skeleton or model 124
to help improve image fidelity in generation. In our work, 125
we opt to use the learned 2D keypoints of the Thin-plate 126
Spline (TPS) motion model [30] as a target for generation 127
and leverage the TPS motion model to render the keypoints 128
into images. Learned 2D TPS keypoints have also previ- 129
ously shown good results for emotion-guided talking face 130
generation [9]. Different from previous works, we focus on 131
talking video generation with co-speech gestures. 132

2.2. Co-Speech Gesture Generation 133

Recent gesture generation techniques have shifted focus to 134
data-driven methods that use deep neural networks to lever- 135
age large co-speech motion datasets to directly learn a map- 136
ping between speech and gestures. Current works use a mix 137
of representations for the speaker with there being a mix of 138
2D and 3D representations. Most works use a partial 3D 139
skeleton of the upper human body sometimes including the 140
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hands or face. There have been many approaches to the de-141
sign of the co-speech gesture predicting DNNs focusing on142
input modality (text or audio) or architecture. Some works143
use the speech text, audio, or both as input [10, 27] and they144
may additionally include other contexts like speaker iden-145
tity [27]. There have been many architectures used in co-146
speech generation with the use of transformers [13, 15, 19],147
RNNs [3, 12, 26], GANs [5, 12, 14, 27], VAEs [11, 16],148
flow-based models [1, 25] and recently diffusion models149
[4, 31]. There has also been the recent introduction of VQ-150
VAE [3, 19, 24] in works to help keep diversity in the gen-151
erated gestures. In DiffGesture [31], they introduce the use152
of a DDPM-like model for co-speech gesture generation on153
the 3D keypoints of a partial 3D skeleton to try and solve154
the problem of generation of diverse gesture sequences. All155
these co-speech gesture generation methods do not pay at-156
tention to the problem of video generation after the gestures157
are generated. In this paper, we use a DDPM-like model158
on learned 2D TPS keypoints, which bridges the gap be-159
tween co-speech gesture generation and one-shot video gen-160
eration.161

3. Method162

In this section, we introduce our DiffTED. A framework163
overview is shown in Fig. 1. It consists of two main parts,164
video generation and a diffusion model for co-speech ges-165
ture generation. We first introduce the formulation of the166
problem, then discuss the video generation, and finally the167
diffusion model.168

3.1. Problem Formulation169

To accomplish one-shot talking video generation from a170
single image and a driving speech audio, we first collect171
video clips of N frames and the corresponding speech audio172
a = {a1, ...,aN}. We extract keypoints, x = {p1, ...,pN},173
from the image using a pre-trained keypoint detector from174
Thin-Plate Spline (TPS) motion model [30]. Keypoint se-175
quences are normalized using the global mean, µ, and stan-176
dard deviation, σ. The normalized sequences are calculated177
as x = (x− µ)/σ. Our gesture generation model generates178
the normalized keypoint sequence x conditioned on the au-179
dio sequence a and initial M normalized keypoint frames180
{p1, ...,pM}. The model uses these M keypoint frames181
to set the initial pose of the speaker and we also use them182
to interpolate between segments of longer sequences. For183
one-shot video generation, we take the keypoints from the184
source image to use as the initial keypoints. The generated185
keypoints are then used to drive the video generation.186

3.2. Video Generation187

For generating video frames, we use the Thin-Plate Spline188
Motion Model [30]. To do this, we make use of its dense189

motion network and inpainting network. Since the key- 190
points used to train our diffusion model are from its key- 191
point detector, our generated keypoints maintain the same 192
semantic meaning as expected by the dense motion and in- 193
painting networks. We choose to omit the use of the back- 194
ground affine transformation because we generate the video 195
from a single image rather than from a driving video at in- 196
ference time. Each video frame is generated for the driving 197
keypoint sequence separately based on the thin-plate spline 198
(TPS) transformations between the keypoints from the in- 199
put image and the current frame’s keypoints. The dense mo- 200
tion network estimates the optical flow and occlusion masks 201
which the inpainting network uses to generate the final im- 202
age. 203

Each generated gesture sequence contains N frames. 204
Practically, this N cannot be a large number and thus each 205
sequence is limited in time. To generate longer gesture se- 206
quences and thus longer videos sequences must be stitched 207
together. To connect two sequences the last M frames of 208
the first sequence are used as the initial M frame input of 209
the second sequence. The model does not perfectly predict 210
the first M frames to be the same as the contextual input, 211
therefore the overlapping frames are interpolated. The final 212
overlapping frames are thus defined as: 213

pi = pprev,i ∗
M − i

M + 1
+ pnext,i ∗

i+ 1

M + 1
, (1) 214

where pprev,i and pnext,i are the ith frame of the over- 215
lap for the first and second sequences respectively, and 216
i ∈ {0, ...,M − 1}. 217

3.3. Diffusion-based TPS Keypoint Generation 218

Motivated by the success of recent diffusion models [7, 31], 219
we propose a novel diffusion model-based approach for 220
generating co-speech gesture keypoint sequences. 221

The goal of diffusion is given some data sample, x0, 222
from the real data distribution q(x0), to learn a model dis- 223
tribution, pθ(x0), that approximates the real distribution. 224

The forward, or diffusion, process is a Markov chain, 225
q(xt|xt−1) for t = {1, ..., T} in which Gaussian noise, 226
N (µ, σ2), following a variance schedule β1, ..., βT , is it- 227
eratively added to the data sample, x0, eventually leading 228
to pure noise. This process is defined as: 229

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (2) 230

The reverse, or denoising, process p, then goes in the op- 231
posite direction gradually taking away noise, to go from the 232
pure noise back to the data sample. Since the reverse pro- 233
cess is being trained to recover the data sample we also add 234
the contextual information, c and define the process as: 235

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c), βtI), (3) 236
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Methods FVD↓ FID↓ LPIPS↓ Div↑ BC↑

GT - - - 68.79 0.8669

EAMM [9] 140.31 18.50 0.2049 60.75 0.8033
S2G [5] 155.53 23.37 0.2183 59.05 0.8540
Ours 64.35 11.64 0.2091 61.99 0.8660

Table 1. Quantitative comparison between our method (diffusion-
based), EAMM, Speech2Gesture (S2G) methods, and the ground
truth (GT).

where, the network predicts the mean µθ(·) based on xt,237
timestep t, and the context information c. Thus, we can238
start from Gaussian noise xT ∼ N (0, I) and iteratively take239
away noise to recover the data sample x0. In our case, the240
data sample to be recovered are the image keypoints of N241
frames: x0 = {p1, ...,pN}.242

For optimization of the network, we follow DDPM243
[7] in optimizing the variational lower bound on nega-244

tive log-likelihood: E[− log pθ(x0)] ≤ Eq[− log pθ(x0)
q(x1:T |x0)

]245

[7]. Eliminating constant items that do not require train-246
ing and adding conditioning on the contextual informa-247
tion, c, we rewrite the loss function to: Lnoise(θ) =248

Eq[
∑T

t=2 DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt, c))]. We fur-249
ther follow [7] to simplify the noise loss to:250

L = E[∥ϵ− ϵθ(xt, c, t)∥2]. (4)251

Here, ϵ ∼ N (0, I) is Gaussian noise that the network,252
ϵθ(xt, c, t) is trying to predict. And with αt = 1 − βt and253
ᾱt =

∏t
s=1 αs, the noisy keypoint sequence xt, is defined254

as:255
xt =

√
ᾱtx0 +

√
1− ᾱtϵt. (5)256

Rather than training for all iterations of the diffusion pro-257
cess, training is done by uniformly sampling t, from be-258
tween 1 and T . Additionally, the model is trained under259
both conditional and unconditional modes jointly.260

Following DiffGesture [31], we adopt their implicit261
classifier-free guidance method of training. This involves262
jointly training conditional and unconditional models. The263
conditional model is conditioned with the contextual infor-264
mation, c and for the unconditional model, c is set to ∅.265
where c is the concatenation of the driving audio and the266
initial keypoints. The unconditional model is trained used267
with a probability of puncond = 0.1.268

To generate a keypoint sequence with the trained diffu-269
sion model, we first start with Gaussian noise and then iter-270
atively remove noise in xt. The network predicts both con-271
ditional and unconditional noises that are then scaled with272
parameter s:273

ϵ̂θ = ϵθ(xt, t) + s(ϵθ(xt, c, t)− ϵθ(xt, t)). (6)274

The value of the scaling parameter, s, can be increased or275
decreased to make a trade off between gesture diversity and276

quality. With a larger s, diversity will increase, but the gen- 277
erated gesture will reduce in quality. For the experiments 278
discussed in Sec. 4, we use s = 0.2. 279

4. Experiments 280

4.1. Experimental Settings 281

Dataset. Our model is trained on the TED-talks 282
dataset [18]. The training videos are downscaled to a reso- 283
lution of 384×384, focusing on the upper part of the human 284
body, and resampled to 25 FPS. Videos are in the range of 285
64 to 1024 frames. To train our model, we use the keypoints 286
from the learned keypoint detector in [30] to get the ground 287
truth keypoints for each frame. For video generation, the 288
first image from each video clip is used. 289

Metrics. We use five quantitative metrics to evaluate our 290
pipeline, three for measuring the final image quality and two 291
for measuring only the gesture sequences. 292

• Fréchet Inception Distance (FID) [6]: Aims to measure 293
the similarity between generated and real images, in an at- 294
tempt to reflect the image quality as it would be perceived 295
by humans. 296

• Fréchet Video Distance (FVD) [22]: An extension of 297
FID to videos, assessing the overall quality of generated 298
videos by evaluating temporal coherence and image qual- 299
ity. 300

• Learned Perceptual Image Patch Similarity 301
(LPIPS) [29]: An attempt to evaluate perceptual 302
similarity between images based on deep learning 303
features, which corresponds well with human judgment. 304

• Diversity (Div): To measure the diversity, we follow [31] 305
and train an auto-encoder on the keypoints to extract fea- 306
tures of the generated gesture sequences and measure the 307
mean feature distance between generated gestures and the 308
ground truth gestures. 309

• Beat Consistency (BC): In order to determine how well 310
the generated sequences align with the cadence of human 311
speech, we measure the beat consistency as in [31], but 312
as we do not have a skeletal structure, we instead use the 313
change in velocity of keypoints in adjacent frames to de- 314
tect motion beats. 315

Implementation Details. Because there is no exist- 316
ing method for one-shot video generation that can gen- 317
erate audio-driven co-speech gestures, we instead adapt 318
two existing methods that generate 2D keypoints. The 319
first method, EAMM [9] utilizes an LSTM-based archi- 320
tecture to learn a 2D keypoint detector. We then fol- 321
low Speech2Gesture [5] to implement a 1D Unet [8, 17] 322
to represent CNN-based models. In both EAMM and 323
Speech2Gesture adaptations we train on our learned 2D 324
keypoints rather than the face and skeletal keypoints from 325
those two works. These keypoints are then used on the same 326
TPS keypoint-driven image transformation framework. 327
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(a)

(b)

Figure 2. Qualitative results of the DiffTED pipeline. Five frames chosen from a sequence to show the diversity of gestures. The wide
range of motion can be seen in the arms and the body positioning of the speaker, as well as in the direction the speaker is looking. In
sequence (a) we can see movement in both hands as well as the face and body turning to look in a different direction. Sequence (b) is the
same as (a) but with keypoints added.

Methods FVD↓ FID↓ LPIPS↓ Div↑ BC↑
No Diff 145.05 19.16 0.2059 60.75 0.8033
Noise 65.44 12.69 0.2116 61.99 0.8660
Position 103.64 16.61 0.1867 59.17 0.8633

Table 2. Ablation study. We show quantitative results for the
method with no diffusion (EAMM-based method), diffusion on
noise (ours), and diffusion on keypoint position.

For our training and testing, we use N = 34 frames with328
M = 4 frames of keypoints for contextual information. Au-329
dio processing is done as in DiffGesture [31] to get N audio330
feature vectors of 32-D. In the training dataset, videos are331
sampled with a stride of 10 frames. In the testing set, the332
entire video is used and segmented into N frame long clips333
with an overlap of M frames. Only the first M frames of334
the first clip are used as contextual information following335
the procedure discussed in Sec. 3.2.336

For the diffusion model, we use timesteps of T = 500337
and a linearly increasing variance schedule of β1 = 1e− 4338
to βT = 0.02. The hidden dimension for the transformer339
blocks is set as 256 with 8 transformer blocks. We use an340
Adam optimizer with a learning rate of 5e − 4. Training341
takes about 1 hour on an NVIDIA RTX A5000.342

4.2. Experimental Results343

Quantitative Results. Quantitative results with the five344
metrics between the diffusion model and the EAMM and345
Speech2Gesture models are shown in Tab. 1. The EAMM346
and Speech2Gesture methods show worse performance in347
both FVD and FID metrics, similar results for the LPIPS,348
and moderately worse performance in BC and diversity.349

(a)

(b)

Figure 3. Failure case of the Speech2Gesture-based network
where the arm, highlighted in blue, grows throughout the sequence
in (a). Where in the diffusion network, the relative arm length in
the sequence stays the same size as shown in (b).

Since the rendering method does not change between ei- 350
ther the diffusion-based or the EAMM and Speech2Gesture 351
models, the results compare the quality of the gesture 352
generation of TPS keypoints. In both the EAMM and 353
Speech2Gesture models, the FVD score is significantly 354
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(a)

(b)

Figure 4. The EAMM-based method suffers from jittering effects in the generated gestures. (a) show 4 subsequent frames that have a quick
jitter seen in the hand, highlighted in red. The hand moves from the initial position in the first frame to a raised position in second, back to
the initial position in third, and then lower in the fourth. A smoother and more gradual transition between poses is expected as seen in the
sequence of (b), which is generated by our diffusion-based method.

worse than the diffusion model. The FVD metric takes355
into consideration the temporal coherence of a video, where356
the EAMM and Speech2Gesture models trail behind our357
method.358

Qualitative Results. In Fig. 2, we show several frames359
from a sequence to showcase gesture diversity. We show360
the sequence with (Fig. 2b) and without (Fig. 2a) the diffu-361
sion generated keypoints. The gestures shown have a wide362
range of motion in both the arms of the speaker.363

Figure 3 provides a failure case for the Speech2Gesture364
model in which the speaker’s arm grows in length show-365
ing that the model is unable to maintain consistent sizing366
of limbs. Maintaining limb size is an important aspect of367
creating realistic and believable videos of humans, the dif-368
fusion model is able to maintain believable transformations369
of the arms unlike in the Speech2Gesture model. Similarly,370
in Fig. 4, we show an example of a jittering motion that371
is common to sequences generated by the EAMM model.372
Smooth gestures and smooth transitions between poses seen373
in the diffusion model’s output show that diffusion is able374
to create temporally coherent gestures, whereas the EAMM375
model struggles with always maintaining that coherency.376

Ablation Study. We also perform an ablation study to com-377
pare the use of the pipeline with no diffusion, with diffusion378
on the noise, and with diffusion on keypoint position. The379

results of this ablation study are shown in Tab. 2. The non- 380
diffusion method uses the EAMM-based network to pro- 381
duce keypoints. The diffusion on the noise is using the 382
pipeline as described in Sec. 3 with the training objective 383
Eq. (4). The diffusion on the keypoint position method is 384
replacing the Eq. (4) with a loss on the keypoint position 385
instead of the generated noise. The keypoint position loss is 386
defined as: 387

L = E[∥x− x̂θ(zt, c, t)∥2]. (7) 388

Here, instead of predicting the noise we directly diffuse the 389
keypoint positions, x̂θ(·). The noise, in the base diffusion 390
model is subsequently removed from the noisy sample, but 391
in this method, the denoised sample is instead predicted di- 392
rectly. This method has been used recently in EDGE [21] 393
and MDM [20]. In these works the method is shown to 394
give better results and introduces the ability to add addi- 395
tional losses on the data sample directly. In our ablation 396
study, this method does not perform as well as noise predic- 397
tion and may require additional metrics to outperform the 398
baseline diffusion model. 399

In Fig. 5 we illustrate one of the differences in results 400
between diffusing on the position rather than on diffusing 401
on the noise. The diffusion on position examples show an 402
unnatural bend in the arms of the subject while diffusing 403
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(a) (b) (c) (d)

Figure 5. Qualitative example of ablation on diffusion on position (a)(c), and diffusion on noise (b)(d). In (a), the outstretched arm has an
unnatural bend to it, while in (b) the arm is straight. Image (c) shows another example of an unnatural bend in the arm, where in (d) the
arm is straight as expected.

(a) (b) (c) (d)

Figure 6. Example of distorted face artifact if the starting image is facing one side. With (a) as the source image of the video, when the
person turns to face forward the face of the subject will be distorted as seen in (b). Image (c) shows another example of a source image
with a person looking to the side and (d) the resulting distorted face when the speaker faces forward.

on the noise produces more natural looking limbs. While,404
as mentioned previously predicting the denoised sample di-405
rectly instead of predicting the noise shows good results in406
other work (EDGE [21] and MDM [20]), this direct predic-407
tion leads to some artifacts not shown in the noise prediction408
model. However, with these artifacts, the method still out-409
performs the other baseline methods, and, potentially with410
additional losses, this method shows to be a promising di-411
rection for improving on this work.412

User Study. The metrics used to quantitatively mea-413
sure the video generation aim to mimic human perception414
and mirror human quality assessment but leave room for415
improvement. As such, we conduct a user study to bet-416
ter validate the qualitative performance of our model. The417
study consists of 10 participants, who grade videos based418
on the quality of the generated gestures rather than the im-419
ages. Specifically, we take 10 audios to generate videos420
for 5 different methods. The methods include the ground421
truth keypoints, DiffTED (our method), DiffTED but pre-422
dicting keypoint position rather than the noise, the EAMM-423
based method [9], and the Speech2Gesture-based method424

Method Naturalness Smoothness Synchrony
GT 4.25 4.16 4.35
EAMM [9] 2.02 1.76 1.97
S2G [5] 2.45 2.31 2.30
Position 2.86 2.57 2.65
Ours 3.35 3.33 3.21

Table 3. User study results. The ratings on naturalness of gesture,
smoothness of gesture and synchrony between speech and gesture
are done on a scale of 1 to 5, where 5 is the best.

[5], with the order of these methods being shuffled for each 425
audio. The participants are asked to grade the videos based 426
on the smoothness of the gesture, the naturalness of the ges- 427
ture, and the synchrony of the speech and gesture. Grad- 428
ings are done on a scale of 1 to 5 where 5 is the best. Ta- 429
ble 3 shows the results for the user study. Our method per- 430
formed better than both baselines in all metrics, with only 431
the ground truth performing better. The diffusion on the po- 432
sition rather than on the noise also performed better than 433
both of the baselines. 434
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(a) (b)

Figure 7. Images show examples of distorted hands showcasing
the blurry artifacts that can occur, hands are highlighted in blue.

5. Limitations and Future Work435

While DiffTED is able to create compelling videos from436
generated gestures, the gestures focus mainly on the body.437
While the head and the rest of the body are moved, the face438
often barely moves and does not always appear to be speak-439
ing. Additionally, there are some artifacts in the rendering440
process when side-views are used as source images. The441
diffusion model is able to create realistic gestures that look442
to the side and to a forward facing position, however, the443
inpainting network is unable to fill in the missing half of444
the body, this is most noticeable in the face as shown in the445
examples in Fig. 6. These types of issues can be mostly446
avoided by selecting front-facing views for the source im-447
ages.448

Additionally, the video rendering creates some blurry ar-449
tifacts in the final images, this is mostly noticeable in the450
hands of the speaker. Figure 7 shows two examples of451
blurry, distorted hands. Because of occlusion of the fingers452
and the lack of keypoints specifically tracking the finger po-453
sition, rendering hands proves to be a non-trivial problem.454

For expanding on this work, we aim to incorporate a455
more robust face generation method to control the face and456
generate compelling talking faces. Additionally, adding an457
image refinement network to improve image quality and458
rectify the blurry artifacts is potentially a promising direc-459
tion.460

6. Conclusion461

In this work, we present DiffTED, the first one-shot audio-462
driven video generation with diffusion-based co-speech463
gestures. We utilize the diffusion model to create coherent464
and diverse audio-driven gestures, represented as TPS key-465
points. These TPS keypoints then drive the transformation466
of a single image to create realistic TED talk style videos.467
Our experiments show that a diffusion model can outper-468
form EAMM and Speech2Gesture-based approaches in cre-469
ating temporally consistent videos and realistic individual470
frames when utilizing the same one-shot image rendering471

method. 472
Our work is focused on producing TED talk style videos 473

from a single image and a driving speech audio. The in- 474
tended application of these style videos is to expand the 475
ability for people to make presentation style videos in the 476
same vein as TED talks. However, we have to recognize the 477
potential for misuse and the ability for our work to enable 478
the dissemination of disinformation. Proper use of this work 479
will, we hope, enable educational talking videos in the style 480
of TED talks and also enable the improvement of methods 481
used to detect fake videos. 482
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