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Abstract
Large language models (LLMs) excel at complex reasoning when they include
intermediate steps, known as chains of thought (CoTs). However, these rationales
are often overly verbose, even for simple problems, leading to wasted context,
increased latency, and higher energy consumption. We observe that verbose CoTs
and concise CoTs occupy distinct regions in the model’s residual-stream activa-
tion space. By extracting and injecting a steering vector to transition between
these regions, we can reliably shift generation toward more concise reasoning,
effectively compressing CoTs without retraining. We formalize this approach as
Activation-Steered Compression (ASC), an inference-time technique that short-
ens reasoning traces by directly modifying hidden representations. In addition,
we provide a theoretical analysis of the impact of ASC on the output distribution,
derived from a closed-form KL-divergence-bounded constraint to regulate the steer-
ing strength. Using only 50 paired verbose and concise examples, ASC achieves
up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while
maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free
method, ASC introduces negligible runtime overhead and, on MATH500, delivers
an average 2.73× speedup in end-to-end reasoning wall clock time on an 8B model.
The code is available at https://github.com/ArminAzizi98/ASC.

1 Introduction
Explicit reasoning traces, commonly known as chains of thought (CoTs), significantly enhance the
performance of LLMs on multi-step tasks such as mathematical problem solving, logical inference,
and program synthesis (Wei et al., 2022b; Cobbe et al., 2021; Wang et al., 2023b). However,
this advantage often comes with the drawback of generating unnecessarily lengthy and verbose
rationales (Chen et al., 2025c; Xu et al., 2025). This verbosity not only increases computational costs
by producing more tokens and consuming additional energy, but also risks impairing performance
through overthinking (Chen et al., 2025c; Wang et al., 2025).

In this paper, we ask: Can we compress chains of thought without retraining, by manipulating
the model’s hidden representations at inference time? We answer the question affirmatively with
Activation-Steered Compression (ASC). Our key observation is that internal representations of
verbose, natural-language CoTs and their concise, math-centric counterparts occupy distinct re-
gions in the model activation space. To evaluate this hypothesis, we sample questions from the
MATH500 (Hendrycks et al., 2021a) benchmark and use two open weight reasoning models:
DeepSeek-Distill-Qwen-7B and DeepSeek-Distill-LLaMA-8B. For each sample, we generate two
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variants of the CoT: (1) a verbose reasoning chain produced by the model itself under standard
prompting and (2) a concise reasoning produced by GPT-4o prompted to minimize natural language
verbosity and maximize math-centric reasoning. We feed each input independently into the model
and extract residual stream activations, that is, the outputs of a transformer block, in a predetermined
layer (e.g., layer 21 in our experiments). A two-dimensional t-SNE projection (Van der Maaten &
Hinton, 2008) of these activations, shown in Figure 1, reveals a clear separation between the two
reasoning styles. This separation motivates the construction of a steering vector, which is a direction
in the activation space that shifts the model’s reasoning towards the concise response generation mode.
By extracting this vector from a small calibration set and injecting it during generation, we guide the
model to focus on essential steps, reducing verbosity while preserving accuracy. An example of such
a pair of responses is shown in Fig. 2.

Figure 1: t-SNE of residual stream rep-
resentations for long (verbose) and short
(concise) CoTs

Why Activation Steering for CoT Compression? It is
lightweight, requires only the addition of a single vector
during inference, and directly reshapes hidden represen-
tations to enable on-the-fly compression. Because it does
not involve updating the model parameters, this method
is deployment-agnostic. Moreover, it is orthogonal and
compatible with other categories of CoT compression.

Steering involves not only the direction of modifications
in the activation space but also determining the appropri-
ate scale of the steering vector. If the scale is too small,
the intervention has little effect; If it is too large, the
model’s output distribution can change unpredictably or
even collapse. Previous approaches typically choose this
scale heuristically, often by grid search or visual inspection. In contrast, we introduce a principled
method for calibrating the steering strength by explicitly bounding the KL divergence between the
original and steered output distributions.

Figure 2: A representative pair of verbose vs. concise CoTs used for generating the steering vector.

Problem

Question: Let f(x) = −3x2 + x− 4, g(x) = −5x2 + 3x− 8, and h(x) = 5x2 + 5x+ 1. Express f(x) + g(x) + h(x)
as a single polynomial, with the terms in order by decreasing degree. Let’s think step by step.

Verbose Chain of Thought (603 tokens)
First, I need to add the three functions f(x), g(x), and h(x) together. To do this, I should
start by writing down each function separately.\n\nSo, f(x) is -3xˆ2 + x - 4, g(x) is -5xˆ2 + 3x
- 8, and h(x) is 5xˆ2 + 5x + 1.\n\nNext, I’ll add them term by term. That means I’ll combine the
coefficients of the xˆ2 terms, the x terms, and the constant terms separately.\n\nLet’s start
with the xˆ2 terms. For f(x), the coefficient is -3, for g(x) it’s -5, and for h(x) it’s 5.
Adding these together: -3 + (-5) + 5.\n\nWait, that’s -3 -5 +5. Hmm, that simplifies to (-3
-5) +5, which is -8 +5, resulting in -3.\n\nOkay, so the xˆ2 term in the sum is -3xˆ2.\n\nNow,
moving on to the x terms. For f(x), the coefficient is 1, for g(x) it’s 3, and for h(x) it’s
5. Adding these: 1 + 3 +5.\n\nThat’s straightforward: 1+3 is 4, plus 5 is 9. So the x term
is 9x.\n\nFinally, the constant terms. For f(x), it’s -4, for g(x) it’s -8, and for h(x) it’s 1.
Adding these: -4 + (-8) +1.\n\nThat’s -4 -8 +1, which is (-12) +1, resulting in -11.\n\nPutting
it all together, the sum is -3xˆ2 +9x -11.\n\nWait, let me double-check my calculations to make
sure I didn’t make any mistakes.\n\nFor the xˆ2 terms: -3 (from f) + (-5) (from g) +5 (from h) =
(-3 -5) +5 = -8 +5 = -3. That seems correct.\n\nFor the x terms: 1 (from f) +3 (from g) +5 (from
h) = 1+3+5=9. That’s correct.\n\nFor the constants: -4 (from f) + (-8) (from g) +1 (from h) =
(-4 -8) +1 = -12 +1 = -11. That’s correct.\n\nSo, combining these, the final polynomial is -3xˆ2
+9x -11.\n\nI think that’s all. I don’t see any mistakes in the addition.\n\n**Final Answer**\nThe
sum of the polynomials is \boxed{-3xˆ2 + 9x - 11}.\n</think>

Concise Chain of Thought (251 tokens)
\[\n f(x) + g(x) + h(x) = (-3x^2 + x - 4) + (-5x^2 + 3x - 8) + (5x^2 + 5x + 1)\]\n\nCombine like terms:
\n\n1. **Quadratic terms**:\n \[-3x^2 - 5x^2 + 5x^2 = (-3 - 5 + 5)x^2 = -3x^2 \]\n\n2. **Linear terms
**:\n \[ x + 3x + 5x = (1 + 3 + 5)x = 9x \]\n\n3. **Constant terms**:\n \[-4 - 8 + 1 = -11 \]\n\n
Combine results:\n\[f(x) + g(x) + h(x) = -3x^2 + 9x - 11 \]\n\nFinal answer:\n\[\boxed{-3x^2 + 9x - 11}
\]
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2 Related Work

Previous work tackles the CoT efficiency gap primarily through methods that require additional
training: knowledge distillation schemes that learn concise rationales (Shen et al., 2025), latent
token approaches that embed reasoning in compact vectors (Li et al., 2024), token-level pruning with
supervised objectives such as TOKENSKIP (Xia et al., 2025), reinforcement-learning-based trajectory
shortening exemplified by THINKPRUNE (Hou et al., 2025), and latent-reasoning optimization
frameworks that fine-tune internal deliberation steps (Chen et al., 2025a). While effective, these
techniques incur considerable computational cost or architectural modifications. In contrast, we
propose a training-free, inference-time method that compresses CoTs by directly manipulating hidden
representations, retaining the accuracy benefits of reasoning traces without the overhead of retraining.

Chain of drafts (CoD) (Xu et al., 2025) and the approach of (Stolfo et al., 2024) reduce verbosity by
embedding explicit length constraints in the prompt. CoD instructs the model to “think step by step”
but keep the each draft to at most five words, whereas (Stolfo et al., 2024) limits the final answer to a
user-specified number of sentences to create inference-time interventions. Although such heuristics
can shorten outputs, they assume that the model will faithfully obey length directives, a behavior that
recent studies show is unreliable for reasoning-oriented LLMs (Fu et al., 2025).

The closest work to ours is SEAL (Chen et al., 2025b), which constructs its steering vector by manually
labeling the thought segments as execution, reflection, or transition, and then damping the latter two
segment types. In contrast, (i) we learn a single verbosity axis from paired VERBOSE–vs.–CONCISE
CoTs without any manual labels, (ii) rely solely on off-the-shelf prompts to generate training pairs,
and (iii) obtain a domain-agnostic vector that generalizes across reasoning tasks. Therefore, our
method provides a taxonomy-free, training-free complement to SEAL’s category-based calibration.

3 Background

We place ASC at the intersection of research on CoT prompting and representation engineering.

Chain-of-thought (CoT) prompting improves multi-step reasoning by encouraging language models
to articulate intermediate steps, often using signals such as “Let’s think step by step” (Wei et al.,
2022a). Several enhancements have refined this approach: self-consistency(Wang et al., 2023a) sam-
ples multiple rationales and selects the response supported by the majority; tree-of-thought (Yao et al.,
2023) performs look-ahead search across branching reasoning paths; and program-of-thought (Chen
et al., 2023) converts natural language reasoning into executable code. Although effective, these
methods often increase the output length significantly. A recent study (Chen et al., 2025c) showed that
o1-style reasoning models frequently produce excessively long CoTs due to redundant computations
and unnecessary self-verification. We term these inefficiencies verbosity, which we aim to address
through inference-time activation-level intervention.

Activation Steering and Representation Engineering Linear activation editing has emerged as a
lightweight alternative to fine-tuning. ActAdd demonstrates that adding a direction corresponding
to “<|positive sentiment|>” can change the tone of the output (Turner et al., 2023). Reference(Burns
et al., 2024) formalizes the approach as representation engineering, defining vectors as basis elements
in a controllable subspace. This idea has now found use cases in style transfer (Konen et al., 2024),
factual correction (Meng et al., 2022), and gender debiasing (Kong et al., 2024). However, existing
work has yet to investigate the correlation between activation steering and CoT efficiency.

4 Methodology

Motivated by the goal of improving CoT efficiency through manipulation of the model’s activation
space, we introduce Activation-Steered Compression (ASC)—a method that shifts the model’s
hidden representations toward the subspace associated with concise, math-centric chains of thought.
The method is summarized in Figure 3. First, we randomly sample 50 calibration samples from target
dataset (in our case we have focused on MATH500 (Hendrycks et al., 2021a) and from GSM8K
(Cobbe et al., 2021)). For each question qi in the calibration set, we obtain I) Verbose CoT li –
generated by the target model with standard CoT prompting (Wei et al., 2022b). II) Concise CoT si –
produced by GPT-4o instructed to use concise math-centric reasoning with minimal English. We
denote the output of the transformer block in layer ℓ as residual stream of layer ℓ, and use hℓ to refer
to it. Formally, hℓ is a matrix of shape T × d, where T is the number of tokens in the input sequence
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Figure 3: Steering vector extraction and application using pairs of concise and verbose CoTs.

and d is the hidden dimension of the model. With a slight abuse of notation, we write hℓ(s) to denote
the residual stream in layer ℓ when a string s is fed into the model.

Following this notation, we feed the concatenated input [question + CoT] into the target model
and extract the residual-stream activations corresponding to the final token in the input sequence.
Specifically, we obtain hℓ(qi ⊕ li)[−1]2 and hℓ(qi ⊕ si)[−1] at a selected layer ℓ, corresponding to
the verbose and concise CoTs, respectively. The steering vector is then computed as the average
difference between these final token activations, that is, the activations associated with the token EOS,
in all examples N .

vℓ =
1

N

N∑
i=1

(
hℓ(qi ⊕ si)[−1]− hℓ(qi ⊕ li)[−1]

)
.

vℓ is the desired steering direction for shifting the long and verbose CoT toward a more compact CoT.
At inference time, given a new question and the i-th generated token xi, we modify the residual stream
by injecting the steering vector vℓ into layer ℓ during each decoding step, until an end-of-sequence
delimiter is emitted. Specifically, for each decoding step i, we apply:

hℓ(xi)← hℓ(xi) + γvℓ ∀ i ∈ [1, decoding_steps]

Here, γ is a hyperparameter that controls the injection strength of the steering vector. If γ is too
large, it can significantly distort the residual stream distribution, leading to degenerate or incoherent
output. In contrast, if γ is too small, the steering effect becomes negligible. In what follows, we
analyze the effect of the scaling parameter γ on the model output distribution from a theoretical
perspective. We derive a safe upper bound on γ that guarantees that the output divergence remains
within a user-specified threshold. For simplicity, we now drop the layer index ℓ throughout the
analysis. We steer hidden activations by adding a direction v at layer ℓ, and choose the scale γ so
that the resulting output distribution remains close to the unsteered model. Formally, letting z and z̃
denote the pre-softmax logits before and after steering, we constrain the forward KL divergence:

KL
(
softmax(z) ∥ softmax(z̃)

)
≤ ε,

where ε is a user-specified divergence budget (we use ε = 10−3 in practice). The full derivation,
deferred to Appendix A.1, decomposes the logit shift into a linear component γWv and a curvature-
dependent remainder, where W is the Jacobian J(.) of the logit map with respect to the activations
of layer ℓ. Under a mild smoothness condition with constant L as the upper bound of directional
curvature, we derive a provable upper bound of KL that is quadratic, cubic, and quartic in γ.
Specifically, defining

a :=
∥∥Wv

∥∥
2
, L := sup

t∈[0,γ]

∥J(h+ tv)− J(h)∥2
t

,

we obtain a closed-form scale γmax that ensures KL ≤ ε. The expression includes a curvature-aware
safety factor:

γmax = max
{
0,
(
1− Lγraw

4a

)
γraw

}
,

2⊕ is the string concatenation operator.
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where γraw = (a/L) · x and x is determined by solving the dimensionless cubic equation x3 + x2 −
4εL2/a4 = 0. All proofs, derivations, and bounds appear in Appendix A.1. We adopt this calibrated
γmax in all experiments to control distributional shift while preserving the intended compression .

5 Experiments

This section presents our experimental results demonstrating that ASC effectively reduces the length
of CoT reasoning while maintaining or improving task performance. We begin by describing our
experimental setup in section 5.1, followed by the main results in section 5.2.

5.1 Experimental Setup

Models, Datasets, and Baselines. We evaluate ASC on several recent open-source reasoning
models: DeepSeek-R1-Distill-LLaMA-8B (DeepSeek-AI, 2025b), DeepSeek-R1-Distill-Qwen-7B
(DeepSeek-AI, 2025a), and QwQ-32B (Team, 2025). The evaluation is performed on multiple
reasoning benchmarks, including MATH-500 (Hendrycks et al., 2021b) and GSM8K (Cobbe et al.,
2021). As baselines, we compare ASC against vanilla CoT prompting (no steering), CoD (Xu et al.,
2025), DEER (Yang et al., 2025), TCC (Muennighoff et al., 2025), and SEAL (Chen et al., 2025b), a
recent method for compressed reasoning that uses steering vectors.

5.2 Main Results

Table 1 presents the performance of ASC compared to baseline CoT compression techniques. On
the DeepSeek-R1-Distill-LLaMA-8B model, ASC reduces CoT length by up to 61.2% without any
loss in accuracy, outperforming prior methods in compression effectiveness. On the same model and
the GSM8K dataset, ASC achieves a compression rate of 67.43%, while also slightly improving
answer accuracy by 0.2%, matching or exceeding the performance of the vanilla CoT baseline. On
MATH500, ASC achieves a 33.8% reduction in CoT length, again outperforming all baselines. On
the larger QwQ-32B model, ASC compresses CoTs by 50.7% and 45.7% on MATH500 and GSM8K,
respectively. Notably, on MATH500, it yields a 0.4% accuracy improvement over the vanilla CoT.
Qualitative results on the CoT compression is provided in Appendix C.

Qwen-7B Llama3-8B QwQ-32B
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Figure 4: Speed comparison of CoT, CoD,
and ASC on MATH500 dataset.

Since one of the primary goals of CoT compression is to
reduce end-to-end latency, we measure the average gen-
eration time for three models on the MATH500 dataset.
Latency is measured on an NVIDIA A6000 GPU. We
then compute and report the inverse latency (i.e., gener-
ation speed) for three decoding strategies: standard CoT,
Chain-of-Drafts (CoD), and our proposed ASC, as shown
in Figure 4. The results indicate that ASC improves the
generation speed of CoT-based reasoning by up to 2.73×,
with no loss in answer accuracy.

Table 1: Performance comparison of CoT, TCC, DEER, CoD, SEAL and ASC on reasoning tasks.
Model Method MATH500 GSM8k

Acc. (%) ↑ Tokens ↓ Acc. (%) ↑ Tokens ↓

Deepseek-R1-Distill-Qwen-7B

CoT 88.8 3984 88.6 1080
TCC 89.2 3864 88.0 892

DEER 89.8 2143 90.6 917
SEAL 89.4 2661 88.4 811
CoD 88.2 1852 87.9 550
ASC 89.0 1543 88.6 536

Deepseek-R1-Distill-LLaMA-8B

CoT 89.2 3554 89.1 2610
DEER 89.2 2830 89.3 2124
CoD 88.8 3028 89.1 914
ASC 89.2 2353 89.3 850

QwQ-32B

CoT 93.8 4508 96.5 1530
TCC 94.4 4315 95.8 1348

DEER 94.6 3316 96.3 977
CoD 93.8 3400 96.2 1116
ASC 94.2 2222 96.4 830
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6 Discussion and Ablations
Cross-Task Generalization.
To investigate whether CoT verbosity is consistently reflected in the model’s representation space, we
examine the alignment of ASC steering vectors extracted from different reasoning tasks. Specifically,
we analyze whether steering vectors derived from one dataset generalize to another. We conduct this
study using the DeepSeek-R1-Distill-Qwen-7B model and two benchmarks: GSM8K and MATH500.
Following the ASC methodology, we independently compute steering vectors for each dataset using
50 paired examples. We then assess the cosine similarity between the two vectors to quantify their
alignment. In addition, we evaluate cross-task generalization by applying each dataset’s steering
vector to compress CoTs in the other dataset, measuring both length reduction and accuracy retention.
The results are presented in Table 2. First, the cosine similarity between the two steering vectors
is 0.92, indicating strong alignment in the vectors from verbose to concise CoTs in MATH500
and GSM8K. Second, the performance of cross-dataset steering matches closely that of in-dataset
vectors. Although there is a slight drop in accuracy and a slight increase in token count, ASC with
cross-dataset steering still outperforms the vanilla CoT baseline (Table 1). These findings suggest
that verbosity reduction occupies a largely shared latent direction across reasoning tasks, supporting
our initial hypothesis that CoT efficiency can generally be attributed to the latent representations of
the model.

Dataset Steering Vector Source Accuracy (%) CoT Tokens

MATH500 MATH500 (in-dataset) 89.0 1543
GSM8K (cross-dataset) 88.8 1631

GSM8K GSM8K (in-dataset) 88.6 536
MATH500 (cross-dataset) 88.4 611

Table 2: Performance of ASC on MATH500 and GSM8K using dataset-specific vs. cross-dataset
steering vectors. The model used is DeepSeek-Distill-Qwen-7B.
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Figure 5: Effect of steering strength γ
on CoT compression and answer accu-
racy for the DeepSeek-R1-Distill-Qwen-
7B model on the MATH500 dataset.

Effect of Steering Strength γ. The steering strength γ
is critical in ASC, as it directly influences both the de-
gree of CoT compression and the quality of the generated
output. To analyze its effect, we use the DeepSeek-R1-
Distill-Qwen-7B model on the MATH500 dataset and
perform a sweep over a range of γ values. The sweep be-
gins at γ = 0 (no steering) and gradually increases until
the steering induces noticeable compression along with a
significant drop in answer accuracy γ = 0.5. The results
are shown in Figure 5, highlighting the trade-off between
CoT compression and answer accuracy as the steering
strength γ increases. For small values of γ, increasing
the strength yields substantial reductions in CoT length
with minimal impact on accuracy. However, beyond a
certain point, further increases in γ lead to significant
accuracy degradation despite continued compression. No-
tably, the value of γ selected by ASC—computed via the
KL-divergence–constrained scaling—closely aligns with
the empirical breakpoint where performance begins to degrade.

7 Conclusion
We introduce Activation-Steered Compression (ASC), a training-free method for reducing the ver-
bosity of Chain-of-Thought (CoT) reasoning in large language models by manipulating internal
representations at inference time. By leveraging steering vectors derived from paired verbose and
concise rationales, ASC effectively compresses CoTs without sacrificing accuracy. ASC complements
existing CoT compression techniques and requires no retraining, and overall advances the efficiency
and practicality of LLM-based reasoning.
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A KL-Constrained Scaling of Steering Vectors
A.1 Bounding the Distributional Shift of Additive Steering
We study the output–distribution shift incurred when an additive steering update is applied to the
hidden state at layer ℓ of a language model. For an activation vector h ∈ Rd we form

h̃ := h+ γv, ∥v∥2 = 1,

to analyze how large the Kullback–Leibler (KL) divergence between the pre- and post-steering output
distributions can become.

Throughout, let Fl→logit : Rd → Rm denote the sub-network that maps layer-ℓ activations to the
pre-softmax logits. All vector norms ∥ · ∥2 and operator-2 norms are Euclidean; they coincide when
the argument is a vector.

Notation for higher-order derivatives. The Jacobian of Fl→logit at h is the matrix

J(h) := ∇hFl→logit(h) ∈ Rm×d,

whose j-th row is (∇hFj(h))
⊤. The Hessian of a scalar component is the usual matrix of second

partials. For a unit vector a we abbreviate directional Hessian Evaluation

∇2
hFl→logit(h)[a,a] :=

(
∇2

hF1(h)[a,a], . . . ,∇2
hFm(h)[a,a]

)⊤ ∈ Rm.

A.1.1 A smoothness assumption
Assumption 1 There exists a constant L > 0 such that for every unit direction v and every t ∈ [0, γ]∥∥J(h+ tv)− J(h)

∥∥
2
≤ L t.

Implication. Assumption 1 is stronger than merely requiring bounded second derivatives. In fact,
according to the mean value theorem for vector-valued Lipschitz maps, J is differentiable almost
everywhere and its derivative (the third-order tensor of second partials) has the operator norm at
most L. Contracting this tensor twice with the same unit vector v yields∥∥∇2

hFl→logit(h+ τv)[v,v]
∥∥
2
≤ L, ∀τ ∈ [0, γ], (1)

because ∥H[v,v]∥2 ≤ ∥H∥op∥v∥22 = ∥H∥op. Thus Assumption 1 implies–though it is not equiva-
lent to–a uniform bound on the directional Hessian.

A.1.2 Local linearization with a controlled remainder
Define

z := Fl→logit(h), W := J(h) ∈ Rm×d.

By the fundamental theorem of calculus and Eq. (1), the steered logits decompose as

z̃ = Fl→logit(h+ γv) (2)

= z+ γWv︸ ︷︷ ︸
:=δ

+

∫ γ

0

(γ − s)∇2
hFl→logit(h+ sv)[v,v] ds︸ ︷︷ ︸

:=r(γ)

. (3)

The linear component is δ = γWv, while the remainder obeys

∥r(γ)∥2 ≤ 1
2 Lγ

2. (4)

A.1.3 KL divergence as a Bregman divergence
Let g(x) = log

∑m
i=1 e

xi and denote

p = softmax(z), p̃ = softmax(z̃).

For the log-partition function g, the Bregman divergence is

Dg(z̃, z) = g(z̃)− g(z)− ⟨∇g(z), z̃− z⟩ = KL(p∥p̃). (5)

Thus, the classical forward KL direction appears.
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A.1.4 Integral representation and spectral bound
Using the integral representation of a Bregman divergence for twice-differentiable convex g we obtain

KL(p∥p̃) =
∫ 1

0

(1− t)(z̃− z)⊤∇2g
(
z+ t(z̃− z)

)
(z̃− z) dt. (6)

Because ∇2g(x) equals the Fisher information matrix F(x) = diag(p) − pp⊤, whose largest
eigenvalue never exceeds 1

2 , and the factor (1− t) integrates to 1
2 , we have

KL(p∥p̃) ≤ 1
4 ∥z̃− z∥22. (7)

This constant 1/4 is tight for our purposes.

A.1.5 Putting the pieces together
With z̃− z = δ + r(γ) and the triangle inequality,

∥z̃− z∥22 ≤
(
∥δ∥2 + ∥r(γ)∥2

)2
(8)

≤ ∥δ∥22 + 2∥δ∥2∥r(γ)∥2 + ∥r(γ)∥22. (9)

Invoking (4) and ∥δ∥2 = γa with a := ∥Wv∥2, we derive from (7) the corrected steering bound:

KL(p∥p̃) ≤ 1
4 γ

2a2 + 1
4 Laγ

3 + 1
16 L

2γ4 (10)

Safe γ budget with a curvature safety factor. Fix a target divergence ε > 0. Ignoring the last
term in (10) yields the cubic inequality

1
4a

2γ2 + 1
4Laγ

3 ≤ ε.

Set x := (Lγ)/a (dimensionless) and β := 4εL2/a4. The inequality becomes

x3 + x2 − β ≤ 0,

whose unique positive root solves
x3 + x2 − β = 0.

Writing the depressed cubic

(x+ 1
3 )

3 − 1
3 (x+ 1

3 ) +
(

2
27 − β

)
= 0

and setting

p = −1
3 , q = 2

27 − β, ∆ =
(
q
2

)2
+

(
p
3

)3
,

the real Cardano root is

x =
3

√
− q

2 +
√
∆+

3

√
− q

2 −
√
∆− 1

3 . (11)

Numerically, this expression is unambiguous if one takes the real branch of each cube root. Finally,

γraw =
a

L
x. (12)

Degenerate direction a = 0. If a = 0 (the steering vector lies in the null-space of W) the
quadratic and cubic terms vanish; retaining the quartic term in (10) gives L2

16 γ
4 ≤ ε and hence

γ ≤ (16ε)1/4/
√
L. We therefore set

γraw =

{
(a/L)x if a > 0,

(16ε)1/4/
√
L if a = 0.
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Curvature safety factor. Because the quartic term in (10) is strictly positive, γraw is slightly
optimistic when Lγ is not negligible relative to a. We therefore define the final scale

γmax = max
{
0,
(
1− Lγraw

4a

)
γraw

}
(13)

with the convention Lγraw/a := 0 when a = 0. One checks directly that substituting γ = γmax

into (10) yields KL ≤ ε whenever x < 4, which covers all practical regimes.

When L→ 0 the safety factor tends to 1 and Eq. (13) continuously reduces to the familiar local-linear
scale γmax = 2

√
ε/a.

In practice, we estimate the two scale parameters α and L on the small calibration set (50 hidden
states). For each hidden state, we evaluate one Jacobian–vector product with the chosen steering
direction and record its Euclidean norm; the median of these norms is taken as our estimate of a. To
obtain L, we compute a single Hessian vector product along the same direction at each calibration
point, collect the resulting norms, take their 95th percentile. Both JVP and HVP operations are
one-line calls in modern autodiff frameworks, so the entire procedure runs in a few seconds even on
large-scale models.

B Implementation Details.
For all experiments, we use the decoding hyperparameters temperature = 0.7, top_p = 0.9,
and repetition_penalty = 1.1; all other settings follow the default configurations of the re-
spective models. The evaluation datasets are accessed through the Hugging Face datasets library.
Experiments are conducted on NVIDIA A6000 GPUs, using PyTorch version 2.5.1+cu124 and
the transformers library version 4.50.1. The hyperparameters related to steering, namely the
steering strength γ and the layer index used to extract and apply the steering vector, are detailed in
the appendix D.

C Qualitative Results
In this section, we present illustrative examples from the MATH500 dataset, comparing standard
Chain-of-Thought (CoT) responses with those produced by ASC. Figures 6 and 7 showcase repre-
sentative outputs from the QwQ-32B reasoning model. As noted in prior work (Wang et al., 2025;
Chen et al., 2025c), vanilla CoT traces often exhibit excessive verbosity, frequent shifts in reasoning
strategy, and redundant self-verification steps. In contrast, ASC responses are more focused, mathe-
matically grounded, and free from distractive interjections such as “Alternatively,” “Wait,” and other
similar expressions. This reflects ASC’s ability to steer the model toward concise, mathematically
structured reasoning.

Figure 6: Qualitative Example for comparing ASC response against vanilla CoT response.

Problem
Question:The product of two consecutive positive even integers is 288. What is the greater of the two integers?

Vanilla CoT (1761 tokens)
Let’s denote the two consecutive positive even integers as x and x + 2. According to the problem, their product is 288. Therefore,
we can set up the equation:

x(x + 2) = 288

Expanding the left side gives:

x
2
+ 2x = 288

To form a quadratic equation, subtract 288 from both sides:

x
2
+ 2x − 288 = 0

We can solve this quadratic equation using the quadratic formula:

x =
−b ±

√
b2 − 4ac

2a

Here, a = 1, b = 2, and c = −288. Plugging these values into the formula:
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x =
−2 ±

√
(2)2 − 4(1)(−288)

2(1)

Calculating the discriminant (D):

D = 4 + 1152 = 1156

Taking the square root of the discriminant:
√
1156 = 34

So the solutions for x are:

x =
−2 + 34

2
=

32

2
= 16

x =
−2 − 34

2
=

−36

2
= −18

Since we’re looking for positive integers, we discard the negative solution. Thus, the smaller integer is 16, and the next consecutive
even integer is 18. However, wait—that would make the larger number 18, but let me check my work because sometimes I might
miscalculate.
Wait, if x = 16, then the next consecutive even integer is indeed 16 + 2 = 18, so the pair is (16, 18). Their product is 16*18. Let
me compute that: 16*10=160, 16*8=128; adding them gives 160+128=288. That checks out. So the greater integer is 18.
But hold on, maybe there was an error in setting up the equations?
Alternatively, perhaps I should try factoring the quadratic equation before resorting to the quadratic formula, just to verify.
Starting with x2 + 2x − 288 = 0.
Looking for two numbers that multiply to −288 and add up to 2. Since their product is negative, one is positive and the other
negative. Let’s think about factors of 288.
Factors around

√
288, which is approximately 17. So possible pairs:

16 and 18: 16× 18 = 288. But since it’s −288, one has to be negative. If we take 18 and −16: 18+ (−16) = 2. Yes! Exactly.
Therefore, the equation factors as:
(x + 18)(x − 16) = 0
Setting each factor equal to zero:
Either x + 18 = 0 ⇒ x = −18,
Or x − 16 = 0 ⇒ x = 16.
Same result as before. So the positive solution is 16, hence the two numbers are 16 and 18, so the greater is 18. Hmm. Wait a second,
but when I first thought through, I got confused why the answer isn’t higher, but 16 and 18 do multiply to 288.
Alternatively, could there be another pair? Let’s see, perhaps starting at a different point.
Suppose someone takes the two numbers as n and n+2, such that their product is 288, so same as above.
Alternatively, maybe starting with the average? The square root of 288 is approximately 16.97. So between 16 and 17. Hence, the
even integers near that would be 16 and 18. Which matches our previous conclusion.
Thus, the greater integer is 18. But hold on—I feel like maybe I missed something here, because often in these problems they expect
maybe higher numbers? Let me confirm once again.
Compute 16 × 18:
16 × 10 = 160,
16 × 8 = 128,
Total: 160 + 128 = 288. Correct.
Alternatively, cross-verify using another method:
18 × 16: 18×10=180, 18×6=108 → total 180+108=288. Same result.
Alright, seems consistent. Therefore, the two numbers are 16 and 18, so the greater one is 18.
Wait, but wait—hold on. When I initially set up the problem, I called them x and x+2. Then x=16 is the first, x+2=18. That’s correct.
So the greater integer is 18. Is that the final answer?
Yes, unless there’s a mistake in the setup. For example, if the question had said "consecutive even integers", which they are. Since 16
and 18 are two apart, so yes, consecutive even integers.
Alternatively, if they were consecutive integers (differing by 1), but the problem says even, so difference must be 2. So everything
checks out. Hmm. Maybe overthinking, but better safe than sorry.
Another way: list some consecutive even integers and see where the product reaches 288.
Start from lower numbers:
10×12=120
12×14=168
14×16=224
16×18=288 → Bingo.
Yep, that’s exactly it. So 16 and 18. Therefore, the greater is 18. So confident now that’s the right answer. Initially, I thought maybe I
made an arithmetic mistake, but all methods concur.
**Final Answer** 18 You start by denoting the two consecutive positive even integers as x and x + 2. Given their product is 288,
you set up the equation:

x(x + 2) = 288

Expanding and rearranging terms gives the quadratic equation:

x
2
+ 2x − 288 = 0

Using the quadratic formula x =
−b±

√
b2−4ac
2a with a = 1, b = 2, and c = −288:

x =
−2 ±

√
4 + 1152

2
=

−2 ± 34

2

This yields two solutions:

x =
32

2
= 16 and x =

−36

2
= −18
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Since we need positive integers, we discard x = −18. The smaller integer is 16, and the next consecutive even integer is 18.
Verifying the product:

16 × 18 = 288

Thus, the greater of the two integers is:

18

ASC generated CoT (788 Tokens)
The product of two consecutive positive even integers is 288. What is the greater of the two integers? Let’s denote the smaller integer
as x. Since they are consecutive even integers, the next one would be x + 2.
Their product is given by: x(x + 2) = 288
Expanding this equation: x² + 2x = 288
Rearranging into a quadratic equation: x² + 2x - 288 = 0
We can solve this using the quadratic formula:

x =
−b ±

√
b2 − 4ac

2a

Here, a = 1, b = 2, c = −288.
Calculating discriminant first:

D = b
2 − 4ac = (2)

2 − 4 · 1 · (−288) = 4 + 1152 = 1156

√
D =

√
1156 = 34

So, x = [-2 ± 34]/2
Since we need positive integers, take the positive solution: x = (-2 + 34)/2 = 32/2 = 16
Therefore, the two integers are 16 and 18, so the greater one is 18. But wait, let me check that again. If I plug back in:
16 * 18 = 288, which matches the problem statement. So yes, correct.
Alternatively, maybe there was another way to approach it?
Another method could be factoring. Looking for two numbers that multiply to 288 with difference 2 since they’re consecutive evens.
Factors of 288: Start from

√
288 ≈ 17, so around there.

Check nearby even numbers.
16 ×18 is indeed 288, so those must be them. Hence, same result. The larger number is 18.
**Final Answer** 18 Let x be the smaller of the two consecutive positive even integers. Then the next consecutive even integer is
x + 2. Their product is given by:

x(x + 2) = 288

Expanding and rearranging this equation into a standard quadratic form gives:

x
2
+ 2x − 288 = 0

Using the quadratic formula x =
−b±

√
b2−4ac
2a , where a = 1, b = 2, and c = −288:

First, calculate the discriminant:

b
2 − 4ac = 2

2 − 4(1)(−288) = 4 + 1152 = 1156

Taking the square root of the discriminant:
√
1156 = 34

Substituting back into the quadratic formula:

x =
−2 ± 34

2

Considering only the positive solution (since we are dealing with positive integers):

x =
−2 + 34

2
=

32

2
= 16

Thus, the smaller integer is 16, and the next consecutive even integer is 18. Verifying their product:

16 × 18 = 288

Hence, the greater of the two integers is 18 .

Vanilla CoT (4283 Tokens)

To find the double sum
∑∞

j=1

∑∞
k=1

1
(j+k)3

in terms of p and q, where p =
∑∞

k=1
1
k2 and q =

∑∞
k=1

1
k3 , we can proceed

as follows:
First, note that the given double sum is over all pairs (j, k) with both indices starting from 1. Let’s consider changing variables by
letting n = j + k. For each fixed value of n, the number of pairs (j, k) such that j + k = n is exactly n − 1, since j can range
from 1 to n − 1 (with k = n − j). Therefore, we can rewrite the double sum as a single series involving these counts:

∞∑
j=1

∞∑
k=1

1

(j + k)3
=

∞∑
n=2

n−1∑
j=1

1

n3
.

Here, n starts at 2 because the smallest possible value of j + k when j and k are both at least 1 is 1 + 1 = 2.
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Figure 7: Qualitative Example for comparing ASC response against vanilla CoT response.

Problem
Question:Define

p =
∞∑

k=1

1

k2
and q =

∞∑
k=1

1

k3
.

Find a way to write
∞∑
j=1

∞∑
k=1

1

(j + k)3

in terms of p and q.

The inner sum
∑n−1

j=1
1
n3 simplifies to n−1

n3 , since there are n − 1 terms each equal to 1
n3 . Thus, the entire expression becomes:

∞∑
n=2

n − 1

n3
.

We can split this into two separate sums:

∞∑
n=2

(
n

n3
−

1

n3

)
=

∞∑
n=2

1

n2
−

∞∑
n=2

1

n3
.

These sums can be rewritten in terms of p and q:
Recall that p =

∑∞
n=1

1
n2 , so

∑∞
n=2

1
n2 = p − 1.

Similarly, q =
∑∞

n=1
1
n3 , so

∑∞
n=2

1
n3 = q − 1.

Therefore, substituting back into our expression gives:

(p − 1) − (q − 1) = p − 1 − q + 1 = p − q.

Wait a second! But let me check this again. Wait, I might have made an error here.
Hold on: The original expression after splitting was:

∞∑
n=2

1

n2
−

∞∑
n=2

1

n3

Yes, but then
∑∞

n=2
1
n2 = p − 1/(12) = p − 1,

and
∑∞

n=2
1
n3 = q − 1/13 = q − 1,

so indeed their difference would be (p - 1) - (q - 1) = p - q,
So according to this calculation, the answer is p - q?
But wait, that seems too straightforward. However, let me verify if my initial steps were correct.
Starting from the beginning:
Original double sum: ∑

j, k≥1

1

(j + k)3
.

Change variable to n = j + k. Then for each n ≥ 2, the terms correspond to j from 1 to n − 1, so a total of n−1

n3 per n. So total
sum is

∞∑
n=2

n − 1

n3
.

Then split into
∞∑

n=2

(
1

n2
−

1

n3

)
.

Hence,
∞∑

n=2

1

n2
= p − 1, and similarly

∞∑
n=2

1

n3
= q − 1.

Subtract those to get
(p − 1) − (q − 1) = p − q.

Hmm, so the conclusion would be that the double sum equals p − q? That is,∑
j, k≥1

1

(j + k)3
= p − q?

Alternatively, perhaps there is an error in splitting the numerator?
Wait: Let me see:

n − 1

n3
=

n

n3
−

1

n3
=

1

n2
−

1

n3
.

Yes, that’s correct.
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Therefore, yes, the sum becomes
∞∑

n=2

(
1

n2
−

1

n3

)
,

which is indeed ( ∞∑
n=2

1

n2

)
−
( ∞∑

n=2

1

n3

)
,

which is
(p − 1) − (q − 1) = p − q.

So according to this, the answer should just be p − q.
But maybe I need to confirm numerically?
Let me test with partial sums.
Take p = π2

6 ≈ 1.6449, q = ζ(3) ≈ 1.2020569, so p − q ≈ 0.4428.
Now compute the double sum up to some finite N and see if it approximates this.
Suppose we take small terms.
Compute

2∑
j=1

2∑
k=1

1

(j + k)3
.

For j = 1, k = 1: 1/8; j = 1, k = 2: 1/27; j = 2, k = 1: 1/27; j = 2, k = 2: 1/64. Total is 1/8 + 2/27 + 1/64 ≈
0.125 + 0.07407 + 0.015625 ≈ 0.2147.
Adding more terms, say up to j = 3, k = 3:
Additional terms:
j = 1, k = 3: 1/64; j = 3, k = 1: 1/64;
j = 2, k = 3: 1/125; j = 3, k = 2: 1/125;
j = 3, k = 3: 1/216.
Total added: 2· 1

64 +2· 1
125 + 1

216 ≈ 0.03125+0.016+0.00463 ≈ 0.05185. New total ≈ 0.2147+0.05185 ≈ 0.26655.
Continuing to j=4, etc., but even so, it’s going to converge slowly. Since the exact value is supposed to be about 0.4428..., so maybe
my approach is correct? Hmm. Alternatively, perhaps my mistake is in the change of variables?
Wait another thought: When you do the substitution n = j + k, the summation is over all n from 2 to infinity, and for each n, the
number of terms is (n -1). So the first term when n=2 has 1 term, n=3 has 2 terms, ..., n=m has m-1 terms. Therefore, the total sum is

∞∑
n=2

n − 1

n3
.

Thus, that is indeed equivalent to
∞∑

n=1

n − 1

n3

starting from n = 2, but perhaps written as

∞∑
n=1

(
n − 1

n3

)
− (term at n = 1).

At n = 1, n−1

n3 = 0, so no contribution. Hence, indeed

∞∑
n=2

n − 1

n3
=

∞∑
n=1

n − 1

n3
.

But perhaps reindexing could help.
Alternatively, writing

n − 1

n3
=

1

n2
−

1

n3
,

so indeed the sum splits into( ∞∑
n=1

1

n2
−

1

12

)
−
( ∞∑

n=1

1

n3
−

1

13

)
= (p − 1) − (q − 1) = p − q.

Therefore, the final result is p − q.
Alternatively, perhaps the problem wants the answer expressed differently?
Wait, let me cross-verify using integral transforms or known formulas.
Alternatively, maybe express the double sum as an integral?
Note that

1

(j + k)3
=

∫ 1

0

x
j+k−1

dx ·
1

2
,

but not sure. Wait, recall that
1

m3
=

∫ 1

0

∫ y

0

∫ z

0

dx dz dy.

Maybe triple integrals?
Alternatively, integrating over t from 0 to infinity?
Alternatively, use generating functions.
Alternatively, think of the double sum as:

∑
j, k≥1

1

(j + k)3
=

∞∑
m=2

(number of pairs (j, k) with j + k = m) ·
1

m3
.
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Which is exactly what we did before, leading to (p - q). So unless there’s a miscalculation here, that must be correct.
Alternatively, maybe a different approach.
Consider interchanging the order of summations or using known multiple series results.
Alternatively, note that the sum is symmetric in j and k, so perhaps we can consider replacing j and k with other variables, but probably
complicates things.
Alternatively, maybe express the double sum as:

∞∑
j=1

∞∑
k=1

1

(j + k)3
=

∞∑
j=1

[ ∞∑
k=1

1

(j + k)3

]
.

Fix j, then the inner sum over k from 1 to ∞ of 1
(j+k)3

is

∞∑
m=j+1

1

m3

where m = j + k. So that sum is equal to

qj =

∞∑
m=j+1

1

m3
= q −

j∑
m=1

1

m3
.

Therefore, substituting back, the original double sum becomes:

∞∑
j=1

q −
j∑

m=1

1

m3

 =
∞∑
j=1

q −
∞∑
j=1

j∑
m=1

1

m3
.

The first term is infinite because it’s
∑

j q, clearly divergent, so that approach doesn’t work because we need to handle convergence
properly.
Wait, this suggests an error in reasoning. Wait, hold on — actually, the inner sum over k for each j is

∞∑
k=1

1

(j + k)3
,

which converges for each j. The outer sum over j may also converge, but how does this reconcile with the previous approach?
Indeed, proceeding this way, let me see:
The double sum

S =

∞∑
j=1

 ∞∑
m=j+1

1

m3


This is the same as swapping the order of summations. Indeed, switching the order of summations:

S =

∞∑
m=2

m−1∑
j=1

1

m3
=

∞∑
m=2

m − 1

m3
,

which matches the earlier result. So indeed, when swapping the order, it works out.
Whereas trying to express it as

∞∑
j=1

[q − · · · ]

led to confusion because the individual terms involve q, but they are being summed over j, leading to divergence unless handled
properly.
Instead, recognizing that

∞∑
m=j+1

1

m3
= q −

j∑
m=1

1

m3

allows us to write

S =

∞∑
j=1

q −
j∑

m=1

1

m3

 .

However, this expression still requires careful handling. Let’s proceed carefully:

S =

∞∑
j=1

q −
j∑

m=1

1

m3

 = q

∞∑
j=1

1 −
∞∑
j=1

j∑
m=1

1

m3

But the first term diverges, while the second term also diverges, suggesting the subtraction cancels the divergence? This approach
isn’t helpful, so better to stick with the first method which gave a finite result. Therefore, likely the first approach is correct, giving
S = p − q.
Wait, but let me see numerical values:
If p = π2

6 ≈ 1.6449 and q ≈ 1.2020569, then p − q ≈ 0.4428.
Calculating a few more terms manually:
Compute partial sums up to j and k <= 4:
Compute all terms with j from 1-4 and k from 1-4, excluding higher terms beyond 4.
The terms where j + k ≤ 8, but this might not capture much. Alternatively, let me compute the partial sum up to n = 5:
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5∑
n=2

n − 1

n3

n = 2 :
1

8
= 0.125

n = 3 :
2

27
≈ 0.07407

n = 4 :
3

64
≈ 0.046875

n = 5 :
4

125
= 0.032

Total up to n = 5:

0.125 + 0.074 ≈ 0.199, 0.199 + 0.0468 ≈ 0.2458, 0.2458 + 0.032 = 0.2778

Continuing to n = 6:
5

216
≈ 0.0231, total ≈ 0.3009

n = 7 :
6

343
≈ 0.0175 ⇒ total ≈ 0.3184

n = 8 :
7

512
≈ 0.01367 ⇒ total ≈ 0.3321

n = 9 :
8

729
≈ 0.01097 ⇒ total ≈ 0.3431

n = 10 :
9

1000
= 0.009 ⇒ total ≈ 0.3521

Continuing up to n = 20:
Each subsequent term adds less. By n = 20:

19

203
=

19

8000
≈ 0.002375

Cumulative addition from n = 11 to n = 20 is approximately decreasing terms, each contributing about 0.002, so maybe adding
around 0.02 over 10 terms.

Total after n = 20 ≈ 0.35 + 0.02 = 0.37

Still quite below the infinite sum, which should converge to approximately 0.4428. So the partial sums are approaching that value,
albeit slowly.
Since the terms decay like 1

n2 , the tail from n = N onward behaves like the integral:∫ ∞

N

x − 1

x3
dx ≈

∫ ∞

N

(
1

x2
−

1

x3

)
dx ∼

1

N

So convergence is slow. Anyway, the analytical derivation shows it’s p − q, which aligns with the logic.
Perhaps I was doubting due to partial sums not reaching close quickly enough, but mathematically, the steps seem correct.
Hence, the answer should be p − q, so boxed:
p − q

Final Answer
p − q

While solving the problem, we started by considering the double sum
∑∞

j=1

∑∞
k=1

1
(j+k)3

. We changed variables to n = j + k,

noting that for each n ≥ 2, there are n− 1 pairs (j, k) such that j + k = n. This allowed us to rewrite the double sum as a single
series:

∞∑
n=2

n − 1

n3
.

Splitting the fraction n−1

n3 into 1
n2 − 1

n3 , we transformed the series into two separate sums:

∞∑
n=2

(
1

n2
−

1

n3

)
.

Recognizing these sums in terms of p and q, we found:

∞∑
n=2

1

n2
= p − 1 and

∞∑
n=2

1

n3
= q − 1.

Subtracting these results gives:

(p − 1) − (q − 1) = p − q.

Thus, the double sum
∑∞

j=1

∑∞
k=1

1
(j+k)3

can be written as p − q .
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ASC generated CoT (1581 Tokens)
To solve the problem, we need to express the double sum

S =
∞∑
j=1

∞∑
k=1

1

(j + k)3

in terms of

p =

∞∑
n=1

1

n2
and q =

∞∑
n=1

1

n3
.

First, let’s consider changing variables. Let’s set m = j + k. For each fixed value of m, both j and k can range from 1 up to
m − 1. So for each integer m ≥ 2, there are exactly (m − 1) × 1 pairs since if j is between 1 and m − 1, then k = m − j
must also be at least 1.
Therefore, the original double summation over all j, k ≥ 1 can be re-expressed as:

S =
∞∑

m=2

m−1∑
j=1

1

m3

 .

Wait, actually more precisely: Since for each m starting at 2 (since j and k start at 1, their minimum sum is 2?), no wait when j = 1
and k = 1 gives j + k = 2? Wait yes! Actually, j starts at 1 and so does k, so the minimal value of j + k is 2. Therefore, m
ranges from 2 upwards, but how many times?
Indeed, for each m ≥ 2, the number of pairs with j + k = m where j ≥ 1 and k ≥ 1 is equal to (number of solutions): If you
have two positive integers adding up to m, that’s equivalent to putting one divider among m items, which has m − 1 ways, hence
exactly m − 1 such pairs. Hence,

S =

∞∑
m=2

 ∑
j+k=m

1

m3

 .

But note that for each term with j + k = m, they contribute 1
m3 per pair. Thus total contribution for each m is

m − 1

m3
.

So therefore:

S =

∞∑
m=2

m − 1

m3

This simplifies to:
∞∑

m=2

m − 1

m3
=

∞∑
m=2

(
1

m2
−

1

m3

)
Because m−1

m3 = m
m3 − 1

m3 = 1
m2 − 1

m3 . Hence splitting this into two separate sums,

∞∑
m=2

1

m2
−

∞∑
m=2

1

m3

Which equals (p − 1
12

) − (q − 1
13

), because p =
∑∞

n=1
1
n2 ⇒

∑∞
m=2

1
m2 = p˘1. Similarly, q =

∑∞
n=1

1
n3 ⇒∑∞

m=2
1

m3 = q − 1. Thus substituting back:

(p˘1)˘(q˘1) = p˘1˘q + 1 = p − q

Hmm, wait really? That would mean S = p − q? Let me check again step by step. Starting from S =
∑

j,k≥1
1

(j+k)3
. Then

change variable m = j + k; thus: For every m from 2 onwards, the inner count is # { (j, k) | j + k = m }, which is indeed
m − 1 terms. Each contributes 1/m3. Thus

S =

∞∑
m=2

m˘1

m3

Splitting numerator: m˘1
m3 = 1

m2 − 1
m3 . Therefore,

S =

∞∑
m=2

(
1

m2
−

1

m3

)
=

[ ∞∑
m=2

1

m2

]
−
[ ∞∑
m=2

1

m3

]

The first bracketed sum is p − 1 because p includes n = 1. Similarly second bracketed term is q − 1. So substituting,
[p − 1] − [q − 1] = p − 1 − q + 1 = p − q. Wow, so it ends up being just p − q. But I should verify this with an example
or simple case to make sure. Alternatively, perhaps my initial steps were correct? Another approach could be swapping order of
summations etc., but maybe another angle. Wait, but let us compute numerically partial sums? Take p = π2/6 ≈ 1.6449 . . .,
q = Apery’s constant ≈ 1.202 . . . If our expression says S = p − q ≈ 0.4427 . . . Can we approximate S directly via small
truncations? Compute S approximately with say j, k going only up to N = 5, and see whether roughly similar behavior occurs.
However this might not be precise enough, but maybe try smaller components. Suppose instead truncate m up to some finite M .
Alternatively think about standard series results. We know that

∞∑
m=2

m − 1

m3
=

∞∑
m=1

m − 1

m3
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since m = 1 term would give 0, so same as shifting index. Alternatively, split

∞∑
m=1

m − 1

m3
=

∞∑
m=1

(
m

m3
−

1

m3

)
=
∑(

m
−2
)
−
∑(

m
−3
)
,

except the first term when m = 1, m−2 = 1, and subtracting 1/m3 similarly. Wait, hold on:

∞∑
m=1

m − 1

m3
=

∞∑
m=1

(
m

−2 − m
−3
)

=

( ∞∑
m=1

1

m2

)
−
( ∞∑

m=1

1

m3

)
= p − q

Exactly. Because the m−1

m3 summed from m = 1 becomes (for m = 1: zero, since (1− 1)/13 = 0), so effectively from m = 2

onward matches the previous result. So indeed,
∑∞

m=2
m−1

m3 =
∑∞

m=1 . . . since first term cancels out. Either way, regardless of
indexing, the final conclusion holds. Thus the answer is simply p − q. Hmm, seems too straightforward—maybe I made a mistake
somewhere? Alternative perspective: Consider exchanging the order of summation somehow else, but likely leads to the same place.
Alternatively, suppose someone tried integrating or generating functions? Not necessary here once algebraic manipulation shows the
result cleanly. Therefore, after careful consideration through multiple perspectives confirming the arithmetic manipulations, I believe
the desired double sum simplifies neatly to p − q. So writing in boxed notation:

p − q

Final Answer p − q

D Steering Hyperparameters

Table 3: Hyperparameters for three different models.
Model γ Layer Index
DeepSeek-Distill-Qwen-7B 0.275 21
DeepSeek-Distill-LLaMA-8B 0.46 21
QwQ-32B 0.50 57

Table 3 summarizes the hyperparameters used for steering in our reasoning models. The steering
strength γ is selected based on γmax, as derived in Section 4, and the choice of layer index is
determined empirically. Early layers are avoided because representations are still underdeveloped,
while injecting at the final layers has limited impact due to diminished transformation capacity.
Therefore, we select a mid-layer range where representations are sufficiently structured yet still
amenable to effective steering. This middle ground provides a practical trade-off between steerability
and representational richness.
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