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ABSTRACT

Existing large language model-based code generation pipelines typically use beam
search or sampling algorithms during the decoding process. Although the pro-
grams they generate achieve high token-matching-based scores, they often fail to
compile or generate incorrect outputs. The main reason is that conventional Trans-
former decoding algorithms may not be the best choice for code generation. In
this work, we propose a novel Transformer decoding algorithm, Planning-Guided
Transformer Decoding (PG-TD), that uses a planning algorithm to do lookahead
search and guide the Transformer to generate better programs. Specifically, in-
stead of simply optimizing the likelihood of the generated sequences, the Trans-
former makes use of a planner that generates complete programs and tests them
on public test cases. The Transformer can therefore make more informed deci-
sions and generate tokens that will eventually lead to higher-quality programs. We
also design a mechanism that shares information between the Transformer and the
planner to make our algorithm computationally efficient. We empirically evaluate
our framework with several large language models as backbones on public coding
challenge benchmarks, showing that 1) it can generate programs that consistently
achieve higher performance compared with competing baseline methods; 2) it en-
ables controllable code generation, such as concise codes and highly-commented
codes by optimizing modified objectives1.

1 INTRODUCTION

Large language models like Transformer (Vaswani et al., 2017a) have shown successes in natural
language processing, computer vision, and other domains. Thanks to Transformer’s power on se-
quence modeling, it has been adopted for code generation (Wang et al., 2021; Ahmad et al., 2021)
by treating programs as text sequences. Transformer has achieved significant improvements on the
benchmarking tasks of code translation (Roziere et al., 2022), code completion (Chen et al., 2021a),
and coding challenge competence (Hendrycks et al., 2021). Recently, AlphaCode (Li et al., 2022)
even achieved a competitive-level performance in programming competitions with the help of large
Transformer models pre-trained on a large programming corpus.

Transformer-based pipelines like AlphaCode follow the tradition of natural language processing
and use sampling methods (Fan et al., 2018; Dabre & Fujita, 2020) during the generation process.
Specifically, they sample a large number of complete programs using a pretrained code generation
Transformer, evaluate these programs using the public test cases provided in the dataset, and output
the program that passes the most number of test cases. Compared with beam search-based methods,
these sampling followed by filtering algorithms (which we will refer to as sampling + filtering) can
take advantage of test cases and indeed improve the quality of the generated programs. However,
their algorithms are not sample efficient. During the Transformer generation process, they do not
consider the test cases at all. Instead, they only use the test cases to evaluate the programs after all the
candidate programs are generated. Different from natural languages, programs may fail completely
with even a single incorrect generated token. So these algorithms may need to exhaustively sample
a large number of programs to find a correct one.

The main reason behind the sample efficiency issue of these algorithms is that the Transformer
beam search algorithm and the sampling algorithm (Vaswani et al., 2017b) may not be the best
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choices for code generation. An ideal code generation algorithm should stop early in the generation
process when it knows the program it currently generates would certainly fail and bias the generation
process towards generating successful programs that pass more test cases. To achieve such a goal,
we contribute to applying a planning algorithm in the Transformer generation process. Since a
planning algorithm can use the pass rates of the generated programs as its objective, we use it to
determine the quality of the generated codes and make the Transformer model make more informed
decisions.

In this paper, we investigate the following research question: Can we integrate a planning algorithm
with a pretrained code generation Transformer, resulting in an algorithm that generates better pro-
grams than the conventional Transformer generation algorithms and the well-accepted sampling +
filtering scheme in the literature? To answer this question, we propose a novel algorithm, Planning-
Guided Transformer Decoding (PG-TD). In this algorithm, we have a backbone Transformer that
is pretrained on code generation. In each step that the Transformer generates a token, the planner
does lookahead search and suggests the token that passes the most number of test cases. The planner
alone may not find high-quality codes due to the large space of possible codes. So the Transformer
beam search algorithm and the next-token probabilities are used inside the planner to provide useful
heuristics. We find a straightforward integration between the planner and the Transformer can be
computationally inefficient. So we design mechanisms that allow the Transformer and the planner
to share their information to make the overall algorithm more efficient.

We emphasize that our algorithm is model-agnostic, that is, any standard code generation Trans-
former model can be used as the backbone Transformer. Importantly, our algorithm does not require
acquiring more sample solutions or finetuning the Transformer model to improve its performance.
We empirically find that our proposed algorithm generates higher-quality programs under multiple
accepted metrics compared with competing baseline methods. Additionally, we also empirically
show that our algorithm has the following advantages. 1) By changing the reward function of the
planner, our algorithm becomes versatile and can optimize different objective functions without the
necessity of finetuning the Transformer model. 2) Our algorithm can generate solutions that are used
to finetune a code generation Transformer model to improve the Transformer’s performance. More
precisely, we have the following contributions in this paper.

• First, we propose a novel algorithm, Planning-Guided Transformer Decoding (PG-TD), that
uses a planning algorithm for lookahead search and guide the Transformer to generate better
codes. Our algorithm is model-agnostic, which can work with any standard Transformer model,
and does not require knowledge of the grammar of the generated programs.

• Second, a direct integration of the planning algorithm into the Transformer decoding function
can cause redundant uses of the Transformer beam search algorithm. We contribute to design-
ing mechanisms that significantly improve the computational efficiency of the algorithm.

• Third, we evaluate our algorithm on competitive programming benchmarks and empirically
show that our algorithm can consistently generate better programs in terms of the pass rate and
other metrics compared with the baseline methods. We also show that our algorithm is versatile
and can optimize objectives other than the pass rate for controllable code generation, such as
concise codes and highly-commented codes.

2 RELATED WORK

Transformers for program synthesis. Our work is based on Transformer for program synthe-
sis (Roziere et al., 2020; Austin et al., 2021). Inspired by their impressive capacities on a range of
natural language tasks, modern transformer-based language models (Devlin et al., 2019; Radford
et al., 2019; Raffel et al., 2020) have been adopted for program synthesis by treating programming
languages as particular languages. Pioneering CuBERT (Kanade et al., 2020) and CodeBERT Feng
et al. (2020) used BERT (Devlin et al., 2019) to understand code. GraphCodeBERT (Guo et al.,
2020) further extended CodeBERT with additional modeling on variable sequences and variable re-
lations to learn code syntax. Later, CodeX (Chen et al., 2021a) and CodeT5 (Wang et al., 2021)
adopted GPT2 Radford et al. (2019) and T5 (Raffel et al., 2020) respectively as backbones for both
code understanding and generation. Ellis et al. (2021) learns programming libraries from examples;
Nye et al. (2020) uses a neural-symbolic method for rule learning. Recently, AlphaCode (Li et al.,
2022) combined large transformer models pre-trained on massive program data with large-scale
model sampling, showing competitive performance in programming competitions. All these models
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mainly focused on training better code language models and simply use sampling (Fan et al., 2018)
or beam-search (Graves, 2012) during Transformers’ generation process.

Test cases for program synthesis. Our work is also related to using unit tests (Myers, 1979) for
program synthesis. Tufano et al. (2020a;b) propose to generate test cases and corresponding accurate
assert statements with Transformer models (Vaswani et al., 2017a). Recently, Roziere et al. (2022)
leverage automated unit tests to construct parallel training data for unsupervised code translation.
Chen et al. (2018); Gupta et al. (2020); Chen et al. (2021b) directly synthesize domain-specific
programs from input-output pairs without problem description. Ellis et al. (2019) use test cases
to train a reinforcement learning agent and use sequential Monte-Carlo sampling method for code
generation. Unlike the prior work, we use unit-testing results as reward signals for the Monte-Carlo
tree search (MCTS) planning algorithm, which is further integrated with a Transformer-based large
language model to generate better codes.

Planning and reinforcement learning for code generation. The code generation problem has
been formulated as a sequential decision making problem (Bunel et al., 2018; Chen et al., 2018),
which enables designing and applying reinforcement learning (RL) and planning algorithms for code
generation. RL has been used for both the training phase and the decoding phase of the Transformer
for code generation. In the training phase, a concurrent work (Le et al., 2022) uses an RL objective
that optimizes the correctness of the generated programs instead of optimizing their similarity to
reference solutions. In the decoding phase, the Monte-Carlo tree search (MCTS) algorithm has been
applied to search for high-quality codes. However, MCTS is unable to scale to larger domains and is
only used to generate domain-specific languages or for restricted programming synthesis tasks like
assembly code generation (Xu et al., 2019), Java bytecode translation (Lim & Yoo, 2016), and robot
planning (Matulewicz, 2022). Specifically, Xu et al. (2019) use RL in both the training phase and
the decoding phase. They train a policy network and a value network during the training phase, and
use both networks and MCTS for code generation. However, their assembly language generation
task has a much smaller scale than generating Python codes in our work. Therefore, their framework
does not require a large language model and does not need to address the challenge of incorporating
a planning algorithm with a large language model.

MCTS is more efficient and applicable to large domains when combined with deep learning or
with a default policy as prior knowledge (Gelly & Silver, 2011; Silver et al., 2016; Simmons-Edler
et al., 2018). We consider the same overall recipe in our work. Specifically, we contributed to
integrating the large language model with MCTS to design a novel algorithm that is capable of
solving competitive programming problems, and designed mechanisms to improve its efficiency.

Planning in natural language processing. Planning algorithms like MCTS have also been used to
find the optimal text outputs for different natural language processing (NLP) tasks. For example,
Scialom et al. (2021) use the discriminator in a pretrained generative adversarial network (GAN)
(Goodfellow et al., 2014) to provide reward signals. Leblond et al. (2021) use the multilingual
quality estimation metrics as reward signals to solve machine translation problems. Chaffin et al.
(2022) use a discriminator to decide if the generated texts follow some given constraints. All of
these work use a pretrained neural network or an existing metric as a reward function. We want to
emphasize that we are the first to combine MCTS with large language models for general-purpose
programming language generation. We design the interfaces between these two components and
deal with the unique challenges of making the framework computationally efficient.

Concurrently, other search algorithms like A* algorithm (Hart et al., 1968) are also applied in the
Transformer decoding process. Lu et al. (2021) consider the constrained text generation problem
and integrate A* with the beam search algorithm. However, their constraints are expressed as a
formal logic expression, which is different from maximizing the pass rate value in our case.

3 METHOD

3.1 OVERVIEW

We consider the code generation problem for competitive programming, illustrated in Fig. 1. An
agent is given the problem description of a coding problem. It requires the agent to understand
the problem from the natural language description and generate a program that solves the problem.
Similar to Li et al. (2022); Chen et al. (2018); Ellis et al. (2019), we assume that the agent has access
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Problem Statement
Given is a string S. Replace every character in S with x and print the result.

Constraints
(1). S is a string consisting of lowercase English letters.
(2). The length of S is between 1 and 100 (inclusive).

Input
Input is given from Standard Input in the following format: S

Output
Replace every character in S with x and print the result.

Sample Test Input
sardine

Sample Test Output
xxxxxxx

Beam Search (Pass Rate: 0.00). Sampling + Filtering (Pass Rate:
0.22).

PG-TD (Pass Rate: 1.00).

Figure 1: A code generation example for competitive programming, with the problem description
(top) and the programs generated by baseline algorithms and our PG-TD algorithm (bottom).

to a set of test cases, where a test case is a pair of input, output strings. Given the input string, the
agent is expected to generate a program that produces an output that exactly matches the test case’s
output string. The objective is to generate a program that passes the most number of test cases. To
determine if the agent is able to generate programs that generalize to unseen test cases, we divide
the test cases into public test cases and private test cases, following the terms in Li et al. (2022). The
agent can only access the public test cases during the program generation process, while we use the
private test cases to evaluate the programs it generates.

Transformer models (Li et al., 2022; Hendrycks et al., 2021) have been widely applied for code
generation thanks to its capacity in sequence-to-sequence modeling. In the Transformer’s generation
process, beam search (Graves, 2012) and sampling (Fan et al., 2018; Dabre & Fujita, 2020) are
adopted to generate code sequences. However, these algorithm cannot easily optimize an objective
different from what it is trained on (the similarity to the reference solutions). So we cannot directly
use these generation algorithms to generate programs aiming to pass the most test cases.

On the other hand, a planning algorithm can directly optimize the pass rate or any desirable pro-
gramming objective. To use a planning algorithm, we follow Bunel et al. (2018); Ellis et al. (2019)
to first formulate the code generation problem as a Markov decision process (MDP) (Sutton & Barto,
2018). A state s is the concatenation of the problem description and a partial or complete program,
where a complete program ends with a special terminal token. An action a is a token in the vocabu-
lary set of the Transformer, which contains the termination action (the terminal token) that indicates
that the agent believes the program is complete. The transition function deterministically concate-
nates the state s with the token a, and an episode ends when the agent takes the termination action.
The reward of state s is the pass rate of the program on the public test cases when s is a complete
program (i.e., when the last token of s is the terminal token). The reward of a partial program is
always 0. There is rich literature on finding the optimal policy for an MDP. Monte-Carlo tree search
(MCTS) is a well-accepted tree-based planning algorithm, illustrated in black color in Fig. 2. In the
following part of this section, we describe how we integrate the MCTS algorithm in the generation
process of a Transformer.

3.2 PLANNING-GUIDED TRANSFORMER DECODING

Now we are ready to answer the question we asked in the introduction: Can we integrate a planning
algorithm with a pretrained code generation Transformer to generate better programs? We design a
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Figure 2: Illustration of using the Monte Carlo tree search algorithm in the Transformer generation
process for code generation. <PD> stands for problem description.

Transformer generation algorithm where MCTS is called iteratively to perform lookahead planning
and return with the token that will lead to high-quality programs. The MCTS algorithm alone may
not be able to find high-quality codes due to the large search space. So the conventional Transformer
beam search algorithm and the next-token probabilities are used within the MCTS algorithm to guide
the search process.

Algorithm 1 The PG-TD algorithm.
Require: root: the current state; rollouts: the number of

MCTS rollouts; kmax: the maximum number of children
of any node; b: the number of beams for Transformer
beam search

1: for i← 1, 2, . . . , rollouts do
2: node← root
3: # Selection
4: while |node.children| = kmax do
5: node← UCB SELECT(node.children)
6: end while
7: # Expansion
8: children num← |node.children|
9: act← TOP K(node, k = children num+ 1)

10: new node ← the state reached by taking action act
in node

11: Add new node to node.children
12: # Evaluation
13: program list← GENERATE SEQ(new node, b)
14: r ← maxp∈program list GET REWARD(p)
15: # Backpropagation
16: Update and the values of new node and its ancestors

in the tree with r
17: end for
18: return the action with the highest value starting from root

Algorithm 2 The main function.
1: s0 ← <PD> # program description
2: t← 0
3: while st[−1] ̸=<|endoftext|> and t < max length

do
4: at ← PG-TD(st, rollouts, kmax, b)
5: st+1 ← CONCATENATE(st, at)
6: t← t+ 1
7: end while
8: return st

The main generation process is described
in Algorithm 2. In each step, PG-TD is
called to generate a token at. We pro-
vide the pseudocode of PG-TD in Algo-
rithm 1 and illustrate the whole process
in Figure 2. The PG-TD algorithm fol-
lows the same framework as the standard
MCTS algorithm. We specify kmax to
be the maximum number of children that
any node may have. As our problem has a
huge action space (the set of all tokens),
we specifically constrain the number of
children so that the agent would not ex-
plore too many actions of the same state.

For completeness, we provide all the
steps in the pseudocode and in Sec. C.1.
Here, we focus on the expansion and
the evaluation steps where the Trans-
former is used to provide heuristics
for the search process. The Trans-
former provides two functions for PG-
TD: GENERATE SEQ(s, b) generates a list
of b programs using the Transformer
beam search algorithm with the prefix s,
where b is the beam size; TOP K(s, k) re-
turns the k-th most likely next token start-
ing from s.

In the expansion step, after a node in the
tree is selected, we add a new node to
its children which corresponds to a pos-
sible next state (for succinctness, a node
also refers to the state that it represents).
Adding a random token as in standard
MCTS may very likely cause a syntax er-
ror. So we call the TOP K function to get the most likely next tokens (or actions). When the current
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node already has children num children, we get the (children num+1)-st most likely next token,
and add the corresponding next state, next node, to the children of node (Line 9-11).

In the evaluation step, we need to evaluate the quality of new node. Note that new node may still
be a partial program. We cannot directly evaluate the quality of a partial program as we do not know
how it will be completed, and how many test cases it will pass. Here, we use the Transformer again
by calling the GENERATE SEQ function to generate complete programs from the current node using
the beam search algorithm. We set the size of beam search, b, to indicate how many complete pro-
grams that we want to generate from the current partial program. We run these generated programs
on the public test cases to get their rewards, and set the value of new node to be the highest reward
of the complete programs (Line 13-14).

3.3 INFORMATION SHARING BETWEEN TRANSFORMER AND MCTS
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Figure 3: Illustration for caching in the
PG-TD algorithm. The MCTS part is
visualized in black color and the Trans-
former beam search part is in red color.

A keen reader may notice that if we follow the algorithm
described above, there may be a lot of repeated com-
putations. The key observation is that the Transformer
beam search algorithm also implicitly builds a tree struc-
ture, which can be used by the future iterations of MCTS.
In this section, we describe how we improve the algo-
rithm’s efficiency by sharing information in the Trans-
former beam search algorithm with MCTS.

Consider the example in Fig. 3, which shows two itera-
tions of PG-TD. In the evaluation step of the t-th iteration,
the Transformer beam search algorithm implicitly builds
a tree to find the most likely sequences within a beam,
visualized in red color in Fig. 3 (left). Because we only
keep b partial programs in the beam, it is a tree where only
b nodes with the highest likelihood are expanded at each
level (in the illustration, b = 2). Other nodes are dropped
and no longer considered by the beam search algorithm.
In the (t + 1)-st iteration, if MCTS selects “a,” , such a
state is already visited in the Transformer beam search in
the t-th iteration. When the algorithm needs to find the
top-k most-likely next tokens, such information is already obtained in the t-th iteration and can be
reused without recomputation. In our implementation, we cache the tree structure generated by the
Transformer beam search algorithm. We call this implementation tree structure caching.

We can also cache the complete programs generated during the PG-TD evaluation step. In the
evaluation step of the t-th iteration (Fig. 3), suppose the greedily-optimal sequence is “a,b=...”.
In the (t+ 1)-st iteration, to generate a sequence starting with “a,b”, the Transformer beam search
algorithm will generate the same sequence “a,b=...” as before. (This is not necessarily true
when the beam size is larger than 1. We will clarify this in Sec. C.2.) To improve the efficiency of
GENERATE SEQ, we cache the sequences that have been generated during the evaluation step. In the
evaluation step of future iterations, PG-TD will check if the current state matches the prefix of any
sequence that has been generated before. If so, it will use the generated sequence directly without
calling the Transformer beam search function. We call this implementation sequence caching.

One may be concerned about the space efficiency of tree structure caching and sequence caching, as
they keep saving trees and sequences for each node in the tree. Fortunately, we only need to keep the
caches that are consistent with the current state. Once a new action is taken, we maintain the cached
data that are useful for the new state. For example, if PG-TD outputs “a” as the best token, the top-k
caches and sequence caches for the subtree of “x” (beam search under “x” is not visualized) are
dropped. We will provide more details on the caching methods in Sec. C.2.

4 EMPIRICAL EVALUATION

In this section, we empirically examine the effectiveness and efficiency of our PG-TD algorithm
by answering the following questions. Q1: Does PG-TD generate better programs than using the
Transformer beam search algorithm and other competing baseline methods? Is our algorithm model-
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Models
Pass Rate (%) Strict Accuracy (%)

APPS Intro. CodeContests APPS Intro. CodeContests

APPS GPT-2 (1.5B)

Beam Search 11.95 5.10 5.50 0.00
Sampling + Filtering 16.84 16.94 7.30 1.81
SMCG-TD 17.89 13.97 8.10 3.03
PG-TD 23.14 20.85 11.00 1.81

APPS GPT-Neo (2.7B)

Beam Search 14.32 5.73 6.70 0.00
Sampling + Filtering 20.79 18.19 10.10 1.82
SMCG-TD 21.00 18.08 10.40 1.21
PG-TD 26.14 21.08 13.20 2.42

Table 1: Average pass rates of PG-TD and baseline methods on competitive programming datasets.

agnostic, showing improvement when applied to different Transformer models? Q2: Is MCTS an
effective planning algorithm in PG-TD? Is it better than other planning or sampling-based algo-
rithms? Q3: Is PG-TD efficient in terms of the number of times it runs the Transformer beam search
algorithm and also the computation time it consumes? Q4: Are the caching methods effective in
saving the computation time? Q5: Can we use the samples generated by PG-TD in its search process
and finetune the Transformer to generate even better solutions?

Datasets and models. Recently, several competitive programming datasets have been made avail-
able for benchmarking code generation algorithms. For each programming problem, they include
the program description in natural language, sample solutions, and test cases. We evaluated PG-TD
and the baseline algorithms on some popular benchmark datasets: APPS (Hendrycks et al., 2021)
and CodeContests in AlphaCode (Li et al., 2022). APPS does not split public vs. private test cases.
So we split all the test cases of a program evenly into two sets, where the first set is used as the public
test cases for the algorithms to optimize the pass rate, and the second set is used as the private test
cases for evaluating the generated programs. For CodeContests, we use their public and generated
test cases as our public test cases, and their private test cases as our private test cases. To show that
PG-TD is model-agnostic and can be applied to different pre-trained Transformers and achieve a
better performance, we use two popular pre-trained code-generation Transformers in the literature:
GPT-2, GPT-Neo that are finetuned on the APPS training dataset (Hendrycks et al., 2021).

Algorithms. We compare PG-TD with the following algorithms. Beam search only uses the Trans-
former beam search algorithm to generate the whole program, without using the test cases. This is
the method used in Hendrycks et al. (2021); Chen et al. (2021a). We use the beam size of 5 in the
Transformer generation function, which is the same design choice as in Hendrycks et al. (2021).

We also implemented two baselines that use Transformer to sample programs and filter them using
the test cases. Sampling + Filtering (S+F) generates a set of programs using the Transformer sam-
pling algorithm. Once the programs are all generated, it computes the pass rates of all the programs
on the public test cases and returns the program with the highest pass rate. To avoid generating
low-probability tokens that may fail the program completely, we use top-5 sampling, that is, the
Transformer only samples the token that is in the top-5 most-likely tokens in each step. This method
is similar to the algorithm in AlphaCode (Li et al., 2022), except that we did not perform clustering
as we generate a much smaller number of programs than them. To determine the effectiveness of
MCTS, we considered another baseline, Sequential Monte-Carlo-Guided Transformer Decoding
(SMCG-TD), that replaces the MCTS component with a sequential Monte-Carlo algorithm (Ellis
et al., 2019). It is an iterative algorithm that maintains a population of partial programs. It deter-
mines the fitness of a partial program using the Transformer in the same way as the evaluation step
in PG-TD. Partial programs with higher fitness scores are more likely to be selected in the next
iteration. We leave more details about the baseline algorithms in Sec C.3.

For PG-TD, we set the parameters kmax = 3, rollouts = 3, b = 1. For the baseline methods,
we sample 512 programs in S+F, and maintain a set of 10 partial programs in each iteration for
SMCG-TD. We will use these parameters for the following experiments unless noted otherwise.
The experiments are conducted on the APPS introductory dataset (1000 problems) (Hendrycks et al.,
2021) and CodeContests (165 problems) (Li et al., 2022). We use the same metrics as in Hendrycks
et al. (2021), pass rates and strict accuracies of the private test cases. The private test cases are
hidden from the agent during the code generation process. The pass rate is the average percentage
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Figure 4: Pass rates of PG-TD and baseline algorithms vs. the number of programs generated using
the Transformer (left) and the computation time (middle) on the first 500 problems in the APPS
introductory dataset, using the APPS GPT-2 Transformer model.

Method Time (sec.)

With both caching methods 1312.27
W/ only sequence caching 1430.63
W/ only tree structure caching 1899.17
W/o caching 2206.38

Table 2: Affects of using caching for PG-TD on
the first 100 problems on the APPS introductory
dataset, using the APPS GPT-2 (1.5B).

Method Pass Rate (%) Strict Acc. (%)

Original 14.32 6.70
FT w/ S+F 15.24 7.90
FT w/ PG-TD 16.54 7.90

Table 3: Performance on APPS introduc-
tory dataset with finetuned (FT) APPS GPT-2
(2.7B), using Beam Search for code genera-
tion.

of the private test cases that the generated programs pass. The strict accuracy is the percentage of
the problems where the generated programs pass all the private test cases.

Effectiveness of PG-TD. As shown in Table. 1, PG-TD consistently outperforms all other baselines
in all the settings under the pass rate metric. As we optimize the pass rate, we expect our algorithm
to outperform other baselines under strict accuracy as well. This is almost true except that using
the GPT-2 (2.7B) model on the CodeContests dataset, our algorithm is slightly outperformed by
SMCG-TD. Overall, these results confirm that our algorithm indeed generates programs that pass
more test cases than the baseline methods (answering Q1). Specifically, S+F and SMCG-TD both
use test cases to filter programs generated by the Transformer, while their performance is overall
outperformed by PG-TD. So MCTS is indeed a powerful planning algorithm that can be effectively
integrated with Transformer (answering Q2). We also report the performance of PG-TD and S+F
under the n@k and pass@k metrics (Li et al., 2022) in Sec. A.

Efficiency of PG-TD. To show PG-TD’s efficiency, we report the pass rates vs. the number of
generated programs by Transformer and the computation time on a smaller dataset in Fig. 4. We
set kmax = 3, rollouts = 3, and b = 1 as the default setting and only changes one parameter
at a time. We vary these parameters to be kmax = 2, 3, 4, rollouts = 6, 9, and b = 3, 5. As we
expect, increasing kmax, rollouts, and b all helps PG-TD achieve higher pass rates, while increasing
b helps improve the pass rate the most as the Transformer beam search algorithm generates more
high-likelihood candidates.

We also consider different sample sizes for S+F. We choose sample sizes of 128, 256, and 512. With
the same number of samples, S+F generates programs with much lower pass rates (answering Q3).
This confirms our observation that S+F, like AlphaCode (Li et al., 2022), generates samples only
according to the Transformer’s generation probabilities, without taking their pass rates into consid-
eration until the programs are all generated. PG-TD actively considers the pass rates of the gener-
ated programs during the generation process, which achieves a higher efficiency. For SMCG-TD,
we set the size of population to be 10, 20, 50, and 100. Since SMCG-TD also uses the Transformer
and public test cases to guide the generation process, we expect that its performance is close to the
default setting of PG-TD with a larger size of population. However, due to its sampling nature, it
cannot do multi-step lookahead search as in PG-TD. So SMCG-TD’s performance is worse than the
variations of PG-TD. More details are discussed in Sec. C.3.

Effectiveness of caching. In terms of the design choice of tree structure caching and sequence
caching, we performed ablative studies to verify their efficiencies. In Table 2, we compare versions
of PG-TD with and without tree structure caching and sequence caching. As we expect, without
sequence caching, the algorithm needs to regenerate whole sequences, ending up with consuming
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a, b = map(int, input().split())
print(a + b)

Default reward function.

#!/usrbin/env python3
# coding =utf-8 #py3 runs on py2
a,b=map(int,input().split())
print(a+b)

Reward function with comment encouragement.

Figure 5: A code generation example with code comment encouragement. More details about the
problem description and implementation details can be found in the Sec. B of the appendix.

much more time. Without tree structure caching, the algorithm is slightly slower as it needs to call
Transformer to get the most-likely next tokens (answering Q4).

Finetuning transformer with PG-TD-generated samples. Since we are able to generate solutions
with high pass rates using our PG-TD algorithm, can we use these generated solutions to finetune the
code generation Transformers and further improve their performance? This may effectively solve
the problem that high-quality human-written programs that can be used to train the code generation
Transformers are scarcely available. Concretely, we first run PG-TD on the training set of APPS.
We then add the generated solutions with pass rates larger than 80% to the APPS sample solution
set, and use the augmented solution set to finetune the GPT-2 (2.7B) model. With the finetuned
Transformoer model, we run beam search to generate solutions on the test set to see if it has a better
performance. We use the first 500 problems in the APPS interview-level test set for validation and
the APPS introductory-level test set for testing. The results are reported in Table 3. After finetuning
with PG-TD-generated solutions, we see improvement in both pass rate and strict accuracy. More
details are in Sec. C.4.

Methods Code ↓ Comment ↑ Pass ↑length number rate

Default 248.42 0.68 23.14
Length Penalty 190.73 - 22.82
Comment Encouragement - 3.11 21.65

Table 4: Performance of controllable code generation.
Code length denotes the length of the generated code
string and comment number denotes the number of code
lines that contains comments.

Optimizing other code generation
objectives. Beyond the pass rate,
we can make the algorithm versatile
by using different reward functions.
We consider two new objectives, code
length penalty and comment encour-
agement. As shown in Table 4, the
code length penalty reward function
makes the model generate more con-
cise codes; the comment encourage-
ment reward function encourages mod-
els to generate codes with more comments. Both objectives still achieve reasonable pass rates on
the public test cases. We provide a qualitative example for comment encouragement in Figure 5 and
more details of the reward functions in Sec. B of the appendix.

5 DISCUSSION AND CONCLUSION

In summary, we proposed a novel algorithm that uses the powers of a pre-trained Transformer and
the Monte-Carlo tree search algorithm. We evaluate our algorithm and empirically show that our
algorithm generates programs of higher quality compared with competing baseline algorithms in
different settings. We also design model structure-specific caching mechanisms which contribute
to saving computational expenses. We show that our algorithm is versatile and can generate codes
under objectives other than the pass rate without finetuning the Transformer. We hope our work can
inspire more ways of integrating planning algorithms into the Transformer generation process for
code generation or other problems.

One limitation of our algorithm is its reliance on test cases, although we find that even a small
number of test cases can help find better solutions (Sec. A, Table 7). Our algorithm is also more
computationally expensive than the pure Transformer beam search algorithm since ours needs to run
the beam search algorithm for multiple times within MCTS. In the future, we consider improving
the framework’s performance by using a value function to estimate the programs’ pass rates, similar
to the evaluation function in Silver et al. (2016) for mastering Go. We can also learn a neural state
representation for partial programs as in Chen et al. (2018). We also consider using parallel MCTS
(Chaslot et al., 2008) for the evaluation step to parallelize the computation for different states.
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APPENDIX

In this appendix, we supplement the main paper by providing more thorough empirical evaluations to
back up our claims and more detailed descriptions of the algorithms to help readers better understand
our paper.

This appendix is organized as follows.

• In Sec. A, we provide empirical results on more competitive coding datasets and more com-
prehensive results of our algorithm and the baseline algorithms. We also include the license
information of the datasets we use.

• In Sec. B, we provide empirical evidence for our claims in the discussion section that our
algorithm is versatile and can be used to optimize different code generation objectives other
than optimizing the pass rates. We consider the objectives of code length penalty and comment
encouragement.

• In Sec. C, we provide more details on the components in PG-TD as well as the baseline algo-
rithms.

• In Sec. D, we illustrate more examples on the codes generated by our PG-TD algorithm and
the baseline algorithms, and also provide a step-by-step visualization of execution of PG-TD.

• In Sec. E, we discuss more on the advantages and the potential negative social impacts of our
algorithm.

A EMPIRICAL EVALUATION

We report the performance of our algorithm and other baselines on the whole APPS dataset
(Hendrycks et al., 2021) and CodeContests (Li et al., 2022). The APPS dataset contains coding
problems at three levels: introductory (1000 problems), interview (3000 problems), and competition
(1000 problems). Our experiments are run on machines with two Intel(R) Xeon(R) Gold 6258R
CPUs (@ 2.70GHz), and one V100-SXM2 GPU.

In Table 5, we can see that our algorithm consistently has the highest pass rate on all the datasets,
which further supports Q1 in the main paper.

Pass Rate (%) Strict Accuracy (%)
APPS Intro. APPS Inter. APPS Comp. CodeContests APPS Intro. APPS Inter. APPS Comp. CodeContests

GPT-2

Beam Search 11.95 9.55 5.04 5.10 5.50 2.10 1.00 0.00
S+F 16.84 17.34 9.16 16.94 7.30 3.56 2.00 1.81
SMCG-TD 17.89 17.85 9.94 13.97 8.10 3.20 2.10 3.03
PG-TD 23.14 24.38 11.49 20.85 11.00 5.36 2.70 1.81

GPT-Neo

Beam Search 14.32 9.80 6.39 5.73 6.70 2.00 2.10 0.00
S+F 20.79 18.03 10.12 18.19 10.10 3.13 2.20 1.82
SMCG-TD 21.00 18.54 9.09 18.08 10.4 3.63 2.20 1.21
PG-TD 25.64 22.13 11.09 21.08 13.20 4.83 2.50 2.42

Table 5: Average percentages of pass rates and strict accuracies of PG-TD and baseline methods on
competitive programming datasets.
In Fig. 6, we supplement Fig. 4 by reporting the strict accuracies of PG-TD and baseline algorithms.
They have the similar patterns as the pass rate results. However, since we only optimize the pass
rates, the performance of each algorithm does not monotonically increase by increasing the size of
the tree in PG-TD or increasing the sample sizes for Sampling and SMCG-TD.

n@k and pass@k metrics. We also report the performance of PG-TD and Sampling under the
n@k and pass@k metrics (Li et al., 2022). Given a problem, each algorithm is asked to generate
k programs and submit n programs for evaluation (they submit the n programs with the highest
reward on the public test cases). n@k is the proportion of the problems where any of the n submitted
programs passes all the private test cases. pass@k is the proportion of the problems where any of the
k generated programs passes all the private test cases (effectively k@k). For PG-TD, the k samples
are the complete programs found in the first k rollouts. The results are reported in Table 6, evaluated
on the first 500 APPS introductory problems. We observe that with the same number of generated
samples (k), PG-TD finds programs that are more likely to pass all the private test cases.
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Figure 6: Strict accuracies of PG-TD and baseline algorithms vs. the number of programs generated
using the Transformer (left) and the computation time (middle) on the first 500 problems in the
APPS introductory dataset, using the APPS GPT-2 Transformer model.

1@10 1@50 1@100

PG-TD 5.8 9.8 11.79
S+F 5.2 6 6.4

5@10 5@50 5@100

PG-TD 6.8 11.6 12
S+F 5.6 6.4 7.6

pass@10 pass@50 pass@100

PG-TD 7.19 13.8 14.79
S+F 7.39 10.8 12.8

Table 6: n@k and pass@k results of PG-TD and Sampling, evaluated on the first 500 APPS intro-
ductory problems.

Pass Rate Strict Accuracy

0 public test cases (the beam search baseline) 13.61 4.2
1 public test cases 21.24 7.6
3 public test cases 25.09 8.79
5 public test cases 26.59 10.8
Half of all test cases (10.44 public test cases on average) 32.11 12.8

Table 7: The performance of PG-TD using different number of public test cases, evaluated on the
first 500 APPS introductory problems.

Using different numbers of public test cases. On the APPS dataset, we split the all the test cases
evenly into public test cases and private test cases. To investigate how many test cases are enough for
PG-TD to achieve a satisfactory performance, we consider using 1, 3, 5 public test cases and using
the rest of the test cases as private test cases. The results are reported in Table 7, evaluated on the first
500 APPS introductory problems. We observe that even with a small number of public test cases,
PG-TD is able to find programs with higher a pass rate and strict accuracy than beam search. This
suggests that the Transformer can serve as a regularizer in code generation. With a small number
of public test cases, PG-TD still generates programs similar to human-written programs without
overfitting the pubic test cases.

Assets and licenses. The APPS dataset (Hendrycks et al., 2021) is released under MIT License 2.
/The CodeContests dataset (Li et al., 2022) is released under Apache License 2.0 3. The Huggingface
Transformer (Wolf et al., 2019) is released under Apache License 2.0 4.

2https://github.com/hendrycks/apps/blob/main/LICENSE
3https://github.com/deepmind/code_contests/blob/main/LICENSE
4https://github.com/huggingface/transformers/blob/main/LICENSE
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B PLANNING FOR OTHER CODE GENERATION OBJECTIVES

Besides the default reward function that optimizes the pass rate, we show the versatility of the pro-
posed algorithm by setting two new objectives, code length penalty and comment encouragement.

Code length penalty. We make the planner to generate more concise codes by using the following
reward function

Rlength = p+ λ1 × e−lc/t, (1)
where p is the average pass rate on the public test case set and lc is the length of the code string. λ
and t are hyperparameters that control the weight of code length penalty and are set to 0.1 and 20,
respectively. As shown in the Figure 7, the generated solution becomes more concise and the code
string length decreases from 187 to 78 while still passing all the test cases.

Comment encouragement. We can also generate solutions with more comments. We achieve this
goal by using the following reward function

Rcomment = p+ λ1 × e−lc/t + λ2 ×min(1,
Ncm

Nmax
), (2)

where Ncm is the number of “#” in the code string and λ2 is set to 0.2, controlling the weights of
the comment lines. If we simply add λ2 × Ncm as the comment encouragement term, the planner
would generate code with repeated meaningless comment lines to get more rewards. To handle
this problem, we made the following two changes. First, we add the code length penalty term,
λ1 × e−lc/t. Second, we upper-bound the rewards for the number of comment lines by setting the
comment encouragement term to be λ2 × min(1, Ncm

Nmax
), where Nmax = 5 in the example shown

in Figure 8. As shown in Figure 8, we can generate solutions with more comment lines with this
designed reward function.
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Problem Statement
Takahashi loves palindromes. Non-palindromic strings are unacceptable to him. Each time he hugs
a string, he can change one of its characters to any character of his choice. Given is a string S.
Find the minimum number of hugs needed to make S palindromic.
Constraints

(1). S is a string consisting of lowercase English letters.
(2). The length of S is between 1 and 100 (inclusive).

Input
Input is given from Standard Input in the following format:S.

Output
Print the minimum number of hugs needed to make S palindromic.

Sample Test Input 1
redcoder

Sample Test Output 1
1

For example, we can change the fourth character to o and get a palindrome redooder.

1 # cook up a palindrome
2 s=input()
3 n=len(s)
4 c=0
5 if n%2==0:
6 for i in range(n//2):
7 if s[i]!=s[n-i-1]:
8 c+=1
9 print(c)

10 else:
11 for i in range(n//2):
12 if s[i]!=s[n-i-1]:
13 c+=1
14 print(c)

Default reward function (Pass Rate: 1.00, code string
length: 187).

1 s=input()
2 ans=0
3 for i in range(len(s)//2):
4 if s[i]!=s[˜i]: ans+=1
5 print(ans)
6

Reward function with code length penalty (Pass
Rate: 1.00, code string length: 78).

Figure 7: A code generation example with code length penalty. The problem description is shown
on the top. The programs generated by default PG-TD and PG-TD with code length penalty are
shown at the bottom. We can generate more concise code by code length penalty reward.
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Problem Statement
A + B is often used as an example of the easiest problem possible to show some contest platform.
However, some scientists have observed that sometimes this problem is not so easy to get accepted.
Want to try?
Input

The input contains two integers a and b (0 ≤ a, b ≤ 103), separated by a single space.
Output

Output the sum of the given integers.
Sample Test Input 1

5 14
Sample Test Output 1

19
Sample Test Input 2

381 492
Sample Test Output 2

873

1 a, b = map(int, input().split())
2 print(a + b)
3

Default reward function.

1 #!/usrbin/env python3
2 # coding =utf-8 #py3 runs on py2
3 a,b=map(int,input().split())
4 print(a+b)

Reward function with comment encouragement
(code with comments).

Figure 8: A code generation example with code comment encouragement. We can generate codes
with more comments by using the code comment encouragement reward.
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C ALGORITHM DETAILS

C.1 PG-TD

In this section, we describe our PG-TD algorithm with more details, following the Monte-Carlo Tree
Search (MCTS) steps. We show our framework in Fig. 10 again for convenience. The algorithm
maintains a search tree structure where nodes correspond to states and edges correspond to actions.
For each node s, it maintains the number of times that it has been visited, denoted by s.visits. For
a state, action pair, s, a (corresponding to an edge in the tree), the algorithm maintains a function
Q(s, a), which is the maximum value obtained by starting in s and taking action a. Conventionally,
Q(s, a) is the average return. Since our the code generation problem is deterministic (that is, there
are no stochastic transitions), we find the performance is better if we keep track of the best program
generated from a node.

First, the algorithm selects a node for expansion. It starts from the root node, selects substrees recur-
sively, until it reaches a node which is not fully extended (whose children are fewer than kmax). The
common node selection criterion is upper confidence bound (UCB) (Kocsis & Szepesvári, 2006),
which leverages between exploiting known-to-be-good states and exploring less-visited states,

UCB(s, a) = Q(s, a) + β

√
log(s.visits)

s′.visits
, (3)

where s′ is the state reached by taking action a in s; β is a hyperparameter. We set β = 1 in our
experiments.

Then the algorithm expands a node using GENERATE SEQ and evaluates the new node using
GENERATE SEQ, as we described in the main paper. Finally, the estimated value is backpropa-
gated to its parents recursively until it reaches the root and update their Q values. Suppose the
estimated value is v. Then for all state, action pairs, s′, a′, along the trajectory in the tree to reach
the new state, Q(s′, a′) is updated accordingly using the new value: Q(s′, a′)← max(Q(s′, a′), v).

Comparison with the standard MCTS algorithm. It is worth noting that our implementation of
MCTS in PG-TD is different from the standard MCTS algorithm. If we use the standard MCTS
algorithm, it is computationally intractable to search the large space of possible programs to find
high-quality ones.

For comparison, we visualize the standard MCTS algorithm in Fig. 9. In the expansion step, MCTS
selects the next available action in the action set, and adds the state that can be reached by following
the action. In the example, action “b” is taken, and the new state that is added to the tree is “ab”. In
the evaluation step, MCTS evaluates the new state by executing a random policy from the new state
and computes the value of the policy.

It is impractical to apply the standard MCTS algorithm to domains with large state spaces or large
action spaces, as we cannot afford to try all possible actions in the expansion step. A random policy
in the evaluation step also has a high variance in estimating the value of the new state. In PG-TD,
we use a pre-trained Transformer to resolve these limitations of the standard MCTS algorithm.

Transformer generation functions. Our framework has a Transformer model that is pretrained on
competitive coding datasets, and provides the GENERATE SEQ function that generates most-likely
sequences from a partial program, and TOP K that generates the most-likely next tokens given a
partial program. We describe the implementations of these two functions in Alg. 4 and Alg. 5.
They both make use of PTransformer(a|s), the probability that token a is the next token given the
partial program s, which is readily provided in a pre-trained Transformer model. Specifically, TOP K
selects the top-k most-likely tokens according to PTransformer. GENERATE SEQ follows the standard
Transformer beam search algorithm to generate complete programs.

C.2 EFFICIENT IMPLEMENTATION BY INFORMATION SHARING

As discussed in the main paper, there may be calls to the Transformer generation functions the
perform redundant computations. We have described tree structure caching in the main paper. We
provide more details on sequence caching in this section.
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Figure 9: The standard Monte-Carlo tree search algorithm, without using a pre-trained Transformer.
<PD> stands for problem description.
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Figure 10: Our proposed framework, PG-TD, repeated here for convenience.

Sequence caching. The goal of sequence caching is to reduce the computational cost of the eval-
uation step of PG-TD. In the evaluation step, the Transformer beam search algorithm is called to
generate a complete program from the current node. These complete programs and their rewards are
both cached and used in a future iteration.

However, note that when the beam size b > 1, using cached sequences in the previous iterations
may be suboptimal. Let’s consider the example in Figure 12, where b = 2. Starting from “a,” (the
left figure), suppose the beam search algorithm returns a sequence by searching two beams with the
prefixes of “a,b” and “a,c”, respectively (the bold lines). In the next iteration (the right figure), to
evaluate “a,b” using the beam search algorithm, we may not use the sequence found in the previous
iteration, which only searches the subtree of “a,b” with one beam. In other words, we may find a
sequence with a higher likelihood by re-running the beam search algorithm with b = 2 starting from
“a,b”.

In Alg. 4 and Alg. 5, we described how GENERATE SEQ and TOP K take advantage of the caching
mechanism, highlighted in blue colors. In Alg. 6, we described how we clean the cache so that
the memory it takes does not increase without bound as we execute PG-TD. Alg. 6 is called at the
beginning of each function call of PG-TD.

We also cache the search tree between different function calls of PG-TD, which is the same design
choice used in Silver et al. (2017). The tree structure built in one iteration will be kept and used for
following iterations. So the following iterations can search even deeper in the tree.
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Figure 11: Illustration of sequence caching. a most-likely sequence generated in an iteration of PG-
TD (left) may be used for a future iteration (right).
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Figure 12: Illustration of an example where sequence caching may not return the correct sequence
when b > 1.

C.3 BASELINE ALGORITHMS

Sampling + Filtering. We have described the sampling algorithm in the main paper. The pseu-
docode is shown in Alg. 7.

Transformer-Guided Sequential Monte Carlo. Transformer-Guided Sequential Monte Carlo
(SMCG-TD) is another algorithm that we compare PG-TD with, which also uses Transformer to
evaluate partial programs. The pseudocode is shown in Alg. 8. One can think of it from a view of
genetic algorithms. SMCG-TD maintains a group of partial programs, called a generation, and up-
dates them iteratively. For each partial program in the generation, we sample a next token using the
Transformer and append it to the partial program, and put it in a new generation. We then evaluate
each partial program in the new generation in the same way as PG-TD: We use the Transformer to
generate a complete program from the partial program and compute its reward (pass rate). We then
use these rewards as the partial programs’ fitness scores. At the end of an iteration, we re-sample
from the partial programs according to their fitness. So partial programs with higher fitness scores
are more likely to remain in the generation. In the end, the algorithm outputs the complete program
it finds that has the largest reward.

One may notice that SMCG-TD resembles PG-TD on a higher level. It also uses the Transformer
and the public test cases to decide which next token to generate in the code generation process. The
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Algorithm 3 The PG-TD algorithm. Function calls to the pre-trained Transformer are highlighted
in red. Caching-related codes are in blue.

Require: root: the current state; rollouts: the number of MCTS rollouts; kmax: the maximum
number of children of any node; b: the number of beams for Transformer beam search

1: UPDATE CACHE(root) ▷ Alg. 6
2: for i← 1, 2, . . . , rollouts do
3: node← root
4: # Selection
5: while |node.children| = kmax do
6: node← UCB SELECT(node.children)
7: end while
8: # Expansion
9: children num← |node.children|

10: act← TOP K(node, k = children num+ 1) ▷ Alg. 4
11: new node← the state reached by taking action act in node
12: Add new node to node.children
13: # Evaluation
14: program list← GENERATE SEQ(new node, b) ▷ Alg. 5
15: r ← maxp∈program list GET REWARD(p)
16: # Backpropagation
17: Update and the values of new node and its ancestors in the tree with r
18: end for
19: return the action with the highest value starting from root

Algorithm 4 TOP K. Caching-related codes are in blue.

Require: s: starting partial program; k: returning the k-the most likely token.
1: if s ∈ top k cache.keys() then
2: act← the k-st most-likely token from top k cache[s]
3: end if
4: sorted tokens← sort all tokens by PTransformer(·|s) in descending order
5: top k cache[s]← sorted tokens
6: return sorted tokens[k]

key difference is that SMCG-TD uses a sampling-based approach and PG-TD uses a tree search
algorithm. We are able to increase the number of rollouts in PG-TD to make it do multi-step look-
ahead search, which is what SMCG-TD incapable of. So in our experiments, the performance of
SMCG-TD only approximates the default setting of PG-TD (kmax = 3, rollouts = 3) where we do
one-step look-ahead search in the tree search algorithm.

It is worth noting that sequence caching is also implemented for SMCG-TD when it calls
GENERATE SEQ. So even if multiple partial programs in a generation can be the same, the algo-
rithm would not call the Transformer to generate a complete program from the same prefix more
than once, which effectively reduces the number of times that it needs to call the Transformer and
saves the computation time.

C.4 FINETUNING

In our experiments, we use the samples generated by the PG-TD to further finetune the Transformer
models. We then generate solutions using the finetuned Transformer model by running beam search,
and observe improvement on both pass rate and strict accuracy compared with running beam search
using the original model.

One challenge in our design is that solutions that PG-TD generates have different pass rates. We
could use only solutions with pass rate of 100%. However, that largely limits the number of samples
we can use for finetuning. We instead collect all solutions that have pass rates larger than 80%. To
make the Transformer aware of the different pass rates of training samples, we use the loss function
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Algorithm 5 GENERATE SEQ. The Transformer beam search algorithm. Caching-related codes are
in blue.
Require: s: starting partial program; b: beam size; k: the top-k next tokens to consider.

1: if b = 1 and there exists cached state ∈ sequence cache.keys() (s matches the prefix of
cached state) then

2: return sequence cache[cached state]
3: end if
4: candidates← [s]
5: t← 0
6: outputs← NEW LIST()
7: while |candidates| > 0 and t < max steps do
8: new candidates← NEW LIST()
9: for s ∈ candidates do

10: for k′ ← 1, . . . , k do
11: a← TOP K(s, k′)
12: s′ ← CONCATENATE(s, a)
13: add s′ to new candidates
14: end for
15: end for
16: compute the likelihood of all the partial programs in new candidates, and only keep the

top-b partial programs in new candidates and drop the rest
17: move complete programs, if any, from new candidates to outputs
18: t← t+ 1
19: end while
20: if b = 1 then
21: sequence cache[cached state]← outputs
22: end if
23: return outputs

Algorithm 6 UPDATE CACHE.

Require: s: the current partial program.
1: for cached state ∈ sequence cache.keys() do
2: if s does not match the prefix of cached state then
3: delete sequence cache[cached state]
4: end if
5: end for
6: for cached state ∈ top k cache.keys() do
7: if s does not match the prefix of cached state then
8: delete top k cache[cached state]
9: end if

10: end for

similar to Le et al. (2022),

L(θ) = −EW∼pθ
[r(W )∇θ log pθ(W |PD)], (4)

where W denotes a complete program; r(W ) is the pass rate of the program; PD is the program de-
scription. In future work, we will investigate different loss functions and compare their effectiveness
in improving the Transformer model’s performance.
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Algorithm 7 Sampling + Filtering.

Require: sample num: the number of samples to generate using Transformer.
1: for i← 1, 2, . . . , sample nums do
2: pi ← TRANSFORMER SAMPLE(⟨PD⟩, k = 5)
3: rewards[i]← GET REWARD(pi)
4: end for
5: return pi with the largest rewards[i]

Algorithm 8 Sequential Monte Carlo-Guided Transformer Decoding (SMCG-TD).

Require: pop size: the population size
1: generation← [⟨PD⟩] ∗ pop size # initialize the population with the problem description
2: fitness← [1.0/pop size] ∗ pop size # uniform distribution
3: t← 0
4: complete programs← NEW LIST()
5: while |population| > 0 and t < max steps do
6: new generation← NEW LIST()
7: new fitness← NEW LIST()
8: for i← 1, . . . , LEN(generation) do
9: s← sampled from generation, where generation[j] is selected with the probability of

fitness[j]
10: a← sampled from PTransformer(·|s)
11: s′ ← CONCATENATE(s, a)
12: if s′[−1] = <|endoftext|> then
13: # this sample finishes generation, save to output
14: add s′ to complete programs
15: else
16: add s′ to new generation
17: p← GENERATE SEQ(s′, b = 1)
18: r ← GET REWARD(p)
19: add r to new fitness
20: end if
21: end for
22: normalize new fitness
23: generation← new generation
24: fitness← new fitness
25: t← t+ 1
26: end while
27: return the program in complete programs that has the largest reward
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D ILLUSTRATIVE EXAMPLES

D.1 CODE GENERATION EXAMPLES

In this section, we provide more qualitative examples generated by our PG-TD and the baseline
methods, shown in Figure 13 and Figure 14. Our PG-TD algorithm generates solutions that have
higher pass rates than the baseline methods.

Problem Statement
Takahashi is meeting up with Aoki. They have planned to meet at a place that is D meters away

from Takahashi’s house in T minutes from now. Takahashi will leave his house now and go straight
to the place at a speed of S meters per minute. Will he arrive in time?
Constraints

(1). 1 ≤ D ≤ 10000
(2). 1 ≤ T ≤ 10000
(3). 1 ≤ S ≤ 10000
(4). All values in input are integers.

Input
Input is given from Standard Input in the following format: D T S

Output
If Takahashi will reach the place in time, print Y es; otherwise, print No.

Sample Test Input
1000 15 80

Sample Test Output
Yes

It takes 12.5 minutes to go 1000 meters to the place at a speed of 80 meters per minute. They have
planned to meet in 15 minutes so he will arrive in time.

1 # cook your dish here
2 try:
3 a=list(map(int,

input().split(
)))

↪→
↪→

4 if(a[2]==1):
5 print("Yes")
6 else:
7 print("No")
8 except:
9 pass

10

Beam Search (Pass Rate: 0.125).

1 # cook your dish here
2 d,t,s=list(map(int,

input().split
()))

↪→
↪→

3 if(d==t):
4 if(s*(s+1)/s==t):
5 print("Yes")
6 else:
7 print("No")
8 else:
9 if(s*(s+1)/s>t):

10 print("Yes")
11 else:
12 print("No")

Sampling + Filtering (Pass Rate:
0.625).

1 n, t, s=map(int,
input().split())↪→

2 t1=n / s
3 if t1 <= t:
4 print("Yes")
5 else:
6 print("No")
7

PG-TD (Pass Rate: 1.00).

Figure 13: A code generation example for competitive programming.The problem description is
shown on the top. The programs generated by baseline algorithms and our PG-TD algorithm are
shown at the bottom.
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Problem Statement
Given is an integer r. How many times is the area of a circle of radius r larger than the area

of a circle of radius 1? It can be proved that the answer is always an integer under the constraints
given.
Constraints

(1). 1 ≤ r ≤ 100.
(2). All values in input are integers.

Input
Input is given from Standard Input in the following format: r.

Output
Print the area of a circle of radius r, divided by the area of a circle of radius 1, as an integer..

Sample Test Input
2

Sample Test Output
4

The area of a circle of radius 2 is 4 times larger than the area of a circle of radius 1. Note that
output must be an integer - for example, 4.0 will not be accepted.

1 # cook your dish here
2 r=int(input())
3 if(r>=2*r):
4 print(r*r*2)
5 else:
6 print(0)

Beam Search (Pass Rate: 0.00).

1 # cook your dish here
2 r=int(input())
3 if(r>=2*r):
4 print(r*r*2)
5 else:
6 print(0)

Sampling + Filtering (Pass Rate:
0.00).

1 # cook your dish here
2 r=int( input() )
3 print(2*(r**2)-r**2)
4

PG-TD (Pass Rate: 1.00).

Figure 14: A code generation example for competitive programming. The problem description is
shown on the top. The programs generated by baseline algorithms and our PG-TD algorithm are
shown at the bottom.
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D.2 ILLUSTRATIONS OF STEP-BY-STEP EXECUTION OF PG-TD

In the example shown in Fig. 13, we see that PG-TD outputs the first tokens (“n, t, . . . ”) differ-
ently from the beam search (“# cook your . . . ”). It means that after evaluating the pass rates
of the potentially generated programs, our algorithm disagrees with the Transformer beam search
algorithm and outputs different tokens. We use this problem as an example to visualize the execu-
tion of PG-TD. We consider the setting where the maximum children of any node (kmax) is 3, the
number of rollouts is 6, and the number of beam size (b) is 1.

<PD>

# n import

<PD>

#

cook

…
# cook your dish here
n,m,s=list(map(int,input().split())
)
if s==0:

if n==0:
print("Yes")

else:
print("No")

elif (n==1 and m==0):
print("Yes")

elif (m%s==0):
print("Yes")

else:
print("No")

Pass rate: 0.25

<PD>

#

,

…
n,m,s=map(int,input().split())
if n==m:

if s==0:
print("Yes")

else:
print("No")

else:
if s>0:

m=(n*s)/(m-1)
if int(m)==m:

print("Yes")
else:

print("No")
else:

m=(n*s)/(m-1)
if int(m)<m:

print("No")
else:

print("Yes")

Pass rate:  0.375

n

0.25

(a)

(b)
(c)

(a) We start with decoding from the problem description, <PD>. Initially, there is only the root
node, which is the problem description. To expand this node, the algorithm calls TOP K to ask the
Transformer to suggest the most-likely tokens. In this case, Transformer suggests ‘#’, ‘n’,
‘import’, in descending order of their likelihood.

(b) The algorithm adds the most-likely token, ‘#’, to the tree. To evaluate this node, the algorithm
calls GENERATE SEQ to generate a complete program, and run it on test cases. The pass rate of the
generated program is 0.25 (it passes 25% of the public test cases).

(c) In the next iteration, the algorithms adds the second most-likely next token, ‘n’, to the tree.
Similarly, the algorithm generates a complete program from this new node and runs it on the test
cases. Its pass rate is 0.375.
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<PD>

# n import

0.25
0.375

0

<PD>

# n import

0.25
0.375

0

, = D

<PD>

# n import

0.25
0.375

0

m

n,m,s=map(int,input().split())
if n==m:

if s==0:
print("Yes")

else:
print("No")

else:
if s>0:

m=(n*s)/(m-1)
if int(m)==m:

print("Yes")
else:

print("No")
else:

m=(n*s)/(m-1)
if int(m)<m:

print("No")
else:

print("Yes")

Pass rate:  0.375

n,

…

(d)

(e)

(f)

(d) The process is similar for the third most-likely token, ‘import’. The program generated
starting from it has 0 pass rate.

After the first three iterations, three nodes are added to the tree and their values are computed.

(e) Now the algorithm selects ‘n’ for expansion, as it has the highest value. The algorithm calls
TOP K to get the most-likely tokens. In this case, they are ‘,’, ‘=’, ‘D’.

(f) The algorithm adds ‘n,’ to the tree. The program generated from it has the pass rate of 0.375.
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<PD>

# n import

0.25
0.375

0

n,

0.375

n=

int

n=int(input())
m=int(input())
if n==1:

if m%2==0:
print("Yes")

else:
print("No")

elif m==2:
if n==1000:

print("Yes")
elif n==10000:

print("Yes")
else:

print("No")
else:

if (n*(n+1)/2)<=m:
print("Yes")

else:
print("No")

Pass rate:  0.0

<PD>

# n import

0.25
0.375

0

0.375 0

# cook

0.25

…

(g)

(h)

n, n=

(g) The algorithm selects ‘n’ again and adds ‘n=’ to the tree. The program generated from it has
the pass rate of 0.

(h) The algorithm selects ‘#’ for expansion and adds ‘# cook’ to the tree. It no longer selects
‘n’ for expansion in this iteration as it believes the subtree of ‘n’ is well explored, and it instead
explores the substree of ‘#’.

Now the algorithm has finished six iterations of rollouts. One can verify that six nodes have been
added to the tree. After the tree search, the algorithm will return the token ‘n’ as the action
it believes to be optimal. Our algorithm disagrees with the most-likely token suggested by the
Transformer, as it finds that it can generate a program with a higher pass rate by outputting a different
token (the second most-likely token suggested by the Transformer).
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E MORE DISCUSSIONS

Potential benefits. We have shown that our framework can not only help achieve higher pass rates
compared with using only the Transformer generation process, but also generate codes that opti-
mize different objectives. These are done without fine-tuning the pre-trained Transformer models.
Our framework makes a pre-trained Transformer more versatile and adapts it to different tasks by
designing different reward functions used by the planning algorithm. If we re-train or fine-tune a
Transformer like GPT-2 used in this paper, we will need to train billions of parameters (Radford
et al., 2019). Our approach potentially saves the computational cost and energy consumption that is
needed to train or fine-tune Transformers for different tasks.

Potential negative social impacts. Automatic code generation makes it easier for anyone to gen-
erate programs that meets a specification. Our hope is that this development will relieve the burden
of software engineers and enable AI-assisted programming or even end-to-end automatic program-
ming. However, it may also make it easier to develop malwares. Anyone that can specify a malicious
goal in a natural language can use an automatic code generation tool to generate codes that meet the
goal. When automatic code generation techniques become more mature, we may need a separate
module that screens the natural language description and rejects the code generation requests that
can lead to harmful codes.
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