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Abstract

Meta reinforcement learning sets a distribution
over a set of tasks on which the agent can train
at will, then is asked to learn an optimal policy
for any test task efficiently. In this paper, we con-
sider a finite set of tasks modeled through Markov
decision processes with various dynamics. We
assume to have endured a long training phase,
from which the set of tasks is perfectly recovered,
and we focus on regret minimization against the
optimal policy in the unknown test task. Under a
separation condition that states the existence of a
state-action pair revealing a task against another,
Chen et al. (2022) show that O(M2 log(H)) re-
gret can be achieved, where M,H are the number
of tasks in the set and test episodes, respectively.
In our first contribution, we demonstrate that the
latter rate is nearly optimal by developing a novel
lower bound for test-time regret minimization un-
der separation, showing that a linear dependence
withM is unavoidable. Then, we present a family
of stronger yet reasonable assumptions beyond
separation, which we call strong identifiability,
enabling algorithms achieving fast rates log(H)
and sublinear dependence withM simultaneously.
Our paper provides a new understanding of the
statistical barriers of test-time regret minimization
and when fast rates can be achieved.

1. Introduction
Reinforcement Learning (RL, Sutton & Barto, 2018) is
a popular tool for learning an optimal decision policy
through sampled interactions with a Markov Decision Pro-
cess (MDP), a general framework encompassing countless
applications, ranging from robotics (Xu et al., 2023; Kauf-
mann et al., 2023) to algorithms design (Fawzi et al., 2022),
conversational agents (Stiennon et al., 2020), and others.
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Although powerful, the efficiency of RL is a long-standing
issue. The theory says that the regret of a RL algorithm,
i.e., the difference between the value of the deployed pol-
icy and the optimal policy in hindsight, inescapably scales
with

√
H in the worst case (Jaksch et al., 2010; Osband

& Van Roy, 2016), H being the total number of episodes
of interactions with the MDP. Even if the real world is ar-
guably better behaved than the worst-case MDP, the most
successful algorithms (Schulman et al., 2015; Mnih et al.,
2015) still take thousands of interaction episodes to learn a
competitive policy in simulation, which draws pessimism
for RL to be applied for learning in the real world.

A promising direction to improve RL efficiency is meta
RL (Ghavamzadeh et al., 2015), in which a distribution over
the set of tasks we can face is considered. In meta RL, we
first have a training phase on some tasks sampled from the
latter distribution, for which the learning efficiency is less
of an issue (e.g., a simulator is available). Then, we exploit
the collected knowledge to achieve faster learning in a test
task, which is assumed to come from the same distribution.

Much of the previous work in meta RL focuses on algo-
rithms for the training stage (Duan et al., 2016; Finn et al.,
2017; Rakelly et al., 2019; Zintgraf et al., 2019; 2021),
or analyse generalization of the trained model to the test
task (Simchowitz et al., 2021; Tamar et al., 2022; Rimon
et al., 2022; Zhao et al., 2022; Zisselman et al., 2023).

Here we study meta RL from a different perspective. We
assume to have spent infinite time in the training phase,
such that the task distribution can be recovered (we mean
the full specifications of all the MDPs in the set, not just the
task distribution itself), and we aim to minimize the regret
against the optimal policy in the test task. Especially,

Does perfect meta RL training provably improve the
learning efficiency on the test task against standard RL?

We believe that a positive answer is an essential theoretical
ground for motivating meta RL, as there is little incentive to
undergo a costly training (at least in terms of computation)
without guarantees of improved efficiency on the test task.

Even in simple settings, in which the distribution is sup-
ported on a finite set of M tasks, meta RL provides little
hope, as the regret still scales with

√
H in the worst case,

with only marginal gains in the statistical efficiency w.r.t.
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STRUCTURE REACHABILITY REGRET UPPER BOUND REGRET LOWER BOUND

Separation (Ass. 1) Reachable (Ass. 2) O
(
TM2 log(MH)

λ4

)
(Thr. 3.1) Ω

(
TM log(H)

λ
log
(

1
δ

))
(Thr. 4.1)*

Clustering (Ass. 3) Cluster Reachable (Ass. 4) O
(
T (K2+N2) log(NH)

λ4

)
(Thr. 5.1)*

Tree Structure (Ass. 6) Strongly Reachable (Ass. 5) O
(
Td log(dH)

λ4

)
(Thr. 5.2)*

Revealing Policies (Ass. 7) Reachable (Ass. 2) O
(
TI log(MH)

λ4

)
(Thr. 5.3)*

Table 1. Overview of the theoretical results. T is the horizon of an episode, M the number of tasks, H the number of episodes, λ a
separation parameter, δ a confidence, K the number of clusters with size N , d = log1/βM the depth of a binary tree with entropy factor
β, I the number of revealing policies. Note that the rates are simplified to highlight relevant factors. Novel results are marked with *.

standard RL (Chen et al., 2022; Ye et al., 2023). Nonethe-
less, under a common separation assumption on set of
tasks (Chen et al., 2022; Kwon et al., 2021b), i.e., there
exists at least one reachable state-action pair that reveals
one task against the others, the prospects of meta RL become
brighter. Chen et al. (2022) show that O(M2 log(MH)) re-
gret can be achieved by first identifying the test task (with
high probability) and then deploying the best policy for the
latter. Their approach is somewhat wasteful in the identi-
fication, as the algorithm performs a sequence of one-vs-
one tests on candidate tasks, which induces the M2 factor.
However, it is unclear if the latter is necessary or better
algorithms could be developed.

In this paper, we provide a nuanced study of the statistical
barriers of test-time regret minimization in meta RL. First,
we provide a lower bound Ω(TM log(H)) for test-time
regret minimization under separation, where T is the hori-
zon of an interaction episode with the test MDP. Our lower
bound demonstrates that the “wasteful” algorithm by Chen
et al. (2022) is nearly optimal and one factor M is unavoid-
able under separation alone. The way the lower bound is
derived philosophically confirms that probing the MDP to
first identify the test task and then exploit the collected infor-
mation is not just reasonable but also optimal. Nevertheless,
we note that a linear dependence with M is not desirable if
we aim to scale meta RL to large task distributions.

Thus, we formulate stronger yet reasonable requirements
under which the latter limitation may be overcome. To
formalize our desiderata, we call strong identifiability a
family of assumptions that allow for fast rates in H and M
simultaneously, for which we provide three instances.

The first assumes the tasks can be partitioned in coherent
clusters, such that the algorithm can efficiently identify the
cluster to which the test task belongs, and then identify
the latter within that cluster down the hierarchy. Clusters
are fairly natural in practice, e.g., in a meta RL problem
applied to movie recommendation systems, in which the set
of tasks consists of different users with specific tastes. We
could first provide recommendations to probe whether the
test user especially likes a movie genre, and then provide
fine-grained recommendations within the genre catalogue.

The second assumes that the test task can be identified fol-
lowing a tree structure. This means that the algorithm can
split a subset from the current set of candidate tasks by
collecting information on a single state-action pair, which
allows to eliminate a large chunk of candidates at every itera-
tion. This may happen in practice whenever the test task can
be identified testing a sequence of revealing characteristics.

The third strong identifiability assumption we analyse is
admitting the presence of a small number of revealing poli-
cies, which allow for collecting highly informative data
irrespective of the test task, then to perform the identifica-
tion without further interactions. To provide intuition on
such policies, let us think of a meta RL problem in which
the set of tasks consists of morphologies of terrains we aim
to explore without daylight. A revealing policy would light
a torch to probe the surroundings before taking the right
direction for the test morphology.

Contributions. Our main contributions are:

• We revise an analysis of domain randomization (Chen
et al., 2022) through the lenses of meta RL, adapting
their result on sim-to-real gap into a regret upper bound
O(M2 log(MH)) for our setting (Section 3);

• We derive a lower bound Ω(TM log(H)) to test-time re-
gret minimization under separation (Section 4) through
original techniques that formally link our problem to Best
Policy Identification (BPI, Fiechter, 1994). The proof re-
quires a tailored lower bound to the sample complexity of
BPI, which can be of independent interest (Appendix B);

• We present structural assumptions beyond separation,
called strong identifiability (Section 5). Those include: A
clustering assumption that leads to a regret upper bound
of orderO(T (K2 +N2) log(NH)), whereK is the num-
ber of clusters and N is the size of the largest cluster; A
tree structure assumption that leads to a regret of order
O(Td log(dH)), where d = log1/βM is the depth of the
tree and β is the splitting factor; A revealing policies as-
sumption that leads to a regret of order O(TI log(MH)),
where I is the number of revealing policies;

• We provide additional sharp rates to the test-time regret
for meta learning in bandits (Appendix C).

Complete proofs of the theorems are in Appendix A.
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2. Problem Formulation
We first present the necessary background on MDPs and
meta RL (Sections 2.1, 2.2) before formulating the learning
problem we will address in the paper (Section 2.3).

Notation. Let A a space of size |A| with elements a ∈ A.
Then, P(A) := (p ∈ [0, 1]|A||∑a∈A p(a) = 1) is the sim-
plex for a finite A. Let p, q ∈ P(A), their `1-distance is
‖p − q‖1 =

∑
a∈A |p(a) − q(a)|, their total variation is

TV(p, q) = supa∈A |p(a) − q(a)|, their Kullback-Leibler
divergence is KL(p, q) =

∑
a∈A p(a) log(p(a)/q(a)) and

KLp|q := KL(p, q) + KL(q, p). We will denote sets
and sequences as (ai)i∈[I] := (a1, . . . , aI), where [I] :=
(1, . . . , I) for some constant I ∈ N.

2.1. Markov Decision Processes and RL

A finite-horizon time-homogeneous Markov Decision Pro-
cess (MDP, Puterman, 2014) is defined by a tuple1 Mi :=
(S,A, pi, ri, s1, T ) where S is a finite set of states (S =
|S|), A is a finite set of actions (A = |A|), pi : S × A →
P(S) is a transition model such that pi(s′|s, a) denotes the
conditional probability of transitioning to s′ taking action a
in state s, ri : S ×A → [0, 1] is a reward function such that
ri(s, a) is the reward collected by taking action a in s, s1 is
the initial state,2 and T <∞ is the horizon of an episode.

An episode of interaction between an agent and the MDP
Mi goes as follows. At each step t ∈ [T ], the agent ob-
serves st ∈ S and takes at ∈ A. The environment transi-
tions to st+1 ∼ pi(·|st, at) and the agent collects ri(st, at).
Hence, an episode can be summarized through a sequence
τ = (st, at)t∈[T ] called a trajectory.

The agent selects its actions by means of a non-stationary
Markovian policy π := (πt : S → P(A))t∈[T ] ∈ Π where
πt(a|s) denotes the conditional probability of action a in
state s at time step t, and Π is the set of policies. We define
the value at step t of playing policy π in state s ofMi as

V πit (s) := E
π,Mi

[
T∑
t′=t

ri(st′ , at′)
∣∣∣ st = s

]
,

where the expectation is on all the sources of randomness,
i.e., the action selection induced by π and the state transi-
tions induced by pi, which may be stochastic. We further
denote Vi(π) := Vi1(s1) the value of the policy in the initial
state. The objective function of the agent inMi can then be
written as maxπ∈Π Vi(π), where we denote as π∗ the policy
attaining the maximum and V ∗i := Vi(π

∗). RL (Sutton &
Barto, 2018) is a paradigm for learning an (approximately)

1The meaning of the subscripts will become clear later.
2Note that unique initial state is without loss of generality,

as we can accommodate an initial state distribution µ ∈ P(S)
through a fictitious state s0 such that p(s|s0, a) = µ(s),∀a ∈ A.

optimal policy π, such that V ∗i − Vi(π) ≤ ε for some ε > 0,
from sampled interactions with an unknown MDPMi.

2.2. Meta Reinforcement Learning

Meta RL (Duan et al., 2016), initially introduced by Schmid-
huber (1987), extends the RL paradigm to a set of M MDPs
M := (Mi)i∈[M ] = (S,A, pi, ri, s1, T )i∈[M ] having the
same S,A, s1, T , but possibly different transition model pi
and reward ri. Just like in RL, the latter MDPs are typically
unknown to the agent. In a process called training, the agent
can collect interactions with a number of tasks3 drawn from
M according to a task distribution P ∈ P(M) such that
the probability of drawingMi is P (Mi). In training, the
agent collects information into a prior model, e.g., a policy,
a model of transitions, or an algorithm, that is then used
to address a RL problem on a test taskMi assumed to be
drawn from the same task distribution P .

Bayesian RL (Ghavamzadeh et al., 2015) formulates the
target of the training as learning a Bayes-optimal policy4

πBO ∈ arg maxπ∈Π EMi∼P [Vi(π)] under the distribution
P . As we describe below, here we study meta RL from a
frequentist perspective rather than a Bayesian formulation.

2.3. Test-Time Regret Minimization

In this paper, instead of focusing on the training phase of
meta RL, we assume perfect knowledge of the set of tasks
M, such that every transition model pi and reward ri are
fully known to the agent. With this prior knowledge, we
aim to minimize the test-time regret over H episodes

RH(Mi,A) := E

[
H∑
h=1

V ∗i − Vi(πh)

]
(1)

whereMi ∈M is any test task, πh is the policy deployed
in episode h by algorithm A, and the expectation is over
realizations of the episodes 1, . . . ,H taken fromMi. The
motivation for this objective is that comparing against the
optimal policy for the test task, instead of an optimal policy
on average over the task distribution (Ye et al., 2023), gives a
regret measure that is robust to the worst-case task, arguably
a minimal requirement given the perfect training assumption.
We see the latter as a necessary first step towards a more
realistic setting with approximate knowledge ofM only. If
we cannot succeed with the former, the latter is hopeless.

Two other important observations are in order. First, in
this paper we study the regret of adaptive algorithms
A, that is, the deployed policy is Markovian within an
episode, but can change from episode to episode. This
is only slightly restrictive as the policy πh is computed

3We are going to use the term task and MDP interchangeably.
4Note that the Bayes-optimal policy is history-dependent in

general (Ghavamzadeh et al., 2015).
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having the full history of realizations in previous episodes
Hh = ((st,h, at,h, rt,h)t∈[T ])h′∈[h], which means an algo-
rithm A corresponds to a non-Markovian policy with low
switching cost (Bai et al., 2019). Second, the expression
in (1) is different from the notion of Bayesian regret that is
common Bayesian RL (Ghavamzadeh et al., 2015), in which
the regret is taken in expectation over the task distribution
P instead of taking the worst-case task. As a result, the opti-
mal algorithm A for the test-time regret does not correspond
to the Bayes-optimal policy in general, although it holds
RH(Mi, πBO) = O(M ·RH(Mi,A)) for any algorithm A
from (Chen et al., 2022, Lemma 1).

3. Previous Fast Rates for Test-Time Regret
In this section, we discuss the known results for the test-
time regret minimization objective we described above. In
this paper we especially care for fast rates, i.e., those set-
tings in which the knowledge of the set of tasks and its
structure allow to overcome the statistical barrier for regret
minimization in finite-horizon RL, which we know is of or-
der Θ(poly(T, S,A)

√
H) from lower bounds and minimax

algorithms (Osband & Van Roy, 2016; Azar et al., 2017).

Chen et al. (2022) address a regret minimization problem
that is very close to our test-time regret formulation, al-
though their narrative is centered around domain randomiza-
tion rather than meta RL. When the set of tasks is finite, they
provide a lower bound of order Ω(

√
DMH), in which D is

the diameter of a communicating infinite-horizon MDP (see
Assumption 1 and Theorem 3 in Chen et al., 2022).5 The
latter result demonstrates that additional assumptions are
needed to break the

√
H barrier of RL.

To this end, Chen et al. (2022) introduce a separation condi-
tion within the set of tasksM. Formally,

Assumption 1 (λ-separation (Chen et al., 2022)). For any
Mi,Mj ∈ M, there exists (s, a) ∈ S × A such that
‖(pi − pj)(·|s, a)‖1 ≥ λ.

The latter assumption guarantees the existence of a revealing
state-action pair to tell apart a task from another. This allows
to design an algorithm which repeatedly tests that revealing
state-action pair to identify the test task efficiently. First, we
need to further make sure that the revealing state-action can
be reached with meaningful probability.6

Definition 1. Let X(s|Mi, π) denote the random variable
of the first time step in which the state s ∈ S is reached by
playing policy π in the MDPMi. LetX(s, a|Mi, π) be the
analogous for state-action pairs (s, a) ∈ S ×A.

5Note that the results in Chen et al. (2022) are given for a
slightly different setting (detailed comparisons are in Section 6).
We will explicitly adapt to our setting the most relevant results.

6This is the technical adaptation of the communicating MDP
assumption in Chen et al. (2022) for the finite-horizon setting.

Algorithm 1 Identify-then-Commit (Chen et al., 2022)
1: input set of MDPs D and visitation count n
2: while |D| > 1 do
3: DrawM1,M2 from D randomly
4: Let (s̄, ā) ∈ arg max(s,a)∈S×A ‖(p1 − p2)(·|s, a)‖1
5: Call Algorithm 2 with D, (s̄, ā), n to collect X
6: if ∃s′ ∈ X : p2(s′|s̄, ā) = 0 or

∏
s′∈X

p1(s′|s̄,ā)
p2(s′|s̄,ā)

≥ 1

then
7: EliminateM2 from D
8: else
9: EliminateM1 from D

10: end if
11: end while
12: Take M̂ ∈ D and run π̂ ∈ arg maxπ∈Π VM̂(π) for the

remaining episodes

Algorithm 2 Sampling Routine
1: input set of MDPs D, state-action pair (s̄, ā), and visitation

count n
2: Initialize count Ns̄ā = 0 and set X = ∅
3: while Ns̄ā < n do
4: forMi ∈ D do
5: Run the policy πi ∈ arg minπ∈Π E[X(s̄|Mi, π)] for

two episodes
6: if s̄ is reached then
7: Take action ā and collect the next state s′

8: Update Ns̄ā = Ns̄ā + 1,X = X
⋃

(s′)
9: end if

10: end for
11: end while
12: output the set X = (s′1, . . . , s

′
n)

Assumption 2 (Reachable MDPs). An MDPMi is reach-
able if it holds minπ∈Π E[X(s|Mi, π)] ≤ T/2,∀s ∈ S.

With the combination of the latter assumptions, we can
directly adapt the algorithmic solution in Chen et al. (2022)
to the finite-horizon setting.7 We report the pseudocode of
the resulting procedure in Algorithm 1.

The procedure consists of two stages: An “Identify” stage
aiming at identifying the test task with high probability
(lines 2-11) and a “Commit” stage in which the collected in-
formation is exploited (line 12). The “Identify” stage works
as follows. At each iteration, a pair of MDPs are drawn from
the set of potential test tasks (line 3). A sampling routine
(Algorithm 2) is invoked (line 5) to collect samples from
the state-action pair where the transition models of the two
tasks differ the most (see line 4). The collected information
is used to eliminate the task that is less likely to be the test
task within the drawn pair (lines 6-10). The “Identify” stage
ends when the set of potential tasks D is reduced to a single
candidate. The “Commit” stage then runs the optimal policy
of the candidate task for the remaining episodes.

7We refer to Algorithm 1 in Chen et al. (2022), which we name
here the “Identify-then-Commit” algorithm.

4



Test-Time Regret Minimization in Meta Reinforcement Learning

We can provide the following regret upper bound for Algo-
rithm 1 by adapting (Chen et al., 2022, Theorem 1).

Theorem 3.1 (Chen et al. 2022). LetM be a set of MDPs
for which Assumption 1, 2 hold. For anyMi ∈M, we have

RH(Mi,A) = O
(
TM2 log(MH) log2(SMH/λ)

λ4

)
where A is Algorithm 1 with inputs D = M and n =
c log2(SMH/λ) log(MH)

λ4 for a sufficiently large constant c.

The latter result is promising as it provides a fast rate with
only logarithmic dependencies onH , but it also scales super-
linearly with the size of the setM, which is less than ideal
for larger task sets. A natural question that arises is whether
this is the best we can achieve under the considered sep-
aration condition. The latter is arguably a very important
question as the separation condition is the minimal struc-
tural assumption that makes test-time regret minimization
“interesting”, statistically separating the problem from RL.
In the next section, we provide an answer through a lower
bound specifically designed for this setting.

4. A Lower Bound for Test-Time Regret
Minimization under Separation

In this section, we analyze the statistical barrier for test-time
regret minimization under separation (Assumption 1) by
providing a novel lower bound. Formally,

Theorem 4.1 (Lower bound). LetM be a set of MDPs for
which Assumptions 1, 2 hold. Let T > M and M − 1 ≤
H ≤ C for some constant C < ∞. For any Mi ∈ M,
algorithm A, and confidence δ ∈ (0, 1), we have

RH(Mi,A) = Ω

(
TM log(H)

λ
log

(
1

δ

))
with probability at least 1− δ.

Interesting observations come through the lenses of the
result above. The lower bound shows that the regret rate
of Algorithm 1 (Chen et al., 2022) matches the optimal
dependencies in H,T factors, while it nearly matches the
dependencies with λ and the size of the set of tasks M .
The factor of 1/λ is not surprising, tying the complexity
of the problem to how hard it is to distinguish one task
from another. The result has a fairly negative flavor on the
dependency with M instead. It demonstrates that the regret
of any algorithm achieving fast rate log(H) has to scale at
least linearly with M under separation, essentially implying
that those algorithms are unfit for large sets of tasks.

Unfortunately, the latter settings in which the size of M
may grow exponentially with the size of the tasks, or even
be infinite (e.g., when tasks are continuous), are extremely

relevant in practice, and it is arguably where the promises
of meta RL for improved efficiency are the most enticing.

An open question remains on whether there exist relevant
meta RL settings in which the structure of the problem
can be further exploited to achieve fast rates log(H) while
avoiding the dependence with M . In the next section, we
discuss structural assumptions that go beyond the separation
condition and allow to obtain the most efficient algorithms
for test-time regret minimization.

Before that, we briefly sketch the main components of the
proof of Theorem 4.1, which make use of original tech-
niques and constructions that may be of independent interest.
We defer thorough derivations to Appendix A.2. Note that a
gentler introduction to the lower bound in the meta bandit
setting is reported in Appendix C.

4.1. Proof Sketch

The key to our proof is to design a hard instance that links
test-time regret minimization to the problem of best policy
identification (Fiechter, 1994), and then invokes a lower
bound to the sample complexity of the latter to derive the
result. While instance-dependent lower bounds of this kind
exist in the literature (e.g., Al Marjani et al., 2021; Wagen-
maker et al., 2022; Al-Marjani et al., 2023), as a preliminary
step we derive a result that is specifically tailored to our set-
ting. Here we do not report derivations, which are non-trivial
adaptations from a lower bound for BPI in infinite-horizon
MDPs (see Al Marjani et al., 2021, Proposition 2). We leave
a detailed description to Appendix B.

In Figure 1, we report a visualization of the instance con-
structed to derive the lower bound, which consists of M
MDPs having 2M + 3 states and 2 actions each, a high-
rewarding state sH , and an absorbing state sL with zero
reward. It is easy to see that the optimal policy for Mi

goes to the state si and then takes action a1, which gives
the highest probability to visit sH . However, taking ac-
tion a1 in every other state sj ∈ (s1, . . . , sM ) \ si is only
slightly sub-optimal, meaning that regret minimization is
hard. Instead, it is easier to identify the test taskMi first,
by playing action a1 in the states sj ∈ (sM+1, . . . , s2M ),
for which at least one (sj , a1) pair is guaranteed to reveal
the test task against any other, and then to play the optimal
policy thereafter. To formalize the latter intuition, we note
that identifying the test task is equivalent to a BPI problem
for this instance and we center the proof around the event

E :=
{

“best policy is identified within H episodes”
}
.

Then, we show that the regret is lower bounded by Ω(
√
H)

when E does not hold, which implies that solving the BPI
problem is necessary to obtain the best rate.8 At this point,

8Note that this does not prescribe how the algorithm collect
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Figure 1. Visualization of the MDPMi in the lower bound instance. Note that the role of state si and sM+i, . . . , s 3M
2

+i change for every
MDP inM. Also note that sL, sH on the left and right refer to the same pair of states, which are reported twice only to ease inspection.
The bottom chart report the specification of the transition probabilities. The values of ∆1,∆2 are designed to be small enough to make
the optimal policy hard to identify playing only slightly sub-optimal policies and large enough to penalize easy identification, respectively.

we invoke the BPI lower bound in Lemma B.1, which simul-
taneously guarantees that E holds with probability at least
1− δ and that the regret is lower bounded by

RH(Mi,A) ≥ E[τ ]∆2

where E[τ ] ≥ TM/λ2 log(1/2.4δ) is the sample complex-
ity of the BPI problem on the constructed instance and
∆2 := V ∗i − V (π) = log(H)/

√
H is the value gap of play-

ing a sub-optimal policy to identify the task. Theorem 4.1
is obtained through additional algebraic manipulations.

5. Strong Identifiability: Beyond Separation
for Faster Rates

In the previous section, we have settled the statistical com-
plexity of test-time regret minimization in meta RL with
a finite set of tasks under a common separation condition
(Assumption 1 has been previously considered in Chen et al.
2022 as is, while a stronger version of the condition has
been used in Kwon et al. 2021b).

Especially, we provided a lower bound to the test-time re-
gret of order Ω(TM log(H)/λ) and we showed that an
“Identify-then-Commit” strategy (Chen et al., 2022) leads
to a nearly matching upper bound O(TM2 log(MH)/λ4).
Most importantly, our analysis shows that a linear depen-
dence with the size M of the set of tasks cannot be avoided
under the considered separation condition, at least if we aim
for a fast rate in H . In this section, we present stronger
yet reasonable assumptions that allow for faster rates of the
test-time regret. These assumptions implicitly discriminate
the problem instances, which we call strongly identifiable,

samples. It tells that, whatever the sampling strategy, the BPI
problem has to be solved within H episodes.

that are truly worth framing into a meta RL paradigm, as
the latter provides undeniable statistical benefits over RL.
Definition 2 (Strong identifiability). Let M be a set of
MDPs for which Assumption 1 hold.M is strongly identi-
fiable if, for allMi ∈ M, we can identifyMi with high
probability by only playing policies from a restricted policy
class Πid where |Πid| ≤ γM for some factor γ ∈ (0, 1).

Next, we provide three instances of strong identifiability,
with specialized algorithms and corresponding analyses,
while investigating a broader range of strongly identifiable
problems is an interesting directions for future works.

5.1. Meta RL with Clustering

Let us assume that the tasks inM can be grouped in coher-
ent clusters admitting a peculiar and testable property that
allows to efficiently discriminate one cluster from the others.
Formally,
Assumption 3 (KNλ-clustering). Let C = (Ck)k∈[K] be
a partition ofM such that |Ck| ≤ N for all k ∈ [K] and
N > K. For all Ck ∈ C, there exists (s, a) ∈ S × A such
that minMi∈Ck minMj∈M\Ck ‖(pi − pj)(·|s, a)‖1 ≥ λ.

Further, we consider a slightly stronger reachability condi-
tion within a cluster, which essentially assures that a state
can be reached throughout the cluster with the same policy.
Assumption 4 (Cluster reachability). Let Ck ∈ C be
a cluster of reachable MDPs. For all Mi,Mj ∈ Ck
and s ∈ S, it holds E[X(s|Mj , πi)] ≤ T/2 for πi ∈
arg minπ∈Π E[X(s|Mi, π)].

The combination of latter assumptions allows to take a dif-
ferent algorithmic approach w.r.t. the standard separation
condition (Assumption 1). Essentially, we can split the

6
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Algorithm 3 Double-Identify-then-Commit
1: input set of MDPsM, clusters C, visitation count nC
2: Initialize D = (Mk)k∈[K] withMk from Ck randomly
3: while |C| > 1 do
4: Draw Ck from C randomly and let (M1,M2, s̄, ā) ∈

arg min
Mi∈Ck,Mj∈M\Ck

max
(s,a)∈S×A

‖(pi − pj)(·|s, a)‖1

5: Call Algorithm 2 with D, (s̄, ā), nC to collect X
6: if ∃s′ ∈ X : p1(s′|s̄, ā) = 0 or

∏
s′∈X

p1(s′|s̄,ā)
p2(s′|s̄,ā)

≥ 1

then
7: Update C = Ck
8: else
9: Update C = C \ Ck

10: end if
11: end while
12: Take Ĉ ∈ C and run Algorithm 1 with D = Ĉ, n =

c log2(SNH/λ) log(NH)

λ4 for the remaining episodes

“Identify” stage of Algorithm 1 into two separate phases:
First, we identify the cluster to which the test task belongs
with high probability, then, we call Algorithm 1 to identify
the test task within the cluster selected in the previous step.
We call this procedure “Double-Identify-then-Commit” to
underline the two-phase structure of the “Identify” stage.
We report the pseudocode of the procedure in Algorithm 3.

Since both the number of clusters K and the size of each
cluster are smaller than the size M of the set of MDPsM
under Assumption 3, the set of MDPs is strongly identifiable.
Thus, we can expect the “Identify” stage of Algorithm 3 to
be more efficient than the same stage of Algorithm 1 taking
M as input, which is confirmed by the result below.

Theorem 5.1. LetM be a set of MDPs for which Assump-
tion 2, 3, 4 hold. For anyMi ∈M, we have

RH(Mi,A) = O
(
T (K2 +N2) log(NH) log2(SNHλ )

λ4

)
where A is Algorithm 3 with inputs M, C, and nC =
c log2(SKH/λ) log(KH)

λ4 for a sufficiently large constant c.

While the latter proves a significant speed-up of the “Iden-
tify” stage, which can be relevant in practical settings, the
regret does not essentially escape the quadratic dependency
on the number of tasks M . Indeed, if we look into the rate
we get K2 +N2 ≈ K2 +M2/K2 as opposed to M2 with
the separation condition (Assumption 1) alone. At this point,
it is interesting to ask which kind of structure can lead to a
regret rate that is truly sublinear in the number of tasks M .
In the next section, we achieve that by considering a tree
structure on the set of MDPsM.

5.2. Meta RL with a Tree Structure

Let us suppose that for any set of candidate test MDPs we
extract from the original set there always exist a state-action

Algorithm 4 Tree-Identify-then-Commit
1: input set of MDPsM and visitation count n
2: Initialize D =M
3: while |D| > 1 do
4: ComputeM1,M2,D+,D−, (s̄, ā) by solving

min
Mi∈D+,Mj∈D−

max
(s,a)∈S×A

‖(pi − pj)(·|s, a)‖1

s. t. D+ ∪ D− = D, (s, a) is strongly reachable

5: Initialize Ns̄ā = 0 and X = ∅
6: while Ns̄ā < n do
7: Run the policy π ∈ arg minπ∈Π E[X(s̄|M1, π)] for

two episodes
8: if s̄ is reached then
9: Take action ā and collect the next state s′

10: Update Ns̄ā = Ns̄ā + 1,X = X
⋃

(s′)
11: end if
12: end while
13: if ∃s′ ∈ X : p1(s′|s̄, ā) = 0 or

∏
s′∈X

p1(s′|s̄,ā)
p2(s′|s̄,ā)

≥ 1

then
14: Update D = D+

15: else
16: Update D = D−
17: end if
18: end while
19: Take M̂ ∈ D and run π̂ ∈ arg maxπ∈Π VM̂(π) for the

remaining episodes

pair from which we can collect information to split the
candidates in two subsets. For instance, we can think of a
set of indoor physical domains with peculiar configurations,
e.g., some with a window on the right-hand side and some
without. If those states not only exist, but they are also
easy to reach, we can then sequentially split the original
set of MDPs to increasingly smaller subsets, until a single
candidate remains. To formalize this intuition, we first
define what we mean for a state-action to be easy-to-reach.
Assumption 5 (Strong reachability). Let D ⊆M a set of
MDPs. We say that (s, a) ∈ S×A is strongly reachable inD
if, for allMi,Mj ∈ D, it holds E[X(s, a|Mj , πi)] ≤ T/2
where πi ∈ arg minπ∈Π E[X(s, a|Mi, π)].

Then, we can formally define our structural assumption.
Assumption 6 (β-tree). Let M be a set of MDPs and
let β ∈ (1/2, 1). For all D ⊆ M, there exist a strongly
reachable (s, a) ∈ S × A and a partition (D+,D−) of D
such that minMi∈D+ minMj∈D− ‖(pi − pj)(·|s, a)‖1 ≥ λ
where max(|D+|, |D−|)/|D| ≤ β.

The latter induces a tree structure on the set of MDPs, such
that we can render the identification problem as traversing
a (binary) decision tree. The routine works as follows, we
start with the initial set of MDPs M, then we look for
a state-action pair inducing a large enough split, which
we visit several times to understand whether the test task
belongs to D+ or D−. We can iterate these steps again on
the resulting set, i.e., D+ or D−, so that the set of candidate
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MDPs iteratively shrinks towards one single MDP, which
is our candidate test task for the remaining episodes. The
pseudocode for the procedure is reported in Algorithm 4.

Clearly, the cost of the “Identify” stage of Algorithm 4, i.e.,
the number of times the while loop between lines 2-12 has to
be executed, is tied to the depth of the tree structure, which
is log1/β(M) in the worst case. With this consideration, we
can derive the following regret upper bound.
Theorem 5.2. LetM be a set of MDPs for which Assump-
tion 5, 6 hold and let d = log1/β(M). For anyMi ∈ M,
we have

RH(Mi,A) = O
(
Td log(dH) log2(SdH/λ)

λ4

)
where A is Algorithm 4 with inputs M and n =
c log2(SdH/λ) log(dH)

λ4 for a sufficiently large constant c.

5.3. Meta RL with a few Revealing Policies

What happens if we assume that we can extract fromM a
small set of revealing policies that allow to traverse all of the
revealing state-action pairs in expectation? We formalize
this intuition in the following assumption. Then, we provide
an algorithm and corresponding regret analysis that shows
the quadratic dependence with M can be escaped.

Before stating the assumption, we define the set of revealing
state-action pairs SA ⊆ S ×A such that ∀Mi,Mj ∈
M,∃(s, a) ∈ SA : ‖(pi − pj)(·|s, a)‖1 ≥ λ. Then,
Assumption 7 (Revealing policy set). LetM be a set of
MDPs for which Assumption 1, 2 hold. There exists a set of
policies ΠI of size |ΠI | ≤ I such that ∀Mi ∈ M it holds
maxπ∈ΠI min(s,a)∈SA P (X(s, a|Mi, π) ≤ T ) ≥ 1/2.

In Algorithm 5, we report the pseudocode of a procedure
that exploits Assumption 7 to increase the efficiency of the
data collection for the “Identify” stage. First, the policies
in ΠI are repeatedly deployed with the goal of collecting n
samples for each revealing state-action pair in SA within an
“Explore” stage (lines 3-11). Then, differently from previous
approaches, the “Identify” stage (lines 13-21) is carried out
offline with the previously collected data, until the set of
tasksD is reduced to one candidate. Finally, in the “Commit”
stage (line 22), the optimal policy π̂ in the identified test
task M̂ is deployed for the remaining episodes.

Now, we provide an upper bound to its test-time regret.
Theorem 5.3. LetM be a set of MDPs for which Assump-
tion 7 holds. For anyMi ∈M, we have

RH(Mi,A) = O
(
TI log(MH) log2(SMH/λ)

λ4

)
where A is Algorithm 5 with inputs M,ΠI ,SA, n =
c log2(SMH/λ) log(MH)

λ4 for a sufficiently large constant c.

Algorithm 5 Explore-Identify-then-Commit
1: input set of MDPsM, set of policies ΠI , set of state-action

pairs SA, visitation count n
2: Initialize Ns̄ā = 0 and Xs̄ā = ∅ for all (s̄, ā) ∈ SA
3: while min(Ns̄ā) < n do
4: for πi ∈ ΠI do
5: Run the policy πi for two episodes
6: if s̄ such that (s̄, ·) ∈ SA is reached then
7: Take action ā and collect the next state s′

8: Update Ns̄ā = Ns̄ā + 1 and Xs̄ā = Xs̄ā
⋃

(s′)
9: end if

10: end for
11: end while
12: Initialize D =M
13: while |D| > 1 do
14: DrawM1,M2 from D randomly
15: Let (s̄, ā) ∈ arg max(s,a)∈SA ‖(p1 − p2)(·|s, a)‖1
16: if ∃s′ ∈ Xs̄ā : p2(s′|s̄, ā) = 0 or

∏
s′∈Xs̄ā

p1(s′|s̄,ā)
p2(s′|s̄,ā)

≥ 1

then
17: EliminateM2 from D
18: else
19: EliminateM1 from D
20: end if
21: end while
22: Take M̂ ∈ D and run π̂ ∈ arg maxπ∈Π VM̂(π) for the

remaining episodes

The latter result provides a fast rate for the test-time regret
when I < M2, i.e., the problem is strongly identifiable.
However, Algorithm 5 takes a set of revealing policies as
input, leaving to the training phase the burden of providing it.
Here we discuss briefly how this requirement can be avoided,
while we leave as future work a thorough investigation.

Sampling from revealing policies. Instead of pre-
computing a set of revealing policies, one may try to repli-
cate the sampling of the “Explore” stage (lines 3-11) while
interacting with the test task. In Algorithm 6 we describe an
adaptive sampling procedure for this purpose. The idea is to
iteratively compute a policy that maximizes the (expected)
visitation of the revealing state-action pairs left uncovered.
The latter objective can be encoded into a trajectory reward
defined as in line 4. Once such a policy is computed (line
5), it can be deployed in the test task to collect a trajectory
(line 6) and to update the set of the remaining state-action
pairs to be covered (line 7). The process repeats until of the
revealing state-action pairs have been visited (lines 3-9).

To implement Algorithm 6, two technical hurdles have to
be overcome. First, the trajectory reward in line 4 is non-
standard. A naive solution is to encode in the state space the
necessary information to define the reward on a state level
or, alternatively, to adapt algorithms to deal with trajectory
rewards (Efroni et al., 2021; Chatterji et al., 2021). Secondly,
the problem in line 5 is akin to a robust MDP, which is
known to be intractable in general (Wiesemann et al., 2013).
To address the latter, a policy gradient method (Kumar et al.,
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Algorithm 6 Revealing Policies Sampling
1: input set of MDPsM, set of state-action pairs SA
2: Initialize h← 1 and the sets SA1 = SA, Xs̄ā = ∅
3: while SAh is not empty do
4: Define r̃(τ) :=

∑
(s,a)∈SAh

1
(
∃(st, at) ∈ τ : (st, at) = (s, a)

)
5: Solve πh ∈ arg maxπ∈Π minMi∈M Eτ∼π,Mi [r̃(τ)]
6: Take trajectory τh with πh and populate Xs̄ā
7: Compute SAh+1 = SAh \

(
(s, a) ∈ SAh : (s, a) ∈ τh

)
8: Increment h← h+ 1
9: end while

10: output the sets Xs̄ā

2024) can be used to get an approximate solution efficiently,
although this may slow down convergence of the while loop
(lines 3-9) as opposed to deploying (in line 6) the exact
solution of the problem.

6. Related Works
While we are not aware of any previous work explicitly
addressing test-time regret minimization under perfect train-
ing within the meta RL paradigm, slight variations of our
problem setting have been considered in different domains.

As we extensively reported in the previous sections, Chen
et al. (2022) provides theoretical results on the sim-to-real
gap in domain randomization that can be transferred to our
setting almost verbatim. Their sim stage coarsely corre-
spond to our training, while their real stage is our test task,
for which they study a notion of regret against the optimal
policy specific to the task. Differently from our setting,
they consider infinite-horizon MDPs and they analyse the
regret rate of a Bayes-optimal policy instead of our adap-
tive algorithms. Notably, they assume to have recovered
an exact Bayes-optimal policy from simulations, which is
similar in nature to our perfect training assumption. In their
setting of interest, they provide regret guarantees of order
O(M2 log(MH)) for finite set of tasks under separation,
O(M2

√
H) for finite set of tasks without separation, and

O(
√
dEH) for infinite set of tasks with function approxima-

tion, where dE is the eluder dimension of the function class.
Finally, they provide a lower bound Ω(H) for finite sets
without separation. We fill the gaps in their analysis provid-
ing a lower bound specialized for the separation condition
and assumptions beyond separation for faster rates.

The work by Ye et al. (2023) studies generalization guar-
antees of pre-training in RL, in terms of Bayesian and fre-
quentist regret, zero-shot generalization or with additional
test-time interaction. The latter setting in the frequentist
regret formulation is the analogous to our test-time regret
minimization, for which they provide a policy-collection
elimination algorithm with regret of order O(

√
C(P )H),

where C(P ) is a measure of complexity of the task distribu-

tion. Although the complexity C(P ) can capture structured
finite or infinite set of tasks, it does not allow for escaping
the
√
H regret of standard RL.

Kwon et al. (2021b) address regret minimization in Latent
MDPs (LMDPs). In their setting, at every episode a task is
drawn from a set of finite but unknown tasks, for which the
agent tries to minimize the regret against an optimal policy
for the specific task. Essentially, LMDPs formalism can be
seen as a variation of our setting in which the test task is
not persistent but changes at every episode, and the agent
does not have full knowledge of the transition dynamics of
the tasks, which have to be estimated from samples. In its
full generality, LMDPs are statistically intractable. Anal-
ogously to our work, they consider a (stronger) version of
the separation condition to achieve a regret rate of order
O(
√
MH) for their inherently harder setting. Further varia-

tions of LMDPs have been studied, including reward-mixing
MDPs (Kwon et al., 2021a; 2023a), analogous of LMDPs
with fixed dynamics but changing rewards, LMDPs with
side information partially revealing the current task (Kwon
et al., 2023b), and mixture of MDPs (Kausik et al., 2023).

7. Conclusion
In this paper, we provided a formal study on the statistical
barriers of test-time regret minimization under strong struc-
tural assumptions, shedding light on when meta RL can be
expected to provide significant benefits over standard RL.

First, we settled the complexity of test-time regret minimiza-
tion under separation deriving a lower bound specialized for
the assumption, for which only upper bounds were known
in the literature. Then, to overcome the (super)linear depen-
dency with the size of the set of tasks, we studied a family
of structural assumptions beyond separation, i.e., the set of
tasks can be grouped in coherent clusters, the test task can
be identified following a tree structure, or a small set of
revealing policies can be deployed to identify the test task.

Future works may extend our results in various directions.
Additional structural assumptions fitting in the broad fam-
ily of strong identifiability may be investigated, as well as
separation conditions at the level of trajectory generation
processes rather than single state-action pairs. Understand-
ing the impact of approximate training, i.e., only imperfect
estimates of the tasks’ transition dynamics are available,
on our test-time regret minimization results is important
to bring our analysis in a more realistic setting. Whether
there exists minimal assumptions that allow for fast rates
of order log(H) for infinite set of tasks is also a question
worth investigating.

Finally, we hope that our theoretical study can bring inspira-
tion to design practical algorithms for improved efficiency
of test-time learning in meta RL.
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A. Missing Proofs
In this section, we provide complete derivations to prove the theoretical results presented in the paper.

A.1. Proof of Theorem 3.1

Here we prove the upper bound to the test-time regret under separation of Algorithm 1, which is a straightforward adaptation
of the derivations in Chen et al. (2022, Theorem 5) to the finite-horizon setting.
Theorem 3.1 (Chen et al. 2022). LetM be a set of MDPs for which Assumption 1, 2 hold. For anyMi ∈M, we have

RH(Mi,A) = O
(
TM2 log(MH) log2(SMH/λ)

λ4

)
where A is Algorithm 1 with inputs D =M and n = c log2(SMH/λ) log(MH)

λ4 for a sufficiently large constant c.

Proof. Analogously as in Chen et al. (2022, Theorem 5), the proof is based on showing that the true MDPMi will not be
eliminated from D (lines 6-10 in Algorithm 1) with probability at least 1− 1/H (Chen et al., 2022, Lemma 4). Especially,
we can write

P
(

“Mi is eliminated from D”
)

= P

(
M−1⋃
m=1

“Mi is eliminated from D at iteration m”

)

≤
M−1∑
m=1

P
(

“Mi is eliminated from D at iteration m”
)

by noting that the loop in lines 2-11 of Algorithm 1 is executed for M − 1 iterations and then applying a union bound.
Next, we call Lemma A.1 to prove that the event “Mi is eliminated from D at iteration m” holds with probability less than
1/MH .9

Then, we just need to prove that those n samples rquired by Lemma A.1 can be collected efficiently through the sampling
routine in Algorithm 2, which is where our approach differs from Chen et al. (2022). In Lemma A.2, we provide a quick
adaptation of their infinite-horizon communicating MDP setting to our finite-horizon reachable MDP setting.

Now let H0 the number of episodes needed to collect n samples through Algorithm 2 for every time is called from
Algorithm 1 (line 5), which is M − 1 times in total. We have

E[H0] = h0 ≤ 2(M − 1)Mn ≤ cM2 log2(SMH/λ) log(MH)

λ4
.

Finally, we can write

RH(Mi, π) = E

[
h0∑
h=1

V ∗i − Vi(πh)

]
+ E

[
H∑

h=h0

V ∗i − Vi(π̂)

]
≤ cTM2 log2

(
SMH
λ

)
log(MH)

λ4

by noting that E[
∑h0

h=1 V
∗
i −Vi(πh)] ≤ E[H0]T through ri(s, a) ∈ [0, 1],∀Mi ∈M, and that E[

∑H
h=h0

V ∗i −Vi(π̂)] ≤ T ,
as it is V ∗i − Vi(π̂) = 0 with probability at least 1− 1/H and V ∗i − Vi(π̂) ≤ TH with probability at most 1/H .

Lemma A.1 (Chen et al. 2022). Let X = (s′1, . . . , s
′
n) be a set of n = c log2(SMH/λ) log(MH)

λ4 independent samples from
pi(·|s̄, ā) for a large enough constant c and letM1 be an MDP such that ‖(pi − p1)(·|s̄, ā)‖1 ≥ λ. Then, it holds∏

s′∈X

pi(s
′|s̄, ā)

p1(s′|s̄, ā)
> 1

with probability at least 1− 1/MH .
9Note that the derivations in the corresponding (Chen et al., 2022, Lemma 5) apply verbatim as there is no assumption on how samples

in X are collected, and whether they are coming from a finite-horizon or an infinite-horizon MDP.

13



Test-Time Regret Minimization in Meta Reinforcement Learning

Lemma A.2. LetMi ∈ D an MDP and let H0 a random variable denoting the number of episodes needed by Algorithm 2
to collect n samples from pi(·|s̄, ā) inMi. We can upper bound the expected number of episodes as h0 := E[H0] ≤ 2Mn.

Proof. We can follow similar steps as in Chen et al. (2022, Lemma 7). From Assumption 2 we have that E(X(s̄|Mi, πi)) ≤
T/2 for πi ∈ arg minπ∈Π E[X(s̄|Mi, π)]. Then, by applying the Markov’s inequality P (X(s̄|Mi, πi) ≥ T ) ≤
E[X(s̄|Mi, πi)]/T we get

X(s̄|Mi, πi) ≤ T (2)

with probability at least 1/2. Let Y be the random variable denoting the number of episodes needed to reach state
s̄. From (2), we have that P (Y = k) ≤ 1/2k, which gives E[Y ] ≤ ∑∞

k=1 k/2
k = 2. Since Algorithm 2 deploys

πj ∈ arg minπ∈Π E[X(s̄|Mj , π)] for allMj ∈ D (lines 4-9), then also πi is deployed.

A.2. Proof of Theorem 4.1

Here we provide complete derivations for the proof of the lower bound to the test-time regret under separation, which we
briefly sketched in Section 4. In the proof, we will refer to the hard instance depicted in Figure 1 of the main paper.

Theorem 4.1 (Lower bound). LetM be a set of MDPs for which Assumptions 1, 2 hold. Let T > M and M − 1 ≤ H ≤ C
for some constant C <∞. For anyMi ∈M, algorithm A, and confidence δ ∈ (0, 1), we have

RH(Mi,A) = Ω

(
TM log(H)

λ
log

(
1

δ

))
with probability at least 1− δ.

Proof. The key idea behind this proof is to construct an instance of the problem in which it is hard to minimize the regret
without knowing the MDP, whereas it is easy to identify the MDP playing sub-optimal policies.

Hard instance. The instance consists of M MDPs having 2M + 3 states and 2 actions each. Figure 1 depicts the sample
MDPMi ∈ M, but all of the MDPs in the instance are similarly constructed. For anyMi ∈ M, the state sin is the
initial state such that p(s1|sin, a1) = p(sM+1|sin, a2) = 1, sL is an absorbing state with p(sL|sL, a1) = p(sL|sL, a2) = 1,
sH is an high-reward state such that p(sL|sH , a1) = p(sL|sH , a2) = 1 and r(sH , a1) = r(sH , a2) = 1. For all
the other states s ∈ S \ (sH) we have r(s, a1) = r(s, a2) = 0. The states s ∈ S \ (sH , sL, sin) are arranged in
two different chains: (s1, . . . , si, . . . , sM ) on the left and (sM+1, . . . , sM+i, . . . , s2M ) on the right, respectively. In
every state of those chains, the action a2 gives a deterministic transition to the next state in their respective chain, i.e.,
p(sj+1|sj , a2) = 1,∀sj ∈ (s1, . . . , sM−1) ∪ (sM+1, . . . , s2M−1) and self-loops p(sM |sM , a2) = p(s2M |s2M , a2) = 1
for the closing end of the chains. For anyMi ∈M, the state si is the one leading to the state sH with higher probability
than all of the other states pi(sH |si, a1) = 1. For all of the other states in the left chain, i.e., s ∈ (s1, . . . , sM ) \ (si),
the transition to sH has probability pi(sH |s, a1) = 1 − ∆1 = 1 − 1/

√
H . In the right chain, the states are divided in

two groups of M/2 states, which are G1 := (sM+i, . . . , s 3M
2 +i) and G2 := (sM+1, . . . , sM+i−1) ∪ (s 3M

2 +i, . . . , s2M ).10

The transition model is equivalent within the two groups, which is pi(sH |s ∈ G1, a1) = 1−∆2 = 1− log(H)/
√
H and

pi(sH |s ∈ G2, a1) = 1 −∆2 − λ/2 = 1 − log(H)/
√
H − λ/2. Thanks to the construction of G1 and G2, for every pair

Mi,Mj ∈M there is at least one state-action pair for which the λ-separation holds (Assumption 1). To ease the visual
inspection of the sample MDPMi in Figure 1, the state si and related transitions are blue colored, the states in G1 and
related transitions are red colored.

Event. Together with the described instance, we use terminology from best policy identification (see Appendix B for
details) to define a convenient event around which the analysis is centered. We consider a class of stopping rules τ such that
EMi

[τ ] ≤ H , and we define:

E =
{
π̂τ ∈ arg maxπ∈Π Vi(π) : “best policy is identified within H steps”

}
.

To derive the lower bound, we consider the two cases in which E hold or does not hold with high probability, respectively.

10Here we consider i ≤ M/2 for the sake of clarity. If i > M/2 some of the indices of G1 will exceed 2M , so that the exceeding
states are to be taken from the start of the right chain (sM+i, sM+u), where u is the number of exceeding indices.
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Bad Event. If the event E does not hold with high probability, i.e., P(E) < 1− δ, then we can show that the regret scales
with Ω(

√
H).

Let us consider any triplet (π, τ, π̂τ ). Without loss of generality, we take EMi
[τ ] = h, from which we have

RH(Mi, π) = Rh(Mi, π) +

H∑
h̄=h

V ∗i − Vi(π̂τ ) ≥ Rh(Mi, π) + (H − h)∆1 (3)

with probability at least δ. The latter inequality is obtained by noting that the set of policies going to the left in the initial
state π1(a1|sin) = 1, then taking action a1 at some state sj ∈ (s1, . . . , sM ), and then taking the same action until the
episode ends (formally, πt(a2|st) = 1 for all t < j, πj(a1|sj) = 1, and πt(a1|sH) = πt(a1|sL) = 1 for all t > j) include
an optimal policy for everyMi ∈ M. We denote this sufficient set of policies as Π̃. For any MDPMi ∈ M, it holds
Vi(π) = ∆1 for all π ∈ Π̃ \ (π∗i ) and V ∗i = 1, which gives the above.

Then, we lower bound the termRh(Mi, π) in (3) through regret minimization. Due to how the instance is constructed, there
is no incentive to take action a2 in sin since the best policy identification fails in the bad event. Thus, we restrict the set of
policies to Π̃ again. Notably, this set of policies is finite, having size |Π̃| = M . We can cast the regret minimization problem
over this set of policies as a bandit with M actions with parameters (µj = Vi(πj))j∈[M ] for some arbitrary ordering of the
policies in Π̃. It is easy to see that the regret of the original MDP problem cannot be smaller than the regret of the latter
bandit reformulation, which we can lower bound through the techniques in the proof of Theorem C.1. We have

Rh(Mi, π) ≥ h∆1

8
exp

(
−h(∆1)2

2

)
. (4)

Finally, substituting (4) into (3) we get

RH(Mi, π) ≥ h∆1

8
exp

(
−h(∆1)2

2

)
+ (H − h)∆1 ≥

√
H

8
exp

(
−1

2

)
with probability at least δ, where the last inequality is obtained by taking ∆1 = 1/

√
H and noting that the left-hand side is

minimized for EMi
[τ ] = h = H .

Good Event. The previous result states that the regret is at least Ω(
√
H) when the event E does not hold with high

probability. This hints that solving the best policy identification problem is necessary to minimize the regret. To derive the
lower bound, we instantiate a proper best policy identification problem on the considered instanceM and we derive the
corresponding sample complexity through Lemma B.1. We have EMi

[τ ] ≥ T ∗(Mi)
−1 log(1/2.4δ) where

T ∗(Mi) = sup
ω∈Σ(Mi)

inf
Mj∈M−i

∑
s,a

ω(s, a) KLMi|Mj
(s, a).

From Assumption 1 and the Pinsker’s inequality we have

KLMi|Mj
(s, a) ≥ 4TV2(pi(·|s, a), pj(·|s, a)) ≥ ‖(pi − pj)(·|s, a)‖21 ≥ λ2.

By staring at the instance, it can be seen that the allocation vector attaining the supremum is the one assigning even
probabilities to all the pairs (sM+x, a1)x∈[M ], as it guarantees ω(s, a) = 1/TM for at least two revealing state-action pairs
against any MDPMj ∈M−i, such that

∑
s,a ω(s, a) KLMi|Mj

(s, a) ≥ 2λ2

TM , while any other allocation can be hacked by
the infimum overMj ∈M−i to a lesser value.11

We just need to show that the desired allocation can be obtained and does not violate the flow constraints of the MDP (see
the statement of Lemma B.1). We set ω(s1, a2, 1) = 1, which implies

∑
a ω(sM+x, a) ≤ 1/T, ∀x ∈ [M ], since the states

of the right chain cannot be visited more than once in an episode. Then, we set ω(sM+x, a1) = 1/TM, ∀x ∈ [M ] from the

11There are actually other allocation vectors that have equivalent value of T ∗(Mi), which is the one assigning even probabilities to all
the pairs (s, a1)s∈G1 or (s, a1)s∈G2 . For the sake of the proof, we use the most convenient to algebraic manipulations.
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desired allocation, which gives ω(sM+x, a1, x+ 1) = 1/M,∀x ∈ [M ]. We have

ω(sM+1, a1, 2) =
1

M
and ω(sM+1, a2, 2) =

M − 1

M

from
∑
a

ω(sM+1, a, 2) =
∑
s′,a′

pi(sM+1|s′, a′)ω(s′, a′, 1) = ω(s1, a2, 1) = 1,

ω(sM+2, a1, 3) =
1

M
and ω(sM+2, a2, 3) =

M − 2

M

from
∑
a

ω(sM+2, a, 3) =
∑
s′,a′

pi(sM+2|s′, a′)ω(s′, a′, 2) = ω(sM+1, a2, 2) =
M − 1

M
,

ω(sM+3, a1, 4) =
1

M
and ω(sM+3, a2, 4) =

M − 3

M

from
∑
a

ω(sM+3, a, 4) =
∑
s′,a′

pi(sM+3|s′, a′)ω(s′, a′, 3) = ω(sM+2, a2, 3) =
M − 2

M
,

. . .

ω(s2M , a1,M + 1) =
1

M
and ω(s2M , a2,M + 1) = 0

from
∑
a

ω(s2M , a,M + 1) =
∑
s′,a′

pi(s2M |s′, a′)ω(s′, a′,M) = ω(s2M−1, a2,M) =
1

M
,

which gives ω(sM+x, a2, x) = M−x
M ,∀x ∈ [M ], while all of the additional probability to have ω(s, a, t) ∈ P(S ×A),∀t ∈

[T ] is absorbed by sL and sH .

Having proved that the desired allocation complies to the flow constraints, we proceed as

E
Mi

[τ ] ≥ TM

2λ2
log

(
1

2.4δ

)
.

Finally, we can derive the lower bound through

RH(Mi, π) ≥ EMi [τ ]∆2 =
TM

2λ2

log(H)√
H

log

(
1

2.4δ

)
≥ 1

4(
√
C − log(C))

TM log(H)

λ
log

(
1

2.4δ

)

where the last inequality is obtained by exploitingH ≤ C and that transition probabilities are in [0, 1] to write λ
2 + log(H)√

H
≤ 1,

which gives λ ≤ 2(
√
C−log(C))√

H
.

A.3. Proofs of Section 5

Here we report the proofs for the test-time regret upper bounds provided in Theorem 5.1, 5.2, 5.3, respectively.

Theorem 5.1. LetM be a set of MDPs for which Assumption 2, 3, 4 hold. For anyMi ∈M, we have

RH(Mi,A) = O
(
T (K2 +N2) log(NH) log2(SNHλ )

λ4

)

where A is Algorithm 3 with inputsM, C, and nC = c log2(SKH/λ) log(KH)
λ4 for a sufficiently large constant c.

Proof. The derivations are straightforward following the steps in the proof of Theorem 3.1 and being careful to count the
expected number of episodes for both the “Identify” stages.
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For the first “Identify” stage (lines 3-12 in Algorithm 3), we want to make sure that the cluster Cik to which the test task
belongs, i.e.,Mi ∈ Cik, is not eliminated from the set C with probability at least 1− 1/2H . We write

P
(

“Cik is eliminated from C”
)
≤
K−1∑
u=1

P
(

“Cik is eliminated from C at iteration u”
)

by noting that the loop is executed K − 1 times and through a union bound on the iterations. Next, we call Lemma A.1
on the MDPsM1,M2 selected at line 4 (Algorithm 3) on the set X of samples collected at line 5 (Algorithm 3) to prove
that the event “Cik is eliminated from C at iteration u” holds with probability less than 1/2KH , and we further invoke
Lemma A.2 to prove that X can be collected efficiently from the sampling routine (Algorithm 2). Let us denote H0 the
random variable associated to the number of episodes spent in the first “Identify” stage. We have

E[H0] = h0 ≤ 2(K − 1)KnC ≤
c0K

2 log2(SKH/λ) log(KH)

λ4
. (5)

Then, we look at the second “Identify” stage (lines 3-11 in Algorithm 1), which is called at line 12 of Algorithm 3 on the
cluster Ĉ resulting from the previous stage. Just like before, we want to make sure that the MDPMi is not eliminated from
the set Ĉ with probability at least 1− 1/2H . We write

P
(

“Mi is eliminated from Ĉ”
)
≤
N−1∑
u=1

P
(

“Mi is eliminated from Ĉ at iteration u”
)

by noting that the loop is executed at most N − 1 times and through a union bound on the iterations. This follows verbatim
the proof of Theorem 3.1 on the cluster Ĉ insetad ofM, for which we can call Lemma A.1 and Lemma A.2 to get similar
results. We denote as H1 the random variable associated to the number of episodes spent in the second “Identify” stage. We
have

E[H1] = h1 ≤ 2(N − 1)Nn ≤ c1N
2 log2(SNH/λ) log(NH)

λ4
. (6)

Then, we can call yet another union bound on the events defined for the two “Identify” stages and, with similar considerations
as in Theorem 3.1, we write

RH(Mi, π) = E

[
h0+h1∑
h=1

V ∗i − Vi(πh)

]
+ E

[
H∑

h=h0+h1

V ∗i − Vi(π̂)

]

≤ c0TK
2 log2(SKH/λ) log(KH)

λ4
+
c1TN

2 log2(SNH/λ) log(NH)

λ4

≤ cT (K2 +N2) log2(SNH/λ) log(NH)

λ4

where we plugged (5) and (6) together with E[
∑h0+h1

h=1 V ∗i − Vi(πh)] ≤ E[H0 + H1]T to get the first inequality, c =
max(c0, c1) and N > K to obtain the second inequality.

Theorem 5.2. LetM be a set of MDPs for which Assumption 5, 6 hold and let d = log1/β(M). For anyMi ∈M, we have

RH(Mi,A) = O
(
Td log(dH) log2(SdH/λ)

λ4

)

where A is Algorithm 4 with inputsM and n = c log2(SdH/λ) log(dH)
λ4 for a sufficiently large constant c.

Proof. The proof follows derivations of Theorem 3.1 with some slight yet crucial modifications. Just as in Theorem 3.1, we
want to show that the true MDPMi will not be eliminated from D (lines 2-18 in Algorithm 4) with probability at least
1− 1/H . However, the number of times the loop in lines 3-18 of Algorithm 4 is executed is not M , as in Theorem 3.1, but
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depends on the depth of the tree structure given by Assumption 6. Since the size of D is reduced at every iteration by a
factor β at least, we have

Mβdepth ≤ 1 =⇒ depth ≤ log(1/M)

log(β)
= log1/β(M) =: d.

With the latter, we can write

P
(

“Mi is eliminated from D”
)
≤

d∑
m=1

P
(

“Mi is eliminated from D at iteration m”
)

through a union bound on the iterations. Then, we call Lemma A.1 (with care of substituting M with d the result holds
verbatim) to prove that each event “Mi is eliminated from D at iteration m” in the summation holds with probability less
than 1/dH .

For each iteration of the outer loop (lines 3-18), we want to prove that the n samples from (s̄, ā) can be collected efficiently
through the inner loop (lines 6-12). We follow similar steps as in Lemma A.2. Through Assumption 5, we have that
E[X(s̄, ā|Mi, π)] ≤ T/2. By applying the Markov’s inequality we get X(s̄, ā|Mi, π) ≤ T with probability at least 1/2.
Let Y the random variable denoting the number of episodes needed to reach state (s̄, ā) in the test MDPMi. We have that
P (Y = k) ≤ 1/2k, which gives E[Y ] ≤∑∞k=1 k/2

k = 2. Thus, the expected number of episodes to collect the n samples
is upper bounded by 2n.

Let H0 denote the random variable associated to the number of episodes spent in the “Identify” stage as a whole (lines 2-18).
From the considerations above, we have

E[H0] = h0 ≤ 2dn ≤ cd log2(SdH/λ) log(dH)

λ4
. (7)

Then, we can write

RH(Mi, π) = E

[
h0∑
h=1

V ∗i − Vi(πh)

]
+ E

[
H∑

h=h0

V ∗i − Vi(π̂)

]
≤ cTd log2

(
SdH
λ

)
log(dH)

λ4

where we plugged (7) together with E[
∑h0

h=1 V
∗
i − Vi(πh)] ≤ E[H0]T to get the inequality.

Theorem 5.3. LetM be a set of MDPs for which Assumption 7 holds. For anyMi ∈M, we have

RH(Mi,A) = O
(
TI log(MH) log2(SMH/λ)

λ4

)
where A is Algorithm 5 with inputsM,ΠI ,SA, n = c log2(SMH/λ) log(MH)

λ4 for a sufficiently large constant c.

Proof. The proof follows the derivation of Theorem 3.1 verbatim, with the only difference that the samples X for each
iteration of the loop in the “Identify” stage (lines 13-21 of Algorithm 5) are entirely collected during the “Explore” stage
(lines 3-11). Analogously as before, we show that the true MDPMi will not be eliminated fromD (lines 6-10 in Algorithm 1)
with probability at least 1− 1/H . Especially, we can write

P
(

“Mi is eliminated from D”
)
≤
M−1∑
m=1

P
(

“Mi is eliminated from D at iteration m”
)

by noting that the loop in the “Identify” stage is executed for M − 1 iterations and then applying a union bound. Just like
before, we call Lemma A.1 to prove that the event “Mi is eliminated from D at iteration m” holds with probability less
than 1/MH , and then we invoke Lemma A.2 to prove that the “Explore” stage can collect the desired number of samples
efficiently. Let H0 denote the random variable associated to the number of episodes spent in the “Explore” stage. Following
similar considerations as in the proof of Theorem 3.1, we have

E[H0] = h0 ≤ 2In ≤ cI log2(SMH/λ) log(MH)

λ4
. (8)

18



Test-Time Regret Minimization in Meta Reinforcement Learning

Then, we can write

RH(Mi, π) = E

[
h0∑
h=1

V ∗i − Vi(πh)

]
+ E

[
H∑

h=h0

V ∗i − Vi(π̂)

]
≤ cTI log2

(
SMH
λ

)
log(MH)

λ4

where we plugged (8) together with E[
∑h0

h=1 V
∗
i − Vi(πh)] ≤ E[H0]T to get the inequality.

B. Best Policy Identification in Finite-Horizon MDPs: A Tailored Lower Bound
In Best Policy Identification (BPI, Fiechter, 1994), the learner interacts with an unknown MDP Mi with the goal of
minimizing the expected number of samples to be taken in order to tell an optimal policy π∗ ∈ arg maxπ∈Π Vi(π) forMi

with probability at least 1− δ, where δ ∈ (0, 1) is a fixed confidence.

The literature provides theoretical guarantees on the latter expected number of samples, called sample complexity, in a
variety of settings ranging from worst-case results for discounted (Azar et al., 2013; Agarwal et al., 2020) and finite-horizon
MDPs (Dann & Brunskill, 2015; Dann et al., 2019; Kaufmann et al., 2021; Ménard et al., 2021) to instance-dependent
analyses (Al Marjani & Proutiere, 2021; Al Marjani et al., 2021; Wagenmaker et al., 2022; Tirinzoni et al., 2022; 2023;
Al-Marjani et al., 2023).

For the purpose of deriving a lower bound for test-time regret minimization (Theorem 4.1), we use, as a building block, an
instance-dependent, non-asymptotic lower bound to the sample complexity of any δ-PC (Probably Correct) BPI algorithm
in finite-horizon MDPs.12 To the best of our knowledge, the only result of this kind is given in Al-Marjani et al. (2023,
Theorem 2). Here we derive an alternative result that is tailored to our setting, i.e., in which the set of possible MDPs is
restricted to a finite setM fulfilling the λ-separation (Assumption 1).

Additional Notation. LetHh := (st, at, rt)t∈[T ] be a trajectory collected by executing a policy πh at the episode h. We
denoteFh := σ((Hh′)h′∈[h]) the sigma algebra of the trajectories up to episode h, such that (Fh′)h′∈[h] is the corresponding
filtration. We define

• (πh′ : Fh′−1 → P(A))h′∈[h] a sampling rule that determines the policy to be run at each episode given the past
observations;

• τ a stopping rule that gives the time at which the sampling process is stopped given past observations;

• π̂τ ∈ Π a decision rule, which is the policy selected when τ is triggered, i.e., the best guess on the optimal policy given
past observations.

We denote as E[τ ] the sample complexity of the BPI problem. Notably, the identification can span several episodes of our
finite-horizon MDP setting, which means that at any step h′ such that mod(k′, T ) = 0 the process will be reset to state s1.
To simplify the analysis, we assume that whenever the stopping rule τ is triggered, the process proceeds until the end of the
episode, which means the sample complexity is a multiple of T .

Now, we have all of the elements to derive our tailored lower bound. Specifically, we adapt to our BPI problem of interest
the result (Al Marjani et al., 2021, Proposition 2), which was originally derived for the infinite-horizon and δ-asymptotic
setting. We obtain the following.
Lemma B.1 (Best policy identification). Let assume all theMj ∈M admit unique optimal policies. ForMi ∈M, let us
define the set of allocation vectors

Σ(Mi) =
{
ω ∈ P(S ×A) : ω(s, a) =

1

T

∑
t∈[T ]

ω(s, a, t),

ω(·, ·, 1) ∈ P(S ×A),
∑
a∈A

ω(s1, a, 1) = 1,

∀(s, t) ∈ S × (2, . . . , T ),
∑
a∈A

ω(s, a, t) =
∑
s′,a′

pi(s|s′, a′)ω(s′, a′, t− 1)
}
.

12A δ-PC algorithm (e.g., Al Marjani et al., 2021) is an algorithm that is guaranteed to output an optimal policy π∗ with probability at
least 1− δ with a finite sample complexity.
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LetM−i :=M⊆Mi. For δ ∈ (0, 1), any δ-PC BPI algorithm has sample complexity

E
Mi

[τ ] ≥ T ∗(Mi)
−1 log(1/2.4δ) where T ∗(Mi) = sup

ω∈Σ(Mi)

inf
Mj∈M−i

∑
s,a

ω(s, a) KLMi|Mj
(s, a).

Proof. The derivations are adapted from the proof of Proposition 2 in Al Marjani et al. (2021). First, we report a sample
complexity result on best policy identification with a generative model (Al Marjani & Proutiere, 2021), which, for any
Mj ∈M−i, states that ∑

s,a

E
Mi

[Nτ (s, a)] KLMi|Mj
(s, a) ≥ kl(δ, 1− δ) (9)

where Nτ (s, a) is the number of samples of the (s, a) pair collected within τ ∈ N steps and kl(x, y) denotes the Kullback
Leibler divergence between Bernoulli distributions with parameters x, y respectively. Differently from the generative model
setting, we have to enforce MDP constraints on EMi

[Nτ (s, a)], which gives the recursive expression

if mod(τ, T ) 6= 0
∑
a

E
Mi

[Nτ (s, a)] =
∑
s′,a′

pMi
(s|s′, a′)

(
E
Mi

[Nτ−1(s′, a′)] + 1

)
, ∀(s, a) ∈ S ×A

else
∑
a

E
Mi

[Nτ (s1, a)] =
∑
a

E
Mi

[Nτ−1(s1, a)] + 1 and E
Mi

[Nτ (s, a)] = E
Mi

[Nτ−1(s, a)], ∀s 6= s1.

Then, we can combine the latter constraints with (9) to write the following optimization problem

inf
n≥0

∑
s,a,t

nsat (10)

subject to
∑
s,a,t

nsat KLMi|Mj
(s, a) ≥ kl(δ, 1− δ) ∀Mj ∈M−i (11)

∑
a

nsat =
∑
s′,a′

pMi
(s|s′, a′)(ns′a′t−1 + 1) ∀s,∀t : mod(t, T ) 6= 0 (12)

∑
a

ns1at =
∑
a

ns1at−1 + 1 ∀t : mod(t, T ) = 0 (13)

nsat = nsat−1 ∀s 6= s1,∀t : mod(t, T ) = 0 (14)

To prove the result, let us take the constraint (11). Since it has to hold for everyMj ∈M−i, we can write

inf
Mj∈M−i

∑
s,a,t

nsat KLMi|Mj
(s, a) ≥ kl(δ, 1− δ).

Let us denote N∗ the value of (10), we write

inf
Mj∈M−i

∑
s,a,t

nsat
N∗

KLMi|Mj
(s, a) ≥ kl(δ, 1− δ)

N∗
.

Through constraints (12-14) and the definition of N∗, we have that (nsat/N
∗) ∈ Σ(Mi), where the latter is the set of

allocation vectors. Hence, we can write

sup
ω∈Σ(Mi)

inf
Mj∈M−i

∑
s,a

ω(s, a) KLMi|Mj
(s, a) ≥ kl(δ, 1− δ)

N∗
.

Finally, we know from (Al Marjani et al., 2021, Proposition 10) that EMi [τ ] ≥ N∗, which together with kl(δ, 1 − δ) ≥
log(1/2.4δ) (see Kaufmann et al., 2016) gives the result.
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C. Meta Learning in Bandits
In this section, we analyze a simplified bandit version of the test-time regret minimization problem described in the paper.
The aim of this study is to serve both as a gentle introduction to the more advanced results and techniques presented in the
paper, which come more naturally in the bandit setting, as well as a standalone analysis that may be of independent interest.

We consider a classM = (Mi)i∈[M ] of bandits (Lattimore & Szepesvári, 2020), each of them having a set of actions
A = (aj)j∈[A] with corresponding reward distributions Ri(aj) for all i ∈ [M ], j ∈ [A] with bounded mean µij ∈ [0, 1].
First, we rephrase the separation condition presented in the paper (Assumption 1) as follows,

Assumption 8 (λ-separation (bandit)). For anyMi,Mj ∈M, there exists a ∈ A such that ‖Ri(a)−Rj(a)‖1 ≥ λ.

Just like in the MDP setting, we assume the reward distribution of all banditsMi ∈M, as well as the setM itself, to be
fully known to the agent, who faces a test task (i.e., bandit) that is instead unknown but belonging toM. To evaluate the
agent’s performance, we redefine the H-steps test-time regret for the taskMi ∈M as

RH(Mi, π) = E

[
H∑
h=1

Ri(a
∗)−Ri(ah)

]
= E

[
H∑
h=1

µ∗ − µh
]

where a∗ ∈ arg maxa∈A µ(a) is the optimal action in the banditMi, ah ∈ A is the action played by policy π at step h, and
µ∗, µh are the mean of their reward distribution, respectively. Just as we did in the paper for the more general MDP setting,
we provide both a lower bound and a nearly minimax optimal algorithm for the test-time regret minimization in bandits.

C.1. Lower Bound

We now prove a lower bound to the test-time regret suffered by any algorithm in the introduced meta learning in bandits
setting under the above separation condition (Assumption 8). Formally,

Theorem C.1 (Lower bound). LetM be a set of bandits for which Assumption 8 holds. Let C <∞ a constant, and let
δ ∈ (0, 1). For any horizon M − 1 ≤ H ≤ C, it holds

RH(Mi, π) = Ω

(
M log(H)

λ
log

(
1

δ

))
with probability at least 1− δ.

Proof. To prove the lower bound, we first construct a convenient instance in which it is hard to minimize the regret without
knowing the task, while it is easy to identify the task playing sub-optimal actions. Then, we derive the lower bound on the
regret suffered by any algorithm leveraging minimax lower bounds for standard bandits (Lattimore & Szepesvári, 2020) and
best arm identification results (Garivier & Kaufmann, 2016).

LetM = (Mi)i∈[M ] a problem instance in which everyMi has |A| = 2M actions and Gaussian reward distributions
Ri(aj) = N (µij , 1). For eachMi, we specify the first set of M actions (aj)

M
j=1 as follows: The action ai is the optimal

action with mean µi = µ∗, while all of the other actions are slightly sub-optimal µ∗ − µj = ∆1 = 1/
√
H . The second

set of actions (aj)
2M
j=M+1 is specified as follows: The actions A1 := (aM+i, . . . , a 3M

2 +i) have mean reward such that

µ∗ − µa = ∆2 = log(H)/
√
H, ∀a ∈ A1, and all of the other actions A2 := (aM+1, . . . , aM+i−1) ∪ (a 3M

2 +i+1, . . . , 2M)

have mean reward µa < µM+i such that ‖R(aM+i) − R(a)‖1 ≥ λ,∀a ∈ A2, fulfilling λ-separation. The instance is
depicted in Figure 2.13

In general, there are two ways to approach the described instance. Since it is known that the second set of M actions is
sub-optimal in everyMi, we can minimize the regret playing only the first set of actions. Otherwise, we can exploit the
separation condition on the second set of arms to identify the task and then playing the optimal arm. To formalize this
intuition, we borrow notation from best arm identification literature (e.g. Garivier & Kaufmann, 2016) similarly as we did in
Appendix B.

13Note that, for describing the instance, we conveniently consider i ≤M/2, but it is straightforward to understand how it works for
i > M/2 by substituting the exceeding indices in A1 back with the first arms of the sequence aM+1, aM+2, . . . until A1 consists of
M/2 arms.
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A
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a1 ai aMai+1ai−1
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2 +i a 3M

2 +i+1

 armsM/2

Figure 2. Visualization of theMi bandit in the problem instance designed to derive the lower bound. The optimal action ai and the
identifying actions a ∈ A1 ∪ A2 change for everyMi.

Additional Notation. LetHh := (ah′ , rh′)h′∈[h] be a trajectory collected by executing a policy π. We denote Fh≥1 the
corresponding filtration onHh. We define

• (πh′)
h
h′=1 a sampling rule over A that determines the next action to play given past observations;

• τ a stopping rule that gives the stopping time w.r.t. Hh;

• âτ ∈ A a decision rule, which is the action selected when τ is triggered, i.e., the best guess on the optimal arm given
past observations.

We denote as E[τ ] the sample complexity of the best arm identification problem. Further, we restrict τ to the class of
stopping rules such that EMi [τ ] ≤ H , and we define the following event:

E =
{
âτ ∈ arg maxa∈A µ(a) : “best arm is identified within H steps”

}
.

To derive the lower bound, we consider the two cases in which E hold or does not hold with high probability, respectively.

Bad Event. If the event E does not hold with high probability, i.e., P(E) < 1− δ, we can show that the regret scales with
Ω(
√
H).

Let us consider any triplet (π, τ, âτ ). Without loss of generality, we take EMi
[τ ] = h, from which we have

RH(Mi, π) = Rh(Mi, π) + (H − h)∆1 (15)

with probability at least δ.

First, we lower bound the term Rh(Mi, π) through regret minimization. We can restrict the action set to Ã = (aj)
M
j=1

as there is no incentive to play surely sub-optimal actions aj for j > M when minimizing the regret. We take a policy π
inducing pulls (ah′)

h
h′=1 and corresponding counts Tj(h) :=

∑h
h′=1 1(aj = ah′) over the actions Ã ofM1. Then, we

selectMi ∈M such that i = arg minj∈[M ] EM1
[Tj(h)]. We have that

max
M∗∈M

Rh(M∗, π) ≥ max {Rh(M1, π),Rh(Mi, π)} ≥ Rh(M1, π) +Rh(Mi, π)

2
.

We can further expand the terms on the right hand-side by noting that

Rh(M1, π) ≥ PM1
(T1(h) ≤ h/2)

h∆1

2
and Rh(Mi, π) ≥ PMi

(T1(h) > h/2)
h∆1

2

from which we can write

Rh(M1, π) +Rh(Mi, π) >
h∆1

2
(PM1(T1(h) ≤ h/2) + PMi(T1(h) > h/2))

≥ h∆1

4
exp (−KL(PM1 ,PMi))
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where the latter is obtained through the Bretagnolle-Huber inequality. Then, we can upper bound the KL divergence as

KL(PM1
,PMi

)

= E
M1

[T1(h)]KL(N (µ∗, 1),N (µ−∆1, 1)) + E
M1

[Ti(h)]KL(N (µ−∆1, 1),N (µ∗, 1))

≤ (∆1)2

2

(
E
M1

[T1(h)] + E
M1

[Ti(h)]

)
≤ h(∆1)2

2

from which we derive

max
M∗∈M

Rh(M∗, π) ≥ h∆1

8
exp

(
−h(∆1)2

2

)
.

Finally, we substitute the latter in (15) to get

RH(Mi, π) ≥ h∆1

8
exp

(
−h(∆1)2

2

)
+ (H − h)∆1 ≥

√
H

8
exp

(
−1

2

)
with probability at least δ, where the last inequality is obtained by taking ∆1 = 1/

√
H and noting that the left-hand side is

minimized for EMi
[τ ] = h = H .

Good Event. The previous result states that the regret is at least Ω(
√
H) when the event E does not hold with high

probability. This hints that solving the best arm identification problem is necessary to minimize the regret. To derive the
lower bound, we instantiate a proper best arm identification problem on the considered instanceM.

Since the separation condition is fulfilled in the second set of actions, we can restrict our best arm identification problem to
the action set Â = (aj)

2M
j=M+1. From Theorem 1 in (Garivier & Kaufmann, 2016), for any confidence δ ∈ (0, 1), we have

that
EMi [τ ] ≥ T ∗(Mi)

−1 log(1/2.4δ)

where

T ∗(Mi)
−1 := sup

ω∈P(Â)

inf
Mj∈M\(Mi)

(
2M∑

k=M+1

ωkKL(Ri(ak), Rj(ak))

)
(16)

holds with probability 1− δ. From the separation condition (Assumption 8) and the Pinsker’s inequality we have

KL(Ri(a), Rj(a)) ≥ 2TV2(Ri(a), Rj(a)) ≥ 1

2
‖Ri(a)−Rj(a)‖21 ≥

λ2

2

for every i 6= j. By noting that the supremum in (16) is attained by ω = (1/M, . . . , 1/M) we get

EMi [τ ] ≥ 2M

λ2
log

(
1

2.4δ

)
.

Finally, we can derive the lower bound through

RH(Mi, π) ≥ EMi
[τ ]∆2 =

2M

λ2

log(H)√
H

log

(
1

2.4δ

)
≥ 2√

C − log(C)

M log(H)

λ
log

(
1

2.4δ

)
where the last inequality is obtained by exploiting H ≤ C and that the mean of the reward distribution is bounded in [0, 1]

to write λ+ log(H)√
H
≤ 1, which gives λ ≤

√
C−log(C)√

H
.

C.2. Upper Bound

In this section, we provide a simple algorithm, which is practically a direct adaptation to the bandit setting of Algorithm 1,
in turn inspired by Chen et al. (2022), that nearly matches the lower bound presented in the previous section.

The idea of the algorithm is to exploit the knowledge of the classM to quickly identify the test taskM∗ and then commit
to the optimal action a∗ forM∗. The pseudocode of this simple procedure is provided in Algorithm 7.
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Algorithm 7 Identify-then-Commit for Bandits

1: Initialize D =M and n = 2 log(2MH)
λ4

2: while |D| > 1 do
3: DrawM1,M2 from D randomly
4: Take ã ∈ arg maxa∈A ‖R1(a)−R2(a)‖1
5: Collect n samples X = (x1, . . . , xn) pulling action ã
6: if

∏
xh∈X

R1(xh|ã)
R2(xh|ã) ≥ 1 then

7: EliminateM2 from D
8: else
9: EliminateM1 from D

10: end if
11: end while
12: Take M̂ ∈ D and pull the action â ∈ arg maxa∈A µ̂(a) for the remaining steps

The upper bound to the test-time regret suffered by Algorithm 7 is provided by the following result.
Theorem C.2 (Upper bound). LetM be a set of bandits for which Assumption 8 holds. For any H ≥M − 1, we have

RH(Mi, π̂) = O
(
M log(MH)

λ4

)
where π̂ is the sampling rule induced by Algorithm 7.

Proof. The scheme of the proof follows closely the one of Chen et al. (2022, Theorem 1), which is simplified and adapted to
the bandit setting we care about here.

First, we note that the Algorithm 7 is made of two stages: An “Identify” stage (lines 2-11) in which we seek to find out the
test taskMi irrespective of the regret, a “Commit” stage (line 12) in which we exploit the gathered information to minimize
the regret in the remaining steps. Notably, at every iteration of the while loop (lines 2-11) a potential task is eliminated from
the set |D|, which means the “Identify” stage consists of exactly h0 := (M − 1)n steps, and the “Commit” stage takes the
remaining H − h0 steps. Thus, we can decompose the regret as

RH(Mi, π̂) = E

[
h0∑
h=1

Ri(a
∗)−Ri(ã)

]
+ E

[
H∑

h=h0

Ri(a
∗)−Ri(â)

]
. (17)

Now, we just need to upper bound the term on the left with h0 through Ri(a∗)−Ri(ã) ≤ 1 and to show that the second
term is zero with high probability to prove the result.

Since â is the optimal action of the remaining task in the set D, to prove that it holds E[
∑H
h=h0

Ri(a
∗)−Ri(â)] = 0 with

high probability, we have to show that the test taskMi is not eliminated from D with high probability. Especially, for some
confidence δ ∈ (0, 1) we need

P
(

“Mi is eliminated from D”
)

= P

( ∏
xh∈X

Ri(xh|ã)

Rj(xh|ã)
< 1

)
≤ δ

M

where the right-hand side is obtained from a union bound over the event that the test taskMi is eliminated in each iteration
of the while loop (lines 2-11). Equivalently, we need

log

( ∏
xh∈X

Ri(xh|ã)

Rj(xh|ã)

)
=
∑
xh∈X

log

(
Ri(xh|ã)

Rj(xh|ã)

)
> 0

to hold with probability at least 1− δ
M . First, we note that

E
x∼Ri(ã)

[ ∑
xh∈X

log

(
Ri(x|ã)

Rj(x|ã)

)]
=
∑
xh∈X

E
x∼Ri(ã)

[
log

(
Ri(x|ã)

Rj(x|ã)

)]
= nKL(Ri(ã), Rj(ã)) ≤ nλ2

2

24



Test-Time Regret Minimization in Meta Reinforcement Learning

where the last inequality is obtained from the separation condition (Assumption 8) and the Pinsker’s inequality. Then, we
have

∑
xh∈X

log

(
Ri(xh|ã)

Rj(xh|ã)

)
≥ E
x∼Ri(ã)

[ ∑
xh∈X

log

(
Ri(x|ã)

Rj(x|ã)

)]
−
√
n

2
log

(
2M

δ

)
≥ nλ2

2
−
√
n

2
log

(
2M

δ

)

with probability 1− δ
M through the Hoeffding’s inequality. Now, we need to set n such that the right-hand side is greater

than zero, which gives n =
2 log( 2M

δ )

λ4 and h0 =
2(M−1) log( 2M

δ )

λ4 .

Finally, we set δ = 1
H and we plug the expression into (17). Noting that, in the bad event occurring with probability less

than 1/H the right-hand side of (17) is still less than H , we have E[
∑H
h=h0

Ri(a
∗)−Ri(â)] ≤ 1 from which we get

RH(Mi, π̂) = O
(
M log(MH)

λ4

)
.
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