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Abstract

Grandular hydrogels enmeshed with therapeutic particles offer an exciting mod-
ular platform for the delivery of targeted therapeutics, but this modularity also
complicates the optimization of the design. Here, we present a programmable ther-
apeutic release simulation for this material platform. Using factorial experimental
design, We efficiently validate simulation parameters and identify a practical design
space that supports precision medicine through the inverse design of unique and
customizable drug release profiles, including tunable cumulative release profiles
through random packing and tunable instantaneous release profiles through layered

packing.

1 Introduction

Granular hydrogel scaffolds, composed of packed polymer microgels, achieve targeted and sustained
release, making them exciting platforms for precision medicine. They can be loaded with therapeutics,
like drug-coated nanoparticles or extracellular vesicles, and injected directly into the target site
(Figure 1). The transport dynamics of the scaffold can be tuned by its porosity, surface chemistry,

and heterogeneity [1H4].
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Figure 1: Granular Hydrogel Therapeutic Delivery Achieves Targeted and Controlled Delivery

While the modularity of the material is a key advantage, it also creates a high-dimensional design
space that is challenging to navigate both experimentally and computationally. Inverse design models
have recently emerged to map desired material behaviors back to feasible designs. However, they
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typically require large and diverse datasets to adequately capture the complexity of the design space
[S 6. Moreover, the inverse design problem is often ill-posed: multiple design configurations
may yield similar material properties, the design—property landscape may be non-smooth, or some
desired properties may have no feasible design solution [[7H9]]. Generating sufficiently rich datasets
experimentally is demanding, so simulation-forward approaches are often used to generate data and
guide experiments. Several simulation works have been performed to study the transport phenomena
in hydrogel systems and porous media. Most notably, computational fluid dynamics (CFD) and
rigid-body simulations have been employed to capture transport properties such as permeability, flow
paths, and tortuosity[10-12]]. However, moelcular-scale events, such as surface diffusion on hydrogel
beads, Knudsen-like diffusion (inter-scaffold hopping), and jamming, that are important to the drug
release profile are difficult to capture with CFD [[13]. Molecular dynamics (MD) simulations, by
contrast, provide a versatile framework to model these molecular transport phenomena with higher
fidelity[[14H17].

In this work, we developed a coarse-grained model for granular hydrogels loaded with therapeutic
particles, studied the transport behavior using MD simulation, and developed an inverse design
pipeline to identify several target profiles with high precision. This approach accelerates discovery of
statistically relevant relationships in the design space, while substantially reducing the computational
overhead of an exploratory data analysis on a more random and continuous sampling of the space.
Our main contributions are: (1) a simulation-forward platform for discovering new release kinetics in
multidimensional therapeutic hydrogel scaffolds, (2) implementation of a statistics-driven methodol-
ogy for computationally efficient design space discovery, and (3) an effective inverse design platform
for customizing release kinetics with generated scaffold designs.

2 Results and Discussion

2.1 Data Preparation and Design Space

Transport in granular hydrogel scaffolds is influenced by several factors, including system porosity,
interaction strength between the gel and the transported particle, and the heterogeneity of surface
chemistries, all of which define our design space[18]]. To efficiently explore this space, a two-level,
three-factor factorial design was implemented to identify key regions of interest. Simulations were run
for eight combinations of hydrogel A affinity (ear), bead diameter (), and hydrogel A fraction (¢ 4)
(Figure 2JA). Scaffold geometries were generated by randomly packing monodisperse rigid spheres
into a fixed cubic volume. The scaffolds comprised two hydrogel types: A and B(Supplemental
1.1.1-1.1.2). Release kinetics of the therapeutic particle T were characterized by fitting cumulative
release curves to the o and 3 parameters of a Weibull distribution (Supplemental 1.1.3). The selected
combinations (Figure [2JA) showed significant interaction effects on the v and 3 terms, indicating
that design combinations of these parameters would yield interesting variation on release kinetics
(Supplemental 1.2.4). Thus, we move forward with combinations within this design space (Figure
[2B). From this space, two overarching configurations are extensively explored for inverse design: (1)
random mixtures of A and B and (2) partitioned layers of A and B (Figure 2C).

2.2 Inverse Design

We implemented an inverse design framework to identify multiple sets of hydrogel design parameters
that achieve distinct desired release profiles in parallel. For random mixture designs, the input design
parameters are @ = [r, ear, ¢ 4]; for partitioned designs, the input design parameters are ear and a
binary array representing layer configuration (Supplemental 1.1.1). Various Weibull release profiles
achieved by random mixture designs are shown in Figure [2A and Supplemental Figure 3, while the
diverse instantaneous release profiles achieved by partitioned designs are shown in Figure 3]

The forward models are tasked to predict the resulting release profile (cumulative for random,
instantaneous for partitioned) given the input design parameters. The dataset was divided into
training, validation, and held-out testing sets in a 70/10/20% split. To create target profiles, we
randomly selected six profiles from our held-out test dataset. The difference between the predicted
and target profiles is evaluated using a mean-squared error (MSE) loss function, and Bayesian
optimization (BO) iteratively proposes new parameter sets to minimize this difference. This adaptive,
inverse-design loop efficiently converges to parameter combinations that match the target profile by
interacting with the (surrogate) forward model, enabling rapid exploration of the design space without
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Figure 2: Factorial Data Driven Design Space of Coated Granular Hydrogel Scaffolds

repeated costly MD simulations, and is applicable to both cumulative release in random geometries
and instantaneous release in partitioned geometries (Supplemental 1.2).

2.2.1 Random Mixtures

We trained a three-layer neural networks to predict « and § from the input parameters 8 =
[r,ear, 4] € R? (Supplemental Methods 1.1.6). This simple, lightweight neural network out-
performs linear regression (Supplemental Figure 1). Inspired by the initial factorial experiment,
models were trained on a factorially sampled dataset (Supplemental Table 3), which outperformed
models trained on randomly sampled data set (Supplemental Table 4). This aligned with previous
observations that factorial sampling provides more systematic coverage of the parameter space than
random sampling when data is scarce[19]. Data scarcity is often the case with wet-lab experiments.
We apply the inverse design framework to the forward model trained on the factorially sampled data
and within 80 iterations of BO, we successfully obtain release profiles close to the target profiles [

2.2.2 Partitioned Mixtures

Next, we explore partitioned designs that enable greater temporal control over instantaneous drug
release than random mixture design. With the insights we gained from random mixture design, we
focus on diameter 40 pm and create a partitioned system where Hydrogel A and B are layered at
varying partition widths (Supplemental 1.1.1). Here, we used XGboost as our surrogate forward
model, which enables accurate prediction on instantaneous release profiles from design inputs
(Supplemental 1.1.6, Supplemental Figure 4). Again, the inverse design framework is able to recover



the target designs. Notably, in some cases, the tail behaviors are difficult to predict accurately
(Supplemental Figure 4). We aim to address this in the future by incorporating more data and
increasing data diversity.
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Figure 3: Programmable drug release profiles with partitioned geometries. (A) Side views of nine
selected partitioned designs, and (B) their corresponding instantaneous release profiles with respect
to time 7.
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Figure 4: Inverse design on drug release profile. (A) Inverse design workflow. Inverse design on (B)
random and (C) partitioned hydrogel arrangements

3 Conclusion

We developed a data-efficient, simulation-forward inverse design framework capable of accurately
predicting granular hydrogel scaffold properties that yield diverse therapeutic release profiles across
both cumulative and instantaneous time scales. This approach represents a critical advancement
toward precision medicine by automating design generation, enhancing predictive accuracy, and
substantially reducing experimental costs associated with optimizing controlled release systems. We
plan to incorporate experimental data in future work.
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