
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IS TEMPORAL-DIFFERENCE LEARNING THE
ONLY PATH TO STITCHING IN RL?

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) promises to solve long-horizon tasks even when
training data contains only short fragments of the behaviors. This experience
stitching capability is often viewed as the purview of temporal difference (TD)
methods. However, outside of small tabular settings, trajectories never intersect,
calling into question this conventional wisdom. Moreover, the common belief
is that Monte Carlo (MC) methods should not be able to recombine experience,
yet it remains unclear whether function approximation could result in a form of
implicit stitching. The goal of this paper is to empirically study whether the con-
ventional wisdom about stitching actually holds in settings where function ap-
proximation is used. We empirically demonstrate that Monte Carlo (MC) meth-
ods can also achieve experience stitching. While TD methods do achieve slightly
stronger capabilities than MC methods (in line with conventional wisdom), this
gap narrows as we use larger neural networks. Furthermore, we find that in-
creasing critic capacity effectively reduces the generalization gap for both the MC
and TD methods. These results suggest that the traditional TD inductive bias for
stitching may be less necessary in the era of large models for RL and, in some
cases, may offer diminishing returns. Additionally, our results suggest that stitch-
ing, a form of generalization unique to the RL setting, might be achieved not
through specialized algorithms (temporal difference learning) but rather through
the same recipe that has provided generalization in other machine learning settings
(via scale). Project website: https://anonymous.4open.science/r/
a-broken-promise-F5FB/README.md

1 INTRODUCTION

Figure 1: (Left) While TD methods are often con-
ceptualized as piecing together overlapping trajectories,
(Right) this mental model breaks down in almost all
realistic tasks, as trajectories never actually intersect.
This paper introduces a new mental model (and formal
definitions) for thinking about “stitching” in such set-
tings, provides a benchmark for rigorously evaluating
these stitching capabilities, and performs experiments
to understand the degree to which stitching may actu-
ally achieved through (i) temporal difference methods,
(ii) quasimetric architectures, and (iii) simply scaling
model architectures.

In theory, reinforcement learning algorithms
should be able to piece together past experi-
ences to find new or better solutions to long-
horizon tasks. This ability, sometimes called
experience stitching (Ghugare et al., 2024; My-
ers et al., 2025; Wolczyk et al., 2024; Ziebart
et al., 2008), is frequently linked to bootstrap-
ping through temporal-difference (TD) updates,
i.e., updating value estimates using successor
states’ predictions instead of relying on full
rollouts. At least in tabular settings, TD-based
methods can boost data efficiency and acceler-
ate convergence (Sutton, 1988; Sutton & Barto,
2018), yet their efficacy in the presence of
function approximation remains disputed (Bert-
sekas, 1995; 2010; Brandfonbrener et al., 2021;
Peters et al., 2010).

Outside of tabular or highly-constrained set-
tings, TD methods cannot literally stitch trajec-
tories together: trajectories rarely self-intersect
in real-world scenarios. For example, compare an ant crawling on a sheet of paper (2D) with a fly
flying in an empty room (3D) in Figure 1: the ant’s 2D path will self-cross far more often than the

1

https://anonymous.4open.science/r/a-broken-promise-F5FB/README.md
https://anonymous.4open.science/r/a-broken-promise-F5FB/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

fly’s 3D path. Following this example, we observe that stitching has a dual relationship with gen-
eralization. On one hand, stitching requires generalization: the value function must assign similar
values to similar states, enabling values to propagate across disconnected trajectories. On the other
hand, stitching itself provides generalization: it allows a policy to traverse between states that were
never observed as connected during training.

In this paper, we examine mechanisms that enable recombining high-dimensional experiences. We
focus on model scale and learning paradigm (TD vs. MC), and we evaluate three regimes—no stitch-
ing, exact stitching (shared waypoint), and generalized stitching (waypoint mismatch). Here, a way-
point refers to an intermediate state along the trajectory. To probe them cleanly, we introduce a
minimalist pick-and-place grid benchmark (Sokoban without walls; but with lift/drop actions) de-
signed to test composition rather than perception or complex dynamics. Two setups anchor our
study: Quarters (exact stitching), where training transfers boxes between adjacent board quarters
and evaluation requires a diagonal transfer; and Few-to-Many (generalized stitching), where train-
ing solves easier instances with some boxes pre-placed while evaluation requires moving all boxes.
We distinguish closed stitching cases—where composed solutions remain within the support of the
training data—from open cases—where they typically fall outside; formal definitions appear in Sec-
tion 4.

The main contribution of this paper is a carefully designed testbed and empirical evaluation of the
stitching capabilities of various algorithms and architectures. We train 7 different goal-conditioned
agents in this environment and observe that Monte Carlo methods do stitch: in the generalized
regime, they achieve small generalization gaps—often comparable to TD—even when training re-
quires moving fewer objects than at evaluation. At the same time, exact stitching with multi-object
coordination is brittle: performance degrades rapidly as the number of objects grows, and even TD
can fail when composition steers rollouts through intermediate states that were never seen during
training. In addition, we find that scale is a powerful lever for stitching. Increasing the size of
the critic network, used for state-action pair value estimation, substantially boosts test performance
for both TD and MC variants, narrowing their gap; among MC baselines, algorithms with stronger
exploration and credit assignment fare best, while lightweight MC DQN lags primarily due to ex-
ploration inefficiency. Taken together, these results revise common wisdom: TD is neither necessary
for stitching, nor sufficient in the face of multi-object composition; model scale materially improves
stitching for both paradigms.

Our main contributions are the following:

1. We formalize and analyze three stitching regimes—no stitching, exact stitching (shared way-
point), and generalized stitching (waypoint mismatch)—and highlight when exact-stitching
evaluations can break due to lack of closure under composition.

2. Through controlled experiments across TD and MC algorithms, we provide principled guid-
ance on stitching: MC methods can stitch in the generalized regime, TD typically helps but
is insufficient, and increasing critic scale markedly improves stitching for both paradigms.

3. We introduce simple, configurable environments that isolate stitching phenomena and enable
reproducible evaluation across regimes (see Fig. 3).

2 RELATED WORK

From tabular prediction to stitching. Early reinforcement learning emphasized value estima-
tion in tabular models, grounded in dynamic programming (Bellman & Kalaba, 1957). TD learn-
ing realizes this idea via bootstrapping from successor predictions (Sutton, 1988; Sutton & Barto,
2018), with extensions beyond the tabular regime through residual-gradient, least-squares TD, and
linear-convergence analyses (Baird et al., 1995; Bradtke & Barto, 1996; Tsitsiklis & Van Roy, 2002;
Bertsekas & Tsitsiklis, 1995). A natural next step is generalization across state–goal pairs, i.e.,
solving new combinations of familiar states and goals—what many works refer to as stitching (e.g.,
UVFA, HER, and successor-feature routes to recomposition) (Kaelbling, 1993; Schaul et al., 2015;
Andrychowicz et al., 2017; Barreto et al., 2017; 2018). We describe stitching regimes (Figure 2)
purely by what is present in the replay buffer D at train time and what is queried at test time.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1. No stitching (end-to-end only). Train: D contains end-to-end trajectories (s′ → g′). Test:
evaluate a held-out end-to-end pair (s→ g) (same generator, disjoint pairs) (Sutton & Barto,
2018; Ghosh et al., 2019).

2. Exact stitching (shared waypoint). Train: D contains trajectories (s→ w′) and (w′ → g)
for the same waypoint w′; no (s → g). Test: evaluate the end-to-end query (s → g). This
setting aligns with classic dynamic programming / temporal-difference propagation across a
shared waypoint (Bellman & Kalaba, 1957; Sutton, 1988) and recent discussions of “stitch-
ing” (Ghugare et al., 2024).

3. Generalized stitching (waypoint mismatch). Train: D contains (s → w′) and (w′′ → g)
with w′ ̸= w′′; there is no waypoint w̃ for which both trajectories (s → w̃) and (w̃ → g)
are present. Test: evaluate (s → g). Success requires a representation that bridges mis-
matched trajectories (e.g., successor features with GPI, temporal distance/value models)
(Barreto et al., 2017; 2018; Pong et al., 2018; Ghugare et al., 2024).

blue: #0173b2
green: #029e73
orange: #de8f05
red: #d55d00

test test

train train
test

train

traintest

train

A. No Stitching B. Exact Stitching C. Generalized Stitching

Figure 2: Three types of stitching.

Compositional generalization and
horizon extension. Generalization
fragility in deep RL has been doc-
umented under controlled shifts in
observations, dynamics, and tasks
(Zhang et al., 2018; Packer et al.,
2019; Cobbe et al., 2020). A comple-
mentary lens is horizon generaliza-
tion, where agents trained on short-
range goals succeed at longer-range
ones by composing waypoints; recent
work formalizes links to planning invariances and proposes diagnostics (Myers et al., 2025). Paral-
lel lines in ML study compositional generalization as systematic recombination of known primitives
(e.g., SCAN, CFQ), clarifying what kinds of recomposition are actually measured (Lake & Baroni,
2018; Keysers et al., 2020; Hupkes et al., 2020). Complementary operator-centric approaches pro-
pose alternatives to Bellman backups that directly encode subgoal composition to accelerate value
propagation in goal-reaching MDPs (Piekos et al., 2023; Van Niekerk et al., 2019; Adamczyk et al.,
2023). We adopt this compositional lens and ask whether agents can solve novel state–goal combi-
nations by recombining familiar parts to solve longer tasks.

Goal-conditioned RL (GCRL) and representation routes to recomposition. Goal conditioning
makes recomposition operational by training policies or value functions over (s, g) pairs. UVFA
amortize structure-sharing across goals (Schaul et al., 2015), while HER densifies sparse reward
learning by relabeling achieved goals (Andrychowicz et al., 2017). Supervised-learning formula-
tions such as GCSL trade bootstrapping for stability and simplicity (Ghosh et al., 2019), though
analyses suggest they may lack stitching without explicit temporal augmentation (Ghugare et al.,
2024). Beyond standard backups, the Compositional Optimality Equation (COE) replaces Bell-
man’s max-over-actions with an explicit composition over intermediate subgoals, yielding more effi-
cient value propagation in deterministic goal-reaching settings (Piekos et al., 2023). Representation-
centric methods also support recomposition via factorization or predictive structure: successor fea-
tures with generalized policy improvement transfer across reward mixtures (Barreto et al., 2017;
2018), and temporal-difference models learn goal-conditioned distances that enable waypointing
and short-horizon planning (Pong et al., 2018; Nasiriany et al., 2019). Building on these strands,
we contrast TD-style and MC/SL-style training while varying model capacity to examine whether
stitching stems from bootstrapping, from learned representations, or from operator design.

Stitching in offline RL and explicit trajectory recomposition. Recent offline RL work makes
trajectory stitching explicit by learning or constructing joins between sub-trajectories to improve
policies from imperfect datasets (Char et al., 2022; Hepburn & Montana, 2022; Li et al., 2024;
Ghugare et al., 2024). This stands in contrast to the implicit composition often attributed to TD-
style value propagation. A natural question, then, is: which ingredients are actually needed for
stitching to emerge in the online, goal-conditioned setting? We investigate this in a controlled online
benchmark where (i) the availability of reusable segments and (ii) whether their concatenation stays
on-support (closed) or induces off-support states (open) are both tunable by design.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Planning-heavy testbeds: Sokoban and variants. Sokoban and Boxoban stress long-horizon rea-
soning with irreversible moves and maze-like dead ends, where incidental trajectory intersections are
rare and naive stitching is difficult; hybrid agents that leverage learned rollouts (I2A) and recurrent
agents with emergent plan-like computation achieve strong results in these domains (Weber et al.,
2017; Guez et al., 2019; Taufeeque et al., 2024). We take inspiration from Sokoban but deliberately
remove maze-induced confounds by studying an open-grid environment with boxes and targets. The
agent can pick up (not only push) boxes, eliminating dead ends and allowing us to manipulate the
number and placement of boxes across consecutive episodes so that the set of seen goals is precisely
controlled. This setup allows us to directly test whether agents stitch together familiar subgoals to
solve novel state–goal combinations.

3 PRELIMINARIES

Our paper investigates the generalization properties of on-policy goal-conditioned reinforcement
learning, focusing on how Temporal Difference and Monte Carlo methods, as well as network ar-
chitectures for function approximation, influence stitching capabilities.

We study the problem of goal-conditioned reinforcement learning in a deterministic controlled
Markov process with states s ∈ S , goals g ∈ S , and actions a ∈ A. We use an environment
with deterministic state transitions and sample the initial states from the distribution p0 (s0). The
Q-function, or critic, is defined as Qπ(s, a) = Eπ

[
Gt | St = s,At = a,Gt = g,

]
, where

Gt =
∑T−t

k=0 γ
kRt+k+1 is the empirically observed future discounted return with a discount factor

γ. We study both Monte Carlo methods, where Q-functions are learned from returns (Q(st, at) ←
Gt) (Sutton & Barto, 2018; Eysenbach et al., 2021), and Temporal Difference methods, where they
are learned from bootstrapped targets (Q(st, at) ← r(st, at) + γQ(st+1, at+1)) (Sutton, 1988).
Throughout this paper, we sample actions from the Boltzmann (softmax) distribution induced by
Q, with learnable temperature τ . The replay buffer stores trajectory sequences, but training uses
random i.i.d. pairs sampled from those sequences.

4 A BENCHMARK FOR STITCHING

To precisely probe these types of stitching, we constructed a benchmark (Fig. 3) where an agent
can pick up and place blocks. Our aim was to create tasks that would allow us to isolate the prob-
lems related to different types of stitching, while minimizing the impact of environment complexity,
dynamics and agents’ perceptual capabilities.

Our environment consists of a square grid of fields, with some fields being occupied by boxes and
targets. The task of the agent is to transfer all of the boxes to targets. This setting is thus similar
to Sokoban, but differs in (1) removing the walls; and (2) lifting/dropping boxes instead of pushing
boxes, so there is no possibility for the agent to get stuck in an irreversible state. States are discrete,
allowing us to determine exactly whether the agent has visited the same state twice. Actions are also
discrete, removing policy learning as a potential confounding factor. Nonetheless, the number of
states can be made arbitrarily large; for example, Fig. 3 (b) shows 3 blocks in a 4 × 4 room, so the
total number of block configurations is

(
16
3

)
= 560. If we increase the number of blocks to 8, and

the grid size to 5× 5, the number of configurations is more than a million.

Observation and action spaces. The observation consists of grid size × grid size in-
tegers, each representing the total information about one respective field of the grid. The goal
observation consists of a grid with boxes placed in desired positions. It is important to note that the
target markers are added only for human visibility - they are not part of the observations, or the goal
observations. There are six possible actions that the model can perform in each state: go left,
go right, go up, go down, pick up box, put down box.

Within this environment, we constructed three major distributions of box and goal placement to test
the exact and generalized stitching variants:

• No stitching (cf. Fig. 2 A) – A fixed number of blocks are placed randomly, and the goal
is a different random arrangement of blocks. This setting was used primarily to check the
implementation of algorithm baselines and compare different hyperparameter choices.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Exact stitching (Quarters). (b) Generalized stitching (Few-to-Many).

Figure 3: A benchmark for stitching: The agent (red ball) must move boxes to the target positions (yellow
transparent boxes). (Left) During training, boxes are placed in one quarter and must be moved to an adjacent
quarter (gray arrow indicates the required direction of transfer). During testing, boxes must be moved to the
diagonal quarter. The gray arrows illustrate one of the valid two-step routes via adjacent quarters (adjacent →
adjacent), which were seen separately during training but never as an end-to-end diagonal move.
(Right) During training, one box is already on a target, and the agent must place the remaining two. During
testing, no boxes start on targets. Although both start and goal configurations are individually familiar, training
never includes segments that involve moving three boxes.

• The Quarters Setting (Fig. 3a) – The board is split into four equal quarters. During training,
the initial state has all blocks randomly placed within one quarter, and the goal state has the
blocks randomly placed in an adjacent quarter.
The algorithm is then evaluated on the same environment and additionally it is evaluated on
the same number of boxes and targets, that are placed in diagonal (i.e., not adjacent) quarters.
Intuitively, during the training, the agent should learn how to move boxes to a neighboring
quarter, and during evaluation, it is tested whether it can stitch the gathered experience to
move boxes to the opposite quarter. With a sufficient number of experiences collected, each
possible combination of boxes and each possible combination of targets should appear in each
of the quarters, which means that during the evaluation, both the initial states and goal states
have each been seen before (they are not out of distribution). However, the relative position
of boxes in the initial state and goal state has never been observed during training, so the pair
(s, g) is out of distribution. Thus, this setting evaluates exact stitching (cf. Fig. 2 B).

• The Few-to-Many Setting (Fig. 3b) – This setting tests how well the agent can generalize
to a task that involves moving a different number of boxes. During training, the environment
parameters n and m are fixed (i.e., not randomized). Here, n denotes the total number of
boxes and targets, which are placed uniformly on the board, and m < n specifies how many
boxes are initially spawned on their targets. Thus, the agent only needs to move the remaining
n−m boxes to accomplish the task. During the evaluation, none of the boxes are spawned on
the targets. By construction, the initial state and goal state are both in the distribution of states
seen during training, yet their combination is (by construction) never seen during training.
Since training never included segments starting from the zero-placed start, the s → w is
missing for every w at test, so no waypoint is shared across training trajectories—hence this
is generalized stitching (cf. Fig. 2 C).

These settings allow us to efficiently test the exact and generalized stitching capabilities and to
incrementally change the difficulty of the task by manipulating the size of the grid and the number
of boxes.

Interpreting setups difficulty: closed vs. open evaluation. The three settings above specify what
segments are seen during training and what is queried during testing. Here, we add an annotation
that clarifies what can happen during test-time evaluation.

Let D be the training replay buffer and letM := { s : s appears in D } denote its empirical state
support. For a test query (s, g), let Traj(s, g) be the set of feasible trajectories from s that reach g.

Closed. We call (s, g) closed if all feasible trajectories τ ∈ Traj(s, g) have states all lying in M
(i.e., no out-of-support waypoint is needed).

Open. We call (s, g) open if efficient executions naturally visit states outsideM—formally, there
exists a near-optimal trajectory τ̃ ∈ Traj(s, g) with some intermediate state w /∈ M. In our ex-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

periments, we make this observable by reporting the fraction of off-support states visited during
evaluation.

For example: in our Quarter setting, the agent may leave some boxes placed in the waypoint quad-
rant, and prematurely drop another toward the goal quadrant, creating a state absent in the train-
ing support (see Fig. 5). This is analogous to the challenge in imitation learning wherein out-of-
distribution actions can lead to states unseen during training (Ross et al., 2011).

Labeling a setup as open does not prevent on-support solutions, nor does it forbid an agent from
exploring widely during training. It only indicates that typical efficient executions (including near-
optimal ones) are likely to traverse states outsideM, given how the training trajectories were col-
lected. If the training rollouts cover essentially the entire relevant state space, the same setting
evaluation would be effectively closed. Conversely, with finite data, even small deviations can push
test rollouts off-support, even for policies that perform well on the training task.

5 EXPERIMENTS

The primary goal of our experiments is to understand which types of stitching are performed by
TD and MC methods that use a critic with function approximation. We also investigate the role of
architecture in stitching, focusing on scaling the critic using Wang et al. (2025) ResNet blocks and
parametrization using quasimetric networks from Myers et al. (2025). Our aim is not to propose a
new method, but to provide a rigorous evaluation of the stitching capabilities of today’s methods. In
Section 5.1, we describe the experimental setup, and in the consecutive sections, we aim to answer
the following research questions:

• Do any of today’s methods do stitch (Section 5.2)?
• Are MC methods performing stitching, or is TD learning necessary (Section 5.3)?
• Does scale improve stitching (Section 5.4)?
• Do quasimetric networks improve stitching (Section 5.5)?

5.1 EXPERIMENTAL SETUP

To answer the questions above, we test the exact and generalized stitching capabilities of the Deep
Q Networks (DQN) (Mnih et al., 2013), Contrastive Reinforcement Learning (CRL) (Eysenbach
et al., 2022), C-learning (Eysenbach et al., 2021), and Implicit Q-Learning (IQL) (Kostrikov et al.,
2021). We implement both C-learning and DQN in two versions: MC and TD. While C-learning
and CRL are reward-free methods, for DQN, we use a sparse reward of 1 when all of the boxes
are in the target position and 0 otherwise. We also use hindsight goal relabeling (Andrychowicz
et al., 2017) for DQN with 50% of future states and 50% of random states. In the MC version of
DQN and IQL, we use discounted returns for the relabeled goal as targets. To that end, we store
experience in a trajectory buffer rather than a standard transition buffer. For each sampled trajectory,
we relabel all goals to a future state selected using a geometric distribution. We then compute
discounted rewards by propagating them backward through the trajectory. Finally, instead of using
a bootstrapped target for the Q-update, we use the discounted cumulative reward computed directly
from the replay buffer. In most experiments, we use an MLP with two hidden layers, each containing
256 units, followed by post-activation LayerNorm for the critic. In Section 5.4, we instead adopt
the architecture from Wang et al. (2025), which employs ResNet blocks, Swish activations, and pre-
activation LayerNorm. In particular, we use two ResNet blocks, each with 4 hidden layers and 1024
units per layer. Note that CRL uses two networks as encoders in the critic. We list all the training
details and hyperparameters in Appendix B.

We train all methods using the ADAM optimizer for 5 million update steps, collecting a total of 500
million transitions online. Training alternates between full rollouts, data collection, and network
updates. For both data collection and evaluation, we sample actions from the Boltzmann (softmax)
distribution defined by Q. We do not use a separate parameterized policy, as our main focus is
on the critic’s stitching ability, which could later be distilled into an actor. We tune an additional
temperature parameter for all the methods so that the entropy of the Q-induced distribution is close
to ln(|A|/2) ≈ 1.1. In all of the experiments, we use settings introduced in Section 4, which are
implemented as parallelized environments for data collection in JAX (Bradbury et al., 2018). As

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

a performance metric, we use success rate, i.e., the number of attempts finished with all boxes
in the target positions. In the majority of the plots, we report the interquartile mean of 10 seeds
with stratified bootstrap confidence intervals calculated using Agarwal et al. (2021). We use the
term generalization gap to name the difference between method performance in the training and
evaluation task, which differ in our setups.

1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0

GCDQN (TD)

1 2 3 4

GCIQL (TD)

1 2 3 4

C-LEARN (MC)
Train
Test

1 2 3 4

CRL (MC)

Su
cc

es
s r

at
e

Number of boxes

Figure 4: TD methods can only stitch effectively up to a certain point. In the Quarters setting
(6×6 grid) — which tests exact stitching — increasing the number of boxes widens the generalization
gap for both TD and MC methods.

5.2 DO ANY OF TODAY’S METHODS DO STITCHING?

Previous works (Ghugare et al., 2024; Myers et al., 2025; Sutton, 1988) argue that temporal dif-
ference (TD) methods can compose test-time behavior from sub-behaviors learned during training.
However, Monte Carlo (MC) methods might not provide this guarantee. To test this, we probe exact
stitching in a Quarter (6×6) grid: can a method recombine learned sub-behaviors to solve a held-out
test task? We evaluate one TD method (DQN) and two MC baselines (CRL and C-learn) and report
their final performance on both the training and the test tasks.

Figure 5: A subtle failure of
stitching. An agent trained on
the quarters task (Fig. 3a) should
first move all boxes to an adja-
cent corner and then to the goal
quarter. However, if the agent
prematurely moves a box along
the diagonal, it will end up in a
state that has never been seen be-
fore during training.

In Figure 4, DQN (a TD method) achieves near-perfect training and
evaluation performance on the single-box task. By contrast, the
Monte-Carlo baselines, CRL, and C-learning all show a large gen-
eralization gap even in this simplest setting. As the number of boxes
increases and test-time observations become out-of-distribution,
only DQN retains any nontrivial performance—highlighting an ad-
vantage of TD learning. Still, DQN’s generalization steadily wors-
ens with more boxes and falls to 0% test performance on the 4-box
test task. A sudden generalization gap of DQN suggests that
as the space of possible states expands, it eventually exceeds
the stitching capacity of TD updates. Visual inspection confirms
more failures caused by off-support observations with an increased
number of boxes (Figure 5). This pattern argues for methods that
regularize agent behavior in online RL so agents remain closer to
the training observation distribution, analogous to action regular-
ization in offline RL (Fujimoto & Gu, 2021).

We also examine generalized stitching in the Few-to-many (5x5)
grid, which operates in a closed setup, i.e., all observations are seen
in training, and no off-support observations can be visited (Sec-
tion 4). The test task gets more difficult as the number of boxes
spawned at the target position increases, as it demands more stitch-
ing. We note that the setting where no boxes are spawned in the target positions corresponds to a
no-stitching setup.

We increase the number of boxes spawned at the target position from left to right in Figure 6. For
all three baselines, the generalization gap widens as more boxes appear at the target during training.
DQN, using TD updates, consistently sustains the highest performance in these harder settings.
Remarkably, CRL still performs well on the test task even when training required moving
only three out of four boxes, indicating that an MC-style method can stitch subbehaviors. We
explore this surprising phenomenon in the next sections, using only the Few-to-many setup from
now onwards.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.3 ARE MC METHODS PERFORMING STITCHING, OR IS TD LEARNING NECESSARY?

GCDQN C-LEARN CRL GCIQL GCDQN C-LEARN GCIQL
0.0

0.2

0.4

0.6

0.8

1.0 Train
Test

MC TD

Figure 7: TD is not necessary for stitching behavior
in a generalized setup. We observe that in the Few-
To-Many setting, both TD and MC methods are able to
generalize to the test scenario. The exact performance
(success rate) varies across different algorithms.

In this section, we compare CRL and TD and
MC versions of DQN and C-learning to investi-
gate their stitching capabilities in a generalized
closed setup. In particular, we use a Few-to-
many 5x5 grid, and train the agent to move 2
boxes to target positions, while a third box is
always spawned at the target position. During
the test time, all 3 boxes are not in the target po-
sition. In Figure 7, we observe that all the meth-
ods, except DQN MC, exhibit strong stitching
as their generalization gap is relatively small for
TD and MC methods, with almost no gap for
TD versions of DQN. This result might come
as a surprise because MC methods do not em-
ploy any explicit mechanisms for stitching, in
contrast to TD methods; however, they are still
able to work well in this setup, most likely due to implicit stitching on the representation level. The
low performance of DQN MC is most probably due to exploration and credit assignment issues.

5.4 DOES SCALING IMPROVE STITCHING?

0.0 0.2 0.4 0.6 0.8 1.0
Train Success Rate

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 S
uc

ce
ss

 R
at

e
Train vs Test Success Rates

GCDQN MC
C-LEARN MC
CRL MC
GCIQL MC
GCDQN TD
C-LEARN TD
GCIQL TD
Small architecture
Big architecture

Figure 8: Scale is a powerful lever for stitching. In-
creased critic’s scale narrows the generalization
gap (point distance from the x = y line)—even
for MC methods such as CRL.

Previous works (Nauman et al., 2024; Lee et al.,
2025; Wang et al., 2025) have shown that
proper scaling of critics’ and actors’ neural net-
works can provide enormous benefits in online
RL. In this section, we study whether the scale
of the critic similarly benefits the stitching ca-
pabilities of MC and TD methods. We use the
same setup as in Section 5.3. In Figure 8, we
show the performance boost on the test task due
to using bigger neural networks (extended re-
sults are in Figure 10 in Appendix C). CRL,
DQN (MC), and C-learn (TD) benefit the most
from the critic scale. Strikingly, the general-
ization gap might be reduced by simply in-
creasing the scale of the critic for both TD
and MC methods.

5.5 DO QUASIMETRIC
NETWORKS IMPROVE STITCHING?

Quasimetric networks have been shown to provide benefits such as improved sample efficiency in
the goal-conditioned RL by making Q(s, a, g) satisfy the triangle inequality (Myers et al., 2025; Liu
et al., 2022). In this section, we compare CRL with Contrastive Metric Distillation (CMD) Myers

0 1 2 3
0.0
0.2
0.4
0.6
0.8
1.0

GCDQN (TD)

0 1 2 3

GCIQL (TD)

0 1 2 3

C-LEARN (MC)
Train
Test

0 1 2 3

CRL (MC)

Su
cc

es
s r

at
e

Number of boxes starting on target (always 4 boxes in total)

Figure 6: Stitching is easy on training support, even for MC methods. In the Few-to-many
setting, we probe methods’ generalized stitching capabilities. The more difficult the training tasks
(fewer boxes starting on target), the smaller the generalization gap for both MC and TD methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

et al. (2024), which replaces the L2 distance used in CRL with a quasimetric distance between
embeddings. We evaluate both methods in the Few-to-many setting on grids 5x5 and 6x6, with 3
boxes. We find that using quasimetric distance only decreases performance and slows down the
learning in our benchmark (Figure 9). We believe this is because the environment dynamics is
symmetric: for every pair of states A and B, the shortest path from A to B has the same length as
from B to A. Thus, splitting embeddings into symmetric and asymmetric components appears to add
an unnecessary inductive bias.

CRL CMD
0.0

0.2

0.4

0.6

0.8

1.0
2 boxes spawned on target

Train
Test

CRL CMD

1 box spawned on target

(a) Grid 5x5

CRL CMD
0.0

0.2

0.4

0.6

0.8

1.0
2 boxes spawned on target

Train
Test

CRL CMD

1 box spawned on target

(b) Grid 6x6

Figure 9: Quasimetrics do not improve stitching. In the Few-to-many setting with a 3-box task
during testing, CMD results in a worse success rate and a wider generalization gap than CRL.

6 CONCLUSION

This work introduces a formal taxonomy and a controllable benchmark to re-evaluate the mech-
anisms of experience stitching in goal-conditioned reinforcement learning, yielding key insights
that revise conventional wisdom. Our experiments show that, contrary to common belief, Monte
Carlo methods can stitch experiences in challenging settings. When test data lies within the training
support, they can achieve generalization gaps as small as those of Temporal Difference methods.
While TD learning provides an advantage in exact stitching scenarios, its performance degrades as
task complexity increases, indicating it is not a universally sufficient solution. Crucially, our results
highlight that model scale is a powerful lever for improving stitching. Increasing the critic network’s
capacity substantially narrows the generalization gap for both MC and TD methods. These findings
suggest that the specialized inductive bias of TD learning may be less essential in the era of large
models; instead, effective experience stitching can be achieved through the same principle that has
proven successful in other machine learning domains: scaling model capacity.

Limitations. A key limitation of our work is the reliance on a relatively simple grid-world with
a small action space. We chose this controlled setup to enable a concrete evaluation of stitching,
which is difficult to verify in richer domains. Nevertheless, even in this simplified setting, temporal-
difference methods fail to exhibit exact stitching as the number of boxes increases. Our experiments
are further limited to a sparse-reward regime and a small set of popular baselines that we consider
representative of goal-conditioned algorithms. We also did not investigate stitching or generalization
produced by a separately-parameterized actor policy. Future work should study actor generalization,
the effects of exploration and data collection, and scaling to richer, continuous environments.

Reproducibility Statement. To ensure the reproducibility of our findings, we provide code and
detailed descriptions of our methodology and experimental setup. The repository can be found
under the link: https://anonymous.4open.science/r/a-broken-promise-F5FB/
README.md. The custom grid-world benchmark, including the “Quarters” and “Few-to-Many”
settings used to test exact and generalized stitching, is thoroughly described in Section 4 and
can be found in src/envs/block_moving. Our complete experimental procedure, includ-
ing the implementation details for all algorithms (DQN, C-Learning, CRL), network architectures,
and training protocols, is outlined in Section 5.1 and can be found in src/impls/agents and
src/train.py. Specific hyperparameters used for all experiments, such as learning rates, batch
sizes, and discount factors, are enumerated in Table 1 in Appendix B.

9

https://anonymous.4open.science/r/a-broken-promise-F5FB/README.md
https://anonymous.4open.science/r/a-broken-promise-F5FB/README.md

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Adamczyk, Volodymyr Makarenko, Argenis Arriojas, Stas Tiomkin, and Rahul V. Kulka-
rni. Bounding the optimal value function in compositional reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.02557.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Ron Amit, Ron Meir, and Kamil Ciosek. Discount Factor as a Regularizer in Reinforcement Learn-
ing, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems (NeurIPS), 2017. URL https:
//papers.nips.cc/paper/7090-hindsight-experience-replay.

Leemon Baird et al. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the twelfth international conference on machine learning, pp. 30–37, 1995.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David Silver, and Hado
van Hasselt. Successor features for transfer in reinforcement learning. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2017. URL https://papers.nips.cc/paper/
6994-successor-features-for-transfer-in-reinforcement-learning.

André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel J.
Mankowitz, Augustin Žı́dek, and Rémi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning
Research, pp. 510–519. PMLR, 2018. URL http://proceedings.mlr.press/v80/
barreto18a.html.

Richard Bellman and Robert Kalaba. Dynamic programming and statistical communication theory.
Proceedings of the National Academy of Sciences, 43(8):749–751, 1957.

Dimitri P. Bertsekas. A Counterexample to Temporal Differences Learning. Neural Computation,
7:270–279, 1995.

Dimitri P. Bertsekas. Pathologies of Temporal Difference Methods in Approximate Dynamic Pro-
gramming. MIT web domain, 2010.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Pro-
ceedings of 1995 34th IEEE conference on decision and control, volume 1, pp. 560–564. IEEE,
1995.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference
learning. Machine learning, 22(1):33–57, 1996.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Ian Char, Viraj Mehta, Adam Villaflor, John M. Dolan, and Jeff Schneider. Bats: Best action trajec-
tory stitching, 2022. URL https://arxiv.org/abs/2204.12026.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning, 2020. URL https://arxiv.org/abs/1912.
01588.

10

https://arxiv.org/abs/2303.02557
https://papers.nips.cc/paper/7090-hindsight-experience-replay
https://papers.nips.cc/paper/7090-hindsight-experience-replay
https://papers.nips.cc/paper/6994-successor-features-for-transfer-in-reinforcement-learning
https://papers.nips.cc/paper/6994-successor-features-for-transfer-in-reinforcement-learning
http://proceedings.mlr.press/v80/barreto18a.html
http://proceedings.mlr.press/v80/barreto18a.html
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://arxiv.org/abs/2204.12026
https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/1912.01588

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve
goals via recursive classification. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://
openreview.net/forum?id=tc5qisoB-C.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint, 2019.
URL https://arxiv.org/abs/1912.06088.

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between TD
learning and supervised learning – a generalisation point of view. In International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
qg5JENs0N4.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and
Timothy Lillicrap. An investigation of model-free planning, 2019. URL https://arxiv.
org/abs/1901.03559.

Charles A. Hepburn and Giovanni Montana. Model-based trajectory stitching for improved offline
reinforcement learning, 2022. URL https://arxiv.org/abs/2211.11603.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

Leslie Pack Kaelbling. Learning to achieve goals. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1094–1098, 1993.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A compre-
hensive method on realistic data, 2020. URL https://arxiv.org/abs/1912.09713.

Ilya Kostrikov, Ashvin Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
International Conference On Learning Representations, 2021.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks, 2018. URL https://arxiv.org/abs/
1711.00350.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
ical normalization for scalable deep reinforcement learning. arXiv preprint arXiv: 2502.15280,
2025.

Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. Diffstitch: Boost-
ing offline reinforcement learning with diffusion-based trajectory stitching. arXiv preprint
arXiv:2402.02439, 2024.

Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual networks for sample efficient
goal-conditioned reinforcement learning. arXiv preprint arXiv: 2208.08133, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:
1312.5602, 2013.

11

https://openreview.net/forum?id=tc5qisoB-C
https://openreview.net/forum?id=tc5qisoB-C
https://arxiv.org/abs/1912.06088
https://openreview.net/forum?id=qg5JENs0N4
https://openreview.net/forum?id=qg5JENs0N4
https://arxiv.org/abs/1901.03559
https://arxiv.org/abs/1901.03559
https://arxiv.org/abs/2211.11603
https://arxiv.org/abs/1912.09713
https://arxiv.org/abs/1711.00350
https://arxiv.org/abs/1711.00350

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
temporal distances: Contrastive successor features can provide a metric structure for decision-
making. International Conference on Machine Learning, 2024. doi: 10.48550/arXiv.2406.17098.

Vivek Myers, Catherine Ji, and Benjamin Eysenbach. Horizon generalization in reinforcement learn-
ing. arXiv preprint, 2025. URL https://arxiv.org/abs/2501.02709.

Soroush Nasiriany, Vitchyr H. Pong, Steven Lin, and Sergey Levine. Planning
with goal-conditioned policies. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2019. URL https://papers.nips.cc/paper/
9623-planning-with-goal-conditioned-policies.pdf.

Michal Nauman, M. Ostaszewski, Krzysztof Jankowski, Piotr Milo’s, and Marek Cygan. Bigger,
regularized, optimistic: scaling for compute and sample-efficient continuous control. Neural
Information Processing Systems, 2024. doi: 10.48550/arXiv.2405.16158.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning, 2019. URL https://arxiv.org/
abs/1810.12282.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=M992mjgKzI.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Piotr Piekos, Aditya Ramesh, Francesco Faccio, and Jürgen Schmidhuber. Efficient value propaga-
tion with the compositional optimality equation. In NeurIPS 2023 Workshop on Goal-Conditioned
Reinforcement Learning, 2023.

Vitchyr H. Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models:
Model-free deep rl for model-based control. In International Conference on Learning Represen-
tations (ICLR), 2018. URL https://openreview.net/forum?id=Skw0n-W0Z.

Sarah Rathnam, Sonali Parbhoo, Siddharth Swaroop, Weiwei Pan, Susan A Murphy, and Finale
Doshi-Velez. Rethinking Discount Regularization: New Interpretations, Unintended Conse-
quences, and Solutions for Regularization in Reinforcement Learning.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approx-
imators. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
volume 37 of Proceedings of Machine Learning Research, pp. 1312–1320. PMLR, 2015. URL
http://proceedings.mlr.press/v37/schaul15.html.

Richard S. Sutton. Learning to predict by the method of temporal differences. Machine Learning, 3
(1):9–44, 1988. doi: 10.1023/A:1022633531479.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Mohammad Taufeeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker, Adam
Gleave, and Adrià Garriga-Alonso. Planning in a recurrent neural network that plays sokoban.
arXiv preprint, 2024. URL https://arxiv.org/abs/2407.15421.

John N Tsitsiklis and Benjamin Van Roy. On average versus discounted reward temporal-difference
learning. Machine Learning, 49(2):179–191, 2002.

12

https://arxiv.org/abs/2501.02709
https://papers.nips.cc/paper/9623-planning-with-goal-conditioned-policies.pdf
https://papers.nips.cc/paper/9623-planning-with-goal-conditioned-policies.pdf
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/1810.12282
https://openreview.net/forum?id=M992mjgKzI
https://openreview.net/forum?id=Skw0n-W0Z
http://proceedings.mlr.press/v37/schaul15.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2407.15421

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Benjamin Van Niekerk, Steven James, Adam Earle, and Benjamin Rosman. Composing value
functions in reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 6401–6409. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/van-niekerk19a.html.

Harm van Seijen, Mehdi Fatemi, and Arash Tavakoli. Using a Logarithmic Mapping to Enable
Lower Discount Factors in Reinforcement Learning, 2019.

Kevin Wang, Ishaan Javali, Michał Bortkiewicz, Tomasz Trzciński, and Benjamin Eysenbach. 1000
layer networks for self-supervised rl: Scaling depth can enable new goal-reaching capabilities.
arXiv preprint arXiv: 2503.14858, 2025.

Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez, Danilo
Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pas-
canu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2017. URL https://arxiv.org/abs/1707.06203.

Maciej Wolczyk, Bartlomiej Cupial, Mateusz Ostaszewski, Michal Bortkiewicz, Michal Zajac,
Razvan Pascanu, Lukasz Kucinski, and Piotr Milos. Fine-tuning reinforcement learning mod-
els is secretly a forgetting mitigation problem. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=53iSXb1m8w.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the 23rd National Conference on Artificial Intelligence
- Volume 3, AAAI’08, pp. 1433–1438. AAAI Press, 2008. ISBN 9781577353683.

A LLMS USAGE

We used Large Language Models (LLMs) as a writing assistant in the preparation of this manuscript.
Their primary role was to aid in restructuring text at both the sentence and paragraph levels to
enhance manuscript clarity and readability. Additionally, we used LLMs for proofreading to identify
typographical errors and to generate high-level feedback on the paper draft.

B EXPERIMENTAL SETUP

All experiments were run on 10 seeds, with the hyperparameters reported in Table 1.

C ADDITIONAL RESULTS

C.1 ARCHITECTURE SCALING

In Figure 8, for readability, we reported the IQM, without confidence intervals. In Figure 10 we
present the full scaling experiment results, with confidence intervals, for both grid sizes 4 and 5.

C.2 HYPERPARAMETER TUNING

To ensure reproducibility and establish a strong baseline, we adopted the core hyperparameter con-
figurations from OGBench (Park et al., 2025) for the IQL (TD) and CRL (MC) implementations.
These configurations also served as the starting point for the algorithms implemented specifically
for this project: C-learn (MC and TD), DQN (MC and TD), and IQL (MC). However, to verify the
suitability of these hyperparameters for the specific challenges of the proposed stitching benchmark,
we conducted a sensitivity analysis on critical hyperparameters, including the batch size, number of

13

https://proceedings.mlr.press/v97/van-niekerk19a.html
https://proceedings.mlr.press/v97/van-niekerk19a.html
https://arxiv.org/abs/1707.06203
https://openreview.net/forum?id=53iSXb1m8w

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 1: Hyperparameters

Hyperparameter Value
num env steps 500,000,000
num updates 1,000,000

max replay size (per env instance) 10,000
min replay size 1,000
episode length 100

discount 0.99 (0.9 for MC versions of DQN, IQL, and C-learning)
number of parallel envs 1024

batch size 256
learning rate 3e-4

contrastive loss function sigmoid_binary_cross_entropy
energy function dot_product

representation dimension 64
target_entropy 1.1

parallel environments, number of gradient updates, discount factor γ, and the target entropy used in
the Q-induced softmax policy. Selected results from this analysis are shown below.

In Figure 11, we report final success rates for different values of discounting and target entropy used
in the Q-induced softmax policy during data collection for DQN (TD) and CRL (MC). We use the
Quarters Setting with a grid size of 6× 6 and 3 boxes, as this setup yielded results that were neither
saturated nor trivial for both DQN and CRL.

We note that while our environment can, in principle, be run with many more boxes and larger grid
sizes, all implemented RL methods exhibit relatively low performance in these settings. In practice,
they struggle and tend to achieve only trivial performance once the grid size exceeds 6 or the number
of boxes reaches four or more.

C.3 HOW EXPLORATION AFFECTS STITCHING PERFORMANCE?

To study the relationship between data collection entropy (i.e., exploration) and the policy induced
by the learned Q function, we conducted experiments with DQN and CRL using different target
entropy values in the Q-induced softmax policy during data collection. We use the Quarters Setting
with a grid size of 6 × 6 and 3 boxes. As shown in Figure 12, the argmax policy for CRL achieves
near-zero performance, likely because it gets stuck in states where the Q function is poorly estimated.
Policy visualizations suggest that in such cases, the agent either attempts to pick up a box from an
empty cell or tries to drop a box it does not have. In contrast, the argmax policy for DQN achieves
non-trivial performance, though still lower than that of the softmax policy (see Figure 11(b)), with
the best performance occurring at a target entropy of 1.1, the value used in our main experiments.

C.4 EFFECTS OF DISCOUNTING AND NETWORK SCALING IN THE FEW-TO-MANY SETUP

In this section, we report the effect of the discount parameter on MC and TD methods in the Few-
to-many setup, while scaling the architecture of the critic network. We evaluate all methods with
discount factor of γ = 0.9 and γ = 0.99. Full results of those experiments are presented in Figure 13
and Figure 14. While TD methods have similar performance for both values of γ, all MC methods
but CRL benefit from a lower discount factor, γ = 0.9. This is likely because lower values of γ
reduce the variance of relabeled returns (Rathnam et al.; Amit et al., 2020; van Seijen et al., 2019),
which can improve generalization, albeit at the cost of shortening the effective horizon.

C.5 MONTE-CARLO DQN RESULTS

Most experiments in the paper use 50 training epochs, corresponding to 5 million gradient updates
and 500 million environment steps. However, we found that even this substantial amount of training
is insufficient for the MC version of DQN to converge when using a small critic architecture and a
discount rate of 0.9. In Figure 15, we present the results for a 10× longer training for this method

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G0.0

0.2

0.4

0.6

0.8

1.0
+0.05

+0.23

Training success on 3 boxes
(1 on target)

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

+0.07 +0.09 +0.07
+0.27

Test success on 3 boxes
(0 on target)

MC TD MC TD

(a) Success rate boost with scaling to bigger networks on grid size of 4 in generalized setup

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

0.0

0.2

0.4

0.6

0.8

1.0

+0.73

+0.09

+0.71 +0.49

+0.15

Training success on 3 boxes
(1 on target)

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

+0.70

+0.13 +0.19

+0.66

+0.53

+0.24

Test success on 3 boxes
(0 on target)

MC TD MC TD

(b) Success rate boost with scaling to bigger networks on grid size of 5 in generalized setup

Figure 10: Full Generalized Stitching setup experiments

in the generalized setup (5× 5) and 4 boxes in total. Interestingly, even when the agent is trained to
move only two boxes (green line), it still learns to stitch, achieving a non-trivial success rate of 20%
on the test task, which requires moving all four boxes.

C.6 WALL-CLOCK TIME OF TRAINING

In Table 2, we report the average wall-clock times for training the agents with 500 million environ-
ment transitions and 5 million gradient updates, broken down by their architecture sizes. The times
are for 5× 5 grid and the Few-To-Many setup. We conduct experiments using an NVIDIA GeForce
GTX 200 120GB GPU. On a single GPU card, we could run up to 5 seeds in parallel.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.9 0.99 0.999
0.0
0.2
0.4
0.6
0.8
1.0

Training success on 3 boxes

0.9 0.99 0.999

Test success on 3 boxes

CRL discount tuning
Su

cc
es

s r
at

e

Discount
1.79 1.1 0.69

0.0
0.2
0.4
0.6
0.8
1.0

Training success on 3 boxes

1.79 1.1 0.69

Test success on 3 boxes

CRL entropy tuning

Su
cc

es
s r

at
e

Target entropy

(a) CRL: final train and test success rates for (left) different discounts and (right) different target entropy values
used in softmax policy for data collection

0.9 0.99 0.999
0.0
0.2
0.4
0.6
0.8
1.0

Training success on 3 boxes

0.9 0.99 0.999

Test success on 3 boxes

DQN discount tuning

Su
cc

es
s r

at
e

Discount
1.79 1.1 0.69

0.0
0.2
0.4
0.6
0.8
1.0

Training success on 3 boxes

1.79 1.1 0.69

Test success on 3 boxes

DQN entropy tuning

Su
cc

es
s r

at
e

Target entropy

(b) DQN: final train and test success rates for (left) different discounts and (right) different target entropy values
used in softmax policy for data collection

Figure 11: Verification of hyperparameters values. Success rates for different values of discount-
ing and target entropy used in the Q-induced softmax policy during data collection.

1.79 1.1 0.69
0.0
0.2
0.4
0.6
0.8
1.0

Training success on 3 boxes

1.79 1.1 0.69

Test success on 3 boxes

CRL argmax entropy tuning

Su
cc

es
s r

at
e

Target entropy
1.79 1.1 0.69

0.0
0.2
0.4
0.6
0.8
1.0

Training success on 3 boxes

1.79 1.1 0.69

Test success on 3 boxes

DQN argmax entropy tuning

Su
cc

es
s r

at
e

Target entropy

Figure 12: Relation between data collection policy and argmax policy at test time. We observe
that the argmax(Q) policy yields zero performance for CRL. This suggests that, to prevent CRL from
getting stuck in states where the Q-function is misestimated, using a softmax policy at test time is
essential. For DQN, the best argmax-policy performance is achieved when the data are collected
using a softmax policy with a target entropy of 1.1.

Depth DQN (TD) DQN (MC) CRL (MC) IQL (MC) IQL (TD) C-LEARN (MC) C-LEARN (TD)
Small 1.03 1.07 1.32 1.19 1.25 0.83 1.27
Large 7.26 4.77 8.77 6.56 8.41 5.49 8.80

Table 2: Average wall-clock training time (in hours) for the methods used in this project.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G0.0

0.2

0.4

0.6

0.8

1.0
+0.05

+0.28

Training success on 3 boxes
(1 on target)

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

+0.07

+0.08

+0.07
+0.34

Test success on 3 boxes
(0 on target)

MC TD MC TD

(a) Success rate boost with scaling to bigger networks on grid size of 4 in generalized setup with discount 0.9

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

0.0

0.2

0.4

0.6

0.8

1.0

+0.50 +0.55

+0.23

Training success on 3 boxes
(1 on target)

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

+0.39

-0.11 +0.09

+0.37

+0.27

Test success on 3 boxes
(0 on target)

MC TD MC TD

(b) Success rate boost with scaling to bigger networks on grid size of 4 in generalized setup with discount 0.99

Figure 13: Full discount generalized setup scaling experiments for grid size of 4

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G
0.0

0.2

0.4

0.6

0.8

1.0

+0.73

+0.09

+0.71 +0.61

+0.06

Training success on 3 boxes
(1 on target)

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

+0.70

+0.13

+0.10
+0.66

+0.68

+0.14

Test success on 3 boxes
(0 on target)

MC TD MC TD

(a) Success rate boost with scaling to bigger networks on grid size of 5 in generalized setup with discount 0.9

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

0.0

0.2

0.4

0.6

0.8

1.0

+0.13

+0.19

+0.12

+0.49

+0.15

Training success on 3 boxes
(1 on target)

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

CR
L

SM
AL

L
CR

L
BI

G
GC

IQ
L

SM
AL

L
GC

IQ
L

BI
G

GC
DQ

N
SM

AL
L

GC
DQ

N
BI

G
C-

LE
AR

N
SM

AL
L

C-
LE

AR
N

BI
G

GC
IQ

L
SM

AL
L

GC
IQ

L
BI

G

-0.12

+0.19

+0.53

+0.24

Test success on 3 boxes
(0 on target)

MC TD MC TD

(b) Success rate boost with scaling to bigger networks on grid size of 5 in generalized setup with discount 0.99

Figure 14: Full discount generalized setup scaling experiments for grid size of 5

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Train

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s r

at
e

Test
Boxes starting
on target

0
1
2
3

Figure 15: MC version of Goal-conditioned DQN stitches, but learns slowly. While the training
of MC DQN is slow to converge, the stitching is present for this method even when moving only 3
or 2 boxes out of 4 during the training.

19

	Introduction
	Related Work
	Preliminaries
	A Benchmark for Stitching
	Experiments
	Experimental setup
	Do any of today's methods do stitching?
	Are MC methods performing stitching, or is TD learning necessary?
	Does scaling improve stitching?
	Do quasimetric networks improve stitching?

	Conclusion
	LLMs usage
	Experimental Setup
	Additional Results
	Architecture Scaling
	Hyperparameter tuning
	How exploration affects stitching performance?
	Effects of Discounting and Network Scaling in the Few-to-Many Setup
	Monte-Carlo DQN results
	Wall-clock Time of Training

