

IS TEMPORAL-DIFFERENCE LEARNING THE ONLY PATH TO STITCHING IN RL?

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

ABSTRACT

010 Reinforcement learning (RL) promises to solve long-horizon tasks even when
011 training data contains only short fragments of the behaviors. This *experience*
012 *stitching* capability is often viewed as the purview of temporal difference (TD)
013 methods. However, outside of small tabular settings, trajectories never intersect,
014 calling into question this conventional wisdom. Moreover, the common belief
015 is that Monte Carlo (MC) methods should not be able to recombine experience,
016 yet it remains unclear whether function approximation could result in a form of
017 implicit stitching. The goal of this paper is to empirically study whether the con-
018 ventional wisdom about stitching actually holds in settings where function ap-
019 proximation is used. We empirically demonstrate that Monte Carlo (MC) meth-
020 ods can also achieve experience stitching. While TD methods do achieve slightly
021 stronger capabilities than MC methods (in line with conventional wisdom), **this**
022 **gap narrows as we use larger neural networks. Furthermore**, we find that in-
023 creasing critic capacity effectively reduces the generalization gap for both the MC
024 and TD methods. These results suggest that the traditional TD inductive bias for
025 stitching may be less necessary in the era of large models for RL and, in some
026 cases, may offer diminishing returns. Additionally, our results suggest that stitch-
027 ing, a form of generalization unique to the RL setting, might be achieved not
028 through specialized algorithms (temporal difference learning) but rather through
029 the same recipe that has provided generalization in other machine learning settings
030 (via scale). Project website: <https://anonymous.4open.science/r/a-broken-promise-F5FB/README.md>

1 INTRODUCTION

031
032
033
034 In theory, reinforcement learning algorithms
035 should be able to piece together past experi-
036 ences to find new or better solutions to long-
037 horizon tasks. This ability, sometimes called
038 *experience stitching* (Ghugare et al., 2024; My-
039 ers et al., 2025; Wolczyk et al., 2024; Ziebart
040 et al., 2008), is frequently linked to bootstrap-
041 ping through temporal-difference (TD) updates,
042 i.e., updating value estimates using successor
043 states’ predictions instead of relying on full
044 rollouts. At least in tabular settings, TD-based
045 methods can boost data efficiency and acceler-
046 ate convergence (Sutton, 1988; Sutton & Barto,
047 2018), yet their efficacy in the presence of
048 function approximation remains disputed (Bert-
049 sekas, 1995; 2010; Brandfonbrener et al., 2021;
050 Peters et al., 2010).

051 Outside of tabular or highly-constrained set-
052 tings, TD methods cannot literally stitch trajec-
053 tories together: trajectories rarely self-intersect
in real-world scenarios. For example, compare an ant crawling on a sheet of paper (2D) with a fly
flying in an empty room (3D) in Figure 1: the ant’s 2D path will self-cross far more often than the

054 Figure 1: (*Left*) While TD methods are often con-
055 ceptualized as piecing together overlapping trajectories,
056 (*Right*) this mental model breaks down in almost all
057 realistic tasks, as trajectories never actually intersect.
058 This paper introduces a new mental model (and formal
059 definitions) for thinking about “stitching” in such set-
060 tings, provides a benchmark for rigorously evaluating
061 these stitching capabilities, and performs experiments
062 to understand the degree to which stitching may *actu-*
063 *ally* achieved through (*i*) temporal difference methods,
064 (*ii*) quasimetric architectures, and (*iii*) simply scaling
065 model architectures.

fly’s 3D path. Following this example, we observe that stitching has a dual relationship with generalization. On one hand, stitching requires generalization: the value function must assign similar values to similar states, enabling values to propagate across disconnected trajectories. On the other hand, stitching itself provides generalization: it allows a policy to traverse between states that were never observed as connected during training.

In this paper, we examine mechanisms that enable recombining high-dimensional experiences. We focus on model scale and learning paradigm (TD vs. MC), and we evaluate three regimes—*no stitching*, *exact stitching* (shared waypoint), and *generalized stitching* (waypoint mismatch). [Here, a waypoint refers to an intermediate state along the trajectory](#). To probe them cleanly, we introduce a minimalist pick-and-place grid benchmark (Sokoban without walls; but with lift/drop actions) designed to test composition rather than perception or complex dynamics. Two setups anchor our study: Quarters (exact stitching), where training transfers boxes between adjacent board quarters and evaluation requires a diagonal transfer; and Few-to-Many (generalized stitching), where training solves easier instances with some boxes pre-placed while evaluation requires moving all boxes. We distinguish *closed* stitching cases—where composed solutions remain within the support of the training data—from *open* cases—where they typically fall outside; formal definitions appear in Section 4.

The main contribution of this paper is a carefully designed testbed and empirical evaluation of the stitching capabilities of various algorithms and architectures. We train 7 different goal-conditioned agents in this environment and observe that **Monte Carlo methods do stitch**: in the generalized regime, they achieve small generalization gaps—often comparable to TD—even when training requires moving fewer objects than at evaluation. At the same time, **exact stitching with multi-object coordination is brittle**: performance degrades rapidly as the number of objects grows, and even TD can fail when composition steers rollouts through intermediate states that were never seen during training. In addition, we find that **scale is a powerful lever for stitching**. [Increasing the size of the critic network, used for state-action pair value estimation](#), substantially boosts test performance for both TD and MC variants, narrowing their gap; among MC baselines, algorithms with stronger exploration and credit assignment fare best, while lightweight MC DQN lags primarily due to exploration inefficiency. Taken together, these results revise common wisdom: TD is neither necessary for stitching, nor sufficient in the face of multi-object composition; model scale materially improves stitching for both paradigms.

Our main contributions are the following:

1. We formalize and analyze three stitching regimes—*no stitching*, *exact stitching* (shared waypoint), and *generalized stitching* (waypoint mismatch)—and highlight when exact-stitching evaluations can break due to lack of closure under composition.
2. Through controlled experiments across TD and MC algorithms, we provide principled guidance on stitching: MC methods can stitch in the generalized regime, TD typically helps but is insufficient, and increasing critic scale markedly improves stitching for both paradigms.
3. We introduce simple, configurable environments that isolate stitching phenomena and enable reproducible evaluation across regimes (see Fig. 3).

2 RELATED WORK

From tabular prediction to stitching. Early reinforcement learning emphasized value estimation in tabular models, grounded in dynamic programming (Bellman & Kalaba, 1957). TD learning realizes this idea via bootstrapping from successor predictions (Sutton, 1988; Sutton & Barto, 2018), with extensions beyond the tabular regime through residual-gradient, least-squares TD, and linear-convergence analyses (Baird et al., 1995; Bradtke & Barto, 1996; Tsitsiklis & Van Roy, 2002; Bertsekas & Tsitsiklis, 1995). A natural next step is *generalization across state–goal pairs*, i.e., solving new *combinations* of familiar states and goals—what many works refer to as *stitching* (e.g., UVFA, HER, and successor-feature routes to recombination) (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017; Barreto et al., 2017; 2018). We describe stitching regimes (Figure 2) purely by what is present in the replay buffer \mathcal{D} at train time and what is queried at test time.

108 1. **No stitching (end-to-end only).** *Train:* \mathcal{D} contains end-to-end trajectories $(s' \rightarrow g')$. *Test:*
 109 evaluate a held-out end-to-end pair $(s \rightarrow g)$ (same generator, disjoint pairs) (Sutton & Barto,
 110 2018; Ghosh et al., 2019).

111 2. **Exact stitching (shared waypoint).** *Train:* \mathcal{D} contains trajectories $(s \rightarrow w')$ and $(w' \rightarrow g)$ for the *same* waypoint w' ; no $(s \rightarrow g)$. *Test:* evaluate the end-to-end query $(s \rightarrow g)$. This setting aligns with classic dynamic programming / temporal-difference propagation across a shared waypoint (Bellman & Kalaba, 1957; Sutton, 1988) and recent discussions of “stitching” (Ghugare et al., 2024).

112 3. **Generalized stitching (waypoint mismatch).** *Train:* \mathcal{D} contains $(s \rightarrow w')$ and $(w'' \rightarrow g)$ with $w' \neq w''$; there is no waypoint \tilde{w} for which both trajectories $(s \rightarrow \tilde{w})$ and $(\tilde{w} \rightarrow g)$ are present. *Test:* evaluate $(s \rightarrow g)$. Success requires a representation that bridges mismatched trajectories (e.g., successor features with GPI, temporal distance/value models) (Barreto et al., 2017; 2018; Pong et al., 2018; Ghugare et al., 2024).

123 **Compositional generalization and**
 124 **horizon extension.** Generalization

125 fragility in deep RL has been documented under controlled shifts in
 126 observations, dynamics, and tasks
 127 (Zhang et al., 2018; Packer et al.,
 128 2019; Cobbe et al., 2020). A complementary lens is *horizon generalization*, where agents trained on short-
 129 range goals succeed at longer-range
 130 ones by composing waypoints; recent
 131 work formalizes links to planning invariances and proposes diagnostics (Myers et al., 2025). Parallel
 132 lines in ML study *compositional* generalization as systematic recombination of known primitives
 133 (e.g., SCAN, CFQ), clarifying what kinds of recombination are actually measured (Lake & Baroni,
 134 2018; Keysers et al., 2020; Hupkes et al., 2020). Complementary operator-centric approaches pro-
 135 pose alternatives to Bellman backups that directly encode subgoal composition to accelerate value
 136 propagation in goal-reaching MDPs (Piekos et al., 2023; Van Niekerk et al., 2019; Adamczyk et al.,
 137 2023). We adopt this compositional lens and ask whether agents can solve novel state–goal combi-
 138 nations by recombining familiar parts to solve longer tasks.

139 **Goal-conditioned RL (GCRL) and representation routes to recomposition.** Goal conditioning
 140 makes recomposition operational by training policies or value functions over (s, g) pairs. UVFA
 141 amortize structure-sharing across goals (Schaul et al., 2015), while HER densifies sparse reward
 142 learning by relabeling achieved goals (Andrychowicz et al., 2017). Supervised-learning formula-
 143 tions such as GCSL trade bootstrapping for stability and simplicity (Ghosh et al., 2019), though
 144 analyses suggest they may lack stitching without explicit temporal augmentation (Ghugare et al.,
 145 2024). Beyond standard backups, the *Compositional Optimality Equation* (COE) replaces Bell-
 146 man’s max-over-actions with an explicit composition over intermediate subgoals, yielding more effi-
 147 cient value propagation in deterministic goal-reaching settings (Piekos et al., 2023). Representation-
 148 centric methods also support recomposition via factorization or predictive structure: successor fea-
 149 tures with generalized policy improvement transfer across reward mixtures (Barreto et al., 2017;
 150 2018), and temporal-difference models learn goal-conditioned distances that enable waypointing
 151 and short-horizon planning (Pong et al., 2018; Nasiriany et al., 2019). Building on these strands,
 152 we contrast TD-style and MC/SL-style training while varying model capacity to examine whether
 153 stitching stems from bootstrapping, from learned representations, or from operator design.

154 **Stitching in offline RL and explicit trajectory recomposition.** Recent offline RL work makes
 155 *trajectory stitching* explicit by learning or constructing joins between sub-trajectories to improve
 156 policies from imperfect datasets (Char et al., 2022; Hepburn & Montana, 2022; Li et al., 2024;
 157 Ghugare et al., 2024). This stands in contrast to the *implicit* composition often attributed to TD-
 158 style value propagation. A natural question, then, is: *which ingredients are actually needed for*
 159 *stitching to emerge in the **online**, goal-conditioned setting?* We investigate this in a controlled online
 160 benchmark where (i) the availability of reusable segments and (ii) whether their concatenation stays
 161 on-support (closed) or induces off-support states (open) are both tunable by design.

Figure 2: Three types of stitching.

162 **Planning-heavy testbeds: Sokoban and variants.** Sokoban and Boxoban stress long-horizon reasoning with irreversible moves and maze-like dead ends, where incidental trajectory intersections are
 163 rare and naive stitching is difficult; hybrid agents that leverage learned rollouts (I2A) and recurrent
 164 agents with emergent plan-like computation achieve strong results in these domains (Weber et al.,
 165 2017; Guez et al., 2019; Taufeeque et al., 2024). We take inspiration from Sokoban but deliberately
 166 remove maze-induced confounds by studying an *open-grid* environment with boxes and targets. The
 167 agent can *pick up* (not only push) boxes, eliminating dead ends and allowing us to manipulate the
 168 number and placement of boxes across consecutive episodes so that the set of seen goals is precisely
 169 controlled. This setup allows us to directly test whether agents stitch together familiar subgoals to
 170 solve novel state–goal combinations.
 171

172 3 PRELIMINARIES

173 Our paper investigates the generalization properties of on-policy goal-conditioned reinforcement
 174 learning, focusing on how Temporal Difference and Monte Carlo methods, as well as network ar-
 175 chitectures for function approximation, influence stitching capabilities.
 176

177 We study the problem of goal-conditioned reinforcement learning in a deterministic controlled
 178 Markov process with states $s \in \mathcal{S}$, goals $g \in \mathcal{G}$, and actions $a \in \mathcal{A}$. We use an environment
 179 with deterministic state transitions and sample the initial states from the distribution $p_0(s_0)$. The
 180 Q-function, or **critic**, is defined as $Q^\pi(s, a) = \mathbb{E}_\pi[G_t \mid S_t = s, A_t = a, G_t = g]$, where
 181 $G_t = \sum_{k=0}^{T-t} \gamma^k R_{t+k+1}$ is the empirically observed future discounted return with a discount factor
 182 γ . We study both Monte Carlo methods, where Q-functions are learned from returns ($Q(s_t, a_t) \leftarrow G_t$) (Sutton & Barto, 2018; Eysenbach et al., 2021), and Temporal Difference methods, where they
 183 are learned from bootstrapped targets ($Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma Q(s_{t+1}, a_{t+1})$) (Sutton, 1988).
 184 Throughout this paper, we sample actions from the Boltzmann (softmax) distribution induced by
 185 Q , with learnable temperature τ . The replay buffer stores trajectory sequences, but training uses
 186 random i.i.d. pairs sampled from those sequences.
 187

188 4 A BENCHMARK FOR STITCHING

189 To precisely probe these types of stitching, we constructed a benchmark (Fig. 3) where an agent
 190 can pick up and place blocks. Our aim was to create tasks that would allow us to isolate the prob-
 191 lems related to different types of stitching, while minimizing the impact of environment complexity,
 192 dynamics and agents’ perceptual capabilities.
 193

194 Our environment consists of a square grid of fields, with some fields being occupied by *boxes* and
 195 *targets*. The task of the agent is to transfer all of the boxes to targets. This setting is thus similar
 196 to Sokoban, but differs in (1) removing the walls; and (2) lifting/dropping boxes instead of pushing
 197 boxes, so there is no possibility for the agent to get stuck in an irreversible state. States are discrete,
 198 allowing us to determine exactly whether the agent has visited the same state twice. Actions are also
 199 discrete, removing policy learning as a potential confounding factor. Nonetheless, the number of
 200 states can be made arbitrarily large; for example, Fig. 3 (b) shows 3 blocks in a 4×4 room, so the
 201 total number of block configurations is $\binom{16}{3} = 560$. If we increase the number of blocks to 8, and
 202 the grid size to 5×5 , the number of configurations is more than a million.
 203

204 **Observation and action spaces.** The observation consists of `grid_size` \times `grid_size` integers,
 205 each representing the total information about one respective field of the grid. The goal
 206 observation consists of a grid with boxes placed in desired positions. It is important to note that the
 207 target markers are added only for human visibility - they are **not** part of the observations, or the goal
 208 observations. There are six possible actions that the model can perform in each state: `go_left`,
 209 `go_right`, `go_up`, `go_down`, `pick_up_box`, `put_down_box`.
 210

211 Within this environment, we constructed three major distributions of box and goal placement to test
 212 the exact and generalized stitching variants:
 213

- 214 • **No stitching** (cf. Fig. 2 A) – A fixed number of blocks are placed randomly, and the goal
 215 is a different random arrangement of blocks. This setting was used primarily to check the
 216 implementation of algorithm baselines and compare different hyperparameter choices.

Figure 3: **A benchmark for stitching:** The agent (red ball) must move boxes to the target positions (yellow transparent boxes). (Left) During training, boxes are placed in one quarter and must be moved to an *adjacent* quarter (gray arrow indicates the required direction of transfer). During testing, boxes must be moved to the *diagonal* quarter. The gray arrows illustrate one of the valid two-step routes via adjacent quarters (adjacent \rightarrow adjacent), which were seen separately during training but never as an end-to-end diagonal move. (Right) During training, one box is already on a target, and the agent must place the remaining two. During testing, no boxes start on targets. Although both start and goal configurations are individually familiar, training never includes segments that involve moving three boxes.

- **The Quarters Setting** (Fig. 3a) – The board is split into four equal quarters. During training, the initial state has all blocks randomly placed within one quarter, and the goal state has the blocks randomly placed in an adjacent quarter.

The algorithm is then evaluated on the same environment **and** additionally it is evaluated on the same number of boxes and targets, that are placed in diagonal (i.e., not adjacent) quarters. Intuitively, during the training, the agent should learn how to move boxes to a neighboring quarter, and during evaluation, it is tested whether it can stitch the gathered experience to move boxes to the opposite quarter. With a sufficient number of experiences collected, each possible combination of boxes and each possible combination of targets should appear in each of the quarters, which means that during the evaluation, both the initial states and goal states have each been seen before (they are not out of distribution). However, the relative position of boxes in the initial state and goal state has never been observed during training, so the pair (s, g) is out of distribution. Thus, this setting evaluates *exact stitching* (cf. Fig. 2 B).

- **The Few-to-Many Setting** (Fig. 3b) – This setting tests how well the agent can generalize to a task that involves moving a different number of boxes. During training, the environment parameters n and m are fixed (i.e., not randomized). Here, n denotes the total number of boxes and targets, which are placed uniformly on the board, and $m < n$ specifies how many boxes are initially spawned on their targets. Thus, the agent only needs to move the remaining $n - m$ boxes to accomplish the task. During the evaluation, none of the boxes are spawned on the targets. By construction, the initial state and goal state are both in the distribution of states seen during training, yet their combination is (by construction) never seen during training. Since training never included segments starting from the zero-placed start, the $s \rightarrow w$ is missing for every w at test, so no waypoint is shared across training trajectories—hence this is *generalized stitching* (cf. Fig. 2 C).

These settings allow us to efficiently test the exact and generalized stitching capabilities and to incrementally change the difficulty of the task by manipulating the size of the grid and the number of boxes.

Interpreting setups difficulty: *closed* vs. *open* evaluation. The three settings above specify *what segments are seen during training and what is queried during testing*. Here, we add an annotation that clarifies what can happen during test-time evaluation.

Let \mathcal{D} be the training replay buffer and let $\mathcal{M} := \{s : s \text{ appears in } \mathcal{D}\}$ denote its empirical state support. For a test query (s, g) , let $\text{Traj}(s, g)$ be the set of feasible trajectories from s that reach g .

Closed. We call (s, g) *closed* if all feasible trajectories $\tau \in \text{Traj}(s, g)$ have states all lying in \mathcal{M} (i.e., no out-of-support waypoint is needed).

Open. We call (s, g) *open* if efficient executions naturally visit states outside \mathcal{M} —formally, there exists a near-optimal trajectory $\tilde{\tau} \in \text{Traj}(s, g)$ with some intermediate state $w \notin \mathcal{M}$. In our ex-

270 periments, we make this observable by reporting the fraction of off-support states visited during
 271 evaluation.

272 *For example:* in our Quarter setting, the agent may leave some boxes placed in the waypoint quadrant,
 273 and prematurely drop another toward the goal quadrant, creating a state absent in the training
 274 support (see Fig. 5). This is analogous to the challenge in imitation learning wherein out-of-
 275 distribution actions can lead to states unseen during training (Ross et al., 2011).

276 Labeling a setup as *open* does not prevent on-support solutions, nor does it forbid an agent from
 277 exploring widely during training. It only indicates that typical efficient executions (including near-
 278 optimal ones) are likely to traverse states outside \mathcal{M} , given how the training trajectories were col-
 279 lected. If the training rollouts cover essentially the entire relevant state space, the same setting
 280 evaluation would be effectively *closed*. Conversely, with finite data, even small deviations can push
 281 test rollouts off-support, even for policies that perform well on the training task.

283 5 EXPERIMENTS

284 The primary goal of our experiments is to understand which types of stitching are performed by
 285 TD and MC methods that use a critic with function approximation. We also investigate the role of
 286 architecture in stitching, focusing on scaling the critic using Wang et al. (2025) ResNet blocks and
 287 parametrization using quasimetric networks from Myers et al. (2025). Our aim is not to propose a
 288 new method, but to provide a rigorous evaluation of the stitching capabilities of today’s methods. In
 289 Section 5.1, we describe the experimental setup, and in the consecutive sections, we aim to answer
 290 the following research questions:

- 293 • Do any of today’s methods do stitch (Section 5.2)?
- 294 • Are MC methods performing stitching, or is TD learning necessary (Section 5.3)?
- 295 • Does scale improve stitching (Section 5.4)?
- 296 • Do quasimetric networks improve stitching (Section 5.5)?

298 5.1 EXPERIMENTAL SETUP

300 To answer the questions above, we test the exact and generalized stitching capabilities of the Deep
 301 Q Networks (DQN) (Mnih et al., 2013), Contrastive Reinforcement Learning (CRL) (Eysenbach
 302 et al., 2022), C-learning (Eysenbach et al., 2021), and Implicit Q-Learning (IQL) (Kostrikov et al.,
 303 2021). We implement both C-learning and DQN in two versions: MC and TD. While C-learning
 304 and CRL are reward-free methods, for DQN, we use a sparse reward of 1 when all of the boxes
 305 are in the target position and 0 otherwise. We also use hindsight goal relabeling (Andrychowicz
 306 et al., 2017) for DQN with 50% of future states and 50% of random states. In the MC version of
 307 DQN and IQL, we use discounted returns for the relabeled goal as targets. To that end, we store
 308 experience in a trajectory buffer rather than a standard transition buffer. For each sampled trajectory,
 309 we relabel all goals to a future state selected using a geometric distribution. We then compute
 310 discounted rewards by propagating them backward through the trajectory. Finally, instead of using
 311 a bootstrapped target for the Q-update, we use the discounted cumulative reward computed directly
 312 from the replay buffer. In most experiments, we use an MLP with two hidden layers, each containing
 313 256 units, followed by post-activation LayerNorm for the critic. In Section 5.4, we instead adopt
 314 the architecture from Wang et al. (2025), which employs ResNet blocks, Swish activations, and pre-
 315 activation LayerNorm. In particular, we use two ResNet blocks, each with 4 hidden layers and 1024
 316 units per layer. Note that CRL uses two networks as encoders in the critic. We list all the training
 317 details and hyperparameters in Appendix B.

318 We train all methods using the ADAM optimizer for 5 million update steps, collecting a total of 500
 319 million transitions online. Training alternates between full rollouts, data collection, and network
 320 updates. For both data collection and evaluation, we sample actions from the Boltzmann (softmax)
 321 distribution defined by Q . We do *not* use a separate parameterized policy, as our main focus is
 322 on the critic’s stitching ability, which could later be distilled into an actor. We tune an additional
 323 temperature parameter for all the methods so that the entropy of the Q-induced distribution is close
 324 to $\ln(|A|/2) \approx 1.1$. In all of the experiments, we use settings introduced in Section 4, which are
 325 implemented as parallelized environments for data collection in JAX (Bradbury et al., 2018). As

a performance metric, we use *success rate*, i.e., the number of attempts finished with all boxes in the target positions. In the majority of the plots, we report the interquartile mean of 10 seeds with stratified bootstrap confidence intervals calculated using Agarwal et al. (2021). We use the term *generalization gap* to name the difference between method performance in the training and evaluation task, which differ in our setups.

Figure 4: **TD methods can only stitch effectively up to a certain point.** In the Quarters setting (6×6 grid) — which tests exact stitching — increasing the number of boxes widens the generalization gap for both TD and MC methods.

5.2 DO ANY OF TODAY’S METHODS DO STITCHING?

Previous works (Ghugare et al., 2024; Myers et al., 2025; Sutton, 1988) argue that temporal difference (TD) methods can compose test-time behavior from sub-behaviors learned during training. However, Monte Carlo (MC) methods might not provide this guarantee. To test this, we probe exact stitching in a Quarter (6×6) grid: can a method recombine learned sub-behaviors to solve a held-out test task? We evaluate one TD method (DQN) and two MC baselines (CRL and C-learn) and report their final performance on both the training and test tasks.

In Figure 4, DQN (a TD method) achieves near-perfect training and evaluation performance on the single-box task. By contrast, the Monte-Carlo baselines, CRL, and C-learning all show a large generalization gap even in this simplest setting. As the number of boxes increases and test-time observations become out-of-distribution, only DQN retains any nontrivial performance—highlighting an advantage of TD learning. Still, DQN’s generalization steadily worsens with more boxes and falls to 0% test performance on the 4-box test task. **A sudden generalization gap of DQN suggests that as the space of possible states expands, it eventually exceeds the stitching capacity of TD updates.** Visual inspection confirms more failures caused by off-support observations with an increased number of boxes (Figure 5). This pattern argues for methods that regularize agent behavior in online RL so agents remain closer to the training observation distribution, analogous to action regularization in offline RL (Fujimoto & Gu, 2021).

We also examine generalized stitching in the Few-to-many (5x5) grid, which operates in a closed setup, i.e., all observations are seen in training, and no off-support observations can be visited (Section 4). The test task gets more difficult as the number of boxes spawned at the target position increases, as it demands more stitching. We note that the setting where no boxes are spawned in the target positions corresponds to a no-stitching setup.

We increase the number of boxes spawned at the target position from left to right in Figure 6. For all three baselines, the generalization gap widens as more boxes appear at the target during training. DQN, using TD updates, consistently sustains the highest performance in these harder settings. **Remarkably, CRL still performs well on the test task even when training required moving only three out of four boxes, indicating that an MC-style method can stitch subbehaviors.** We explore this surprising phenomenon in the next sections, using only the Few-to-many setup from now onwards.

Figure 5: **A subtle failure of stitching.** An agent trained on the quarters task (Fig. 3a) should first move all boxes to an adjacent corner and then to the goal quarter. However, if the agent prematurely moves a box along the diagonal, it will end up in a state that has never been seen before during training.

378 5.3 ARE MC METHODS PERFORMING STITCHING, OR IS TD LEARNING NECESSARY?
379

380 In this section, we compare CRL and TD and
381 MC versions of DQN and C-learning to investi-
382 gate their stitching capabilities in a generalized
383 closed setup. In particular, we use a Few-to-
384 many 5x5 grid, and train the agent to move 2
385 boxes to target positions, while a third box is
386 always spawned at the target position. During
387 the test time, all 3 boxes are not in the target po-
388 sition. In Figure 7, we observe that all the meth-
389 ods, except DQN MC, exhibit strong stitching
390 as their generalization gap is relatively small for
391 TD and MC methods, with almost no gap for
392 TD versions of DQN. This result might come
393 as a surprise because MC methods do not em-
394 ploy any explicit mechanisms for stitching, in
395 contrast to TD methods; however, they are still
396 able to work well in this setup, most likely due to
397 the low performance of DQN MC is most probably
398 due to exploration and credit assignment issues.

399 5.4 DOES SCALING IMPROVE STITCHING?
400

401 Previous works (Nauman et al., 2024; Lee et al.,
402 2025; Wang et al., 2025) have shown that
403 proper scaling of critics’ and actors’ neural net-
404 works can provide enormous benefits in online
405 RL. In this section, we study whether the scale
406 of the critic similarly benefits the stitching ca-
407 pabilities of MC and TD methods. We use the
408 same setup as in Section 5.3. In Figure 8, we
409 show the performance boost on the test task due
410 to using bigger neural networks (extended re-
411 sults are in Figure 10 in Appendix C). CRL,
412 DQN (MC), and C-learn (TD) benefit the most
413 from the critic scale. **Strikingly, the general-
414 ization gap might be reduced by simply in-
415 creasing the scale of the critic for both TD
416 and MC methods.**

417 5.5 DO QUASIMETRIC
418 NETWORKS IMPROVE STITCHING?
419

420 Quasimetric networks have been shown to provide benefits such as improved sample efficiency in
421 the goal-conditioned RL by making $Q(s, a, g)$ satisfy the triangle inequality (Myers et al., 2025; Liu
422 et al., 2022). In this section, we compare CRL with Contrastive Metric Distillation (CMD) Myers

423 Figure 6: **Stitching is easy on training support, even for MC methods.** In the Few-to-many
424 setting, we probe methods’ generalized stitching capabilities. The more difficult the training tasks
425 (fewer boxes starting on target), the smaller the generalization gap for both MC and TD methods.
426
427

428 Figure 7: **TD is not necessary for stitching behavior**
429 in a generalized setup. We observe that in the Few-
430 To-Many setting, both TD and MC methods are able to
431 generalize to the test scenario. The exact performance
432 (success rate) varies across different algorithms.

433 Figure 8: **Scale is a powerful lever for stitching.** In-
434 creased critic’s scale narrows the generalization
435 gap (point distance from the $x = y$ line)—even
436 for MC methods such as CRL.

et al. (2024), which replaces the L2 distance used in CRL with a quasimetric distance between embeddings. We evaluate both methods in the Few-to-many setting on grids 5x5 and 6x6, with 3 boxes. We find that using quasimetric distance only decreases performance and slows down the learning in our benchmark (Figure 9). We believe this is because the environment dynamics is symmetric: for every pair of states A and B, the shortest path from A to B has the same length as from B to A. Thus, splitting embeddings into symmetric and asymmetric components appears to add an unnecessary inductive bias.

Figure 9: **Quasimetrics do not improve stitching.** In the Few-to-many setting with a 3-box task during testing, CMD results in a worse success rate and a wider generalization gap than CRL.

6 CONCLUSION

This work introduces a formal taxonomy and a controllable benchmark to re-evaluate the mechanisms of experience stitching in goal-conditioned reinforcement learning, yielding key insights that revise conventional wisdom. Our experiments show that, contrary to common belief, Monte Carlo methods can stitch experiences in challenging settings. When test data lies within the training support, they can achieve generalization gaps as small as those of Temporal Difference methods. While TD learning provides an advantage in exact stitching scenarios, its performance degrades as task complexity increases, indicating it is not a universally sufficient solution. Crucially, our results highlight that **model scale is a powerful lever for improving stitching. Increasing the critic network’s capacity substantially narrows the generalization gap for both MC and TD methods.** These findings suggest that the specialized inductive bias of TD learning may be less essential in the era of large models; instead, effective experience stitching can be achieved through the same principle that has proven successful in other machine learning domains: scaling model capacity.

Limitations. A key limitation of our work is the reliance on a relatively simple grid-world with a small action space. We chose this controlled setup to enable a concrete evaluation of stitching, which is difficult to verify in richer domains. Nevertheless, even in this simplified setting, temporal-difference methods fail to exhibit exact stitching as the number of boxes increases. Our experiments are further limited to a sparse-reward regime and a small set of popular baselines that we consider representative of goal-conditioned algorithms. We also did not investigate stitching or generalization produced by a separately-parameterized actor policy. Future work should study actor generalization, the effects of exploration and data collection, and scaling to richer, continuous environments.

Reproducibility Statement. To ensure the reproducibility of our findings, we provide code and detailed descriptions of our methodology and experimental setup. The repository can be found under the link: <https://anonymous.4open.science/r/a-broken-promise-F5FB/README.md>. The custom grid-world benchmark, including the “Quarters” and “Few-to-Many” settings used to test exact and generalized stitching, is thoroughly described in Section 4 and can be found in `src/envs/block_moving`. Our complete experimental procedure, including the implementation details for all algorithms (DQN, C-Learning, CRL), network architectures, and training protocols, is outlined in Section 5.1 and can be found in `src/impls/agents` and `src/train.py`. Specific hyperparameters used for all experiments, such as learning rates, batch sizes, and discount factors, are enumerated in Table 1 in Appendix B.

486 REFERENCES
487

488 Jacob Adamczyk, Volodymyr Makarenko, Argenis Arriojas, Stas Tiomkin, and Rahul V. Kulka-
489 rni. Bounding the optimal value function in compositional reinforcement learning, 2023. URL
490 <https://arxiv.org/abs/2303.02557>.

491 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
492 Deep reinforcement learning at the edge of the statistical precipice. *Advances in Neural Infor-
493 mation Processing Systems*, 2021.

494 Ron Amit, Ron Meir, and Kamil Ciosek. Discount Factor as a Regularizer in Reinforcement Learn-
495 ing, 2020.

496 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
497 Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
498 play. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017. URL <https://papers.nips.cc/paper/7090-hindsight-experience-replay>.

499 Leemon Baird et al. Residual algorithms: Reinforcement learning with function approximation. In
500 *Proceedings of the twelfth international conference on machine learning*, pp. 30–37, 1995.

501 André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David Silver, and Hado
502 van Hasselt. Successor features for transfer in reinforcement learning. In *Advances in Neural In-
503 formation Processing Systems (NeurIPS)*, 2017. URL <https://papers.nips.cc/paper/6994-successor-features-for-transfer-in-reinforcement-learning>.

504 André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel J.
505 Mankowitz, Augustin Žídek, and Rémi Munos. Transfer in deep reinforcement learning using
506 successor features and generalised policy improvement. In *Proceedings of the 35th Interna-
507 tional Conference on Machine Learning (ICML)*, volume 80 of *Proceedings of Machine Learning
508 Research*, pp. 510–519. PMLR, 2018. URL <http://proceedings.mlr.press/v80/barreto18a.html>.

509 Richard Bellman and Robert Kalaba. Dynamic programming and statistical communication theory.
510 *Proceedings of the National Academy of Sciences*, 43(8):749–751, 1957.

511 Dimitri P. Bertsekas. A Counterexample to Temporal Differences Learning. *Neural Computation*,
512 7:270–279, 1995.

513 Dimitri P. Bertsekas. Pathologies of Temporal Difference Methods in Approximate Dynamic Pro-
514 gramming. *MIT web domain*, 2010.

515 Dimitri P. Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In *Pro-
516 ceedings of 1995 34th IEEE conference on decision and control*, volume 1, pp. 560–564. IEEE,
517 1995.

518 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
519 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
520 Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

521 Steven J Bradtko and Andrew G Barto. Linear least-squares algorithms for temporal difference
522 learning. *Machine learning*, 22(1):33–57, 1996.

523 David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
524 policy evaluation. *Advances in neural information processing systems*, 34:4933–4946, 2021.

525 Ian Char, Viraj Mehta, Adam Villaflor, John M. Dolan, and Jeff Schneider. Bats: Best action trajec-
526 tory stitching, 2022. URL <https://arxiv.org/abs/2204.12026>.

527 Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
528 tion to benchmark reinforcement learning, 2020. URL <https://arxiv.org/abs/1912.01588>.

540 Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve
 541 goals via recursive classification. In *9th International Conference on Learning Representations*,
 542 *ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=tc5qisoB-C>.

543

544 Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
 545 as goal-conditioned reinforcement learning. *Advances in Neural Information Processing Systems*,
 546 35:35603–35620, 2022.

547

548 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 549 *Advances in neural information processing systems*, 34:20132–20145, 2021.

550

551 Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and
 552 Sergey Levine. Learning to reach goals via iterated supervised learning. *arXiv preprint*, 2019.
 553 URL <https://arxiv.org/abs/1912.06088>.

554

555 Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between TD
 556 learning and supervised learning – a generalisation point of view. In *International Conference on*
 557 *Learning Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=qg5JENs0N4>.

558

559 Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane Weber,
 560 David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and
 561 Timothy Lillicrap. An investigation of model-free planning, 2019. URL <https://arxiv.org/abs/1901.03559>.

562

563 Charles A. Hepburn and Giovanni Montana. Model-based trajectory stitching for improved offline
 564 reinforcement learning, 2022. URL <https://arxiv.org/abs/2211.11603>.

565

566 Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
 567 How do neural networks generalise? *Journal of Artificial Intelligence Research*, 67:757–795,
 568 2020.

569

570 Leslie Pack Kaelbling. Learning to achieve goals. In *Proceedings of the Thirteenth International*
 571 *Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1094–1098, 1993.

572

573 Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
 574 Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
 575 Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
 576 method on realistic data, 2020. URL <https://arxiv.org/abs/1912.09713>.

577

578 Ilya Kostrikov, Ashvin Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
 579 *International Conference On Learning Representations*, 2021.

580

581 Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
 582 skills of sequence-to-sequence recurrent networks, 2018. URL <https://arxiv.org/abs/1711.00350>.

583

584 Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
 585 normalization for scalable deep reinforcement learning. *arXiv preprint arXiv: 2502.15280*,
 586 2025.

587

588 Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. Diffstitch: Boosting
 589 offline reinforcement learning with diffusion-based trajectory stitching. *arXiv preprint arXiv: 2402.02439*, 2024.

590

591 Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual networks for sample efficient
 592 goal-conditioned reinforcement learning. *arXiv preprint arXiv: 2208.08133*, 2022.

593

594 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
 595 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:*
 596 *1312.5602*, 2013.

594 Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
 595 temporal distances: Contrastive successor features can provide a metric structure for decision-
 596 making. *International Conference on Machine Learning*, 2024. doi: 10.48550/arXiv.2406.17098.
 597

598 Vivek Myers, Catherine Ji, and Benjamin Eysenbach. Horizon generalization in reinforcement learning.
 599 *arXiv preprint*, 2025. URL <https://arxiv.org/abs/2501.02709>.

600 Soroush Nasiriany, Vitchyr H. Pong, Steven Lin, and Sergey Levine. Planning
 601 with goal-conditioned policies. In *Advances in Neural Information Processing
 602 Systems (NeurIPS)*, 2019. URL <https://papers.nips.cc/paper/9623-planning-with-goal-conditioned-policies.pdf>.

603

604 Michal Nauman, M. Ostaszewski, Krzysztof Jankowski, Piotr Milo's, and Marek Cygan. Bigger,
 605 regularized, optimistic: scaling for compute and sample-efficient continuous control. *Neural
 606 Information Processing Systems*, 2024. doi: 10.48550/arXiv.2405.16158.

607

608 Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
 609 Assessing generalization in deep reinforcement learning, 2019. URL <https://arxiv.org/abs/1810.12282>.

610

611 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
 612 offline goal-conditioned RL. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=M992mjgKzI>.

613

614 Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In *Proceedings
 615 of the AAAI Conference on Artificial Intelligence*, volume 24, pp. 1607–1612, 2010.

616

617 Piotr Piekos, Aditya Ramesh, Francesco Faccio, and Jürgen Schmidhuber. Efficient value propaga-
 618 tion with the compositional optimality equation. In *NeurIPS 2023 Workshop on Goal-Conditioned
 619 Reinforcement Learning*, 2023.

620

621 Vitchyr H. Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models:
 622 Model-free deep rl for model-based control. In *International Conference on Learning Represen-
 623 tations (ICLR)*, 2018. URL <https://openreview.net/forum?id=Skw0n-W0Z>.

624

625 Sarah Rathnam, Sonali Parbhoo, Siddharth Swaroop, Weiwei Pan, Susan A Murphy, and Finale
 626 Doshi-Velez. Rethinking Discount Regularization: New Interpretations, Unintended Con-
 627 sequences, and Solutions for Regularization in Reinforcement Learning.

628

629 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
 630 tured prediction to no-regret online learning. In *Proceedings of the fourteenth international con-
 631 ference on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference
 632 Proceedings, 2011.

633

634 Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approx-
 635 imators. In *Proceedings of the 32nd International Conference on Machine Learning (ICML)*,
 636 volume 37 of *Proceedings of Machine Learning Research*, pp. 1312–1320. PMLR, 2015. URL
<http://proceedings.mlr.press/v37/schaul15.html>.

637

638 Richard S. Sutton. Learning to predict by the method of temporal differences. *Machine Learning*, 3
 639 (1):9–44, 1988. doi: 10.1023/A:1022633531479.

640

641 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press,
 642 second edition, 2018. URL <http://incompleteideas.net/book/the-book-2nd.html>.

643

644 Mohammad Taaffeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker, Adam
 645 Gleave, and Adrià Garriga-Alonso. Planning in a recurrent neural network that plays sokoban.
 646 *arXiv preprint*, 2024. URL <https://arxiv.org/abs/2407.15421>.

647

John N Tsitsiklis and Benjamin Van Roy. On average versus discounted reward temporal-difference
 learning. *Machine Learning*, 49(2):179–191, 2002.

648 Benjamin Van Niekerk, Steven James, Adam Earle, and Benjamin Rosman. Composing value
 649 functions in reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
 650 *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceed-
 651 ings of Machine Learning Research*, pp. 6401–6409. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/van-niekerk19a.html>.

652

653 Harm van Seijen, Mehdi Fatemi, and Arash Tavakoli. Using a Logarithmic Mapping to Enable
 654 Lower Discount Factors in Reinforcement Learning, 2019.

655

656 Kevin Wang, Ishaan Javali, Michał Bortkiewicz, Tomasz Trzciński, and Benjamin Eysenbach. 1000
 657 layer networks for self-supervised rl: Scaling depth can enable new goal-reaching capabilities.
 658 *arXiv preprint arXiv: 2503.14858*, 2025.

659

660 Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez, Danilo
 661 Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pas-
 662 canu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-augmented
 663 agents for deep reinforcement learning. In *Advances in Neural Information Processing Systems
 (NeurIPS)*, 2017. URL <https://arxiv.org/abs/1707.06203>.

664

665 Maciej Wolczyk, Bartłomiej Cupial, Mateusz Ostaszewski, Michał Bortkiewicz, Michał Zajac,
 666 Razvan Pascanu, Łukasz Kuciński, and Piotr Milos. Fine-tuning reinforcement learning mod-
 667 els is secretly a forgetting mitigation problem. In *Forty-first International Conference on Ma-
 668 chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL
 669 <https://openreview.net/forum?id=53iSXb1m8w>.

670

671 Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
 672 reinforcement learning. *arXiv preprint arXiv:1804.06893*, 2018.

673

674 Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
 675 reinforcement learning. In *Proceedings of the 23rd National Conference on Artificial Intelligence
 - Volume 3*, AAAI’08, pp. 1433–1438. AAAI Press, 2008. ISBN 9781577353683.

676

677 A LLMS USAGE

678

679 We used Large Language Models (LLMs) as a writing assistant in the preparation of this manuscript.
 680 Their primary role was to aid in restructuring text at both the sentence and paragraph levels to
 681 enhance manuscript clarity and readability. Additionally, we used LLMs for proofreading to identify
 682 typographical errors and to generate high-level feedback on the paper draft.

684 B EXPERIMENTAL SETUP

686 All experiments were run on 10 seeds, with the hyperparameters reported in Table 1.

688 C ADDITIONAL RESULTS

689 C.1 ARCHITECTURE SCALING

692 In Figure 8, for readability, we reported the IQM, without confidence intervals. In Figure 10 we
 693 present the full scaling experiment results, with confidence intervals, for both grid sizes 4 and 5.

695 C.2 HYPERPARAMETER TUNING

697 To ensure reproducibility and establish a strong baseline, we adopted the core hyperparameter con-
 698 figurations from OGBench (Park et al., 2025) for the IQL (TD) and CRL (MC) implementations.
 699 These configurations also served as the starting point for the algorithms implemented specifically
 700 for this project: C-learn (MC and TD), DQN (MC and TD), and IQL (MC). However, to verify the
 701 suitability of these hyperparameters for the specific challenges of the proposed stitching benchmark,
 we conducted a sensitivity analysis on critical hyperparameters, including the batch size, number of

702
703
704 Table 1: Hyperparameters
705
706
707
708
709
710
711
712
713
714
715
716
717

Hyperparameter	Value
num env steps	500,000,000
num updates	1,000,000
max replay size (per env instance)	10,000
min replay size	1,000
episode length	100
discount	0.99 (0.9 for MC versions of DQN, IQL, and C-learning)
number of parallel envs	1024
batch size	256
learning rate	3e-4
contrastive loss function	sigmoid_binary_cross_entropy
energy function	dot_product
representation dimension	64
target_entropy	1.1

718
719 parallel environments, number of gradient updates, discount factor γ , and the target entropy used in
720 the Q-induced softmax policy. Selected results from this analysis are shown below.
721

722 In Figure 11, we report final success rates for different values of discounting and target entropy used
723 in the Q-induced softmax policy during data collection for DQN (TD) and CRL (MC). We use the
724 Quarters Setting with a grid size of 6×6 and 3 boxes, as this setup yielded results that were neither
725 saturated nor trivial for both DQN and CRL.

726 We note that while our environment can, in principle, be run with many more boxes and larger grid
727 sizes, all implemented RL methods exhibit relatively low performance in these settings. In practice,
728 they struggle and tend to achieve only trivial performance once the grid size exceeds 6 or the number
729 of boxes reaches four or more.

730 C.3 HOW EXPLORATION AFFECTS STITCHING PERFORMANCE?

732 To study the relationship between data collection entropy (i.e., exploration) and the policy induced
733 by the learned Q function, we conducted experiments with DQN and CRL using different target
734 entropy values in the Q-induced softmax policy during data collection. We use the Quarters Setting
735 with a grid size of 6×6 and 3 boxes. As shown in Figure 12, the argmax policy for CRL achieves
736 near-zero performance, likely because it gets stuck in states where the Q function is poorly estimated.
737 Policy visualizations suggest that in such cases, the agent either attempts to pick up a box from an
738 empty cell or tries to drop a box it does not have. In contrast, the argmax policy for DQN achieves
739 non-trivial performance, though still lower than that of the softmax policy (see Figure 11(b)), with
740 the best performance occurring at a target entropy of 1.1, the value used in our main experiments.
741

742 C.4 EFFECTS OF DISCOUNTING AND NETWORK SCALING IN THE FEW-TO-MANY SETUP

744 In this section, we report the effect of the discount parameter on MC and TD methods in the Few-
745 to-many setup, while scaling the architecture of the critic network. We evaluate all methods with
746 discount factor of $\gamma = 0.9$ and $\gamma = 0.99$. Full results of those experiments are presented in Figure 13
747 and Figure 14. While TD methods have similar performance for both values of γ , all MC methods
748 but CRL benefit from a lower discount factor, $\gamma = 0.9$. This is likely because lower values of γ
749 reduce the variance of relabeled returns (Rathnam et al.; Amit et al., 2020; van Seijen et al., 2019),
750 which can improve generalization, albeit at the cost of shortening the effective horizon.
751

752 C.5 MONTE-CARLO DQN RESULTS

753 Most experiments in the paper use 50 training epochs, corresponding to 5 million gradient updates
754 and 500 million environment steps. However, we found that even this substantial amount of training
755 is insufficient for the MC version of DQN to converge when using a small critic architecture and a
discount rate of 0.9. In Figure 15, we present the results for a 10 \times longer training for this method

Figure 10: **Full Generalized Stitching setup experiments**

in the generalized setup (5×5) and 4 boxes in total. Interestingly, even when the agent is trained to move only two boxes (green line), it still learns to stitch, achieving a non-trivial success rate of 20% on the test task, which requires moving all four boxes.

C.6 WALL-CLOCK TIME OF TRAINING

In Table 2, we report the average wall-clock times for training the agents with 500 million environment transitions and 5 million gradient updates, broken down by their architecture sizes. The times are for 5×5 grid and the Few-To-Many setup. We conduct experiments using an NVIDIA GeForce GTX 200 120GB GPU. On a single GPU card, we could run up to 5 seeds in parallel.

(a) CRL: final train and test success rates for (left) different discounts and (right) different target entropy values used in softmax policy for data collection

(b) DQN: final train and test success rates for (left) different discounts and (right) different target entropy values used in softmax policy for data collection

Figure 11: **Verification of hyperparameters values.** Success rates for different values of discounting and target entropy used in the Q-induced softmax policy during data collection.

Figure 12: **Relation between data collection policy and argmax policy at test time.** We observe that the argmax(Q) policy yields zero performance for CRL. This suggests that, to prevent CRL from getting stuck in states where the Q-function is misestimated, using a softmax policy at test time is essential. For DQN, the best argmax-policy performance is achieved when the data are collected using a softmax policy with a target entropy of 1.1.

Depth	DQN (TD)	DQN (MC)	CRL (MC)	IQL (MC)	IQL (TD)	C-LEARN (MC)	C-LEARN (TD)
Small	1.03	1.07	1.32	1.19	1.25	0.83	1.27
Large	7.26	4.77	8.77	6.56	8.41	5.49	8.80

Table 2: **Average wall-clock training time (in hours)** for the methods used in this project.

864
865
866
867
868
869
870

(a) Success rate boost with scaling to bigger networks on grid size of 4 in generalized setup with discount 0.9

(b) Success rate boost with scaling to bigger networks on grid size of 4 in generalized setup with discount 0.99

910 Figure 13: **Full discount generalized setup scaling experiments for grid size of 4**

911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

(a) Success rate boost with scaling to bigger networks on grid size of 5 in generalized setup with discount 0.9

(b) Success rate boost with scaling to bigger networks on grid size of 5 in generalized setup with discount 0.99

Figure 14: **Full discount generalized setup scaling experiments for grid size of 5**

Figure 15: **MC version of Goal-conditioned DQN stitches, but learns slowly.** While the training of MC DQN is slow to converge, the stitching is present for this method even when moving only 3 or 2 boxes out of 4 during the training.