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ABSTRACT

In our quest for a reinforcement learning (RL) algorithm that is both practical and
provably optimal, we introduce EQO (Exploration via Quasi-Optimism). Unlike
existing minimax optimal approaches, EQO avoids reliance on empirical variances
and employs a simple bonus term proportional to the inverse of the state-action
visit count. Central to EQO is the concept of quasi-optimism, where estimated val-
ues need not be fully optimistic, allowing for a simpler yet effective exploration
strategy. The algorithm achieves the sharpest known regret bound for tabular RL
under the mildest assumptions, proving that fast convergence can be attained with
a practical and computationally efficient approach. Empirical evaluations demon-
strate that EQO consistently outperforms existing algorithms in both regret perfor-
mance and computational efficiency, providing the best of both theoretical sound-
ness and practical effectiveness.

1 INTRODUCTION

Reinforcement learning (RL) has seen substantial progress in its theoretical foundations, with nu-
merous algorithms achieving minimax optimality (Azar et al., 2017; Zanette & Brunskill, 2019;
Dann et al., 2019; Zhang et al., 2020; Li et al., 2021; Zhang et al., 2021a; 2024). These algorithms
are often lauded for providing strong regret bounds, theoretically ensuring their provable optimality
in worst-case scenarios. However, despite these guarantees, an important question remains: Can we
truly claim that we can solve tabular reinforcement learning problems practically well? By “solving
reinforcement learning practically well,” we expect these theoretically sound and optimal algorithms
to deliver both favorable theoretical and empirical performance.1

Although provably efficient RL algorithms offer regret bounds that are nearly optimal (up to log-
arithmic or constant factors), they are often designed to handle worst-case scenarios. This focus
on worst-case outcomes leads to overly conservative behavior, as these algorithms must construct
bonus terms to guarantee optimism under uncertainty. Consequently, they may suffer from practical
inefficiencies in more typical scenarios where worst-case conditions may rarely arise.

Empirical evaluations of these minimax optimal algorithms frequently reveal their shortcomings in
practice (see Section 5). In fact, many minimax optimal algorithms often underperform compared
to algorithms with sub-optimal theoretical guarantees, such as UCRL2 (Jaksch et al., 2010). This
suggests that the pursuit of provable optimality may come at the expense of practical performance.
This prompts the question: Is this seeming tradeoff between provable optimality and practicality in-
herent? Or, can we design an algorithm that attains both provable optimality and superior practical
performance simultaneously?

To address this, we argue that a fundamental shift is needed in the design of provable RL algorithms.
The prevailing reliance on empirical variances to construct worst-case confidence bounds—a tech-
nique employed by all minimax optimal algorithms (Azar et al., 2017; Zanette & Brunskill, 2019;
Dann et al., 2019; Zhang et al., 2021a) (see Table 1)—may no longer be the most effective strat-

1If one were to question the relevance of practical tabular RL methods when there are already methods in
function approximation (Jin et al., 2018; He et al., 2023; Agarwal et al., 2023), it is important to recognize that
many real-world environments are inherently tabular, with no available features to generalize across states or
actions. In such cases, having efficient and practical tabular RL methods remains essential and highly relevant.
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egy. Instead, we propose new methodologies that, while practical, can still be proven efficient to
overcome this significant limitation.

In this work, we introduce a novel algorithm, EQO (Exploration via Quasi-Optimism), which funda-
mentally departs from existing minimax optimal algorithms by not relying on empirical variances.
While it employs a bonus term for exploration, EQO stands out for its simplicity and practicality. The
bonus term is proportional to the inverse of the state-action visit count, avoiding the use of empirical
variances that previous approaches rely on.

On the theoretical side, we demonstrate that our proposed algorithm EQO, despite its algorithmic
simplicity, achieves the sharpest known regret bound for tabular reinforcement learning. More im-
portantly, this crucial milestone is attained under the mildest assumptions (see Section 4.1). Thus,
our results establish that the fastest convergence to optimality (the sharpest regret) can be achieved
by a simple and practical algorithm in the broadest (the weakest assumptions) problem settings.

To complement—not as a tradeoff—the theoretical merit, we show that EQO empirically outperforms
existing provably efficient algorithms, including previous minimax optimal algorithms. The prac-
tical superiority is demonstrated both in terms of regret performance in numerical experiments and
computational efficiency. Overall, EQO achieves both minimax optimal regret bounds and superior
empirical performance, offering a promising new approach that balances theoretical soundness with
practical efficiency.

Our main contributions are summarized as follows:

• We propose a novel algorithm, EQO (Algorithm 1), which introduces a distinct exploration
strategy. While previous minimax optimal algorithms rely on empirical variance-based
bonus terms, EQO employs a simpler bonus term of the form c/N(s, a), where c is a con-
stant and N(s, a) is the visit count of the state-action pair (s, a). This straightforward
yet effective approach reduces computational complexity while maintaining robust explo-
ration, making EQO both practical and theoretically sound. Additionally, this simplicity
allows for convenient control of the algorithm through a single parameter, making it partic-
ularly advantageous in practice where parameter tuning is essential.

• Our algorithm achieves the tightest regret bound in the literature for tabular reinforcement
learning. Even compared to the state-of-the-art bounds by Zhang et al. (2021a), EQO pro-
vides sharper logarithmic factors, establishing it as the algorithm with the most efficient
regret bound to date. Our novel analysis introduces the concept of quasi-optimism (see
Section 4.4.2), where estimated values need not be fully optimistic.2 This relaxation simpli-
fies the bonus term while ensuring the amount of underestimation is controlled, ultimately
leading to a sharper regret bound.

• A key strength of our approach is that it operates under weaker assumptions than the previ-
ous assumptions in the exiting literature, making it applicable to a broader range of prob-
lems (see Section 4.1). While prior work assumes bounded returns for every episode, we re-
lax this condition to require only the value function (i.e., the expected return) to be bounded.
This relaxation broadens the applicability of our algorithm.

• We show that EQO enjoys tight sample complexity bounds in terms of mistake-style PAC
guarantees and best-policy identification tasks (see Section 2.1 for detailed definitions).
This further highlights our proposed algorithm’s robust performance.

• We perform numerical experiments that demonstrate EQO empirically outperforms existing
provably efficient algorithms, including prior minimax optimal approaches. The superiority
of EQO is evident both in its regret performance and computational efficiency, showcasing
its ability to attain theoretical guarantees with practical performance.

1.1 RELATED WORK

There has been substantial progress in RL theory over the past decade, with numerous algorithms
advancing our understanding of regret minimization and sample complexity (Jaksch et al., 2010;

2By fully optimistic, we refer to the conventional UCB-type estimates that lie above the optimal value with
high probability. See the distinction with our new quasi-optimism in Section 4.4.2.
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Table 1: Comparison of minimax optimal algorithms for tabular reinforcement learning under the
time-homogeneous setting. Constant and logarithmic factors are omitted. The Empirical Variance
column indicates whether the algorithm requires empirical variance. The Boundedness column
shows the quantity on which the boundedness assumptions are imposed, where bound on “Reward”
is 1 and bounds on “Return” and “Value” are H .

Paper Regret Bound Empirical
Variance Boundedness†

Azar et al. (2017) H
√
SAK +H2S2A+

√
H3K Required Reward

Zanette & Brunskill (2019) H
√
SAK +H2S3/2A(

√
H+
√
S) Required Return

Dann et al. (2019) H
√
SAK +H2S2A Required Reward

Zhang et al. (2021a) H
√
SAK +HS2A Required Return

This work H
√
SAK +HS2A * Not required Value

* Our regret bound is the sharpest with more improved logarithmic factors than that of Zhang et al. (2021a).
† Bounded reward is the strongest assumption; Bounded return is weaker than bounded reward; Bounded value
is the weakest assumption among the three conditions (see the discussion in Section 4.1).

Osband & Roy, 2014; Azar et al., 2017; Dann et al., 2017; Agrawal & Jia, 2017; Ouyang et al.,
2017; Jin et al., 2018; Osband et al., 2019; Russo, 2019; Zhang et al., 2020; 2021b), and some recent
lines of work focusing on gap-dependent bounds (Simchowitz & Jamieson, 2019; Dann et al., 2021;
Wagenmaker et al., 2022; Tirinzoni et al., 2022; Wagenmaker & Jamieson, 2022). In the remainder
of this section, we focus on comparisons with more closely related methods and techniques.

Regret-Minimizing Algorithms for Tabular RL. In episodic finite-horizon reinforcement learn-
ing, the known regret lower bound is Ω(H

√
SAK) (Jaksch et al., 2010; Domingues et al., 2021).

The first result to achieve a matching upper bound is by Azar et al. (2017). Their algorithm,
UCBVI-BF, adopts the optimism at the face of uncertainty (OFU) principle by adding an optimistic
bonus during the estimation. For the sharper regret bound, they use Berstein-Freedman type con-
centration inequality and design a bonus term that utilizes the empirical variance of the estimated
values at the next time step. Zanette & Brunskill (2019) show that by estimating both upper and
lower bounds of the value function, their algorithm automatically adapts to the hardness of the prob-
lem without requiring prior knowledge. Zhang et al. (2021a) improve the previous analysis and
reduce the non-leading term to Õ(HS2A), achieving the regret bound that is independent of the
lengths of the episodes when the total return is bounded by 1.

Time-Inhomogeneous Setting. There has also been an increasing number of work that focuses on
the time-inhomogeneous MDPs, sometimes called non-stationary MDPs, which has different tran-
sition probabilities and rewards at each time step.3 One active area of study is to design efficient
model-free algorithms, which are characterized by having a space complexity of o(HS2A) (Strehl
et al., 2006). Jin et al. (2018) demonstrate that a model-free algorithm is able to achieveO(

√
K) re-

gret by proposing a variant of Q-learning that utilizes a bonus that is similar to UCBVI-BF. However,
their regret bound is worse than the lower bound by a factor of

√
H . This additional factor is removed

by Zhang et al. (2020), achieving the minimax regret bound of the time-inhomogeneous setting with
a model-free algorithm for the first time. Li et al. (2021) further improve the non-leading term and
achieve a regret bound of Õ(H3/2

√
SAK +H6SA). For model-based algorithms, the non-leading

term is further optimized. Ménard et al. (2021b) combine the Q-learning approach with momentum,
achieving a non-leading term of Õ(H4SA). Recent work by Zhang et al. (2024) further reduce it to
Õ(H2SA), resulting in the bound of Õ(min{H3/2

√
SAK,HK}) on the whole range of K.

3The regret lower bound of the time-inhomogeneous case is Ω(H3/2
√
SAK) (Domingues et al., 2021), be-

ing worse than the time-homogeneous case by a factor of
√
H . Due to this sub-optimality, time-inhomogeneous

setting is often viewed as a special case of time-homogeneous setting with HS states.
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PAC Bounds. Dann & Brunskill (2015) present a PAC upper bound of Õ(H
2S2A
ε2 ) and a lower

bound of Ω(H
2SA
ε2 ), where their focus is what is later named as the mistake-style PAC bound. Dann

et al. (2017) generalize the concept to uniform-PAC, which implies high-probability cumulative
regret bound as well. Dann et al. (2019) propose a further generalized framework named Mistake-
IPOC, which encompasses uniform-PAC, best-policy identification, and anytime cumulative regret
bound. Notably, their algorithm achieves the minimax PAC bounds for the first time. Other PAC
tasks include best-policy identification(BPI) (Fiechter, 1994; Domingues et al., 2021; Kaufmann
et al., 2021), where the goal is to return a policy whose sub-optimality is small with high probability,
and reward-free exploration (Kaufmann et al., 2021; Ménard et al., 2021a), where the goal is similar
with BPI, but the agent does not receive reward feedback while exploring it.

O(1/N)-bonus Exploration. To our best knowledge, our algorithm is the first to use an explo-
ration bonus of the form c/N for the reinforcement learning setting and achieve regret guarantees.
In the multi-armed bandit setting, Simchi-Levi et al. (2023; 2024) utilize bonus term whose form
appears similar to ours. Despite the similarity, the underlying motivations and derivations differ
significantly. The focus of Simchi-Levi et al. (2023; 2024) is on controlling the tail probability of
the regret distribution—that is, minimizing the probability of observing large regret. Their specific
bonus term arises from satisfying the probabilistic requirements needed for application of Hoeffd-
ing’s inequality. In contrast, our work is aimed at developing a novel and simple algorithm for tabular
reinforcement learning. The bonus term in our algorithm stems from a distinct context—decoupling
the variance factors and visit counts that naturally arise in reinforcement learning settings when ap-
plying Freedman’s inequality. The use of this variant of Freedman’s inequality naturally leads to the
form of the bonus term we employ (see Section 4.4). Importantly, Simchi-Levi et al. (2023; 2024)
do not appear to leverage Freedman’s inequality, either directly or indirectly, in their derivations.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We consider a finite-horizon time-homogeneous Markov decision process (MDP) M =
(S,A, P, r,H), where S is the state space, A is the action space, P : S × A → ∆S is the state
transition distribution, r : S × A → R is the reward function, and H ∈ N is the time horizon of
an episode. We focus on tabular MDPs, where the cardinalities of the state and action spaces are
finite and denoted as |S| = S and |A| = A. The agent and the environment interact for a sequence
episodes. At the k-th episode, the interaction begins by the environment providing an initial state,
sk1 ∈ S. For time steps h = 1, . . . ,H , the agent chooses an action akh ∈ A, then receives random
reward Rk

h ∈ R and next state skh+1 ∈ S from the environment. The mean of the random reward is
r(skh, a

k
h) and the next state is independently sampled from P (· | skh, akh), where these probability

distributions are unknown to the agent. The goal of the agent is to maximize the total rewards it
receives.

A policy is a sequence of H functions π = {πh}Hh=1 with πh : S → A for all h. An
agent following a policy π chooses action a = πh(s) at time step h when the current state is
s. We define the value function of policy π at time step h as V π

h (s) := Eπ(·|sh=s)[r(sh, ah)],
where Eπ(·|sh=s) denotes the expectation over (sh = s, ah, . . . , sH , aH , sH+1) with aj = πj(sj)
and sj+1 ∼ P (·|sj , aj) for j = h, . . . ,H . Similarly, we define the action-value function as
Qh(s, a) := Eπ(·|sh=s,ah=a)[r(sh, ah)]. For simplicity, we set V π

H+1(s) = 0 for any π and s ∈ S.
π∗ is the optimal policy, which chooses the actions that maximizes the expected return at every time
step, and it holds that V π∗

h (s) = supπ V
π
h (s) for all h = 1, . . . ,H and s ∈ S. We denote V π∗

h
as V ∗

h , and call it the optimal value function. Then, the regret of a policy π for a given episode is
defined as V ∗

1 (s1)−V π
1 (s1). The agent’s goal is to find policies that minimize cumulative regret for

a given MDP. The cumulative regret over K episodes is defined as:

Regret(K) :=

K∑
k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1)) .

Another important measure of performance is the PAC (Probably Approximately Correct)
bound (Kakade, 2003), also referred to as sample complexity. This measure focuses on obtain-

4
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Algorithm 1: EQO (Exploration via Quasi-Optimism)
Input: {ck}∞k=1

1 for k = 1, 2, . . . ,K do
2 foreach (s, a, s′) ∈ S ×A× S do
3 Nk(s, a)←

∑k−1
i=1

∑H
h=1 1{(sih, aih) = (s, a)};

4 r̂k(s, a)← 1
Nk(s,a)

∑k
i=1

∑H
h=1 R

i
h1{(sih, aih) = (s, a)};

5 P̂ k(s′|s, a)← 1
Nk(s,a)

∑k−1
i=1

∑H
h=1 1{(sih, aih, sih+1) = (s, a, s′)};

6 V k
H+1(s)← 0;

7 for h = H,H − 1, . . . , 1 do
8 foreach (s, a) ∈ S ×A do
9 bk(s, a)← ck/N

k(s, a);

10 Qk
h(s, a)←

{
min

{
r̂k(s, a) + bk(s, a) + P̂ kV k

h+1(s, a), H
}

if Nk(s, a) > 0

H if Nk(s, a) = 0
;

11 V k
h (s)← maxa∈A Qk

h(s, a) for all s ∈ S;
12 πk

h(s)← argmaxa∈A Qk
h(s, a) for all s ∈ S;

13 Execute πk and obtain τk = (sk1 , a
k
1 , R

k
h, . . . , s

k
H , akH , Rk

H , skH+1);

ing a policy whose regret is no more than ε with probability at least 1− δ, for given values of ε > 0
and δ ∈ (0, 1]. A policy π is said to be ε-optimal if its regret satisfies V ∗

1 (s1) − V π
1 (s1) ≤ ε. We

evaluate two different tasks using PAC bounds: (i) the mistake-style PAC, which aims to minimize
the number of episodes where the agent executes a policy that is not ε-optimal, and (ii) best-policy
identification, where the objective is to return an ε-optimal policy in the fewest possible episodes.

2.2 NOTATIONS

N = {1, 2, . . .} is the set of natural numbers. For N ∈ N, we define [N ] := {1, . . . , N}. 1{E} is
the indicator function that takes value 1 when E is true, 0 otherwise.

For any function V : S → R and a state-action pair (s, a) ∈ S × A, we denote the mean of V
under the probability distribution P (·|s, a) as PV (s, a) :=

∑
s′∈S P (s′|s, a)V (s′). For any other

function P̂ : S ×A → RS , we define P̂ V (s, a) :=
∑

s′∈S P̂ (s′|s, a)V (s′) in the same manner. We
denote the variance of V under P (·|s, a) as Var(V )(s, a) :=

∑
s′∈S P (s′|s, a)(V (s′)−PV (s, a))2.

A tuple τ = (s1, a1, R1, . . . , sH , aH , RH , sH+1) generated by a single episode of interaction is
called a trajectory. Let τk denote the trajectory of the k-th episode. For h ∈ [H], we also de-
fine the partial trajectory as τkh := (sk1 , a

k
1 , R

k
1 , . . . , s

k
h, a

k
h). For all h ∈ [H] and k ∈ N, let

Fk
h = σ({τ i}k−1

i=1 ∪ {τkh}) be the σ-algebra generated by the interaction between the agent and the
environment until the action akh taken at h-th time step of k-th episode. For convenience, we define
Fk

H+1 as σ({τ i}ki=1).

3 ALGORITHM

We introduce our algorithm, Exploration via Quasi-Optimism (EQO), which presents a distinct ap-
proach to bonus construction compared to prior optimism-based methods. While the framework of
our algorithm shares some structural similarities with UCBVI (Azar et al., 2017), which has been
widely adopted by several subsequent works (Zanette & Brunskill, 2019; Dann et al., 2019; Zhang
et al., 2021a), EQO diverges significantly in its exploration strategy. The key novelty lies in its bonus
term, which does not rely on empirical variances, unlike the previous methods. Instead, EQO takes
a sequence of real numbers {ck}∞k=1 as input, and the bonus for a state-action pair (s, a) ∈ S × A
at episode k is simply ck/N

k(s, a), where Nk(s, a) is the visit count of (s, a) up to the previous
episode. This simplicity stands in contrast to the empirical variance-based bonuses used in prior al-

5
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gorithms, demonstrating that empirical variance (and UCB approaches based on estimated variance)
is not necessary for achieving efficient exploration in our approach.

A notable advantage of our algorithm is its simplicity in practice. While many existing RL algo-
rithms often involve multiple parameters with complex dependencies, our approach consolidates
these into a single parameter, ck, making tuning much more straightforward.4

4 THEORETICAL GUARANTEES

4.1 ASSUMPTIONS

Before presenting our theoretical guarantees, we provide the regularity assumptions necessary for
the analysis. We emphasize that our assumptions are weaker than those in the previous RL literature.
Assumption 1 (Boundedness). 0 ≤ V ∗

h (s) ≤ H holds for all s ∈ S and h ∈ [H], and 0 ≤ Rk
h ≤ H

holds for all h ∈ [H] and k ∈ N.
Assumption 2 (Adaptive random reward). E[Rk

h|Fk
h ] = r(skh, a

k
h) holds for all h ∈ [H] and k ∈ N.

Assumption 1 regularizes the scaling of the problem instances. The most widely used regularity
assumption is that the random rewards lie within the interval [0, 1] for all time steps (Jaksch et al.,
2010; Azar et al., 2017; Dann et al., 2019). A slightly generalized version assumes that the return,
defined as the total reward of an episode, is bounded as 0 ≤

∑H
h=1 Rh ≤ H , and that each random

reward is non-negative (Jiang & Agarwal, 2018; Zanette & Brunskill, 2019; Zhang et al., 2021a).
Such an assumption allows non-uniform reward schemes, for instance, the agent may receive a
reward of H at exactly one time step and no rewards at the other time steps. We further relax this
boundedness assumption by constraining only the optimal values V ∗

h (s) to be within the interval
[0, H], along with the conventional boundedness on random rewards within [0, H]. Since the value
function is the expected return, our bounded value condition is weaker than the bounded return
assumption (and hence, also weaker than the widely used uniform boundedness of rewards) used in
the previous literature.

Assumption 2 allows martingale-style random reward. Standard MDPs assume a fixed reward prob-
ability for each state-action pair, where rewards are sampled independently of history and the next
state. Some recent works introduce a joint probability distribution on the next state and the reward,
denoted as p : S × A → ∆(S × R), such that (sh+1, Rh)

i.i.d.∼ p(sh, ah) (Krishnamurthy et al.,
2016; Sutton, 2018). We further weaken this assumption by only requiring that the mean of the
random reward equals r(s, a), allowing specific distributions to depend adaptively on the history.
Note that in Assumption 2, skh+1 is not included in the history Rk

h is being conditioned on, which
allows dependence between skh+1 and Rk

h, making our assumption more general.

4.2 REGRET BOUND

We now present the regret upper bounds enjoyed by our algorithm EQO (Algorithm 1).
Theorem 1 (Regret bound of EQO). Fix δ ∈ (0, 1]. Suppose the number of episodes, denote by K,
is known to the agent. Let c := max{7Hℓ1, 1.4H

√
Kℓ1/(SAℓ2,K)}, where ℓ1 = log 24HSA

δ and
ℓ2,K = log(1+KH/(SA)). If Algorithm 1 is run with ck = c for all k ∈ [K], then with probability
at least 1− δ, the cumulative regret of K episodes is bounded as follows:

Regret(K) ≤ 38H
√
SAKℓ1ℓ2,K + 256HS2Aℓ′1,K(1 + ℓ2,K) ,

where ℓ′1,K = log(50HSA(log(eKH))2/δ).

When the number of episodes K is specified, Theorem 1 states that the input of Algorithm 1,
{ck}Kk=1, may be set as a constant independent of k, making the algorithm even simpler. In case
where K is unknown, by updating ck in a doubling-trick styled fashion, it is possible to attain a
regret bound that holds for all K ∈ N, usually referred to as the anytime regret bound. Theorem 2
states the anytime regret bound result enjoyed by Algorithm 1. Note that resetting the algorithm is
not necessary unlike the actual doubling trick.

4The theoretical results in Theorems 1, 3, and 4 justify setting ck as a k-independent constant, offering both
theoretical and practical convenience.
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Theorem 2 (Anytime regret bound of EQO). Fix δ ∈ (0, 1]. For any episode k ∈ N, take ck =

max{7Hℓ1,k, 1.4H
√
k2ℓ1,k/(SAℓ2,k2)}, where k2 = 2⌊log2 k⌋, ℓ1,k = log 24HSA(1+⌊log2 k⌋)2

δ and
ℓ2,k2

= log(1 + k2H/(SA)). If Algorithm 1 is run with ck as defined above, then with probability
at least 1− δ, the cumulative regret of K episodes for any K ∈ N is bounded as follows:

Regret(K) ≤ 75H
√

SAKℓ1,Kℓ2,K + 256HS2Aℓ′1,K(1 + ℓ2,K) ,

where ℓ′1,K = log(50HSA(log(eKH))2/δ).

Discussions of Theorems 1 and 2. We discuss the regret bounds of both Theorems 1 and 2. The
first terms of the regret bounds are in Õ(H

√
SAK), which matches the lower bound up to logarith-

mic factors. In fact, the logarithmic factor of Theorems 1 and 2 are O
(√

log HSA
δ log(KH)

)
and

O
(√

log HSA(logK)
δ log(KH)

)
respectively, which are even tighter than the state-of-the-art guar-

antee in Zhang et al. (2021a). The second terms of the regret bounds are Õ(HS2A), which implies
that our algorithm matches the lower bound for K ≥ S3A. This bound matches the previously best
non-leading term in the time-homogeneous setting by Zhang et al. (2021a) even in the logarithmic
factors. Therefore, our regret bounds are the tightest compared to all the previous results in the
time-homogeneous setting up to constant factors. Furthermore, to the best of our knowledge, our re-
sult is the first to prove that the minimax regret bound is achievable under the weakest boundedness
assumption on value function.

4.3 PAC BOUNDS

We demonstrate that by setting the parameters ck properly, Algorithm 1 achieves tight PAC bounds.
Theorem 3 (Mistake-style PAC bound). Let ε ∈ (0, H] and δ ∈ (0, 1]. If Algorithm 1 is run
with ck = 56H2ℓ1

ε , where ℓ1 = log 24HSA
δ , for all k ∈ N, then the number of episodes that the

algorithm executes policies that are not ε-optimal is at most K0 with probability at least 1 − δ,
where K0 = Õ((H

2SA
ε2 + HS2A

ε ) log 1
δ ).

In Appendix D, we present (ε, δ)-EQO (Algorithm 2), which runs Algorithm 1 with parameters spec-
ified as in Theorem 3, then performs an additional procedure to certify ε-optimal policies. With
this extension, our algorithm is capable of solving the best-policy identification task with the same
bound as in the mistake-style PAC bounds.
Theorem 4 (Best-policy identification). Let ε ∈ (0, H] and δ ∈ (0, 1]. Algorithm 2 provides an
ε-optimal policy within K0 + 1 episodes, where K0 takes the same value as in Theorem 3.

For ε < H/S, the bound K0 is on the scale of Õ(H2SA(log 1
δ )/ε

2), which matches the lower
bounds for both tasks (Domingues et al., 2021). For both tasks, our results exhibit the tightest
non-leading term compared to the previous results. For the detailed discussions and the proofs of
Theorems 3 and 4, refer to Appendix D.

4.4 SKETCH OF REGRET ANALYSIS

In this subsection, we provide a sketch of proofs of Theorem 1 and Theorem 2. For simplicity,
we denote all logarithmic factors as ℓ in this subsection. The full statements with specific logarith-
mic terms and the detailed proofs of the proposition and lemmas that appear in this subsection are
presented in Appendix C.

We propose Proposition 1 that demonstrates the effect of the bonus terms on the cumulative regret.
We introduce an auxiliary sequence {λk}∞k=1 and set ck = 7Hℓ/λk.
Proposition 1. Let {λk}∞k=1 be a sequence of non-increasing positive real numbers with λ1 ≤ 1.
Suppose Algorithm 1 is run with ck = 7Hℓ/λk for all k ∈ N. Then, with probability at least 1− δ,
the cumulative regret of K episodes for any K ∈ N is at bounded as follows:

K∑
k=1

Regret(K) ≤ 4H

K∑
k=1

λk +
88

λK
HSAℓ2 + 168HS2Aℓ2 .
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Proposition 1 demonstrates that the exploration-exploitation trade-off can be balanced by the param-
eter λk. The term

∑K
k=1 λk represents the regret incurred due to the estimation error, while the term

proportional to 1/λK represents the regret incurred from exploration. For example, if the values of
{λk}Kk=1 are big, the algorithm runs with smaller bonuses. This reduces the regret caused by exces-
sive exploration, but the algorithm may exploit sub-optimal policies due to a lack of information,
contributing to bigger

∑K
k=1 λk term. Both Theorem 1 and Theorem 2 follow from Proposition 1

by setting appropriate values for λk. For Theorem 1, we set λk = min{1, 5
√

SAℓ2/K} for all
k ∈ [K]. For Theorem 2, we set λk = min{1, 5

√
SAℓ2/k2}, where k2 = 2⌊log2 k⌋. The proof of

Proposition 1 sketched through the following subsections.

4.4.1 HIGH-PROBABILITY EVENT

We denote the high-probability event under which Proposition 1 holds as E . Note that E is defined
as an intersection of six high-probability events including concentration events of transition model
estimation and reward model estimation. Refer to Appendix B for the specific events that constitute
E and the proofs that each event happens with high probability.
Although our algorithm does not use empirical variances, all the concentration results in the analysis
are based on Freedman’s inequality (Freedman, 1975). The following lemma is a variant of the
inequality that we use multiple times throughout the analysis. While the current presentation focuses
on i.i.d. sequences, it is also applicable martingales, as shown in Lemma 36 in Appendix F.
Lemma 1. Let C > 0 be a constant and {Xt}∞t=1 be i.i.d. copies of a random variable X with
X ≤ C. Then, for any λ ∈ (0, 1] and δ ∈ (0, 1], the following inequality holds for all n ∈ N with
probability at least 1− δ:

1

n

n∑
t=1

Xt ≤
3λ

4C
Var(X) +

C

λn
log

1

δ
.

One advantage of this form is that the variance term and the 1/n term are isolated, whereas the
previous Bernstein-type bound includes a term of the form

√
Var /n. While the sum of the variances

achieves a tight bound within the expectation, the 1/n terms must be summed according to actual
visit counts. This discrepancy necessitates the use of multiple concentration inequalities, alternating
between the expected and sampled trajectories. However, Lemma 1 allows us to address the two
factors independently. Refer to Appendix F for more details about Freedman’s inequality and its
derivatives we utilize.

4.4.2 QUASI-OPTIMISM

Optimism-based analysis begins by showing V k
h (s) ≥ V ∗

h (s) for all s, h, where the use of empirical
variances plays a crucial role (Azar et al., 2017; Jin et al., 2018; Zanette & Brunskill, 2019; Dann
et al., 2019; Zhang et al., 2021a; 2024). However, our bonus term does not contain any empirical
variances. In fact, our bonus term do not guarantee optimism, or even probabilistic optimism. In-
stead, it guarantees what we name quasi-optimism, meaning that the estimated values are almost
optimistic. Specifically, the estimated values need to be increased by a constant to ensure they ex-
ceed the optimal values. In other words, the estimation may be less than the optimal value, but only
by a bounded amount. We formally present our result in Lemma 2.
Lemma 2 (Quasi-optimism). Under E , it holds that for all s ∈ S, h ∈ [H + 1], k ∈ N,

V k
h (s) +

3

2
λkH ≥ V ∗

h (s) .

We outline the main ideas behind quasi-optimism. Fix h ∈ [H], s ∈ S , and k ∈ N, and for ease of
presentation, we assume that the reward function is known and that V k

h (s) < H . For a∗ = π∗
h(s), we

have V ∗
h (s) = r(s, a∗) + PV ∗

h+1(s, a
∗) by Bellman equation and V k

h (s) ≥ Qk
h(s, a

∗) = r(s, a∗) +

bk(s, a∗) + P̂ kV k
h (s, a∗) by the definitions of V k

h and Qk
h. Therefore, we obtain that

V ∗
h (s)− V k

h (s) ≤ PV ∗
h+1(s, a

∗)− bk(s, a∗)− P̂ kV k
h (s, a∗)

= −bk(s, a∗) + (P − P̂ k)V ∗
h+1(s, a

∗)︸ ︷︷ ︸
I1

+ P̂ k(V ∗
h+1 − V k

h+1)(s, a
∗)︸ ︷︷ ︸

I2

. (1)
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With the previous method of guaranteeing full optimism, one assumes I2 ≤ 0 using mathematical
induction, then faces the challenging task of fully bounding I1 by bk(s, a∗). In the proof of Lemma 2,
we set a slightly relaxed induction hypothesis. As a result, I2 may be greater than zero, while
bk(s, a∗) no longer needs to fully bound I1. The key to quasi-optimism is to allow underestimation
of I1, while controlling the resulting increase in I2. We explain each concept in detail.
Applying Lemma 1 to V ∗

h+1(s
′) with s′ ∼ P (·|s, a∗), we obtain the following inequality (Lemma 5):∣∣∣(P̂ k − P )V ∗

h+1(s, a
∗)
∣∣∣ ≤ λk

4H
Var(V ∗

h+1)(s, a
∗) +

3Hℓ

λkNk(s, a∗)
.

We set bk(s, a∗) = 3Hℓ
λkNk(s,a∗)

to compensate the 1/N term, but leave the variance term. Then, we
obtain a recurrence relation of

V ∗
h (s)− V k

h (s) ≤ λk

4H
Var(V ∗

h+1)(s, a
∗) + P̂ k(V ∗

h+1 − V k
h+1)(s, a

∗) . (2)

We use backward induction on h to obtain a closed-form bound for V ∗
h (s) − V k

h (s). Specifically,
we want to show V ∗

h (s)− V k
h (s) ≤ Wh(s) for some functions {Wh}Hh=1. To infer what W should

look like, it is helpful to consider the case where the recurrence term is based on P instead of P̂ k.
If we had V ∗

h (s)− V k
h (s) ≤ λk

4H Var(V ∗
h+1)(s, a

∗) + P (V ∗
h+1 − V k

h+1)(s, a
∗), where P̂ k in Eq. (2)

is replaced with P , by iteratively expanding the V ∗
h+1 − V k

h+1 part, we observe that the expected
sum of the variance terms along a trajectory serves as an upper bound for V ∗

h (s) − V k
h (s), that is,

V ∗
h (s) − V k

h (s) ≤ λk

4HEπ∗(·|sh=s)[
∑H

j=h Var(V
∗
j+1)(sj , aj)]. This sum has a non-trivial bound of

H2 instead of H3, and this fact has been frequently exploited to achieve better H-dependency in
the regret bound since Azar et al. (2017). However, it has not been used for showing optimism, as
assuming I2 ≤ 0 and fully bounding I1 with bk(s, a∗) in Eq. (1) does not allow any interaction
between time steps. Furthermore, the existing proofs for this observation rely on the boundedness
of returns (see, for example, Eq. (26) of Azar et al. (2017)). We derive a novel way of bounding the
sum of variances without requiring such a condition, which is applicable to showing quasi-optimism.
We first present the following difference-type bound for the variance (Lemma 27):

Var(V ∗
h+1)(s, a

∗) ≤ 2HV ∗
h (s)− (V ∗

h )
2(s)− P (2HV ∗

h+1 − (V ∗
h+1)

2)(s, a∗) .

Using this inequality and mathematical induction, one can show that the expected sum of variances
is bounded by 2HV ∗

h (s)− (V ∗
h )

2(s), which is at most H2. Then, the altered recurrence relation, the
one with P instead of P̂ k, would imply V ∗

h (s)− V k
H(s) ≤ λk

4H (2HV ∗
h (s)− (V ∗

h )
2(s)).

Now, we deal with the original recurrence relation, Eq. (2), where a technical approach is required
to handle the dependence on P̂ k. Recall that we aim to find functions {Wh}Hh=1 that satisfy V ∗

h (s)−
V k
h (s) ≤Wh(s) under Eq. (2). Assuming an induction hypothesis V ∗

h+1(s)− V k
h+1(s) ≤W k

h+1(s)

for all s ∈ S, we bound P̂ k(V ∗
h+1 − V k

h+1)(s, a
∗) as follows:

P̂ k(V ∗
h+1 − V k

h+1)(s, a
∗) ≤ P̂ kWh+1(s, a

∗) = (P̂ k − P )Wh+1(s, a
∗) + PWh+1(s, a

∗) .

We see that Wh(s) must bound not only the sum of the variance terms but also an addi-
tional error term (P̂ k − P )Wh+1(s, a

∗). The demonstration above suggests setting Wh+1(s) =
λk

H (c1HV ∗
h+1(s)− c2(V

∗
h+1)

2(s)) for some constants c1 and c2. Since Wh+1 is a function of V ∗
h+1,

applying Freedman’s inequality to the error term again results in a Var(V ∗
h+1)(s, a

∗)-related term
and a 1/Nk(s, a∗) term. The 1/N term is compensated by increasing bk(s, a∗) and the variance
term is merged into the variance term that is already present in the recurrence relation. Then, we
use the method of bounding the sum of variances explained earlier, as now the remaining term is
PWh+1(s, a

∗). Through some technical calculations, we show that the induction argument becomes
valid with c1 = 2 and c2 = 1/2. Then, we have V ∗

h (s) − V k
h (s) ≤ Wh(s) ≤ 3

2λkH for all s, h,
leading to Lemma 2. The full demonstration of the induction step is deferred to Appendix C.1.

4.4.3 BOUNDING THE CUMULATIVE REGRET

We bound V k
1 (sk1)− V πk

1 (sk1), the amount of overestimation with respect to the true value function.
Using Freedman’s inequality, we bound the amount of overestimation at a single time step by the
sum of a variance term and a term proportional to 1/Nk(s, a), which we denote as βk(s, a) :=

9
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1
Nk(s,a)

( 11Hℓ
λk

+ 21HSℓ). As in the previous section, the expected sum of the variance terms is
bounded by λkH . Therefore, the amount of overestimation is bounded by λkH and the expected
sum of βk. We define Uk

h (s) to be the sum of βk along a trajectory that follows πk starting from
state s at time step h with appropriate clipping. Specifically, let Uk

H+1(s) := 0 for all s ∈ S, then
define Uk

h (s) for h = H,H − 1, . . . , 1 iteratively as follows:
Uk
h (s) := min{βk(s, πk

h(s)) + PUk
h+1(s, π

k
h(s)), H} .

The next lemma states the amount of overestimation is bounded by λkH and Uk
h .

Lemma 3. Under E , the following inequality holds for all s ∈ S, h ∈ [H + 1], and k ∈ N:

V k
h (s)− V πk

h (s) ≤ 5

2
λkH + 2Uk

h (s)

By
∑N

n=1 1/n ≤ 1+ logN , the sum of 1/Nk(s, a) is well-bounded when the sum is taken over the
sampled trajectories. Using concentration results between the expected and sampled trajectories, we
derive the following bound for the sum of Uk

1 :

Lemma 4. Under E , it holds that
∑K

k=1 U
k
1 (s

k
1) ≤ 44

λK
HSAℓ2 + 84HS2Aℓ2 for all K ∈ N.

The detailed proofs of Lemma 3 and Lemma 4 can be found in Appendix C.2 and Appendix C.3
respectively. Proposition 1 is proved by combining Lemmas 2 to 4.

5 EXPERIMENTS
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Figure 1: Cumulative regret under RiverSwim MDP with varying S and H .

We perform numerical experiments to compare the empirical performance of algorithms for tabu-
lar reinforcement learning. We consider the standard MDP named RiverSwim (Strehl & Littman,
2008; Osband et al., 2013), which is known to be a challenging environment that requires strategic
exploration. We compare our algorithm EQO with previous algorithms, UCRL2 (Jaksch et al., 2010),
UCBVI-BF (Azar et al., 2017), EULER (Zanette & Brunskill, 2019), ORLC (Dann et al., 2019), and
MVP (Zhang et al., 2021a). We run the algorithms on the RiverSwim MDP with various configura-
tions of S and H . The results for S = 30 and S = 40 is presented in Figure 1, where we observe the
superior performance of EQO. Additionally, Table 4 in Appendix G shows that our algorithm also
requires less execution time. We provide experiment details including additional experiment results
in Appendix G.

6 CONCLUSION

We propose a novel algorithm that simultaneously achieves the minimax regret bound and demon-
strates practical applicability. Our work introduces the concept of quasi-optimism, which relaxes the
conventional optimism principle and plays a pivotal role in achieving both theoretical advancements
and practical improvements. This fresh perspective offers new insights into obtaining minimax
regret bounds, and we anticipate that the underlying idea will be transferable to a wide range of
problem settings beyond tabular reinforcement learning, such as model-free estimation or general
function approximation.
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REPRODUCIBILITY STATEMENT

We provide the complete proofs of the theoretical results presented in Section 4 throughout the
appendix, and the whole set of employed assumptions is clearly stated in Section 4.1. We also
guarantee the reproducibility of the numerical experiments in Section 5 and Appendices G and H.2
by providing the source code with specific seeds as supplementary material.
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Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, pp. 263–272. PMLR, 2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandit
algorithms with supervised learning guarantees. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pp. 19–26. JMLR Workshop and Conference
Proceedings, 2011.

Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, and Haipeng Luo. Implicit finite-horizon approx-
imation and efficient optimal algorithms for stochastic shortest path. Advances in Neural Infor-
mation Processing Systems, 34:10849–10861, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement
learning. Advances in Neural Information Processing Systems, 28, 2015.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds
for episodic reinforcement learning. In Advances in Neural Information Processing Systems,
volume 30, pp. 5713–5723, 2017.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards account-
able reinforcement learning. In International Conference on Machine Learning, pp. 1507–1516.
PMLR, 2019.

Christoph Dann, Teodor Vanislavov Marinov, Mehryar Mohri, and Julian Zimmert. Beyond value-
function gaps: Improved instance-dependent regret bounds for episodic reinforcement learning.
Advances in Neural Information Processing Systems, 34:1–12, 2021.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic rein-
forcement learning in finite mdps: Minimax lower bounds revisited. In Algorithmic Learning
Theory, pp. 578–598. PMLR, 2021.

Claude-Nicolas Fiechter. Efficient reinforcement learning. In Proceedings of the seventh annual
conference on Computational learning theory, pp. 88–97, 1994.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dylan J Foster and Alexander Rakhlin. Foundations of reinforcement learning and interactive deci-
sion making. arXiv preprint arXiv:2312.16730, 2023.

David A Freedman. On tail probabilities for martingales. the Annals of Probability, pp. 100–118,
1975.

Jiafan He, Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement
learning for linear markov decision processes. In International Conference on Machine Learning,
pp. 12790–12822. PMLR, 2023.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(4), 2010.

Nan Jiang and Alekh Agarwal. Open problem: The dependence of sample complexity lower bounds
on planning horizon. In Conference On Learning Theory, pp. 3395–3398. PMLR, 2018.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably ef-
ficient? In Advances in Neural Information Processing Systems, volume 31, pp. 4868–4878,
2018.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom), 2003.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent,
and Michal Valko. Adaptive reward-free exploration. In Algorithmic Learning Theory, pp. 865–
891. PMLR, 2021.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning with rich
observations. Advances in Neural Information Processing Systems, 29:1840–1848, 2016.

Cassidy Laidlaw, Stuart Russell, and Anca Dragan. Bridging rl theory and practice with the effective
horizon. In NeurIPS, 2023.

Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier
to regret-optimal model-free reinforcement learning. Advances in Neural Information Processing
Systems, 34:17762–17776, 2021.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 7599–7608. PMLR, 2021a.

Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. Ucb momen-
tum q-learning: Correcting the bias without forgetting. In International Conference on Machine
Learning, pp. 7609–7618. PMLR, 2021b.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
In Advances in Neural Information Processing Systems, pp. 1466–1474, 2014.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pp. 2377–2386. PMLR, 2016.

Ian Osband, Benjamin Van Roy, Daniel J Russo, Zheng Wen, et al. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov deci-
sion processes: A thompson sampling approach. In Advances in Neural Information Processing
Systems, pp. 1333–1342, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. Advances
in Neural Information Processing Systems, 32, 2019.

David Simchi-Levi, Zeyu Zheng, and Feng Zhu. Stochastic multi-armed bandits: optimal trade-off
among optimality, consistency, and tail risk. Advances in Neural Information Processing Systems,
36:35619–35630, 2023.

David Simchi-Levi, Zeyu Zheng, and Feng Zhu. A simple and optimal policy design with safety
against heavy-tailed risk for stochastic bandits. Management Science, 2024.

Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular
mdps. Advances in Neural Information Processing Systems, 32, 2019.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-
free reinforcement learning. In Proceedings of the 23rd international conference on Machine
learning, pp. 881–888, 2006.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Andrea Tirinzoni, Aymen Al Marjani, and Emilie Kaufmann. Near instance-optimal pac reinforce-
ment learning for deterministic mdps. Advances in neural information processing systems, 35:
8785–8798, 2022.

Andrew Wagenmaker and Kevin G Jamieson. Instance-dependent near-optimal policy identification
in linear mdps via online experiment design. Advances in Neural Information Processing Systems,
35:5968–5981, 2022.

Andrew J Wagenmaker, Max Simchowitz, and Kevin Jamieson. Beyond no regret: Instance-
dependent pac reinforcement learning. In Conference on Learning Theory, pp. 358–418. PMLR,
2022.

Yunbei Xu and Assaf Zeevi. Upper counterfactual confidence bounds: a new optimism principle for
contextual bandits. arXiv preprint arXiv:2007.07876, 2020.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pp. 7304–7312. PMLR, 2019.

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 1954–1964. PMLR, 2020.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learningvia
reference-advantage decomposition. In Advances in Neural Information Processing Systems, vol-
ume 33, pp. 15198–15207, 2020.

Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits?
a near-optimal algorithm escaping the curse of horizon. In Conference on Learning Theory, pp.
4528–4531. PMLR, 2021a.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Model-free reinforcement learning: from clipped
pseudo-regret to sample complexity. In International Conference on Machine Learning, pp.
12653–12662. PMLR, 2021b.

Zihan Zhang, Yuxin Chen, Jason D Lee, and Simon S Du. Settling the sample complexity of online
reinforcement learning. In The Thirty Seventh Annual Conference on Learning Theory, pp. 5213–
5219. PMLR, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 2: Table of notations

K Number of episodes
τk Trajectory of k-th episode, (sk1 , a

k
1 , R

k
1 , . . . , s

k
H , akH , Rk

H , skH+1)
τkh Partial trajectory of k-th episode until h-th action selection, (sk1 , a

k
1 , R

k
1 , . . . , s

k
h, a

k
h)

Fk
h σ-algebra σ({τ i}k−1

i=1 ∪ τkh )
Nk(s, a) Visit count of (s, a) ∈ S ×A until k − 1-th episode
nk
h(s, a) Visit count of (s, a) ∈ S ×A until h-th time step of k-th episode

ηk min{h ∈ [H] : nk
h(s

k
h, a

k
h) > 2Nk(skh, a

k
h), H + 1}

∆h(V )(s, a) Vh(s)− PVh+1(s, a)
ιk 1 when {λk}∞k=1 is a constant, 1 + ⌊log2 k⌋ when {λk}∞k=1 rarely changes
ℓ1 log 24HSA

δ

ℓ1,k log
24HSAι2k

δ

ℓ′1,k log 50HSA(1+log kH)2

δ

ℓ2,k log(1 + kH
SA )

ℓ3,k log 12SA(1+log kH)
δ

ℓ3,k(s, a) log 12SA(1+logNk(s,a))
δ

βk(s, a) 1
Nk(s,a)

(
11Hℓ1,k

λk
+ 21HSℓ3,k(s, a)

)
βk
1 (s, a)

1
Nk(s,a)

(
3Hℓ1,k

λk
+ 21HSℓ3,k(s, a)

)
Uk
h (s) min{βk(s, πk

h(s)) + PUk
h+1(s, π

k
h(s)), H} if h ∈ [H], 0 if h = H + 1

Notations exclusive for the analysis of PAC bounds
ℓ4,ε log(1 + 270(H

3ℓ1
ε2 +

H2S(2ℓ1+ℓ5,ε)
ε ))

ℓ5,ε 1 + log log(He/ε)

β̂k(s, a) 1
Nk(s,a)

(
88H2ℓ1

ε + 30HSℓ3,k(s, a)
)

βk(s, a) 1
Nk(s,a)

(
88H2ℓ1

ε + 73HSℓ3,k(s, a)
)

Ûk
h (s) min{β̂k(s, πk

h(s)) + P̂ Ûk
h+1(s, π

k
h(s)), H} if h ∈ [H], 0 if h = H + 1

Uk
h(s) min{βk(s, πk

h(s)) + PUk
h+1(s, π

k
h(s)), H} if h ∈ [H], 0 if h = H + 1

T̂K Set of k ∈ [K] that satisfies Ûk
1 (s

k
1) > ε/8

T̂K Size of T̂K
T K Set of k ∈ [K] that satisfies Uk

1(s
k
1) > ε/16

TK Size of T K

Nk(s, a) Visit count of (s, a) ∈ S ×A for episodes in T k−1

nk
h(s, a) Visit count of (s, a) ∈ S ×A for episodes in T k, until h-th time step of k-th episode

ηk min{h ∈ [H] : nk
h(s

k
h, a

k
h) > 2Nk(skh, a

k
h), H + 1}

Appendix
A DEFINITIONS AND NOTATIONS

In this section, we define additional concepts and notations necessary for the analysis. We also
provide Table 2 for notations defined in this paper. Conventional notations such as S, A, H , V π

h , or
N are omitted. Notations that are used exclusively for the analysis of the PAC bounds are explained
in Appendix D.2.

For the well-definedness of some statements in the analysis, we define 1/Nk(s, a), P̂ k(s′|s, a), and
r̂k(s, a) to be +∞ when Nk(s, a) = 0 throughout this paper.

For any sequence of H + 1 functions V = {Vh}H+1
h=1 with Vh : S → R for all h ∈ [H], we define

∆h(V )(s, a) := Vh(s)− PVh+1(s, a). It is similar to the Bellman error, but lacks the reward term.
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Therefore, for any policy π, we have that ∆h(V
π
h )(s, πh(s)) = r(s, πh(s)) for all h ∈ [H] and

s ∈ S.

We define nk
h(s, a) to be the number of times the state-action pair (s, a) ∈ S ×A is visited until the

h-th time step of the k-th episode, inclusively. For k ∈ N, we define ηk to be the first time step h
such that nk

h(s
k
h, a

k
h) > 2Nk(skh, a

k
h) occurs in the k-th episode. In other words, ηk is the first time

step where the number of times a state-action pair (s, a) ∈ S ×A is visited during the k-th episode
exceeds Nk(s, a). We define ηk to be H +1 if there is no such time step. ηk is a stopping time with
respect to {Fk

h}
H+1
h=1 , that is, we have {ηk = h} ∈ Fk

h for all h ∈ [H + 1].

The input {ck}∞k=1 of Algorithm 1 depends on a sequence of non-increasing positive numbers,
{λk}∞k=1. We mainly consider two cases where λk is fixed for all k ∈ N and λk changes only
at powers of 2, i.e., λk ̸= λk−1 only when k = 2m for some positive integer m. We let ιk denote
the (maximum possible) number of distinct values in λ1, . . . , λk. Specifically, in the first case where
λk is fixed, we set ιk := 1 for all k ∈ N. In the second case where λk rarely changes, we set
ιk := 1 + ⌊log2 k⌋.
Several different logarithmic terms appear in the analysis. For simplicity, we define
ℓ1,k = log

24HSAι2k
δ , ℓ2,k = log(1 + kH

SA ), and ℓ3,k = log 12SA(1+log kH)
δ . We overload the defi-

nition of ℓ3,k to be a function on S ×A with ℓ3,k(s, a) = log 12SA(1+logNk(s,a))
δ . Additionally, we

define ℓ′1,K = log 50HSA(1+logKH)2

δ , which serves as an upper bound for max{ℓ1,K , ℓ3,K}.

We rigorously define βk and Uk
h introduced in Section 4.4.3

βk(s, a) :=
1

Nk(s, a)

(
11Hℓ1,k

λk
+ 21HSℓ3,k(s, a)

)
.

Uk
h (s) is the clipped expectation of sum of βk under πk, defined as follows:

Uk
H+1(s) := 0

Uk
h (s) := min

{
βk(s, πk

h(s)) + PUk
h+1(s, π

k
h(s)), H

}
for h ∈ [H] .

B HIGH PROBABILITY EVENTS

In this section, we state the events necessary for the analysis and prove that they happen with high
probabilities. Throughout this section, we assume that {λk}∞k=1 is a fixed sequence of positive real
numbers with λk ≤ 1 for all k, δ ∈ (0, 1] is a fixed probability of failure, and δ′ := δ/6.
Lemma 5. With probability at least 1− δ′,∣∣∣(P̂ k − P )V ∗

h+1(s, a)
∣∣∣ ≤ λk

4H
Var(V ∗

h+1)(s, a) +
3Hℓ1,k

λkNk(s, a)

holds for all (s, a) ∈ S ×A, h ∈ [H], and k ∈ N.

Proof. Fix (s, a) ∈ S×A, h ∈ [H], and λ′ ∈ (0, 1]. Suppose {st}∞t=1 is a sequence of i.i.d. samples
drawn from P (·|s, a). Let Xt = V ∗

h+1(st) − PV ∗
h+1(s, a). Then, |Xt| ≤ H holds almost surely,

E[Xt] = 0, and E[X2
t ] = Var(V ∗

h+1)(s, a). Applying Lemma 36 on {Xt}∞t=1 with λ = λ′/3, the
following inequality holds for all n ∈ N with probability at least 1− δ′:

n∑
t=1

Xt ≤
λ′n

4H
Var(V ∗

h+1)(s, a) +
3H

λ′ log
1

δ′
.

Dividing both sides by n yields

1

n

n∑
t=1

Xt = (P̂n − P )V ∗
h+1(s, a) ≤

λ′

4H
Var(V ∗

h+1)(s, a) +
3H

λ′n
log

1

δ′
,

where P̂n(s
′|s, a) :=

∑n
t=1 1{st = s′}/n is the empirical mean of n samples. Repeating the same

process for −Xt and taking the union bound over the two results, then over all (s, a) ∈ S × A and
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h ∈ [H] yields that∣∣∣(P̂n − P )V ∗
h+1(s, a)

∣∣∣ ≤ λ′

4H
Var(V ∗

h+1)(s, a) +
3H

λ′n
log

2HSA

δ′

holds for all n ∈ N, (s, a) ∈ S×A, and h ∈ [H] with probability at least 1−δ′. Now, let λ′
1, λ

′
2, . . .

be the subsequence of {λk}∞k=1 obtained by removing repetitions. In other words, we have λ′
ιk

= λk

for all k ∈ N. We take the union bound over {λ′
i}i by assigning probability δ′/(2i2) for λ′

i. By∑∞
i=1 δ

′/(2i2) ≤ δ′, we have that with probability at least 1− δ′,∣∣∣(P̂n − P )V ∗
h+1(s, a)

∣∣∣ ≤ λ′
i

4H
Var(V ∗

h+1)(s, a) +
3H

λ′
in

log
4HSAi2

δ′
(3)

holds for all n ∈ N, (s, a) ∈ S × A, h ∈ [H], and i ∈ N. For any k ∈ N, by taking n = Nk(s, a)
and i = ιk, inequality (3) implies∣∣∣(P̂ k − P )V ∗

h+1(s, a)
∣∣∣ ≤ λk

4H
Var(V ∗

h+1)(s, a) +
3H

λkNk(s, a)
log

4HSAι2k
δ′

.

Replacing δ′ with δ/6, the logarithmic term becomes log(24HSAι2k/δ) = ℓ1,k, completing the
proof.

Lemma 6. With probability at least 1− δ′,

(P − P̂ k)(V ∗
h+1)

2(s, a) ≤ 1

2
Var(V ∗

h+1)(s, a) +
6H2ℓ1,k
Nk(s, a)

holds for all (s, a) ∈ S ×A, h ∈ [H] and k ∈ N.

Proof. Fix (s, a) ∈ S × A, and h ∈ [H]. Let {st}∞t=1 be a sequence of i.i.d. samples of P (·|s, a)
and Xt = P (V ∗

h+1)
2(s, a) − (V ∗

h+1)
2(st), similarly with the proof of Lemma 5. Then, |Xt| ≤ H2

holds almost surely, E[Xt] = 0, and

E[X2
t ] = Var((V ∗

h+1)
2)(s, a) ≤ 4H2 Var(V ∗

h+1)(s, a)

holds for all t ∈ N, where we use Lemma 35 for the last inequality. Applying Lemma 36 with
λ = 1/6, the following inequality holds for all n ∈ N with probability at least 1− δ′:

n∑
t=1

Xt ≤
n

2
Var(V ∗

h+1)(s, a) + 6H2 log
1

δ′
.

Plugging in Xt = P (V ∗
h+1)

2(s, a)− (V ∗
h+1)

2(st) and dividing both sides by n yields

(P − P̂n)(V
∗
h+1)

2(s, a) ≤ 1

2
Var(V ∗

h+1)(s, a) +
6H2

n
log

1

δ′
,

where P̂n(s
′|s, a) =

∑n
t=1 1{st = s′}/n. Taking the union bound over (s, a) ∈ S × A and

h ∈ [H], we obtain that

(P − P̂n)(V
∗
h+1)

2(s, a) ≤ 1

2
Var(V ∗

h+1)(s, a) +
6H2

n
log

HSA

δ′

holds for all n ∈ N, (s, a) ∈ S ×A, and h ∈ [H] with probability at least 1− δ′. Replacing δ′ with
δ/6, the logarithmic term becomes log(6HSA/δ), which is less than ℓ1,k = log(24HSAι2k/δ) for
any k ∈ N. The proof is completed by taking n = Nk(s, a) for each k ∈ N.

Lemma 7. The following inequality holds with probability at least 1 − δ′ for any (s, a) ∈ S × A,
s′ ∈ S and k ∈ N:∣∣∣P̂ k(s′ | s, a)− P (s′ | s, a)

∣∣∣ ≤ 2

√
2P (s′ | s, a)ℓ3,k(s, a)

Nk(s, a)
+

2ℓ3,k(s, a)

3Nk(s, a)
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Proof. Fix (s, a) ∈ S ×A and s′ ∈ S. We write p := P (s′|s, a) for simplicity. Suppose {st}∞t=1 is
a sequence of i.i.d. samples drawn from P (·|s, a). Let Xt = 1{st = s′} − p. Note that E[Xt] = 0
and E[X2

t ] = p(1− p). By Lemma 37, the following inequality holds for all n ∈ N with probability
at least 1− δ′:

n∑
t=1

Xt ≤ 2

√
p(1− p)n log

2(1 + log n)2

δ′
+

1

3
log

2(1 + log n)2

δ′
.

We apply the same bound on
∑n

t=1−Xt and take the union bound. Further bounding p(1− p) ≤ p,
we obtain that ∣∣∣∣∣

n∑
t=1

Xt

∣∣∣∣∣ ≤ 2

√
pn log

4(1 + log n)2

δ′
+

1

3
log

4(1 + log n)2

δ′
(4)

holds for all n ∈ N with probability at least 1−δ′. Let P̂n(s
′|s, a) =

∑n
t=1 1{s′ = st}/n. Dividing

both sides of inequality (4) by n, we obtain that∣∣∣P̂n(s
′ | s, a)− P (s′ | s, a)

∣∣∣ ≤ 2

√
P (s′ | s, a)

n
log

4(1 + log n)2

δ′
+

1

3n
log

4(1 + log n)2

δ′
.

By taking the union bound over (s, a, s′) ∈ S × A × S , the logarithmic terms
become log(4S2A(1 + log n)2/δ′), which is bounded by log(4S2A2(1 + log n)2/δ′2) =
2 log(2SA(1 + log n)/δ′). Therefore, we obtain that∣∣∣P̂n(s

′ | s, a)− P (s′ | s, a)
∣∣∣ ≤ 2

√
2P (s′ | s, a)

n
log

2SA(1 + log n)

δ′
+

2

3n
log

2SA(1 + log n)

δ′
(5)

holds for all n ∈ N, (s, a, s′) ∈ S × A× S with probability at least 1− δ′. Finally, for any k ∈ N,
by taking n = Nk(s, a), inequality (5) implies∣∣∣P̂ k(s′ | s, a)− P (s′ | s, a)

∣∣∣
≤ 2

√
2P (s′ | s, a)
Nk(s, a)

log
2SA(1 + logNk(s, a))

δ′
+

2

3Nk(s, a)
log

2SA(1 + logNk(s, a))

δ′

= 2

√
2P (s′ | s, a)ℓ3,k(s, a)

Nk(s, a)
+

2ℓ3,k(s, a)

3Nk(s, a)
,

where we use that log(2SA(1+ logNk(s, a))/δ′) = log(12SA(1+ logNk(s, a))/δ) = ℓ3,k(s, a).

Lemma 8. With probability at least 1 − δ′, the following inequality holds for all (s, a) ∈ S × A
and k ∈ N: ∣∣r̂k(s, a)− r(s, a)

∣∣ ≤ λkr(s, a) +
Hℓ1,k

λkNk(s, a)
,

Proof. Fix (s, a) ∈ S × A and λ′ ∈ (0, 1]. Let {Rt}∞t=1 be a sequence of rewards obtained by
choosing (s, a). Let Xt = Rt−r(s, a). By Assumptions 1 and 2, {Xt}∞t=1 is a martingale difference
sequence with |Xt| ≤ H almost surely for all t. For simplicity, let Et be the conditional expectation
conditioned on {Xi}ti=1. Then, by Lemma 36 with λ = λ′, it holds with probability 1− δ′ that

n∑
t=1

Xt ≤
λ′

H

n∑
t=1

Et−1

[
X2

t

]
+

H

λ′ log
1

δ′

for all n ∈ N, where we replace 3/4 with 1 for simplicity. We proceed by using that for a ran-
dom variable with 0 ≤ X ≤ H , it holds that Var(X) ≤ E[X2] ≤ HE[X], which implies that
Et−1[X

2
t ] ≤ HEt−1[Rt] = Hr(s, a). Therefore, we obtain that

n∑
t=1

Xt ≤ λknr(s, a) +
H

λk
log

1

δ′
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Dividing both sides by n, we derive that with probability at least 1− δ′,

1

n

n∑
t=1

Xt = r̂n(s, a)− r(s, a) ≤ λkEt−1r(s, a) +
H

λkn
log

1

δ′

holds for all n ∈ N, where r̂n :=
∑n

t=1 Rt/n is the empirical mean of n random rewards. Repeat
the process with −Xt instead of Xt, then take the union bound over the two events and over all
(s, a) ∈ S ×A and λk as in the final steps of the proof of Lemma 5. We obtain that∣∣r̂k(s, a)− r(s, a)

∣∣ ≤ λkr(s, a) +
H

λkNk(s, a)
log

4SAι2k
δ′

holds for all (s, a) ∈ S ×A and k ∈ N. The proof is completed by upper bounding the logarithmic
term log(4SAι2k/δ

′) by ℓ1,k = log(24HSAι2k/δ).

Lemma 9. Let ηk be defined as in Appendix A. With probability at least 1 − δ′, the following
inequality holds for all K ∈ N:

K∑
k=1

ηk−1∑
h=1

(
PUk

h+1(s
k
h, a

k
h)− Uk

h+1(s
k
h+1)

)
≤ 1

4H

K∑
k=1

ηk−1∑
h=1

Var(Uk
h+1)(s

k
h, a

k
h) + 3H log

6

δ
.

Proof. Let Xk
h = 1{h < ηk}(PUk

h+1(s
k
h, a

k
h) − Uk

h+1(s
k
h+1)). Since 1{h < ηk} ∈ Fk

h

and (PUk
h+1(s

k
h, a

k
h) − Uk

h+1(s
k
h+1)) ∈ Fk

h+1, we have Xk
h ∈ Fk

h+1. Furthermore, we have
E[Xk

h |Fk
h ] = 0 since skh+1 ∼ P (·|skh, akh) is independent of Fk

h . Therefore, {Xk
h}k,h is a mar-

tingale difference sequence with respect to {Fk
h}k,h. We have |Xk

h | ≤ H almost surely and
E[(Xk

h)
2|Fk

h ] = 1{h < ηk}Var(Uk
h+1)(s

k
h, a

k
h). Using Lemma 36 with λ = 1/3, we obtain that

K∑
k=1

H∑
h=1

Xk
h ≤

1

4H

K∑
k=1

H∑
h=1

1{h < ηk}Var(Uk
h+1)(s

k
h, a

k
h) + 3H log

1

δ′

holds for all K ∈ N with probability at least 1− δ′, which is equivalent to the desired result.

Lemma 10. With probability at least 1− δ′, the following inequality holds for all K ∈ N:

K∑
k=1

ηk−1∑
h=1

(
P (Uk

h+1)
2(skh, a

k
h)− (Uk

h+1)
2(skh+1)

)
≤ 1

2

K∑
k=1

ηk−1∑
h=1

Var(Uk
h+1)(s

k
h, a

k
h) + 6H2 log

6

δ

Proof. Let Xk
h = 1{h < ηk}(P (Uk

h+1)
2(skh, a

k
h)− (Uk

h+1)
2(skh+1)). By the same reason as in the

proof of Lemma 9, {Xk
h}k,h is a martingale difference sequence with respect to {Fk

h}k,h. We have
|Xk

h | ≤ H2 almost surely and

E[(Xk
h)

2|Fk
h ] = 1{h < ηk}Var((Uk

h+1)
2)(skh, a

k
h) ≤ 1{h < ηk}4H2 Var(Uk

h+1)(s
k
h, a

k
h) ,

where we use Lemma 35 for the last inequality. Using Lemma 36 with λ = 1/6, we obtain that

K∑
k=1

H∑
h=1

Xk
h ≤

1

2

K∑
k=1

H∑
h=1

1{h < ηk}Var(Uk
h+1)(s

k
h, a

k
h) + 6H2 log

1

δ′

holds for all K ∈ N with probability at least 1− δ′, which is equivalent to the desired result.

Now, we are ready to define E , which is the event under which Theorems 1 and 2 hold.

Lemma 11. Let E be the intersection of the events of Lemmas 5, 6, 7, 8, 9, and 10. Then, E happens
with probability at least 1− δ.

Proof. By each of the lemmas and the union bound, E happens with probability at least 1 − 6δ′ =
1− δ.
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C PROOFS OF THEOREMS 1 AND 2

In this section, we provide the full proofs of Theorems 1 and 2. We begin by restating Proposition 1
with specific logarithmic terms. The proof of the proposition is identical to the one presented in
Section 4.4.

Proposition 2 (Restatement of Proposition 1). Let {λk}∞k=1 be a sequence of non-increasing posi-
tive real numbers with λ1 ≤ 1. Suppose Algorithm 1 is run with ck = 7Hℓ1,k/λk. Then, under the
event of E , the cumulative regret of K episodes is bounded as follows for any K ∈ N:

Regret(K) ≤ 4H

K∑
k=1

λk +
88H

λK
SAℓ1,Kℓ2,K + 168HS2Aℓ2,Kℓ3,K + 6HSAℓ1,K .

Proof. The inequality holds by Lemmas 2, 3, and 14, where the last lemma is a restatement of
Lemma 4 with specific logarithmic factors.

The Theorems 1 and 2 are proved by assigning appropriate values of λk in Proposition 2.

Proof of Theorem 1. Take λk = min{1, 5
√
SAℓ1ℓ2,K/K} for all k ∈ [K]. We apply Proposition 2.

First, we bound the sum of λk for k ∈ [K] as follows:

4H

K∑
k=1

λk ≤ 4HK · 5
√

SAℓ1ℓ2,K
K

= 20H
√

SAKℓ1ℓ2,K .

We also have that

88HSAℓ1ℓ2,K
λK

= 88HSAℓ1ℓ2,K max

{
1,

1

5

√
K

SAℓ1ℓ2,K

}

≤ 88HSAℓ1ℓ2,K

(
1 +

1

5

√
K

SAℓ1ℓ2,K

)
= 88HSAℓ1ℓ2,K + 18H

√
SAKℓ1ℓ2,K . (6)

By Proposition 2, the cumulative regret of K episodes is bounded as follows:

Regret(K) ≤ 38H
√
SAKℓ1ℓ2,K + 168HS2Aℓ2,Kℓ3,K + 88HSAℓ1ℓ2,K + 6HSAℓ1 .

We further bound the last three terms into a simpler form. Recall that ℓ′1,K = log 50HSA(1+logKH)2

δ

and that both ℓ1 ≤ ℓ′1,K and ℓ3,K ≤ ℓ′1,K holds. Therefore, we bound the terms as follows:

168HS2Aℓ2,Kℓ3,K + 88HSAℓ1ℓ2,K + 6HSAℓ1

≤ 168HS2Aℓ′1,Kℓ2,K + 88HSAℓ′1,Kℓ2,K + 6HSAℓ′1,K

≤ 168HS2Aℓ′1,Kℓ2,K + 88HSAℓ′1,K(1 + ℓ2,K)

≤ 256HS2Aℓ′1,K(1 + ℓ2,K) . (7)

Proof of Theorem 2. Fix k ∈ N momentarily. Let m be the greatest integer such that 2m ≤ k. We
take λk = min{1, 5

√
SAℓ1,2mℓ2,2m/2m}. Taking C = log(24HSA/δ) and defining f(m) as in

Lemma 33, we have λk =
√

f(m) and the conclusion of the lemma implies that {λk}∞k=1 is non-
increasing. Therefore, we can apply Proposition 2.
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We first bound the sum of λk for k ∈ [K]. Note that ℓ1,2m ≤ ℓ1,k, ℓ2,2m ≤ ℓ2,k, and 2m ≥ k/2

holds, hence we have λk ≤ 5
√

2SAℓ1,kℓ2,k/k. Therefore, we derive that

4H

K∑
k=1

λk ≤ 4H

K∑
k=1

5

√
2SAℓ1,kℓ2,k

k

≤ 20H
√
2SAℓ1,Kℓ2,K

K∑
k=1

√
1

k

≤ 40H
√
2SAKℓ1,Kℓ2,K

≤ 57H
√

SAKℓ1,Kℓ2,K ,

where we use that
∑K

k=1 k
−1/2 ≤ 2

√
K for the penultimate inequality. By the same steps as in

inequality (6) of the proof of Theorem 1, we have that

88HSAℓ1,Kℓ2,K
λK

≤ 88HSAℓ1,Kℓ2,K + 18H
√
SAKℓ1,Kℓ2,K .

By Proposition 2, the cumulative regret of K episodes is bounded as follows for all K ∈ N:

Regret(K) ≤ 75H
√
SAKℓ1,Kℓ2,K + 168HS2ℓ2,Kℓ3,K + 88HSAℓ1,Kℓ2,K + 6HSAℓ1,K .

Using inequality (7) in the proof of Theorem 1, the sum of the last three terms are upper bounded
by 256HS2Aℓ′1,K(1 + ℓ2,K).

C.1 PROOF OF LEMMA 2

In this subsection, we prove Lemma 2, which states that our algorithm exhibits quasi-optimism.

Proof of Lemma 2. Elementary calculus implies that for x ∈ [0, H], 0 ≤ 2x− 1
2H x2 ≤ 3

2H holds.
Therefore, it is sufficient to prove the following stronger inequality, which we prove by backward
induction on h:

V ∗
h (s)− V k

h (s) ≤ λk

(
2V ∗

h (s)−
1

2H
(V ∗

h )
2(s)

)
.

The inequality trivially holds for h = H + 1 as its both sides are 0. We suppose that the inequality
holds for h + 1 and show that the inequality holds for h. Since the right hand side is greater than
or equal to 0, the inequality trivially holds when V k

h (s) = H . Suppose V k
h (s) < H . Denoting

a = πk
h(s) and a∗ = π∗

h(s), we have that

V k
h (s) = Qk

h(s, a) ≥ Qk
h(s, a

∗) = r̂k(s, a∗) + bk(s, a∗) + P̂ kV k
h+1(s, a

∗) ,

where the first inequality holds by the choice of a = argmaxa′∈A Qk
h(s, a

′) of the algorithm, and
the last equality holds since Qk

h(s, a
∗) ≤ V k

h (s) < H . We bound V ∗
h (s)− V k

h (s) as follows:

V ∗
h (s)− V k

h (s) ≤
(
r(s, a∗) + PV ∗

h+1(s, a
∗)
)
−
(
r̂k(s, a∗) + bk(s, a∗) + P̂ kV k

h+1(s, a
∗)
)

= −bk(s, a∗) + (r(s, a∗)− r̂k(s, a∗))︸ ︷︷ ︸
I1

+PV ∗
h+1(s, a

∗)− P̂ V k
h+1(s, a

∗)︸ ︷︷ ︸
I2

. (8)

I1 is bounded by Lemma 8 as follows:

I1 ≤ λkr(s, a
∗) +

Hℓ1,k
λkNk(s, a∗)

. (9)
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We bound I2 as follows:

I2 = (P − P̂ k)V ∗
h+1(s, a

∗) + P̂ k(V ∗
h+1 − V k

h+1)(s, a
∗)

≤ (P − P̂ k)V ∗
h+1(s, a

∗) + λkP̂
k

(
2V ∗

h+1 −
1

2H
(V ∗

h+1)
2

)
(s, a∗)

= (P − P̂ k)V ∗
h+1(s, a

∗) + λk(P̂
k − P )

(
2V ∗

h+1 −
1

2H
(V ∗

h+1)
2

)
(s, a∗)

+ λkP

(
2V ∗

h+1 −
1

2H
(V ∗

h+1)
2

)
(s, a∗)

= (1− 2λk)(P − P̂ k)V ∗
h+1(s, a

∗) +
λk

2H
(P − P̂ k)(V ∗

h+1)
2(s, a∗)

+ λkP

(
2V ∗

h+1(s, a
∗)− 1

2H
(V ∗

h+1)
2(s, a∗)

)
, (10)

where the first equality adds and subtracts P̂ kV ∗
h+1(s, a

∗), the next inequality is due to the induc-
tion hypothesis, and the following equality adds and subtracts P (2V ∗

h+1 − (V ∗
h+1)

2/(2H)). Since
0 ≤ λk ≤ 1, we have |1 − 2λk| ≤ 1. Using Lemma 5, we have |(P − P̂ )V ∗

h+1(s, a
∗)| ≤

λk

4H Var(V ∗
h+1)(s, a

∗) +
3Hℓ1,k

λkNk(s,a∗)
. By Lemma 6, we have (P − P̂ k)(V ∗

h+1)
2(s, a∗) ≤

Var(V ∗
h+1)(s, a

∗)/2 +
6H2ℓ1,k
Nk(s,a∗)

. Plugging in these bounds into inequality (10), we obtain that

I2 ≤
λk

4H
Var(V ∗

h+1)(s, a
∗) +

3Hℓ1,k
λkNk(s, a∗)

+
λk

4H
Var(V ∗

h+1)(s, a
∗) +

3Hλkℓ1,k
Nk(s, a∗)

+ λkP

(
2V ∗

h+1(s, a
∗)− 1

2H
(V ∗

h+1)
2(s, a∗)

)
≤ λk

2H
Var(V ∗

h+1)(s, a
∗) +

6Hℓ1,k
λkNk(s, a∗)

+ λkP

(
2V ∗

h+1(s, a
∗)− 1

2H
(V ∗

h+1)
2(s, a∗)

)
=

λk

2H

(
Var(V ∗

h+1)(s, a
∗)− P (V ∗

h+1)
2(s, a∗)

)
+ 2λkPV ∗

h+1(s, a
∗) +

6Hℓ1,k
λkNk(s, a∗)

,

where the second inequality applies λk ≤ 1/λk from λk ≤ 1. By Lemma 27, we have
Var(V ∗

h+1)(s, a
∗) − P (V ∗

h+1)
2(s, a∗) ≤ −(V ∗

h )
2(s) + 2Hmax{∆h(V

∗)(s, a∗), 0}, where in this
case we have ∆h(V

∗)(s, a∗) = r(s, a∗). Therefore, we obtain that

I2 ≤ −
λk

2H
(V ∗

h )
2(s) + λkr(s, a

∗) + 2λkPV ∗
h+1(s, a

∗) +
6Hℓ1,k

λkNk(s, a∗)
. (11)

Combining inequalities (8), (9), and (11) together, we complete the induction step as follows:

V ∗
h (s)− V k

h (s) ≤ −bk(s, a∗) + λkr(s, a
∗) +

Hℓ1,k
λkNk(s, a∗)

− λk

2H
(V ∗

h )
2(s) + λkr(s, a

∗) + 2λkPV ∗
h+1(s, a

∗) +
6Hℓ1,k

λkNk(s, a∗)

= −bk(s, a∗) + 7Hℓ1,k
λkNk(s, a∗)

+ 2λk(r(s, a
∗) + PV ∗

h+1(s, a
∗))− λk

2H
(V ∗

h )
2(s)

= λk

(
2V ∗

h (s)−
1

2H
(V ∗

h )
2(s)

)
,

where the last inequality uses that bk(s, a∗) = 7Hℓ1,k/(λkN
k(s, a∗)) and

r(s, a∗) + PV ∗
h+1(s, a

∗) = V ∗
h (s).

C.2 PROOF OF LEMMA 3

To prove this lemma, we need the following two technical lemmas.
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Lemma 12. For any s ∈ S, h ∈ [H + 1] and k ∈ N, define Ṽ k
h (s) := V k

h (s) − V ∗
h (s). Under the

event E , the following inequality holds for all (s, a) ∈ S ×A, h ∈ [H], and k ∈ N:∣∣∣(P̂ k − P )V k
h+1(s, a)

∣∣∣ ≤ λk

4H
Var(V ∗

h+1)(s, a) +
1

10H
Var(Ṽ k

h+1)(s, a) + βk
1 (s, a) ,

where βk
1 (s, a) =

1
Nk(s,a)

(3Hℓ1,k/λk + 21HSℓ3,k(s, a)).

Proof. We add and subtract (P̂ k − P )V ∗
h+1(s, a) and then use triangle inequality to obtain∣∣∣(P̂ k − P )V k

h+1(s, a)
∣∣∣ ≤ ∣∣∣(P̂ k − P )

(
V k
h+1 − V ∗

h+1

)
(s, a)

∣∣∣︸ ︷︷ ︸
I1

+
∣∣∣(P̂ k − P )V ∗

h+1(s, a)
∣∣∣︸ ︷︷ ︸

I2

.

By Lemma 5, I2 is bounded by λk

4H Var(V ∗
h+1)(s, a) + 3Hℓ1,k/(λkN

k(s, a)). To bound I1, we
apply Lemma 29 with ρ = 10 and obtain

I1 ≤
1

10H
Var(Ṽ k

h+1)(s, a) +
21HSℓ3,k(s, a)

Nk(s, a)
.

Putting these bounds together, we conclude that∣∣∣(P̂ k − P )V k
h+1(s, a)

∣∣∣
≤ λk

4H
Var(V ∗

h+1)(s, a) +
1

10H
Var(Ṽ k

h+1)(s, a) +
1

Nk(s, a)

(
3Hℓ1,k
λk

+ 21HSℓ3,k(s, a)

)
=

λk

4H
Var(V ∗

h+1)(s, a) +
1

10H
Var(Ṽ k

h+1)(s, a) + βk
1 (s, a) .

Lemma 13. Under the event E , the following inequality holds for all s ∈ S, h ∈ [H], and k ∈ N:

∆h(V
k − V πk

)(s, a)

≤ ∆h

(
λk

(
3V ∗ − 1

2H
(V ∗)2

)
− 1

5H

(
Ṽ k +

3

2
λkH

)2
)
(s, a) + 2βk(s, a) , (12)

where a = πk
h(s) and βk(s, a) = 1

Nk(s,a)
(11Hℓ1,k/λk + 21HSℓ3,k(s, a)).

Proof. We begin as follows:

∆h(V
k − V πk

)(s, a) =
(
V k
h (s)− PV k

h+1(s, a)
)
−
(
V πk

h (s)− PV πk

h+1(s, a)
)

≤
(
r̂k(s, a) + bk(s, a) + (P̂ k − P )V k

h+1(s, a)
)
− r(s, a)

= bk(s, a) + (r̂k(s, a)− r(s, a)) + (P̂ k − P )V k
h+1(s, a) .

By Lemma 8, we have that r̂k(s, a) − r(s, a) ≤ λkr(s, a) +
Hℓ1,k

λkNk(s,a)
. By Lemma 12, it

holds that (P̂ k − P )V k
h+1(s, a) ≤

λk

4H Var(V ∗
h+1)(s, a) +

1
10H Var(Ṽ k

h+1)(s, a) + βk
1 (s, a). De-

fine I1 := max{∆h(V
k − V πk

)(s, a), 0}. Combining the bounds and using that βk(s, a) =
bk(s, a) + βk

1 (s, a) +Hℓ1,k/(λkN
k(s, a)) holds by definition, we obtain

I1 ≤ λkr(s, a) +
λk

4H
Var(V ∗

h+1)(s, a) +
1

10H
Var(Ṽ k

h+1)(s, a) + βk(s, a) . (13)

Applying Lemma 27 to Var(V ∗
h+1)(s, a), we have that Var(V ∗

h+1)(s, a) ≤ −∆h((V
∗)2)(s, a) +

2Hmax{∆h(V
∗)(s, a), 0}. Since Lemma 28 states that ∆h(V

∗)(s, a) ≥ 0, we infer that

Var(V ∗
h+1)(s, a) ≤ −∆h((V

∗)2)(s, a) + 2H∆h(V
∗)(s, a) . (14)
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By Lemma 2, we have Ṽ k + 3λkH/2 ≥ 0. Applying Lemma 27 to Var(Ṽ k
h+1)(s, a) =

Var(Ṽ k + 3λkH/2)(s, a), we obtain that

Var

(
Ṽ k +

3

2
λkH

)
(s, a) ≤ −∆h

((
Ṽ k +

3

2
λkH

)2
)
(s, a)

+ (2H + 3λkH)max

{
∆h

(
Ṽ k +

3

2
λkH

)
(s, a), 0

}
.

We bound ∆h(Ṽ
k + 3λkH/2)(s, a) as follows:

∆h

(
Ṽ k +

3

2
λkH

)
(s, a) = ∆h(Ṽ

k)(s, a)

= ∆h(V
k)(s, a)−∆h(V

∗)(s, a)

≤ ∆h(V
k)(s, a)− r(s, a)

= ∆h(V
k)(s, a)−∆h(V

πk

)(s, a)

= ∆h(V
k − V πk

)(s, a) ,

where the inequality is due to Lemma 28. Therefore, by the definition of I1, we obtain that
max{∆h(Ṽ

k + 3λkH/2)(s, a), 0} = I1 and conclude that

Var

(
Ṽ k +

3

2
λkH

)
(s, a) ≤ −∆h

((
Ṽ k +

3

2
λkH

)2
)
(s, a) + (2H + 3λkH)I1

≤ −∆h

((
Ṽ k +

3

2
λkH

)2
)
(s, a) + 5HI1 , (15)

where we use that λk ≤ 1 for the last inequality. Plugging inequalities (14) and (15) into inequal-
ity (13) and applying r(s, a) ≤ ∆h(V

∗)(s, a∗) by Lemma 28, we obtain that

I1 ≤ ∆h

(
λk

(
3

2
V ∗ − 1

4H
(V ∗)2

)
− 1

10H

(
Ṽ k +

3

2
λk

)2
)
(s, a) + βk(s, a) +

1

2
I1 .

Solving the inequality with respect to I1 implies inequality (12).

Now, we are ready to prove Lemma 3.

Proof of Lemma 3. For notational simplicity, we define the following quantity:

Dh(s) := λk

(
3V ∗

h (s)−
1

2H
(V ∗

h )
2(s)

)
+

1

5H

((
3

2
λkH

)2

−
(
Ṽ k
h (s) +

3

2
λkH

)2
)

.

For x ∈ [0, H], the fact that 0 ≤ 3x − x2/(2H) ≤ 5H/2 holds is checked by elementary calculus.
Similarly, for c ∈ [0, 3H/2] and y ∈ [−H,H], we have c2 − (y + c)2 = −y2 − 2cy and −4H2 ≤
−y2 − 2cy ≤ 0. Therefore, by setting x = V ∗

h (s), y = Ṽ k
h (s), and c = 3λkH/2, we obtain that

−4H/5 ≤ Dh(s) ≤ 5H/2 for all h ∈ [H] and s ∈ S.
To prove the lemma, we prove the following stronger inequality by backward induction on h :

V k
h (s)− V πk

h (s) ≤ Dh(s) + 2Uk
h (s) .

Since DH+1(s) = 0 for all s ∈ S , the inequality trivially holds for h = H + 1. Suppose that
the inequality holds for h + 1. By Lemma 13, which can be rewritten as ∆h(V

k − V πk

) ≤
∆h(D)(s, a) + 2βk(s, a), we have that

V k
h (s)− V πk

h (s) = ∆h(V
k − V πk

)(s, a) + P (V k
h+1 − V πk

h+1)(s, a)

≤ ∆h(D)(s, a) + 2βk(s, a) + P (V k
h+1 − V πk

h+1)(s, a) . (16)
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By the induction hypothesis, we have that

P (V k
h+1 − V πk

h+1)(s, a) ≤ P (Dh+1 + Uk
h+1)(s, a) (17)

Combining inequalities (16) and (17) yields

V k
h (s)− V πk

h (s) ≤ Dh(s) + 2(βk(s, a) + PUk
h+1(s, a)) . (18)

Finally, by that −4H/5 ≤ Dh(s) and V k
h (s)− V πk

h (s) ≤ H always holds, the following inequality
always holds:

V k
h (s)− V πk

h (s) ≤ Dh(s) + 2H . (19)

By inequalities (18) and (19), we conclude that

V k
h (s)− V πk

h (s) ≤ Dh(s) + 2min{βk(s, a) + PUk
h+1(s, a), H}

= Dh(s) + 2Uk
h (s) ,

completing the induction argument.

C.3 PROOF OF LEMMA 4

We restate Lemma 4 with specific logarithmic factors.
Lemma 14 (Restatement of Lemma 4). Under E , it holds that

K∑
k=1

Uk
1 (s

k
1) ≤

44HSAℓ1,K
λK

+ 84HS2Aℓ2,Kℓ3,K + 3HSAℓ1,K

for all K ∈ N.

We prove this lemma in two steps: using the concentration results to bound
∑

k U
k by∑

k,h β
k(skh, a

k
h), and then using the logarithmic bound for the harmonic series, that is,

∑N
n=1 1/n ≤

1 + logN .
Lemma 15. Let ηk be defined as in Appendix A. Under the event E , it holds that

K∑
k=1

Uk
1 (s

k
1) ≤ 2

K∑
k=1

ηk−1∑
h=1

βk(skh, a
k
h) + 3HSAℓ1,K .

for all K ∈ N.

Proof. Decompose Uk
1 (s

k
1) as follows:

Uk
1 (s

k
1) ≤ βk(sk1 , a

k
1) + PUk

2 (s
k
1 , a

k
1)

= βk(sk1 , a
k
1) + PUk

2 (s
k
1 , a

k
1)− Uk

2 (s
k
2) + Uk

2 (s
k
2)

...

≤
ηk−1∑
h=1

(
βk(skh, a

k
h) + PUk

h+1(s
k
h, a

k
h)− Uk

h+1(s
k
h+1)

)
+ Uk

ηk(s
k
ηk)

≤
ηk−1∑
h=1

(
βk(skh, a

k
h) + PUk

h+1(s
k
h, a

k
h)− Uk

h+1(s
k
h+1)

)
+H1{ηk ̸= H + 1} ,

where the last inequality uses that Uk
H+1(s) = 0 and Uk

h (s) ≤ H for all s ∈ S and h ∈ [H]. We take

the sum of Uk
1 (s

k
1) for k = 1, 2, . . . ,K. Let I1 :=

∑K
k=1

∑ηk−1
h=1 (PUk

h+1(s
k
h, a

k
h)− Uk

h+1(s
k
h+1)),

so that
K∑

k=1

Uk
1 (s

k
1) ≤

K∑
k=1

ηk−1∑
h=1

βk(skh, a
k
h) +H

K∑
k=1

1{ηk ̸= H + 1}+ I1 . (20)
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By Lemma 9, we obtain that

I1 ≤
1

4H

K∑
k=1

ηk−1∑
h=1

Var(Uk
h+1)(s

k
h, a

k
h) + 3H log

6

δ

=:
1

4H
I2 + 3H log

6

δ
, (21)

where we define I2 :=
∑K

k=1

∑ηk−1
h=1 Var(Uk

h+1)(s
k
h, a

k
h). By Lemma 27, we have that

Var(Uk
h+1)(s

k
h, a

k
h) ≤ −∆h((U

k)2)(skh, a
k
h) + 2Hmax{∆h(U

k)(skh, a
k
h), 0}

≤ −∆h((U
k)2)(skh, a

k
h) + 2Hβk(skh, a

k
h)

= −(Uk
h )

2(skh) + P (Uk
h+1)

2(skh, a
k
h) + 2Hβk(skh, a

k
h) ,

where the second inequality uses that

∆h(U
k)(s, a) = Uk

h (s)− PUk
h+1(s, a) ≤ (βk(s, a) + PUk

h+1(s, a))− PUk
h+1(s, a) = βk(s, a) .

Therefore, the sum of the variances of Uk
h+1(s

k
h, a

k
h) for the k-th episode is bounded as follows:

ηk−1∑
h=1

Var(Uk
h+1)(s

k
h, a

k
h) ≤ −

ηk−1∑
h=1

(Uk
h )

2(skh) +

ηk−1∑
h=1

P (Uk
h+1)

2(skh, a
k
h) +

ηk−1∑
h=1

2Hβk(skh, a
k
h)

=

ηk−1∑
h=1

2Hβk(skh, a
k
h)− (Uk

1 )
2(sk1) + (Uk

ηk)
2(skηk)

+

ηk−1∑
h=1

(
P (Uk

h+1)
2(skh, a

k
h)− (Uk

h+1)
2(skh+1)

)
≤

ηk−1∑
h=1

2Hβk(skh, a
k
h) +H21{ηk ̸= H + 1}

+

ηk−1∑
h=1

(P (Uk
h+1)

2(skh, a
k
h)− (Uk

h+1)
2(skh+1)) ,

where we again use that Uk
ηk(s

k
ηk) ≤ H1{ηk ̸= H +1} for the last inequality. Therefore, by taking

the sum over k ∈ [K], I2 is bounded as follows:

I2 ≤
K∑

k=1

ηk−1∑
h=1

2Hβk(skh, a
k
h) +H2

K∑
k=1

1{ηk ̸= H + 1}

+

K∑
k=1

ηk−1∑
h=1

(P (Uk
h+1)

2(skh, a
k
h)− (Uk

h+1)
2(skh+1)) .

The last double sum is bounded by Lemma 10 as follows:
K∑

k=1

ηk−1∑
h=1

(P (Uk
h+1)

2(skh, a
k
h)− (Uk

h+1)
2(skh+1))

≤ 1

2

K∑
k=1

ηk−1∑
h=1

Var(Uk
h+1)(s

k
h, a

k
h) + 6H2 log

6

δ

=
1

2
I2 + 6H2 log

6

δ
.

Therefore, we deduce that

I2 ≤
K∑

k=1

ηk−1∑
h=1

2Hβk(skh, a
k
h) +H2

K∑
k=1

1{ηk ̸= H + 1}+ 1

2
I2 + 6H2 log

6

δ
.
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Solving the inequality with respect to I2, we obtain that

I2 ≤
K∑

k=1

ηk−1∑
h=1

4Hβk(skh, a
k
h) + 2H2

K∑
k=1

1{ηk ̸= H + 1}+ 12H2 log
6

δ
. (22)

Plugging the bound of inequality (22) into inequality (21), we obtain that

I1 ≤
K∑

k=1

ηk−1∑
h=1

βk(skh, a
k
h) +

H

2

K∑
k=1

1{ηk ̸= H + 1}+ 6H log
6

δ
. (23)

By combining inequalities (20) and (23), we conclude that

K∑
k=1

Uk
1 (s

k
1) ≤ 2

K∑
k=1

ηk−1∑
h=1

βk(skh, a
k
h) +

3H

2

K∑
k=1

1{ηk ̸= H + 1}+ 6H log
6

δ
.

Finally, we bound the last two terms using Lemma 30 as follows:

3H

2

K∑
k=1

1{ηk ̸= H + 1}+ 6H log
6

δ
≤ 3H

2
SA log2 2H + 6H log

6

δ

≤ 3HSA log 2H + 3HSA log
6

δ

= 3HSA log
12H

δ
≤ 3HSAℓ1,K ,

where the first inequality is due to Lemma 30 and the second inequality applies log2 2H ≤ 2 log 2H
and A ≥ 2 simultaneously. The proof is complete.

Proof of Lemma 14. By Lemma 15, we have

K∑
k=1

Uk
1 (s

k
1) ≤ 2

K∑
k=1

ηk−1∑
h=1

βk(skh, a
k
h) + 3HSAℓ1,K .

Let γk = 11Hℓ1,k/λk+21HSℓ3,k. Then, it holds that β(s, a) ≤ γk/N
k(s, a). We apply Lemma 31

and obtain that

K∑
k=1

ηk−1∑
h=1

βk(skh, a
k
h) ≤

K∑
k=1

ηk−1∑
h=1

γk
Nk(s, a)

≤ 2γKSA log

(
1 +

KH

SA

)
=

22HSAℓ1,Kℓ2,K
λK

+ 42HS2Aℓ2,Kℓ3,K .

Combining the two inequalities completes the proof.

D PAC BOUNDS

In this section, we provide the analysis of PAC bounds. We summarize the previous achievements
and our results on PAC bounds of episodic finite-horizon MDPs in Table 3. We note that although Jin
et al. (2018) propose a conversion that enable a regret-minimizing algorithm to solve best-policy
identification tasks, the conversion is sub-optimal in terms of 1/δ-dependence; it results in 1/δ2-
dependence when log 1

δ is possible. Refer to Appendix E in Ménard et al. (2021a) for a detailed
discussion.
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Table 3: Comparison of PAC bounds of different algorithms for tabular reinforcement learning. ’-’
denotes that the bound is not available.

Paper Best-Policy
Identification Mistake-style PAC

Dann & Brunskill (2015) - H2S2A
ε2 log 1

δ

Dann et al. (2017) - (H
4SA
ε2 + H4S3A2

ε ) log 1
δ

Dann et al. (2019) (H
2SA
ε2 + H3S2A

ε ) log 1
δ (H

2SA
ε2 + H3S2A

ε ) log 1
δ

Ménard et al. (2021a) H2SA
ε2 log 1

δ + H2SA
ε (S + log 1

δ ) -
Zhang et al. (2021a) (H

2SA
δ2ε2 + HS2A

δε ) log 1
δ -

This work (H
2SA
ε2 + HS2A

ε ) log 1
δ (H

2SA
ε2 + HS2A

ε ) log 1
δ

Algorithm 2: (ε, δ)-EQO
Input : ε ∈ (0, H], δ ∈ (0, 1]
Output: Π, Set of ε-optimal policies

1 β̂(n) := 1
n

(
88H2

ε log 24HSA
δ + 30HS log 12SA log(en)

δ

)
;

2 Π← ∅;
3 for k = 1, 2, . . . do
4 Compute πk using Algorithm 1 with ck = 56H2

ε log 24HSA
δ ;

5 Ûk
H+1(s)← 0 for all s ∈ S;

6 for h = H,H − 1, . . . , 1 do
7 foreach s ∈ S do
8 a← πk

h(s);
9 β̂k(s, a)← β̂(Nk(s, a));

10 Ûk
h (s)←

{
min

{
β̂k(s, a) + P̂ kÛk

h+1(s, a), H
}

if Nk(s, a) > 0

H if Nk(s, a) = 0
;

11 if Ûk
1 (s1) ≤ ε

8 then
12 Add πk to Π;
13 // If current task is Best Policy Identification, return πk;

14 Execute policy πk and observe trajectory (sk1 , a
k
1 , s

k
2 , . . . , s

k
H , akH , skH+1);

D.1 ALGORITHM

We introduce (ε, δ)-EQO, an algorithm for the PAC tasks, described in Algorithm 2. The interaction
between the agent and the environment is the same as EQO, where the parameters are set based on ε
and δ. Then, it executes additional procedures to verify whether the policy πk is ε-optimal, which is
necessary for best-policy identification tasks.

D.2 ADDITIONAL DEFINITIONS FOR PAC BOUNDS

In this section, we define additional concepts that are required to analyze the PAC bounds.

We define two logarithmic terms ℓ4,ε = log(1 + 270(H
3ℓ1
ε2 +

H2S(2ℓ1+ℓ5,ε)
ε )) and ℓ5,ε =

1 + log log(He/ε). We also define analogous concepts of βk, Uk
h , Nk, nk

h, and ηk, which are
notations used for the analysis of the regret bounds. We define β̂ and β, which are functions that
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maps N to R as follows:

β̂(n) :=
1

n

(
88H2ℓ1

ε
+ 30HSℓ3,n

)
β(n) :=

1

n

(
88H2ℓ1

ε
+ 73HSℓ3,n

)
.

For k ∈ N, β̂k and βk are functions from S ×A to R defined using β̂ and β:

β̂k(s, a) := β̂(Nk(s, a))

=
1

Nk(s, a)

(
88H2ℓ1

ε
+ 30HSℓ3,k(s, a)

)
βk(s, a) := β(Nk(s, a))

=
1

Nk(s, a)

(
88H2ℓ1

ε
+ 73HSℓ3,k(s, a)

)
.

Ûk
h (s) and Uk

h are defined in a similar manner with Uk
h , but using β̂k and βk instead of βk re-

spectively. Also, the definition of Ûk
h (s) uses P̂ k instead of P . They are formally defined by the

following iterative relationships:

Ûk
H+1(s) := Uk

H+1(s) := 0

Ûk
h (s) := min{β̂k(s, πk

h(s)) + P̂ kÛk
h+1(s, π

k
h(s)), H} for h ∈ [H]

Uk
h(s) := min{βk(s, πk

h(s)) + PUk
h+1(s, π

k
h(s)), H} for h ∈ [H] .

Algorithm 2 adds πk to Π if Ûk
1 (s

k
1) ≤ ε/8. We denote the set of episodes that do not meet this

condition among the first K as T̂K , and its size as T̂K . In the analysis, we are also interested in the
episodes such that Uk

h(s
k
1) > ε/16. For K ∈ N, we define T K := {k ∈ [K] : Uk

h(s
k
1) > ε/16} be

the set of episodes that satisfy Uk
h(s

k
1) > ε/16 among the first K episodes. Analogously, TK is the

size of T K .

We define nk
h and Nk(s, a), which are the counterparts of nk

h and Nk(s, a), but only count the
episodes in T K . Specifically, we define them as follows:

nk
h(s, a) :=

∑
i∈T k

H∑
j=1

1{(sij , aij) = (s, a), (i < k or j ≤ h)}

Nk(s, a) := nk−1
H (s, a)

=
∑

i∈T k−1

H∑
h=1

1{(sih, aih) = (s, a)} .

Finally, we define ηk, which is the counterpart of ηk defined by using nk
h and Nk instead. Specif-

ically, ηk := min{h ∈ [H] : nk
h(s

k
h, a

k
h) > 2Nk(skh, a

k
h)}, where ηk = H + 1 if there is no such

h ∈ [H].

D.3 HIGH-PROBABILITY EVENTS FOR PAC BOUNDS

To prove Theorems 3 and 4, the events of Lemmas 9 and 10 have to be replaced by the following
events. Recall that δ′ = δ/6.
Lemma 16. Fix ε ∈ (0, H]. With probability at least 1 − δ′, the following inequality holds for all
K ∈ N:

∑
k∈T K

ηk−1∑
h=1

(
PUk

h+1(s
k
h, a

k
h)− Uk

h+1(s
k
h+1)

)
≤ 1

4H

∑
k∈T K

ηk−1∑
h=1

Var(Uk
h+1)(s

k
h, a

k
h) + 3H log

6

δ
.
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Proof. Let Ikh := 1{Uk
1(s

k
1) > ε/16, h < ηk} and Xk

h = Ikh(PUk
h+1(s

k
h, a

k
h) − Uk

h+1(s
k
h+1)).

Since Ikh ∈ Fk
h , {Xk

h}k,h is a martingale difference sequence with respect to {Fk
h}k,h as in the

proof of Lemma 9. We have |Xk
h | ≤ H almost surely and E[(Xk

h)
2|Fk

h ] = Ikh Var(Uk
h+1)(s

k
h, a

k
h).

Using Lemma 36 with λ = 1/3, we obtain that
K∑

k=1

H∑
h=1

Xk
h ≤

1

4H

K∑
k=1

H∑
h=1

Ikh Var(Uk
h+1)(s

k
h, a

k
h) + 3H log

1

δ′

holds for all K ∈ N with probability at least 1− δ′, which is equivalent to the desired result.

Lemma 17. Fix ε ∈ (0, H]. Then, with probability at least 1− δ, the following inequality holds for
all K ∈ N:∑
k∈T K

ηk−1∑
h=1

(
P (Uk

h+1)
2(skh, a

k
h)− (Uk

h+1)
2(skh+1)

)
≤ 1

2

∑
k∈T K

ηk−1∑
h=1

Var(Uk
h+1)(s

k
h, a

k
h) + 6H2 log

6

δ

Proof. Let Ikh = 1{Uk
1(s

k
1) > ε/16, h < ηk} and Xk

h = Ikh(P (Uk
h+1)

2(skh, a
k
h)−(Uk

h+1)
2(skh+1)).

As in the proof of Lemma 16, {Xk
h}k,h is a martingale difference sequence with respect to {Fk

h}k,h.
We have |Xk

h | ≤ H2 almost surely and

E[(Xk
h)

2|Fk
h ] = Ikh Var((Uk

h+1)
2)(skh, a

k
h) ≤ 4H2Ikh Var(Uk

h+1)(s
k
h, a

k
h) ,

where we use Lemma 35 for the last inequality. Applying Lemma 36 with λ = 1/6, we obtain that
K∑

k=1

H∑
h=1

Xk
h ≤

1

2

K∑
k=1

H∑
h=1

Ikh Var(Uk
h+1)(s

k
h, a

k
h) + 6H2 log

1

δ′

holds for all K ∈ N with probability at least 1− δ′, which is equivalent to the desired result.

Now, we define the event under which the bound of Theorems 3 and 4 holds.
Lemma 18. Let E be the intersection of the events of Lemmas 5, 6, 7, 8, 16, and 17. Then E happens
with probability at least 1− δ.

Proof. This lemma holds by taking the union bound over the listed lemmas.

D.4 PROOFS OF THEOREMS 3 AND 4

In this section, we prove Theorems 3 and 4. The following proposition presents the theoretical
guarantees enjoyed by Algorithm 2, and it directly implies both theorems.
Proposition 3. Fix ε ∈ (0, H] and δ ∈ (0, 1]. Let Π be the output of Algorithm 2. Under E , the
following two propositions hold:

1. All policies in Π are ε-optimal.

2. The number of episodes whose policies are not included in Π is at most K0,

where K0 is defined as follows:

K0 :=

⌊
12000H2SAℓ1ℓ4,ε

ε2
+

5000HS2A(2ℓ1 + ℓ5,ε)ℓ4,ε
ε

⌋
,

where ℓ1 = log 24HSA
δ , ℓ4,ε = log(1+270(H

3ℓ1
ε2 +

H2S(2ℓ1+ℓ5,ε)
ε )) , and ℓ5,ε = 1+log log(He/ε).

Assuming that Proposition 3 is true, Theorems 3 and 4 are proved as follows:

Proof of Theorem 3. Proposition 3 states that under E , all policies of Π is ε-optimal, hence all the
policies that are not ε-optimal are not in Π. Proposition 3 also states that the number of episodes
whose policies are not included in Π is at most K0, therefore the number of episodes whose policies
are not ε-optimal is at most K0. By Lemma 18, the probability of E is at least 1− δ, completing the
proof.
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Proof of Theorem 4. Since the number of episodes whose policies are not included in Π is at most
K0 under Ē by Proposition 3, there exists at least one episode among the first K0 + 1 whose policy
is added to Π. As all policies in Π is ε-optimal, the algorithm may return the first such policy. The
probability of this event is guaranteed by Lemma 18.

Now, we prove Proposition 3.

The following two lemmas show the relationships between Uk
h , Ûk

h , and Uk
h.

Lemma 19. Under E , it holds that for all s ∈ S, h ∈ [H], and k ∈ K,

Uk
h (s) ≤ 2Ûk

h (s) .

Lemma 20. Under E , it holds that for all s ∈ S, h ∈ [H], and k ∈ K,

Ûk
h (s) ≤ 2Uk

h(s) .

The proofs of these lemmas are deferred to Appendices D.5 and D.6 respectively.

We first show that under E , the policies in Π are ε-optimal. Note that by setting λk = ε
8H , Algo-

rithm 2 runs Algorithm 1 with ck = 7ℓ1/λk. Also, the proofs of Lemmas 2 and 3 do not rely on
Lemmas 9 and 10. Therefore, the conclusions of Lemmas 2 and 3 hold with λk = ε

8H under E .

Lemma 21. Suppose that Algorithm 2 is run and the event E holds. If Ûk
1 (s

k
1) ≤ ε/8, then policy

πk is ε-optimal. Consequently, all the policies in Π are ε-optimal.

Proof. By Lemmas 2 and 3, the instantaneous regret at episode k is at most 4λk + 2Uk
1 (s

k
1) =

ε/2 + 2Uk
1 (s

k
1). By Lemma 19, this quantity is less than or equal to ε/2 + 4Ûk

1 (s
k
1). Therefore, if

Ûk
1 (s

k
1) ≤ ε/8, then the instantaneous regret at episode k is at most ε/2 + ε/2 = ε.

Now, we prove the second part of the proposition, which states that the number of episodes whose
policies are not added to Π is finite. To restate our goal using the notations defined in Appendix D.2,
we want to show that T̂K ≤ K0. To do so, we show T̂K ≤ TK and TK ≤ K0. To show TK ≤ K0,
we provide upper and lower bounds of

∑
k∈T K

Uk
1(s

k
1). While the lower bound is straightforward

to obtain, the upper bound is more technical. We state the upper-bound result in Lemma 22 and
defer its proof to Appendix D.7. We note that Lemma 22 and its proof are analogous to those of
Lemma 14.
Lemma 22. Under E , it holds that∑

k∈T K

Uk
1(s

k
1) ≤

352H2SAℓ1ℓ2,TK

ε
+ 292HS2Aℓ2,TK

ℓ3,TK
+ 3HSAℓ1

for all K ∈ N.

We require one more technical lemma, which is necessary to derive an upper bound of TK from the
inequality it satisfies.
Lemma 23. One has

5632H2SAℓ1ℓ2,K0

ε2
+

4672HS2Aℓ2,K0ℓ3,K0 + 48HSAℓ1
ε

< K0 .

The proof of this lemma is deferred to Appendix D.8

Now, we are ready to prove Proposition 3.

Proof of Proposition 3. By Lemma 21, we have that for all policies in Π are ε-optimal, which proves
the first part of the proposition.
Now, we prove the second part of the proposition, that the number of episodes whose policies are
not included in Π is at most K0. By Lemma 20, Ûk

1 (s
k
1) > ε/8 implies that Uk

1(s
k
1) > ε/16.

Hence, the number of episodes where Ûk
1 (s

k
1) > ε/8 holds during the first K episodes is at most
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TK . Therefore, it is sufficient to show that TK ≤ K0 holds for all K ∈ N.
Using Lemma 22, we obtain the following condition on TK :

εTK

16
≤
∑

k∈T K

Uk
1(s

k
1)

≤
352H2SAℓ1ℓ2,TK

ε
+ 292HS2Aℓ2,TK

ℓ3,TK
+ 3HSAℓ1 ,

where the first inequality holds since Uk
1(s

k
1) is greater than ε/16 when k ∈ T K by definition, and

the second inequality is from Lemma 22. Rearranging the terms, we deduce that TK satisfies the
following inequality for any K ∈ N:

TK ≤
5632H2SAℓ1ℓ2,TK

ε2
+

4672HS2Aℓ2,TK
ℓ3,TK

+ 48HSAℓ1

ε
.

This inequality, combined with Lemma 23, shows that one can not have TK = K0 for any K ∈ N.
Since TK starts at T 0 = 0 and increases by at most 1 as K increases, we conclude that TK < K0

must hold for all K ∈ N.

D.5 PROOF OF LEMMA 19

Proof of Lemma 19. We prove that the following stronger inequality holds by backward induction
on h:

Uk
h (s) ≤ 2Ûk

h (s)−
1

2H
(Uk

h )
2(s) .

The inequality is trivial when h = H + 1. Suppose the inequality holds for h+ 1. The inequality is
trivial when Ûk

h (s) = H . Assume that Ûk
h < H , so that Ûk

h (s) = β̂k(s, a) + P̂ kÛk
h+1(s, a), where

a = πk
h(s). We have that

Uk
h (s) ≤ βk(s, a) + PUk

h+1(s, a)

= βk(s, a) + (P − P̂ k)Uk
h+1(s, a) + P̂ kUk

h+1(s, a) . (24)

We bound the second term in inequality (24) by applying Lemma 29 with ρ = 4.

(P − P̂ k)Uk
h+1(s, a) ≤

1

4H
Var(Uk

h+1)(s, a) +
9HSℓ3,k(s, a)

Nk(s, a)
. (25)

We bound the last term of inequality (24) using the induction hypothesis as follows:

P̂ kUk
h+1(s, a) ≤ P̂ k

(
2Ûk

h+1 −
1

2H
(Uk

h+1)
2

)
(s, a)

= 2P̂ kÛk
h+1(s, a) +

1

2H
(P − P̂ k)(Uk

h+1)
2(s, a)− 1

2H
P (Uk

h+1)
2(s, a) . (26)

For (P − P̂ k)(Uk
h+1)

2(s, a), we apply Lemma 29 with ρ = 8 and obtain the following bound:

(P − P̂ k)(Uk
h+1)

2(s, a) ≤ 1

8H2
Var((Uk

h+1)
2)(s, a) +

17H2Sℓ3,k(s, a)

Nk(s, a)

≤ 1

2
Var(Uk

h+1)(s, a) +
17H2Sℓ3,k(s, a)

Nk(s, a)
, (27)

where we use Lemma 35 for the last inequality. Plugging in inequality (27) into inequality (26), we
obtain that

P̂ kUk
h+1(s, a) ≤ 2P̂ kÛk

h+1(s, a) +
1

4H
Var(Uk

h+1)(s, a) +
9HSℓ3,k(s, a)

Nk(s, a)
− 1

2H
P (Uk

h+1)
2(s, a) .

(28)
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Plugging inequalities (25) and (28) into inequality (24), we obtain that

Uk
h (s) ≤ βk(s, a) +

18HSℓ3,k(s, a)

Nk(s, a)
+

1

2H

(
Var(Uk

h+1)(s, a)− P (Uk
h+1)

2(s, a)
)
+ 2P̂ kÛk

h+1(s, a) .

By Lemma 27, we have that

Var(Uk
h+1)(s, a)− P (Uk

h+1)
2(s, a) ≤ −(Uk

h )
2(s) + 2Hmax{∆h(U

k)(s, a), 0}
≤ −(Uk

h )
2(s) + 2Hβk(s, a) ,

where the last inequality uses that

∆h(U
k)(s, a) = Uk

h (s)− PUk
h+1(s, a) ≤ (βk(s, a) + PUk

h+1(s, a))− PUk
h+1(s, a) = βk(s, a) .

Therefore, we conclude that

Uk
h (s) ≤ 2βk(s, a) +

18HSℓ3,k(s, a)

Nk(s, a)
− 1

2H
(Uk

h )
2(s) + 2P̂ kÛk

h+1(s, a)

= 2β̂k(s, a) + 2P̂ kÛk
h+1(s, a)−

1

2H
(Uk

h )
2(s)

= 2Ûk
h (s)−

1

2H
(Uk

h )
2(s) ,

where the first equality comes from that β̂k(s, a) = βk(s, a) +
9HSℓ3,k(s,a)

Nk(s,a)
by their definitions and

the second by Ûk
h (s) = β̂k(s, a) + P̂ kÛk

h+1(s, a).

D.6 PROOF OF LEMMA 20

Proof of Lemma 20. We prove the following stronger inequality by backward induction on h:

Ûk
h (s) ≤ 2Uk

h(s)−
1

2
(Uk

h)
2(s) .

The inequality trivially holds when h = H + 1 or Uk
h(s) = H . Suppose the inequality holds for

h+ 1 and Uk
h(s) < H . Using the induction hypothesis, we derive that

Ûk
h (s) ≤ β̂k(s, a) + P̂ kÛk

h+1(s, a)

≤ β̂k(s, a) + P̂ k

(
2Uk

h+1 −
1

2H
(Uk

h+1)
2

)
(s, a)

= β̂k(s, a) + (P̂ k − P )

(
2Uk

h+1 −
1

2H
(Uk

h+1)
2

)
(s, a) + P

(
2Uk

h+1 −
1

2H
(Uk

h+1)
2

)
(s, a)

= β̂k(s, a) + 2(P̂ k − P )Uk
h+1(s, a) +

1

2H
(P − P̂ k)(Uk

h+1)
2(s, a)

+ P

(
2Uk

h+1 −
1

2H
(Uk

h+1)
2

)
(s, a) , (29)

where a = πk
h(s). Using Lemma 29 with ρ = 8, we obtain that

(P̂ k − P )Uk
h+1(s, a) ≤

1

8H
Var(Uk

h+1)(s, a) +
17HSℓ3,k(s, a)

Nk(s, a)

and

(P − P̂ k)(Uk
h+1)

2(s, a) ≤ 1

8H2
Var((Uk

h+1)
2)(s, a) +

17H2Sℓ3,k(s, a)

Nk(s, a)

≤ 1

2
Var(Uk

h+1)(s, a) +
17H2Sℓ3,k(s, a)

Nk(s, a)
,

where we use Lemma 35 for the last inequality. Plugging in these bounds into inequality (29), we
obtain that

Ûk
h (s) ≤ β̂k(s, a) +

1

2H
Var(Uk

h+1)(s, a) +
43HSℓ3,k(s, a)

Nk(s, a)
+ P

(
2Uk

h+1 −
1

2H
(Uk

h+1)
2

)
(s, a)

= βk(s, a) +
1

2H

(
Var(Uk

h+1)(s, a)− P (Uk
h+1)

2(s, a)
)
+ 2PUk

h+1(s, a) ,
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where the last equality comes from that βk(s, a) = β̂k(s, a) +
43HSℓ3,k(s,a)

Nk(s,a)
by their definitions.

Using Lemma 27, we have

Var(Uk
h+1)(s, a)− P (Uk

h+1)
2(s, a) ≤ −(Uk

h)
2(s) + 2Hmax{∆h(U

k)(s, a), 0}
≤ −(Uk

h)
2(s) + 2Hβk(s, a) .

Therefore, we conclude that

Ûk
h (s) ≤ 2βk(s, a) + 2PUk

h+1(s, a)−
1

2H
(Uk

h)
2(s)

= 2Uk
h(s)−

1

2H
(Uk

h)
2(s) ,

completing the induction.

D.7 PROOF OF LEMMA 22

Analogously to Lemma 14, Lemma 22 is proved in two steps: first, using the concentration results
to bound

∑
k U

k with
∑

k,h β
k(skh, a

k
h), and second, using that

∑N
n=1 1/n ≤ 1 + logN to bound∑

k,h β
k(skh, a

k
h). However, a more meticulous care is required for the second step, as the bound

must depend only on TK and be independent of K to derive an upper bound for TK that does not
depend on K.
Lemma 24. Under E , it holds that∑

k∈T K

Uk
1(s

k
1) ≤ 2

∑
k∈T K

ηk−1∑
h=1

βk(skh, a
k
h) + 3HSAℓ1,K

for all K ∈ N.

Proof. The proof is identical to the proof of Lemma 14, but the use of Lemmas 9 and 10 are replaced
by Lemmas 16 and 17.

Lemma 25. Under E , it holds that∑
k∈T K

ηk−1∑
h=1

βk(skh, a
k
h) ≤ 2SA

(
88H2ℓ1

ε
+ 73HSℓ3,TK

)
ℓ2,TK

for all K ∈ N.

Proof. Recall that Nk(s, a) represents the number of times the state-action pair (s, a) ∈ S × A is
visited in episodes that satisfy U i

1(s
i
1) > ε/16 up to the (k − 1)-th episode. Clearly, Nk(s, a) ≥

Nk(s, a). By Lemma 34 with C1 = 88H2ℓ1/ε + 73HS log(12SA/δ) and C2 = 73HS, we have
that β(n) = (C1 + C2 log(1 + log n))/n is non-increasing. Therefore, we know that βk(s, a) =
β(Nk(s, a)) ≤ β(Nk(s, a)). Thus, we have that∑

k∈T K

ηk−1∑
h=1

βk(skh, a
k
h) ≤

∑
k∈T K

ηk−1∑
h=1

β(Nk(skh, a
k
h)) .

Since NK+1(s, a) ≤ TKH , we have β(Nk(s, a)) ≤ γ/Nk(s, a), where γ = 88H2ℓ1/ε +
73HSℓ3,TK

. By Lemma 31, we conclude that

∑
k∈T K

ηk−1∑
h=1

β(Nk(skh, a
k
h)) ≤

∑
k∈T K

ηk−1∑
h=1

γ

Nk(skh, a
k
h)

≤ 2γSA log

(
1 +

TKH

SA

)
= 2SA

(
88H2ℓ1

ε
+ 73HSℓ3,TK

)
ℓ2,TK

.
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To be precise, we apply Lemma 31 to the episodes in T K , meaning that τk in Lemma 31 should
be the trajectory of the k-th episode that satisfies U i

1(s
i
1) > ε/16, and the sum is taken over TK

episodes.

Proof of Lemma 22. Combine the inequalities of Lemmas 24 and 25.

D.8 PROOF OF LEMMA 23

Before proving Lemma 23, a technical lemma regarding the logarithmic terms is required.
Lemma 26. The following inequalities are true:

ℓ2,K0 ≤ 2ℓ4,ε (30)
ℓ3,K0

≤ 2ℓ1 + ℓ5,ε . (31)

Proof. We first provide a crude bound for logK0H . Let B = H2ℓ1
ε2 +

HS(2ℓ1+ℓ5,ε)
ε . By definition,

we have K0 = ⌊C1BSAℓ4,ε⌋ and ℓ4,ε = log(1 + 270BH)). First, applying Lemma 32 on log(1 +
270BH) with C2 = 270, we obtain that

ℓ4,ε ≤
log(1 + 270)

270
· (270BH) ≤ 6BH .

Therefore, we have

K0H ≤ 12000BHSAℓ4,ε ≤ 72000B2H2SA . (32)

To prove inequality (30), we use inequality (32) and proceed as follows:

ℓ2,K0
= log

(
1 +

K0H

SA

)
= log

(
1 + 72000B2H2

)
≤ 2 log

(
1 +
√
72000BH

)
≤ 2 log(1 + 270BH)

= 2ℓ4,ε ,

where the first inequality holds since 1 + x2 ≤ (1 + x)2 for all x ≥ 0.
To prove inequality (31), we need to further bound B. Since 24HSA

δ ≥ 48, applying Lemma 32 with
C1 = 48 yields

ℓ1 ≤
log 48

48
· 24HSA

δ
≤ 2HSA

δ
. (33)

Applying log x ≤ 1/(ex), we obtain that ℓ5,ε ≤ 1 + log(H/ε) ≤ 1 + H/(eε) ≤ 2H/ε. Then, it
holds that

2ℓ1 + ℓ5,ε ≤
4HSA

δ
+

2H

ε

≤ 4HSA

δ
· H
ε

+
HSA

δ
· H
ε

=
5H2SA

δε
, (34)

where the second inequality uses that H/ε ≥ 1 and HSA/δ ≥ 2. Then, we bound B as follows:

B =
H2ℓ1
ε2

+
HS(2ℓ1 + ℓ5,ε)

ε

≤ 4H3SA

δε2
+

5H3S2A

δε2

≤ 9H3S2A

δε2
, (35)
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where the first inequality applies inequalities (33) and (34) simultaneously. Utilizing these bounds,
we derive an upper bound of logK0H as follows:

logK0H ≤ log 72000B2H2SA

≤ log
583200H8S5A3

δ2ε4

≤ log
106817H4S5A3

δ2
+ log

e4H4

ε4
,

where the first inequality applies inequality (32), the second inequality comes from inequality (35),
and last inequality uses that 583200/e4 ≤ 106871. The first term can be further bounded as follows:

log
106817H4S5A3

δ2
≤ log

26705H5S5A5

δ5

≤ 5 log
8HSA

δ

≤ 7HSA

δ
,

where the first inequality uses that H,S ≥ 1, δ ≤ 1, and A ≥ 2, the second inequality holds since
26705 ≤ 85 = 32768, and the last inequality is due to Lemma 32 with C1 = 16 and 5 × 8 ×
(log 16)/16 ≤ 7. Using these results, we further bound logK0H as follows:

logK0H ≤
7HSA

δ
+ 4 log

eH

ε

≤ 7HSA

δ
log

eH

ε
+

2HSA

δ
log

eH

ε

=
9HSA

δ
log

eH

ε
, (36)

where the second inequality uses log(eH/ε) ≥ 1 and HSA/δ ≥ 2. We conclude that inequal-
ity (31), the bound of ℓ3,K0

, is true by the following steps:

ℓ3,K0 = log
2SA logK0H

δ

≤ log
18HS2A2 log eH

ε

δ2

≤ log
16H2S2A2

δ2
+ log

9

8
+ log log

eH

ε
≤ 2ℓ1 + ℓ5 ,

where the first inequality holds by inequality (36), and the last inequality uses log(9/8) ≤ 1.

Proof of Lemma 23. Note that K0 ≥ 12000SA, hence ℓ2,K0
≥ 1 holds. Then, we have

48HSAℓ1/ε ≤ 48HSAℓ1ℓ2,K0
/ε ≤ 48H2SAℓ1ℓ2,K0

/ε2, therefore it is sufficient to prove that

5680H2SAℓ1ℓ2,K0

ε2
+

4672HS2Aℓ2,K0ℓ3,K0

ε
≤ K0 .

Applying Lemma 26, we get
5680H2SAℓ1ℓ2,K0

ε2
+

4672HS2Aℓ2,K0
ℓ3,K0

ε

≤ 11360H2SAℓ1ℓ4,ε
ε2

+
4672HS2A(2ℓ1 + ℓ5,ε)ℓ4,ε

ε

≤ 11362H2SAℓ1ℓ4,ε
ε2

+
4672HS2A(2ℓ1 + ℓ5,ε)ℓ4,ε

ε
− 2

≤ 12000H2SAℓ1ℓ4,ε
ε2

+
5000HS2A(2ℓ1 + ℓ5,ε)ℓ4,ε

ε
− 2

≤
⌊
12000H2SAℓ1ℓ4,ε

ε2
+

5000HS2A(2ℓ1 + ℓ5,ε)ℓ4,ε
ε

⌋
− 1

= K0 − 1 < K0 ,
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where the first inequality applies the results of Lemma 26 simultaneously, and the second inequality
uses that H2SAℓ1ℓ4,ε/ε

2 ≥ 1.

E TECHNICAL LEMMAS

Lemma 27. Let C ≥ 0 be a constant. Let {Vh}H+1
h=1 be a sequence of H + 1 functions such that

Vh : S → [0, C] for all h ∈ [H + 1]. For any (s, a) ∈ S ×A, the variance of Vh+1 under P (·|s, a)
is bounded as follows:

Var(Vh+1)(s, a) ≤ −∆h(V
2)(s, a) + 2Cmax{∆h(V )(s, a), 0} .

Equivalently, the following inequality holds:

Var(Vh+1)(s, a)− P (Vh+1)
2(s, a) ≤ −(Vh(s))

2 + 2Cmax{∆h(V )(s, a), 0} .

Proof. We add and subtract (Vh(s))
2 to Var(Vh+1)(s, a) and obtain the following:

Var(Vh+1)(s, a) = P (Vh+1)
2(s, a)− (PVh+1(s, a))

2

= P (Vh+1)
2(s, a)− (Vh(s))

2︸ ︷︷ ︸
I1

+(Vh(s))
2 − (PVh+1(s, a))

2︸ ︷︷ ︸
I2

.

We have I1 = −∆h(V
2)(s, a) by definition. We bound I2 as follows:

I2 = (Vh(s) + PVh+1(s, a)) (Vh(s)− PVh+1(s, a))

≤ 2Cmax{∆h(V )(s, a), 0} ,

where the inequality uses that 0 ≤ Vh(s) + PVh+1(s, a) ≤ 2C and the definition of ∆h(V )(s, a).
Plugging in these bounds for I1 and I2 proves the first inequality of the lemma.
The second inequality is obtained by subtracting P (Vh+1)

2(s, a) from both sides of the first inequal-
ity and using that −∆h(V

2)(s, a)− P (Vh+1)
2(s, a) = −(Vh)

2(s, a).

Lemma 28. For any (s, a) ∈ S ×A and h ∈ [H], it holds that ∆h(V
∗)(s, a) ≥ r(s, a) ≥ 0.

Proof. The inequality is due to the Bellman optimality equation:

∆h(V
∗)(s, a) = V ∗

h (s)− PV ∗
h+1(s, a)

= max
a′∈A

(r(s, a′) + PV ∗
h+1(s, a

′))− PV ∗
h+1(s, a)

≥ (r(s, a) + PV ∗
h+1(s, a))− PV ∗

h+1(s, a)

= r(s, a) ≥ 0 .

Lemma 29. Let C > 0 be a constant. Under the event of Lemma 7, the following inequality holds
for all (s, a) ∈ S ×A, k ∈ N, ρ > 0 and V : S → [−C,C]:∣∣∣(P̂ k − P )V (s, a)

∣∣∣ ≤ 1

Cρ
Var(V )(s, a) +

C(2ρ+ 1)Sℓ3,k(s, a)

Nk(s, a)
.

Proof. Without loss of generality, we assume that PV (s, a) = 0 and C = 1 since the inequality is
invariant under constant translations and scalings of V . By Lemma 7, for any (s, a, s′) ∈ S×A×S,
it holds that ∣∣∣P̂ k(s′ | s, a)− P (s′ | s, a)

∣∣∣ ≤ 2

√
2P (s′ | s, a)ℓ3,k(s, a)

Nk(s, a)
+

2ℓ3,k(s, a)

3Nk(s, a)
.

Multiplying both sides by |V (s′)| and using that |V (s′)| ≤ C = 1, we obtain that∣∣∣(P̂ k(s′|s, a)− P (s′|s, a)
)
V (s′)

∣∣∣ ≤ 2|V (s′)|

√
2P (s′ | s, a)ℓ3,k(s, a)

Nk(s, a)
+

2ℓ3,k(s, a)

3Nk(s, a)
.
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We apply AM-GM inequality, 2ab ≤ a2/ρ + ρb2 for any a, b, ρ > 0, on the first term of the right
hand side with a =

√
P (s′|s, a)|V (s′)| and b =

√
2ℓ3,k(s, a)/Nk(s, a):

2|V (s′)|

√
2P (s′ | s, a)ℓ3,k(s, a)

Nk(s, a)
+

2ℓ3,k(s, a)

3Nk(s, a)

≤ 1

ρ
P (s′ | s, a)(V (s′))2 +

2ρℓ3,k(s, a)

Nk(s, a)
+

2ℓ3,k(s, a)

3Nk(s, a)

≤ 1

ρ
P (s′ | s, a)(V (s′))2 +

(2ρ+ 1)ℓ3,k(s, a)

Nk(s, a)
,

which implies that∣∣∣(P̂ k(s′|s, a)− P (s′|s, a)
)
V (s′)

∣∣∣ ≤ 1

ρ
P (s′ | s, a)(V (s′))2 +

(2ρ+ 1)ℓ3,k(s, a)

Nk(s, a)
. (37)

Taking the sum over s′ ∈ S, we obtain that∣∣∣(P̂ k − P )V (s, a)
∣∣∣ = ∣∣∣∣∣∑

s′∈S

(
P̂ k(s′ | s, a)− P (s′ | s, a)

)
V (s′)

∣∣∣∣∣
≤
∑
s′∈S

∣∣∣(P̂ k(s′ | s, a)− P (s′ | s, a)
)
V (s′)

∣∣∣
≤
∑
s′∈S

(
1

ρ
P (s′ | s, a)(V (s′))2 +

(2ρ+ 1)ℓ3,k(s, a)

Nk(s, a)

)
=

1

ρ
Var(V )(s, a) +

(2ρ+ 1)Sℓ3,k(s, a)

Nk(s, a)
,

where the first inequality is triangle inequality, the second is inequality (37), and the last equality is
by PV (s, a) = 0, which implies Var(V )(s, a) = P (V 2)(s, a).

Lemma 30. For any sequence of K trajectories, we have

K∑
k=1

1{ηk ̸= H + 1} ≤ SA log2 2H

and
K∑

k=1

1{ηk ̸= H + 1} ≤ SA log2 2H .

Proof. We only prove the first inequality, as the proof for the second inequality is identical. We
focus on the state-action pair that triggers the stopping of ηk:

K∑
k=1

1{ηk ̸= H + 1} =
K∑

k=1

∑
(s,a)∈S×A

1{ηk ̸= H + 1, (skηk , a
k
ηk) = (s, a)}

=
∑

(s,a)∈S×A

K∑
k=1

1{ηk ̸= H + 1, (skηk , a
k
ηk) = (s, a)} .

If ηk ̸= H + 1, then by definition, it implies that nk
ηk(s

k
ηk , a

k
ηk) = 2Nk(skηk , a

k
ηk) + 1, which in

turn implies that Nk+1(skηk , a
h
ηk) ≥ 2Nk(skηk , a

k
ηk) + 1. For any (s, a) ∈ S × A and K ∈ N, let

MK(s, a) be the number of k ∈ [K] such that Nk+1(s, a) ≥ 2Nk(s, a) + 1. Then, we infer that

K∑
k=1

1{ηk ̸= H + 1, (skηk , a
k
ηk) = (s, a)} ≤MK(s, a) .
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Now, it is sufficient to prove that MK(s, a) ≤ log2 2H for all (s, a) ∈ S ×A. Using induction, one
can prove that Nk+1(s, a) ≥ 2Mk(s,a) − 1 holds for all k ∈ N. Hence, once Mk(s, a) attains the
value ⌊log2 H⌋+ 1 for some k, we have Nk+1(s, a) ≥ H . On the other hand, since Nk+1(s, a) ≤
Nk(s, a) +H , we infer that Nk+1(s, a) ≥ 2Nk(s, a) + 1 occurs only if Nk(s, a) < H . Therefore,
Mk(s, a) does not increase after it reaches ⌊log2 H⌋+1, implying that MK(s, a) ≤ ⌊log2 H⌋+1 ≤
log2 2H for all K ∈ N.

Lemma 31. Let {τk}∞k=1 be any sequence of trajectories with τk = (sk1 , a
k
1 , R

k
1 , . . . , s

k
H+1). Let

{γk}∞k=1 be a sequence of increasing positive real numbers. Then, it holds that for any K ∈ N,

K∑
k=1

ηk−1∑
h=1

γk
Nk(skh, a

k
h)
≤ 2γkSA log

(
1 +

KH

SA

)
.

Proof. By the stopping rule of ηk, we have Nk(skh, a
k
h) ≥ 1

2n
k
h(s

k
h, a

k
h) when h < ηk. It also implies

that when h < ηk, it must hold that nk(skh, a
k
h) ≥ 2, since otherwise we have nk

h(s
k
h, a

k
h) = 1 >

2Nk(skh, a
k
h) = 0 and hence h ≥ ηk. Hence, we have that

K∑
k=1

ηk−1∑
h=1

γk
Nk(skh, a

k
h)
≤

K∑
k=1

ηk−1∑
h=1

2γk
nk
h(s

k
h, a

k
h)

≤
∑

(s,a)∈S×A

NK+1(s,a)∑
n=2

2γk
n

≤ 2γK
∑

(s,a)∈S×A

1{NK+1(s, a) ≥ 2} logNK+1(s, a)

≤ 2γK
∑

(s,a)∈S×A

log(1 +NK+1(s, a)) .

Since log(1 + x) is concave, applying Jensen’s inequality implies that

∑
(s,a)∈S×A

log(1 +NK+1(s, a)) ≤ SA log

(∑
(s,a)∈S×A(1 +NK+1(s, a))

SA

)

= SA log

(
1 +

KH

SA

)
.

Lemma 32. For any constant C1 ≥ e, if x ≥ C1, then log x ≤ logC1

C1
x. Also, for any constant

C2 > 0, if x ≥ C2, then log(1+x) ≤ log(1+C2)
C2

x holds, and if 0 < x ≤ C2, log(1+x) ≥ log(1+C2)
C2

x
holds.

Proof. By elementary calculus, one can check that (log x)/x decreases on [e,∞). Then, x ≥ C1 ≥
e implies (log x)/x ≤ (logC1)/C1, which proves the first inequality. For the second inequality,
note that log(1 + x) is concave, hence g(x) := log(1+C2)

C2
x − log(1 + x) is convex. Note that

g(0) = g(C2) = 0, therefore by its convexity, we have that g(x) ≥ 0 whenever x ≥ C2 and
g(x) ≤ 0 when 0 < x ≤ C2.

Lemma 33. For m ∈ N ∪ {0} and a constant C ≥ 3, we define the following function:

f(m) := min

{
1,

25SA(C + 2 log(1 +m)) log
(
1 + 2mH

SA

)
2m

}
.

Then, f is non-increasing.
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Proof. We directly show f(m) ≥ f(m + 1) for any m. We write z := 2m/(SA), so that f(m) =
min{1, (25(C + 2 log(1 +m)) log(1 +Hz))/z}. Let m0 := max{m ∈ N ∪ {0} : 2m ≤ 25SA}.
We deal with two cases, m ≤ m0 and m > m0, separately.

Case 1 m ≤ m0 : We show that f(m) = 1 for m ≤ m0, which implies f(m) ≥ f(m + 1).
First, we have that 25(C + 2 log(1 + m)) ≥ 75 by C ≥ 3 and log(1 + m) ≥ 0. Thus, we must
show that (75 log(1 + Hz))/z ≥ 1. Note that H ≥ 1 and z ≤ 25 when m ≤ m0, therefore it is
sufficient to prove that 75

z log(1 + z) ≥ 1 for z ≤ 25. By Lemma 32 with C2 = 25, we have that
log(1 + x) ≥ log(1+25)

25 x for x ≤ 25, hence we have 75
z log(1 + z) ≥ 75 log 26

25 ≥ 1.

Case 2 m > m0: We prove that f(m) ≥ f(m + 1) by showing that the second argument of the
minimum in the definition of f is decreasing when m > m0. Specifically, we show that

(C + 2 log(1 +m)) log(1 + 2mH
SA )

2m
≥

(C + 2 log(2 +m)) log(1 + 2m+1H
SA )

2m+1
.

Rearranging the terms and plugging in z = 2m/(SA), one can see that it is sufficient to prove

(C + 2 log(2 +m)) log (1 + 2Hz) ≤ 2(C + 2 log(1 +m)) log (1 +Hz) . (38)

First, we bound C + 2 log(2 +m) as follows:

C + 2 log(2 +m) = C + 2(log(1 +m/2) + log 2)

≤ C + 2 log(1 +m) + 1.5

≤ 3

2
C + 3 log(1 +m)

=
3

2
(C + 2 log(1 +m)) ,

where the second inequality uses that C ≥ 3 and log(1 +m) ≥ 0.
For log(1 + 2Hz), we use that log(1 + x) is concave, therefore the graph of log(1 + x) is below its
tangent line. Specifically, we have that log(1 + x) ≤ x−x0

1+x0
+ log(1 + x0) for all x, x0 > 0, where

the right hand side is the tangent line of log(1 + x) at point (x0, log(1 + x0)). By setting x = 2Hz
and x0 = Hz, we infer that log(1 + 2Hz) ≤ Hz

1+Hz + log(1 +Hz) ≤ 1 + log(1 +Hz). Since we
have z ≥ 25 when m > m0, we have that log(1+Hz) ≥ 3, which implies that 1+ log(1+Hz) ≤
4
3 log(1 +Hz).
As we have derived C+2 log(2+m) ≤ 3

2 (C+2 log(1+m)) and log(1+2Hz) ≤ 4
3 log(1+Hz),

by multiplying the two inequalities we conclude that inequality (38) holds.

Lemma 34. Let C1 ≥ C2 > 0 be constants. Let f(x) = 1
x (C1 + C2 log(1 + log x))) for x > 0.

Then, f is non-increasing on x ≥ 1.

Proof. Taking the derivative of f , we obtain that

f ′(x) =

C2

1+log x − C1 − C2 log(1 + log x)

x2
.

Note that the numerator is decreasing in x, and when plugging in x = 1, the numerator becomes
C2 − C1 ≤ 0. Therefore, we have that f ′(x) ≤ 0 for all x ≥ 1.

Lemma 35 (Lemma 30 in Chen et al. (2021)). Let C ≥ 0 be a constant and X be a random variable
such that |X| ≤ C almost surely. Then, Var(X2) ≤ 4C Var(X).

F CONCENTRATION INEQUALITIES

All the concentration inequalities used in the analysis are based on the following proposition, which
is a derived by following the proof of Theorem (1.6) in Freedman (1975).

Proposition 4. Let {Xt}∞t=1 be a martingale difference sequence with respect to a filtration
{Ft}∞t=0. Suppose Xt ≤ 1 holds almost surely for all t ≥ 1. Let Vt = E[X2

t |Ft−1] for all t ≥ 1 and
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take λ > 0 arbitrarily. Then, for any δ ∈ (0, 1], the following inequality holds for all n ∈ N with
probability at least 1− δ:

n∑
t=1

Xt ≤
eλ − 1− λ

λ

n∑
t=1

Vt +
1

λ
log

1

δ
. (39)

Proof. Let Mn = exp(
∑n

t=1(Xt − ((eλ − 1− λ)/λ)Vt)) for all n ∈ N, where M0 = 1. Corollary
1.4 (a) in Freedman (1975) states that {Mn}∞n=0 is a supermartingale with respect to {Fn}∞n=0.
By Ville’s maximal inequality, we infer that P(supn≥0 Mn ≥ 1/δ) ≤ δ, which implies that
P(∀n,Mn ≤ 1/δ) ≥ 1 − δ. Taking the logarithm on both sides and rearranging the terms, we
check that Mn ≤ 1/δ is equivalent to inequality (39), completing the proof.

We mainly use the following two corollaries of Proposition 4. The first one is comparably well-
known and has appeared in the literature several times (Beygelzimer et al., 2011; Agarwal et al.,
2014; Xu & Zeevi, 2020; Foster & Rakhlin, 2023).

Lemma 36. Let C > 0 be a constant and {Xt}∞t=1 be a martingale difference sequence with
respect to a filtration {Ft}∞t=0 with Xt ≤ C almost surely for all t ∈ N. Then, for any λ ∈ (0, 1]
and δ ∈ (0, 1], the following inequality holds for all n ∈ N with probability at least 1− δ:

n∑
t=1

Xt ≤
3λ

4C

n∑
t=1

E[X2
t |Ft−1] +

C

λ
log

1

δ
.

Proof. For λ ∈ (0, 1], it holds that eλ ≤ 1 + λ + (e − 2)λ2, hence, eλ−1−λ
λ ≤ (e − 2)λ. Let

X ′
t = Xt/C. Applying Proposition 4 and the inequality eλ−1−λ

λ ≤ (e− 2)λ, we obtain that

n∑
t=1

X ′
t ≤ (e− 2)λ

n∑
t=1

E[(X ′
t)

2|Ft−1] +
1

λ
log

1

δ

holds fo rall n ∈ N with probability at least 1 − δ. Bounding e − 2 ≤ 3/4 and multiplying both
sides by C completes the proof since CX ′

t = Xt and CE[(X ′
t)

2|Ft−1] = E[X2
t |Ft−1]/C.

The second corollary is a time-uniform version of Bernstein’s inequality that incorporates a log log n
factor instead of log n.

Lemma 37. Let {Xt}∞t=1 be a martingale difference sequence with respect to a filtration {Ft}∞t=0.
Suppose Xt ≤ 1 holds almost surely for all t ≥ 1 and there exists σ > 0 such that E[X2

t |Ft−1] ≤ σ2

for all t ≥ 1. Then, for any δ ∈ (0, 1], the following inequality holds for all n ∈ N with probability
at least 1− δ:

n∑
t=1

Xt ≤ 2σ

√
n log

2(1 + log n)2

δ
+

1

3
log

2(1 + log n)2

δ

Proof. For j ∈ N, let Ij = {⌈ej−1⌉, . . . , ⌊ej⌋} be a subset of natural numbers. Then, {I1, I2, . . .}
is a partition of the set of natural numbers. Fix j ∈ N. Take 0 < λj < 3, whose value is assigned
later. Applying Proposition 4 with δ/2j2 and restricting the range of n to Ij , we obtain that

P

(
n ∈ Ij :

n∑
t=1

Xt >
eλj − 1− λj

λj
σ2n+

1

λj
log

2j2

δ

)
≤ δ

2j2
.

Using Taylor expansion, one can see that for 0 < λj < 3,

eλj − 1− λj

λj
=

∞∑
k=2

λk−1
j

k!
≤

∞∑
k=2

λk−1
j

2 · 3k−2
=

λj

2(1− λj

3 )
.
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Therefore, we have that with probability at least 1 − δ/(2j2), the following inequality holds for all
n ∈ Ij :

n∑
t=1

Xt ≤
λj

2(1− λj

3 )
σ2n+

1

λj
log

2j2

δ
. (40)

We take

λj =

√
log 2j2

δ

αjσ + 1
3

√
log 2j2

δ

,

where αj > 0 is a universal constant whose value is assigned later. One can check that 0 < λj < 3.
We have

λj

2
(
1− λj

3

) =

√
log 2j2

δ

2αjσ
and

1

λj
=

1

3
+

αjσ√
log 2j2

δ

.

Plugging in these values in inequality (40), we obtain the following inequality:
n∑

t=1

Xt ≤
(

n

2αj
+ αj

)
σ

√
log

2j2

δ
+

1

3
log

2j2

δ
. (41)

Using that ej−1 ≤ n < ej , we obtain a bound such that

n

2αj
+ αj ≤

e
j
2
√
n

2αj
+

√
nαj

e
j−1
2

=

(
e

j
2

2αj
+

αj

e
j−1
2

)
√
n .

Choosing αj =
√
ej−

1
2 /2 to minimize the right hand side, it becomes

√
2e1/4

√
n, which is less

than 2
√
n. Then, inequality (41) becomes

n∑
t=1

Xt ≤ 2σ

√
n log

2j2

δ
+

1

3
log

2j2

δ
.

Finally, note that j ≤ 1 + log n, therefore we obtain that with probability at least 1 − δ/(2j2), it
holds that

n∑
t=1

Xt ≤ 2σ

√
n log

2(1 + log n)2

δ
+

1

3
log

2(1 + log n)2

δ

for all n ∈ Ij . The proof is completed by taking the union bound over j ∈ N.

G EXPERIMENT DETAILS

In this section, we provide additional details for the experiments described in Section 5. Specific
transitions and reward functions of the RiverSwim environment are depicted in Figure 2. For the
execution of the algorithms, all parameters are set according to their theoretical values as described
in their respective papers. For EQO, the parameters are set as described in Theorem 2, where the
algorithms is unaware of the number of episodes. The algorithm of UCRL2 is modified to adapt the
episodic finite-horizon setting. We report the average cumulative regret and standard deviation over
10 runs of 100,000 episodes in Figure 3, with the average execution time per run summarized in
Table 4.

We observe the superior performance of EQO. When S and H are small, only ORLC shows competi-
tive performance against EQO, but our algorithm outperforms ORLC by increasing margins as S and
H grow. Especially in the case where S = 40 and H = 160, only our algorithm learns the MDP
within the given number of episodes and achieves sub-linear cumulative regret. We also note that
our algorithm takes less execution time.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

s1 s2 s3 ... sn(1, r = 0.005)

0.4
0.6

0.05

0.6
0.35

1

0.05

0.6

0.35

1

0.05

0.35

1

0.4
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Figure 2: The RiverSwim MDP with n states. The solid arrows and dashed arrows describe the
state transitions of the “right” and “left”actions respectively with their probabilities labeled. r = X
shows the reward of the state-action pair, where r = 0 if not shown.

Table 4: Average execution time of each algorithm in seconds.

Algorithm S = 10
H = 40

S = 20
H = 80

S = 30
H = 120

S = 40
H = 160

UCRL2 (Jaksch et al., 2010) 1899.5 7298.9 17541.9 22594.3
UCBVI-BF (Azar et al., 2017) 699.0 2171.4 4439.3 6785.6

EULER (Zanette & Brunskill, 2019) 991.0 2847.3 5643.7 8353.7
ORLC (Dann et al., 2019) 1219.4 3871.1 7408.7 11655.0
MVP (Zhang et al., 2021a) 523.4 2155.4 4106.5 6687.3

EQO (Ours) 535.2 1904.0 3847.1 6713.1
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Figure 3: Cumulative regret under RiverSwim MDP with varying S and H .

We report another experiment results conducted under a MDP described in Figure 2 of Dann et al.
(2021). It is a deterministic MDP where the reward is given only for the last action. If the agent has
followed the optimal policy until the penultimate time step, it faces a state such that one action has
expected reward of 0.5 and the other has 0. If the agent’s actions deviates from the optimal policy,
than it receives an expected reward of either 0 or ε = 0.02, depending on the final action. Refer to
Appendix C in Dann et al. (2021) for more details about the MDP. We report the average cumulative
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regret and standard deviation over 10 runs of 500,000 episodes in Figure 4. UCRL is excluded due to
its high computational cost under large state space. We also add a tuned version of EQO, highlighting
its strength when the parameter is set appropriately. EQO with theoretical parameters outperforms
all other algorithms except ORLC. When appropriately tuned, EQO incurs the smallest regret by
significant margins. While it may be unfair to compare the result of algorithm with and without the
tuning of the parameters, we draw the reader’s attention to the complicated structure of the bonus
terms of ORLC. As presented in Algorithm 3 in Dann et al. (2019), the bonus terms of the algorithm
utilize at least twenty terms to estimate both upper and lower bounds of the optimal values, making it
almost intractable to effectively tune the algorithm. For the other algorithms, their bonus terms also
consists of multiple terms, being subject to the same problem. Only EQO offers a comprehensive
control over the algorithm through a single parameter. What we highlight here is not only the
empirical performance of EQO when tuned but also the simplicity of the algorithm that makes it
extremely convenient to tune.
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Figure 4: Cumulative regret under MDP described in Figure 2 of Dann et al. (2021) with varying n.

We conduct additional experiments in two more complex environments: Atari ‘free-
way 10 fs30’ (Bellemare et al., 2013) and Minigrid ‘MiniGrid-KeyCorridorS3R1-v0’ (Chevalier-
Boisvert et al., 2023). We have obtained their tabularized versions from the BRIDGE dataset (Laid-
law et al., 2023). Most Atari and MiniGrid environments are either too large in terms of the number
of states to perform tabular learning or too simple, where a greedy policy performs best, diminishing
the purpose of comparing the efficiency of exploration strategies. These two specific environments
are selected from each group for their moderate sizes and complexities. Both MDPs have over 150
states with more than two actions, making them much more complex than the RiverSwim MDP.
We note that instead of the conventional 25% chance of sticky actions (Machado et al., 2018), we
employ a 25% chance of random actions to preserve the Markov property.
We include PSRL (Osband et al., 2013), a randomized algorithm, for a more diverse comparison,
while UCRL2 is excluded due to its high computational cost in large state spaces. We report the
average cumulative regret and standard deviation over 10 runs of 5,000 episodes in Figure 5. Con-
sidering these environments as more real-world-like settings, we tune each algorithm to achieve their
best performance for each instance. For both settings, EQO consistently demonstrates competitive
performance.

Comparing with Bayesian algorithms. PSRL achieves a Bayesian regret guarantee for a given
prior distribution over the MDPs (Osband et al., 2013); however, the prior is not available under the
current experimental setting. While it is possible to construct an artificial prior, the performance of
these algorithms depends on the prior; that is, they gain an advantage if the prior is informative. This
makes it potentially unfair to compare them with algorithms that have frequentist regret guarantees,
as the latter cannot use any prior information and must be more conservative. For example, RLSVI,
another randomized algorithm, requires constant-scale perturbations for a Bayesian guarantee (Os-
band et al., 2016). However, the perturbations must be inflated by a factor of HSA to ensure a
frequentist regret bound (Zanette et al., 2020). Typically, the constant-scaled version empirically
performs much better for most reasonable MDPs.
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Figure 5: Cumulative regret under environments with larger state spaces.

Algorithm 3: EQO for Uniform-Reward Setting
Input: {c′k}∞k=1

1 for k = 1, 2, . . . ,K do
2 Set Nk(s, a), r̂k(s, a), and P̂ k(s′|s, a) as in Algorithm 1;
3 for h = H,H − 1, . . . , 1 do
4 foreach (s, a) ∈ S ×A do
5 bk(s, a)← c′k(H − h+ 1)/Nk(s, a);

6 Qk
h(s, a)←

{
min

{
r̂k(s, a) + bk(s, a) + P̂ kV k

h+1(s, a), H − h+ 1
}

if Nk(s, a) > 0

H − h+ 1 if Nk(s, a) = 0
;

7 V k
h (s)← maxa∈A Qk

h(s, a) for all s ∈ S;
8 πk

h(s)← argmaxa∈A Qk
h(s, a) for all s ∈ S;

9 Execute πk and obtain τk = (sk1 , a
k
1 , R

k
h, . . . , s

k
H , akH , Rk

H , skH+1);

One way to make the comparison viable would be to tune the frequentist algorithms. As the pur-
pose of the experiment with the RiverSwim MDP is to compare the performance of algorithms with
theoretical guarantees, we set the parameters according to their theoretical values, and hence we do
not tune the parameters and cannot include PSRL for comparison (since it does not have theoreti-
cal values for its parameters in this setting). In these two additional experiments, we consider the
settings to be more closer to real-world environments, where tuning the parameters becomes highly
necessary. Therefore, we tune the algorithms and include PSRL. For EQO, tuning the algorithm is
straightforward: treat ck in Algorithm 1 as a k-independent parameter as in Theorems 1, 3 and 4 and
tune its value. However, as mentioned earlier, the other algorithms have multiple terms with com-
plicated structures as bonuses, and how they should be tuned is not clear. For the results of Figure 5,
a multiplicative factor for the whole bonus term is set as a tuning parameter, therefore maintaining
the same complexity as EQO.

H EXPLOITING UNIFORM-REWARD SETTING

Although our Assumption 1 generalizes the uniform-reward setting, algorithms may perform better
when a prior information that the reward at each time step is at most 1 is available. Algorithm 3
describes how EQOmay adapt to the uniform-reward setting. We show that the theoretical guarantees
enjoyed by Algorithm 1 remain valid for Algorithm 3 under the uniform-reward setting, and provide
additional experimental results that compare the performance of the algorithms when all of them
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exploit the uniform reward structure, where our algorithm continues to exhibit its superiority over
the other algorithms.

H.1 THEORETICAL GUARANTEES FOR UNIFORM-REWARD SETTING

In this subsection, we rigorously demonstrate that under the uniform-reward setting, Algorithm 3
enjoys the same theoretical guarantees of Theorems 1 to 4. Set λk as defined in each of the theorems
and let c′k = 7ℓ1,k/λk, so that c′kH = ck. We note that under this choice of parameters, the bonus
term of Algorithm 3 is less than or equal to the bonus term of Algorithm 1. Therefore, the parts
where we derive upper bounds for bk(s, a) in the analysis remain valid, and the only part where we
need lower bounds for bk(s, a) is in the proof of Lemma 2, where we show the quasi-optimism. We
show that quasi-optimism holds under the different choice of bonus terms when the reward structure
is uniform, which implies that Algorithm 3 enjoys the same theoretical guarantees.

First, the high-probability events of Lemmas 5, 6 and 8 should be adjusted to the new bounds of
V ∗
h+1 and Rk

h. V ∗
h (s) is at most H − h+ 1 for all s ∈ S and Rk

h is at most 1. One can easily derive
from the proofs that the inequalities of each lemma can be replaced with the following inequalities
respectively:∣∣∣(P̂ k − P )V ∗

h+1(s, a)
∣∣∣ ≤ λk1{h ̸= H}

4(H − h)
Var(V ∗

h+1)(s, a) +
3(H − h)ℓ1,k
λkNk(s, a)

,

(P − P̂ k)(V ∗
h+1)

2(s, a) ≤ 1

2
Var(V ∗

h+1)(s, a) +
6(H − h)2ℓ1,k

Nk(s, a)
,∣∣r̂k(s, a)− r(s, a)

∣∣ ≤ λkr(s, a) +
ℓ1,k

λkNk(s, a)
,

where we define 1{h ̸= H}/(H − h) to be 0 when h = H . We denote the event where the events
of Lemmas 5, 6 and 8 are refined as the events above as E ′.
Now, we show that Algorithm 3 enjoys quasi-optimism.

Lemma 38 (Quasi-optimism for Algorithm 3). Under E ′, it holds that for all S ∈ S, h ∈ [H], and
k ∈ N,

V k
h (s) +

3

2
λk(H − h+ 1) ≥ V ∗

h (s) .

Proof. We prove the following inequality by backward induction on h ∈ [H + 1]:

V ∗
h (s)− V k

h (s) ≤ λk

(
2V ∗

h (s)−
1{h ̸= H + 1}
2(H − h+ 1)

(V ∗
h )

2(s)

)
.

It is easy to show that the inequality holds when h = H+1 or V k
h (s) = H−h+1. Suppose h ≤ H

and V k
h (s) < H − h+ 1, and that the inequality holds for h+ 1. Following proof of Lemma 2 with

the refined concentration inequalities, we arrive at the following inequality:

V ∗
h (s)− V k

h (s) ≤ −bk(s, a∗) + (6(H − h) + 1)ℓ1,k
λkNk(s, a∗)

+ λkr(s, a
∗) + 2λkPV ∗

h+1(s, a
∗)

+
λk1{h ̸= H}
2(H − h)

(
Var(V ∗

h+1)(s, a
∗)− P (V ∗

h+1)
2(s, a∗)

)
. (42)

We first note that bk(s, a∗) =
7(H−h+1)ℓ1,k
λkNk(s,a∗)

≥ (6(H−h)+1)ℓ1,k
λkNk(s,a∗)

, therefore the sum of the first
two terms is not greater than 0. Now, we bound the last term. Note that Var(V ∗

h+1)(s, a
∗) −

P (V ∗
h+1)(s, a

∗) = −(PV ∗
h+1(s, a

∗))2 is non-positive, therefore we have that

λk1{h ̸= H}
2(H − h)

(
Var(V ∗

h+1)(s, a
∗)− P (V ∗

h+1)
2(s, a∗)

)
≤ λk

2(H − h+ 1)

(
Var(V ∗

h+1)(s, a
∗)− P (V ∗

h+1)
2(s, a∗)

)
, (43)
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where the inequality also holds for h = H as both sides are 0 in such case. Applying Lemma 27,
we obtain that

Var(V ∗
h+1)(s, a

∗)− P (V ∗
h+1)

2(s, a∗) ≤ −(V ∗
h )

2(s) + 2(H − h+ 1)r(s, a∗) . (44)

Combining inequalities (42),(43), and (44), we conclude that

V ∗
h (s)− V k

h (s) ≤ λkr(s, a
∗) + 2λkPV ∗

h+1(s, a
∗)− λk

2(H − h+ 1)
(V ∗

h )
2(s) + 2λkr(s, a

∗)

= λk

(
2V ∗

h (s)−
1

2(H − h+ 1)
(V ∗

h )
2(s)

)
,

completing the induction argument.

H.2 ADDITIONAL EXPERIMENTS
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Figure 6: Cumulative regret of algorithms under the RiverSwim MDP with varying S and H . All
algorithms are aware of the uniform reward structure of the MDP.

We provide additional experimental results showing the performance of the algorithms when the
uniform reward structure is exploited. Note that the RiverSwim MDP satisfies the uniform-reward
assumption. To fairly compare algorithms that are analyzed under more general assumptions, we
convert such algorithms according to the following criteria:

(a) If the algorithms clip the estimated values by H , we adjust it to H − h + 1, which is the
maximum possible value for any state at time step h.

(b) If the algorithms have any terms proportional to H in their bonus, we change them to H−h,
as it is intuitive that the optimistic bonus term should not account for how many time steps
have passed before the current step.

We note that in the experiment presented in Section 5, the algorithms are not allowed to exploit
the uniform reward structure, and hence some algorithms that originally exploit it underwent the
opposite conversion for fair comparisons. Although we are not certain whether these simple conver-
sions ensure the validity of the analyses under the opposite assumptions, we believe that providing
numerical comparisons is still meaningful.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

We display the results in Figure 6. We exclude UCRL2 as it is originally designed for MDPs without
horizons, and we could not find any straightforward conversions for it. With the additional informa-
tion, all the algorithms exhibit significant improvements in their performance when compared with
Figure 3. We emphasize that our algorithm continues to demonstrate its superior performance over
the other algorithms.
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