
How Should We Build A Benchmark?
Revisiting 274 Code-Related Benchmarks For LLMs

Anonymous ACL submission

Abstract

Various benchmarks have been proposed to as-001
sess the performance of large language models002
(LLMs) in different coding scenarios. We refer003
to them as code-related benchmarks. However,004
there are no systematic guidelines by which005
such a benchmark should be developed to as-006
sure its quality, reliability, and reproducibil-007
ity. We propose How2Bench comprising a 55-008
criteria checklist as a set of guidelines to com-009
prehensively govern the development of code-010
related benchmarks. Using HOW2BENCH, we011
profiled 274 code-related benchmarks released012
within the past decade and found concerning013
issues. Nearly 70% of the benchmarks did not014
take measures for data quality assurance; over015
10% did not even open source or only partially016
open source. Many highly cited benchmarks017
have loopholes, including duplicated samples,018
incorrect reference codes/tests/prompts, and019
unremoved sensitive/confidential information.020
Finally, we conducted a human study involv-021
ing 49 participants and revealed significant022
gaps in awareness of the importance of data023
quality, reproducibility, and transparency. For024
ease of use, we provide a printable version of025
HOW2BENCH in Appendix E.026

1 Introduction027

❝ If you cannot measure it, you cannot028

improve it. ❞ — Lord Kelvin (1824-029

1907)030

Recent large language models (LLMs) have031

shown remarkable capabilities across various do-032

mains such as software development (Chen et al.,033

2021a), question answering (Rogers et al., 2023),034

and math reasoning (Imani et al., 2023). Various035

benchmarks (Chen et al., 2021a; Jimenez et al.,036

2024; Austin et al., 2021; Yue et al., 2024; Du et al.,037

2023a) are proposed to evaluate LLMs’ effective-038

ness and limitations from multiple perspectives in039

different application scenarios.040

However, doubts regarding the quality, relia- 041

bility, and transparency of various code-related 042

benchmarks arise. For example, a recent study 043

pointed out that “current programming benchmarks 044

are inadequate for assessing the actual correctness 045

of LLM-generated code” (Liu et al., 2023a). Other 046

accusations, including irreproducible (Reuel et al., 047

2024), closed data sources (Cao et al., 2024b), low 048

quality (Qiu et al., 2024a; Yadav et al., 2024a), 049

and inadequate validation measures (Liu et al., 050

2023a), were also raised, undermining the credibil- 051

ity of these benchmarks and thereby their subse- 052

quent evaluation results. This motivates the need 053

for rigorous and thorough guidelines to govern 054

code-related benchmark development. 055

In this paper, we introduce HOW2BENCH, 056

a comprehensive guideline consisting of a 55- 057

criteria checklist specially designed for code- 058

related benchmarks. This checklist covers the en- 059

tire lifecycle of benchmark development, from de- 060

sign and construction to evaluation, analysis, and 061

release as shown in Figure 1. It underwent multiple 062

iterations — we initiated a draft inspired by open- 063

source software guidelines (Fogel, 2005) and clas- 064

sical measurement theory (Suppes et al., 1962). We 065

refined it through iterative discussions with prac- 066

titioners, leading to the finalization of these crite- 067

ria. HOW2BENCH emphasizes reliability, validity, 068

open access, and reproducibility in the benchmark 069

development, ensuring high standards and fostering 070

a more reliable and transparent environment. 071

Following HOW2BENCH, we conducted an in- 072

depth profiling of 270+ code-related benchmarks 073

developed over the past decade (2014 - 2024). The 074

extent of criteria violations by the profiled bench- 075

marks is concerning: 076

● Almost 70% of the benchmarks did not take 077

any measures for data quality assurance; 078

● Over 90% did not consider code coverage 079

when use passing test cases as an oracle; 080

● Over half of the benchmarks did not provide 081

1

the essential information (e.g., experiment setup,082

prompts) for reproducibility;083

● Over 10% are not open source or only partially084

open source.085

We observed that even highly cited benchmarks086

have loopholes, including duplicated samples, in-087

correct reference/tests, unclear displays, and unre-088

moved sensitive/confidential information. We also089

observed these loopholes can propagate. Over 18%090

of the benchmarks serve as data sources for subse-091

quent benchmarks (Figure 8). Therefore, the data092

quality of benchmarks affects their credibility and093

likely impacts future benchmarks.094

To understand the usefulness of the criteria in095

How2Bench, we conducted a human study involv-096

ing 49 participants through questionnaires. All097

participants concurred on the necessity of having098

a checklist for benchmark construction to enhance099

quality. Nearly all participants with experience100

in benchmark development acknowledged the im-101

portance of all these 55 criteria. The study also102

exposed gaps in quality awareness: 16% of par-103

ticipants were unaware of the necessity for data104

denoising, and over 40% were not aware that the105

experimental setup and environment could impact106

the reproducibility and transparency. This paper107

makes contributions in five aspects:108

• Novelty. We introduce HOW2BENCH, a com-109

prehensive set of guidelines packaged as a 55-110

criteria checklist that covers the lifecycle of code-111

related benchmark development.112

• Significance. HOW2BENCH presents the first113

comprehensive set of actionable guidelines for114

developing high-quality benchmarks, striving to115

create a more reliable and transparent environ-116

ment. The human study also highlighted the de-117

mand for such a detailed guideline.118

• Usefulness. HOW2BENCH serves as a guideline119

for practitioners before/during developing code-120

related benchmarks, and a checklist for evaluat-121

ing existing benchmarks after their release. For122

ease of use, we also provide a printable version123

of HOW2BENCH on Appendix E.124

• Generalizability. Most criteria listed in125

HOW2BENCH can be adopted or adapted to other126

benchmarks such as Question-answering, mathe-127

matical reasoning, and multi-modal benchmarks.128

• Long-term Impact. Our statistics alert the com-129

munity to the severity and prevalence of non-130

standard practices in benchmark development. It 131

ultimately improves the overall quality of bench- 132

marks due to the propagation effect among them. 133

2 Background 134

2.1 Code-related Benchmarks 135

Benchmarks for coding tasks like code genera- 136

tion (Chen et al., 2021a; Austin et al., 2021), de- 137

fect detection (Just et al., 2014; Gao et al., 2023b; 138

Liu et al., 2024c), and program repair (Jimenez 139

et al., 2024; Risse and Böhme, 2024) are increas- 140

ingly common, reflecting the growing needs for 141

using LLMs for coding tasks. Recent studies have 142

highlighted various issues with these benchmarks, 143

ranging from design inconsistencies to scope and 144

applicability limitations. For example, (Liu et al., 145

2023a) found that even some widely used bench- 146

marks, such as HumanEval (Chen et al., 2021a) and 147

MBPP (Austin et al., 2021), contains a non-trivial 148

proportion of bugs in implementation, documenta- 149

tion, and test cases. Our work, in comparison, in- 150

troduces a detailed guideline that guides the bench- 151

mark development during the entire lifecycle. 152

2.2 Related Studies and Surveys 153

Several recent surveys and empirical studies have 154

profiled the status quo of LLM development. These 155

studies either explore the overall performance for 156

certain areas such as software engineering (Hou 157

et al., 2023; Wang et al., 2024a) or investigate the 158

capabilities of LLMs on specific tasks such as code 159

generation (Dou et al., 2024; Yu et al., 2024) and 160

test generation (Schäfer et al., 2024; Yuan et al., 161

2024b, 2023a). A survey (Chang et al., 2024) about 162

how to evaluate LLMs was proposed to answer 163

what/where/how to evaluate LLMs. This paper dif- 164

fers from these studies in its purpose and perspec- 165

tives. Unlike these benchmarks, our work proposed 166

guidelines for future benchmark development and 167

provided a checklist to assess the quality of these 168

existing benchmarks. 169

Recently, BetterBench (Reuel et al., 2024) is 170

a concurrent work assessing the AI benchmarks 171

against 46 criteria. Then, it scored 24 AI bench- 172

marks in various domains and ranked them. Better- 173

Bench differs from this paper in several key aspects: 174

scope (general benchmarks vs. code-related bench- 175

marks), lifecycle division (it addresses benchmark 176

retirement, while How2Bench focuses on bench- 177

mark evaluation, analysis, and release), and objec- 178

tives (scoring benchmarks vs. offering comprehen- 179

sive guidelines for future benchmark development). 180

2

Design

0 431 2

Construction Evaluation Analysis Release

Phase 0. Design Phase 1. Construction Phase 2. Evaluation Phase 3. Analysis Phase 4. Release

Motivation Collection Preprocess

ValidationCuration

Scope

Application Capability

LLMs Setting

Environment Logging

Performance Analysis

Display Inspiration

Materials Open Access

Documentation Exp Details

Figure 1: Lifecycle of Benchmark Development

Additionally, the study in this paper was conducted181

on a much larger scale (24 vs. 274 benchmarks),182

statistically highlighting the prevalent issues in ex-183

isting benchmarks.184

3 Design185

3.1 The Lifecycle of Benchmark Development186

Code-related benchmark development comprises187

five typical phases (Phase 0 - 4), as shown in Fig-188

ure 1, explained in detail as follows.189

Phase 0. Design. At the beginning of bench-190

mark development, it is vital to identify the moti-191

vation, the scope and the capabilities required by192

the application scenario of interest. To achieve this193

objective, one needs to carefully consider the appli-194

cation scenarios, making sure these scenarios align195

with real-world demands. Also, it is also necessary196

to assess whether other benchmarks already exist197

that address similar tasks, and to identify any short-198

comings they may possess. Furthermore, this new199

benchmark should be designed to evaluate specific200

LLMs’ capabilities; the crafted tasks are expected201

to reflect these capabilities.202

Phase 1. Construction. After establishing the203

motivation and purpose, the Benchmark Construc-204

tion phase moves from design to execution. Typ-205

ically, data is collected from public coding web-206

sites such as GitHub, LeetCode and StackOverflow.207

This is followed by preprocessing, which includes208

filtering, cleaning (e.g., deduplication, denoising),209

and curation (e.g., aligning tests with correspond-210

ing code). The phase usually ends with a validation211

process, which can be manual or automated.212

Phase 2. Evaluation. Once the benchmark is213

available, the next step is to apply it to LLMs, val-214

idating if it can effectively measure the intended215

LLM capabilities. Essential considering factors216

include selecting a representative array of LLMs,217

configuring settings like prompts and hyperparam-218

eters for consistency, choosing appropriate experi- 219

mental environments to meet LLM requirements, 220

and implementing thorough logging to ensure de- 221

pendable and reproducible results. 222

Phase 3. Analysis. After evaluation, experimen- 223

tal results are analyzed, drawing conclusions on 224

LLMs’ capabilities. This phase involves compar- 225

ing each LLM’s performance to identify standout 226

or underperforming models. Then, proper visual 227

aids such as bar charts and tables can be used to 228

display the experimental results, presenting clearer 229

observation and deeper inspiration, such as the cor- 230

relations between models, the correlations with re- 231

lated benchmarks, or performance in upper-/down- 232

stream tasks. Indeed, a thorough analysis helps 233

pinpoint areas for improvement and guides future 234

enhancements in LLM development. 235

Phase 4. Release. The final phase is to make the 236

benchmark open-accessible. This phase involves 237

meticulously preparing all materials associated 238

with the benchmark, ensuring they are ready for 239

open access to foster widespread adoption and col- 240

laboration. Clear, comprehensive documentation 241

is provided to guide users on effectively utilizing 242

the benchmark. Additionally, all logged exper- 243

iment details are made available, enhancing the 244

reproducibility and transparency of the benchmark. 245

3.2 Study Design 246

Our study consists of four steps (Figure 2). All 247

steps are explained as follows. 248

Step 1. Guideline Construction. To begin with, 249

we sketched the initial guidelines for each phase in 250

the benchmark development lifecycle (Section 3.1, 251

Figure 1) by reviewing existing literature (Suppes 252

et al., 1962; Zheng et al., 2023b; Schäfer et al., 253

2024; Reuel et al., 2024) and brainstorming. After 254

that, we refined the guidelines through a series 255

of interviews with various stakeholders, including 256

3

1. Guideline Construction 2. Literature Profiling 3. Focused Case Study 4. Human Interview

Sketch the initial guideline
• Review literature
• Brain storming

Collect related benchmarks
• Scope the time, publication

venue and tasks
• Snowballing

Select representatives
• Rank by citation/time
• Group by tasks

Refine the guideline
• Interview stakeholders,

model developers,
benchmark builders

• Add/delete/modify criteria in
the guideline

• Discuss with coauthors

Finalize 55 criteria as guideline

Profile benchmarks
• Scan the papers
• Scan the released

artifacts/homepage

Report statistics
• Report overall statistics
• Identify pros and cons

Analyze against the guideline
• Evaluate the representative

benchmarks against the
criteria in the guideline

• Study the overall statistics
• Identify the exemplars
• Collect bad cases
• Find reference from

literatures

Design questionnaire
• Design question types
• Group the question
• Add clarification and

necessary background

Distribute questionnaire
• Select target audience
• Send out questionnaire

Collect the response
• Filter out invalid response

Analyze the response

Release “How2Bench” – A Guideline for Code-related Benchmark Development

Figure 2: Workflow of study process

model developers and benchmark builders, allow-257

ing for the addition, deletion, or modification of258

criteria based on expert feedback and practical in-259

sights. This phase concludes with the finalization260

of our guidelines, HOW2BENCH. This detailed261

checklist consists of 55 criteria over the bench-262

mark lifecycle, providing effective guidelines for263

rigorous and reliable benchmark development.264

Step 2. Literature Profiling. This step begins265

by collecting related benchmarks according to266

their publication time, venue, and coding tasks,267

and then employing techniques like snowballing to268

ensure a comprehensive collection. This step leads269

to 274 code-related benchmarks for study. The de-270

tailed statistics can be found in the Appendix D.271

This step is followed by profiling each selected272

benchmark through a thorough review of corre-273

sponding papers and examination of the released274

artifacts or homepages associated with these bench-275

marks. The phase is completed by reporting statis-276

tics that highlight overall trends, pros, and cons277

identified during the profiling, providing a struc-278

tured overview of existing benchmarks.279

Step 3. Focused Case Study. After obtaining280

an overall impression of existing benchmarks, we281

selected 30 (= 5 * 6) representative benchmarks282

from top-5 tasks, with top-5 highly-cited bench-283

marks plus the latest 1 benchmark (Appendix C).284

Each selected benchmark is then analyzed against285

HOW2BENCH, examining how well they meet the286

established criteria, studying their overall statistics,287

and identifying both exemplary and poor cases. In-288

sights and references from existing literature are289

also incorporated to enrich the analysis, providing290

a deeper understanding of the benchmarks’ perfor-291

mance and areas for improvement. 292

Step 4. Human Study. The final step is a human 293

study that evaluates the importance and practicality 294

of HOW2BENCH. This involves designing a ques- 295

tionnaire by first initiating and iterating to gather 296

diverse, logical insights, which is then distributed 297

to a targeted audience. After collecting and filter- 298

ing responses for quality, the data is analyzed to 299

derive insights. See Appendix B for details. 300

4 Guideline – “HOW2BENCH” 301

The completed guideline HOW2BENCH with 55 302

criteria can be found in Appendix E. 303

Phase 0. Benchmark Design

1 Consider whether the benchmark can fill the gap in related research.

2 Consider what is the expected scope of the benchmark set.

3 Consider the expected application scenario of this benchmark (e.g., programming
assistant, automated tester).

4
Consider the LLMs' capabilities (e.g., understanding, reasoning, calculation) and
domain knowledge (e.g., OOP, memory management, fault localization, process
scheduling) that the benchmark hopes to evaluate.

Figure 3: Guideline for Benchmark Design

4.1 Guideline for Benchmark Design 304

Explanation – For benchmark design, we listed 305

four essential criteria, as shown in Figure 3. In 306

particular, the guideline starts by recommending 307

that benchmarks should initially assess if they are 308

addressing a significant gap in existing research, 309

ensuring the relevance and necessity of the bench- 310

mark. The scope of the benchmark is expected 311

to be well-defined, clarifying the capabilities or 312

characteristics being tested, how these relate to 313

practical scenarios such as programming assistance 314

4

or automated testing, and the relevance of these315

capabilities in real-world applications.316

■ Key Statistics – According to our statistics317

among 270+ benchmarks, apparent research bias318

can be observed in terms of coding tasks, pro-319

gramming languages, and code granularities are320

observed (Appendix A.1). For example, 36.13%321

(99/274) are code generation benchmarks, followed322

by program repair, with 9.85% (27/274).323

Also, during the focused case study (listed in324

Appendix C), we identified that 10% benchmarks325

have not explicitly specified the capabilities (e.g.,326

intention understanding, program synthesis) to be327

evaluated, and 30% have not specified application328

scenarios the benchmark targets.329

Besides, we also identified a case in330

MBPP (Austin et al., 2021) where a case331

fell out of the target evaluation capabilities332

(Appendix A.2). Indeed, clearly defining the333

application scenarios/scopes/capabilities could334

help benchmark constructors establish precise335

goals for the design and development of the336

benchmark, ensuring accuracy in the evaluation.337

Lastly, Figure 12 shows that 58% (158/274)338

code-related benchmarks involve Python, followed339

by 39% (107/274) involving Java. Yet, 31 program-340

ming languages are only covered by one bench-341

mark, and less than five benchmarks cover other 19342

programming languages. This observation consol-343

idates the observation from previous works (Cao344

et al., 2024a; Hou et al., 2023) on a larger scale.345

▲ Severity – Current benchmarks exhibit an
apparent imbalance in coding tasks and pro-
gramming languages dominated by code gener-
ation and Python, leaving research blanks to be
filled. Also, even highly cited benchmarks may
have samples that do not fall into the examined
capabilities.

4.2 Guideline for Construction346

☞ Explanation – Figure 4 shows 19 criteria for347

benchmark construction. Essentially, for data348

source, the key considerations include verifying349

the traceability and quality of the data source, ad-350

dressing potential data contamination (Sainz et al.,351

2023), and ensuring that the data sampling pro-352

cesses are scientifically robust and rigorous. Also,353

for data representativeness, it also guides through354

specific checks to ensure the benchmark’s scope355

is strictly adhered to, such as making sure every356

Phase 1. Benchmark Construction

5 Consider whether the data source of the benchmark is traceable.

6 Consider whether the data source of the benchmark is of high quality (e.g., stars,
downloads, last update times, number of forks).

7
Consider whether the benchmark's data source is representative (e.g., choose an
open-source community or code hosting platform that matches the task, capability,
and scope under study)

8
Consider data contamination issues during the benchmark collection (e.g.,
considering the upload time of the source code or checking whether the data source
is included in the training data of LLMs).

9 If data sampling is needed, consider whether the choice of sample size is scientific
(e.g., considering the confidence level/margin of error/sampling proportion, etc.).

10 If data sampling is needed, consider whether the sampling process is rigorous (e.g.,
random sampling, stratified sampling, etc.).

11 Ensure each data point in the benchmark falls into the targeted scope (e.g., checking
each data point's evaluated capabilities or domain knowledge).

12 Consider whether the data in the benchmark can cover the studied
capabilities/domain knowledge/application scenarios.

13 Consider whether there is a standard answer for each sample in the benchmark
(such as reference code, etc.).

14 For code, consider whether the code is compilable/executable.

15 Consider the possibility of noise in the data and perform denoise.

16 Consider the possibility of duplication in the data and deduplicate them.

17 Clean the sensitive information (such as data desensitization and anonymization)
unless the benchmark is deliberately designed so.

18 Manually review some or all of the data in the benchmark to ensure its quality.

19 Use LLMs to review some or all of the data in the benchmark to ensure its quality.

20 Design appropriate output validation methods for the benchmark (e.g., using exact
matching or designing test cases).

21 Design appropriate evaluation metrics for the evaluation set (e.g., precision,
accuracy, pass@K, recall).

22 Consider the adequacy of the evaluation metrics (e.g., is the code coverage high
enough).

23 Consider if there are any other evaluation perspectives (e.g., readability, efficiency,
safety, security).

Figure 4: Guideline for Benchmark Construction

data point falls within the targeted scope and that 357

the data can cover all studied capabilities, domain 358

knowledge, and application scenarios. 359

For data preprocess and cleaning, it also 360

stresses handling code-specific aspects, such as 361

compilability and execution, along with cleaning 362

and manually reviewing data for quality assurance. 363

Output validation methods and evaluation metrics 364

must be carefully designed and reviewed to ensure 365

they effectively measure the benchmark’s goals. 366

Lastly, it suggests considering additional evalua- 367

tion perspectives, such as safety (Wei et al., 2024; 368

Yuan et al., 2024a) checks, ensuring the code does 369

not contain sensitive information. 370

■ Key Statistics – According to our statistics (Ap- 371

pendix A.3), the 270+ benchmarks exhibit numer- 372

ous irregularities in their implementation, which 373

could significantly threaten the reliability of the 374

benchmarks. Surprisingly, 62% of benchmarks 375

did not deduplicate or did not mention. Near 80% 376

benchmarks did not consider or handle data 377

contamination threats. About 70% of the bench- 378

marks did not go through any quality assurance 379

checks such as manual checks and code execu- 380

tion. In particular, we summarized the commonly- 381

used data quality assurance metrics and their fre- 382

quency: manual check (22.6%), code execution 383

5

(2.2%), LLM check (1.5%), others (e.g. the num-384

ber of stars or heuristic rules, 5.8%).385

Also, since we focus on code-related bench-386

marks, which usually accompany test cases, test387

coverage also needs to be considered. As pointed388

out by prior study (Liu et al., 2023a), inadequate389

test coverage can lead to inflated evaluation results.390

However, we observed that only 8.7% of bench-391

marks have considered test coverage when using392

test cases as oracles (Appendix A.3). It severely393

affects the reliability of findings on these bench-394

marks, potentially misguiding future research and395

applications based on these flawed assessments.396

▲ Severity – Most benchmarks display se-
vere loopholes in data preparation and curation.
Quality checks are often neglected.

4.3 Guideline for Evaluation397

Phase 2. Benchmark Evaluation

24 Consider whether sufficient LLMs are evaluated.

25 Consider whether representative LLMs (e.g., covering latest/classical LLM families,
small/large LLMs, and open-/closed-source LLMs) are evaluated.

26 Consider whether the prompt is of high quality (e.g., the instruction and intent are
clear).

27 The prompts have been validated by humans or LLMs (e.g., evaluated or discussed by
participants or preliminarily tried out on several LLMs).

28 Try different paraphrases of the prompt.

29 Try different prompting strategies to observe the impact on the evaluation results
(e.g., in-context learning, chain-of-thought).

30 Pay attention to the hardware environment (such as GPU card, storage size, etc.) of
the experiment.

31 Pay attention to the operating system and software environment (e.g. operating
system, version, etc.) used for the experiment.

32 Pay attention to the off-the-shelf platforms, frameworks, or libraries for LLM
evaluation (e.g., fast chat, vllm, huggingface) that are used.

33 Repeat the experiment multiple times to reduce the impact of randomness on the
evaluation

34 Consider various randomization strategies (e.g., trying various temperature
parameters) to reduce the impact of parameter configuration on the evaluation.

35 Record the experimental process in detail (e.g., parameter settings, running time,
input/output pairs, etc.).

Figure 5: Guideline for Benchmark Evaluation

☞ Explanation – Guidelines for benchmark398

evaluation focus on the rigorousness and reliabil-399

ity of the evaluation. HOW2BENCH provides 12400

criteria for benchmark evaluation, as shown in Fig-401

ure 5. It mainly focuses on the comprehensive eval-402

uation processes for benchmarks involving LLMs.403

For evaluation design, it stresses the importance404

of assessing a sufficient and representative range405

of LLMs to ensure the benchmark’s applicability406

across various model families and configurations,407

both open and closed-source. Figure 29 and Fig-408

ure 30 shows the distribution of numbers of LLMs409

studied and the most exercised LLMs.410

Also, prompting has a direct impact on the qual-411

ity of the LLMs’ output results (Wei et al., 2022; 412

He et al., 2024a; Jin et al., 2024; Ye et al., 2023). 413

As pointed out by a recent study, up to 40% perfor- 414

mance gap could be observed in code translation 415

when prompts vary (He et al., 2024b). 416

Additionally, the experiment environment is es- 417

sential for reproducibility and transparency. Indeed, 418

the hardware, software, and platform environments 419

used during experiments might influence the out- 420

comes (Ghosh, 2024). Furthermore, because of 421

the nondeterministic nature of LLMs, experiments 422

should be repeated, and randomization strategies 423

should be used to mitigate the effects of random- 424

ness and parameter configuration biases. Lastly, 425

meticulously documented logs of the experimental 426

process are advised to facilitate transparency and 427

reproducibility, detailing everything from parame- 428

ter settings to the specific LLM pipelines such as 429

vLLM (Kwon et al., 2023) used. 430

■ Key Statistics – Among the 274 benchmarks, 431

183 of them are evaluated over LLMs. Accord- 432

ing to our statistics (Figure 29), over 34% of the 433

benchmarks were evaluated on fewer than 3 LLMs, 434

with 11.48% benchmarks only evaluated on one 435

LLM. Such evaluation results can hardly be gener- 436

alized to other LLMs. Furthermore, more than half 437

of the benchmarks studied fewer than 6 LLMs 438

(51% = (21 +22 + 20 + 4 + 12+15)/183). 439

☛ For reference, we listed the top 10 most stud- 440

ied LLM families in Figure 30. Among them, the 441

GPT and CodeLlama series are the most exten- 442

sively studied, accounting for 63% (116/183) and 443

33% (60/183), respectively. Under the constraints 444

of time and available resources, it is beneficial to 445

evaluate more representative LLMs. 446

The prompt quality also greatly impacts the 447

LLM evaluation (He et al., 2024b). According to a 448

recent study, up to 40% performance vary could be 449

observed in code translation task (He et al., 2024b). 450

So, carefully designing a prompt needs considera- 451

tion. However, 73.3% representative benchmarks 452

(Appendix C) do not validate whether the prompts 453

they used are well-designed (Appendix A.4). Sim- 454

ilarly, though 94.9% benchmarks were evaluated 455

in a zero-shot manner, only 21.2% benchmarks 456

were evaluated under few-shot, 8.8% under Chain- 457

of-Thought and 2.6% under RAG (Appendix A.4). 458

However, as shown in Figure 34, 73.3% represen- 459

tative benchmarks (Appendix C) do not validate 460

whether the prompt they used is well-designed. 461

Regarding the evaluation process, our statistics 462

exposed that only 35.4% of benchmark evalua- 463

6

tions have been repeated (Appendix A.4). Also,464

regarding the transparency and matriculated doc-465

uments, the observation is not optimistic – Only466

3.6% benchmarks provided their experiment467

environment. More than 50% of benchmarks468

did not provide reproducible instructions such469

as prompts, examples for few-shot learning, or470

content for retrieval (Figure 39). Less than half471

(42.7%) provide hyperparameters such as tem-472

perature for reproduction.473

▲ Severity – Over 60% of evaluations have not
been repeated to eliminate the impact of ran-
domness. Only a few (less than 3.6%) provide
the complete and necessary information re-
quired for reproducibility such as prompts and
environment.

4.4 Guideline for Evaluation Analysis474

Phase 3. Benchmark Analysis

36 Observe the difficulty of the benchmark, checking if the benchmark is too hard or too easy
for LLMs (i.e., most LLMs score too high/low).

37 Consider whether the benchmark can distinguish the pros and cons of different LLMs.

38 If the experiment is repeated several times, consider the stability of the benchmark (i.e.,
whether the experimental results vary too much in the repeated experiments).

39
Analyze the correlation between the data and their score. For example, if there is a
correlation between the data (such as similar difficulty and knowledge required), then the
scores should also be correlated.

40 Compare the performance of LLMs on this benchmark with their performance on other
related benchmarks.

41 Consider presenting the experiment results in an appropriate way (e.g., table, line graph,
pie chart, etc.).

42 Consider presenting the experiment results clearly (e.g., distinguishable
colors/labels/shapes, etc.).

43 Explain the experiment results.

44 Observe correlations via multiple perspectives from the experimental results (e.g.,
performance is correlated with model size or amount of context).

45 The analysis of the evaluation results will be inspiring (e.g., shed light on future direction,
make actionable advice, etc.).

Figure 6: Guideline for Evaluation Analysis

☞ Explanation – The analysis of the experiment475

results is expected to be objective and comprehen-476

sive, hopefully providing insights or actionable ad-477

vice. So, we listed 10 criteria for the evaluation478

analysis phase, as shown in Figure 6. Regarding479

the perspectives of analysis, inspired by classic480

measurement theory (Suppes et al., 1962), we sug-481

gest four essential perspectives, including difficulty482

(whether a benchmark is appropriately challeng-483

ing for LLMs), stability (whether the results are484

consistent through repeated trials), differentiability485

(whether benchmarks can differentiate the strengths486

and weaknesses of various LLMs), and inspiration487

(e.g., the correlations between the upper-/down-488

stream coding tasks and LLM scores).489

Moreover, effective presentation of results us-490

ing clear visual and textual descriptions is recom-491

mended to ensure the findings are understandable 492

and actionable. The phase concludes with the sug- 493

gestion to interpret and explain the results compre- 494

hensively, providing a basis for future research and 495

application enhancements. 496

■ Key Statistics – Because experimental analy- 497

sis is relatively subjective and cannot be obtained 498

through mechanical scanning, we focus on 30 rep- 499

resentative focus benchmarks (Appendix C), cov- 500

ering the highest cited and latest benchmarks in 501

top five tasks. Figure 37 shows an example from 502

CruxEval (Gu et al., 2024) where the experimental 503

scores can hardly be read from the figures. 504

Also, explaining experiment results is crucial 505

for other practitioners to understand what the out- 506

comes mean in the context of the research ques- 507

tions. According to our statistics (Appendix A.5), 508

70% benchmarks have detailed explanations and 509

analyses of their evaluation results, while still 30% 510

have not. Indeed, an explanation contributes to the 511

body of knowledge by making it possible to under- 512

stand and compare results with previous studies, 513

promoting transparency within the community. 514

▲ Severity – The analysis of experimental data
and the clarity of data presentation may receive
less attention and worth consideration. Even in
papers cited 1k+ times like MBPP (Austin et al.,
2021), there are instances of unclear evaluation
analysis and display.

4.5 Guideline for Benchmark Release 515

Phase 4. Benchmark Release

46 Set the appropriate license for the benchmark.

47 Review the released benchmark or other artifacts to ensure they do NOT contain sensitive
information (e.g., API keys, usernames, passwords, etc.).

48 review the released benchmark or other artifacts to ensure they do NOT contain toxicity
information (e.g., abusive comments/identifiers).

49 Make sure the benchmark is open-accessible.

50 Make sure the test cases or reference data are open and accessible.

51 Provide prompts used in the experiment to ensure the experiments are reproducible.

52 Disclose the experimental environment (e.g., hardware, operating system, software version,
framework platform) to ensure the reproducibility of the experiment.

53 Make the detailed experimental results public for verification.

54 Ensure the quality of the user manual such as README (e.g., it contains necessary benchmark
introduction, executable scripts, etc.).

55 Provide convenient evaluation interfaces for the released benchmark (e.g., providing a command
line interface, docker, etc.).

Figure 7: Guideline for Benchmark Release

☞ Explanation – Finally, releasing a benchmark 516

for open access also needs careful consideration. 517

We offered 10 suggestions for this step, as shown 518

in Figure 7, to highlight essential steps for public 519

release preparation, emphasizing accessibility and 520

ethical compliance. This includes setting an appro- 521

7

priate license to clarify usage rights, conducting a522

thorough review to eliminate sensitive or harm-523

ful content such as the API keys to access LLMs,524

the personal emails or toxic code comments (Miller525

et al., 2022) unless they are a part of the benchmark,526

and ensuring transparency and reproducibility527

by making all related materials openly available.528

Detailed prompts and clear descriptions of the529

experimental setup are advised to facilitate repli-530

cation. Additionally, providing user manuals and531

evaluation interfaces is crucial for effective user532

engagement with the benchmark, enhancing its re-533

liability and value for the research community.534

■ Key Statistics – The final step involves the re-535

lease of the benchmark. The fundamental require-536

ment for releasing a benchmark is that it must537

be open-sourced. However, surprisingly, we ob-538

served that 5.1% of the benchmarks are only par-539

tially open-sourced (e.g., missing some subjects540

or tests), and 5.8% are not open-sourced at all541

(e.g., links/web pages are no longer active). 19.3%542

have not properly set up the license. Furthermore,543

prompts, which are necessary for reproducibility,544

are not disclosed in 52.6% of the benchmarks (Fig-545

ure 39). Not to mention the lack of public informa-546

tion on experimental settings (Figure 32 and Fig-547

ure 31) and experimental parameters (Figure 43).548

What is worse, 19.3% benchmarks do not setup549

licenses (Figure 44). The absence of licensing may550

lead to severe legal and ethical issues, potentially551

resulting in unauthorized use and distribution of552

proprietary technologies. Additionally, only 16.7%553

of the benchmarks make their logged experimental554

results publicly available (Appendix A.6).555

▲ Severity – The release of existing bench-
marks exhibits several issues. For example, over
10% of the benchmarks are either not open to
public access or are only partially open-sourced.
Only 47.4% of benchmarks are released with
replicable prompts.

5 Human Study556

To delve deeper into the integration of knowledge557

and action, we surveyed 49 global researchers in558

AI (42.6%) and SE (57.14%), as shown in Fig-559

ure 50. Each participant had published at least one560

research paper, and about half had constructed561

code-related benchmarks. See Appendix B.562

First, all participants agreed that having a563

checklist for benchmark construction would con-564

tribute to the quality of the benchmark. 47/55 cri- 565

teria in HOW2BENCH are deemed important by 566

more 80% participants. Additionally, among the 567

21 participants who have constructed code-related 568

benchmarks, 53 out of 55 criteria were deemed 569

important by all benchmark developers; only two 570

criteria (criteria 3 and 4 in Section 4) were consid- 571

ered unimportant by a few individuals (3 and 2 par- 572

ticipants, respectively). Additionally, we received 573

two valuable suggestions that draw importance to 574

recording the time/monetary costs of constructing 575

the benchmark and conducting the experiments. 576

However, we also identified some notable gaps 577

in awareness. First, regarding the data prepara- 578

tion, more than 15% of participants were not aware 579

that the selection of data should consider the tar- 580

get scope of the evaluation set (i.e., the data must 581

be representative), and 16% of participants were 582

unaware of the need for data denoising. This over- 583

sight can significantly affect the validity and gen- 584

eralizability of experimental results, underscoring 585

the importance of a comprehensive understanding 586

of data handling for reliable research outcomes. 587

Second, regarding evaluation replicability and re- 588

liability. Over 40% of participants believe that 589

recording and publicizing the hardware and soft- 590

ware environments, software versions, and libraries 591

used in experiments is not important, with more 592

than 20% still considering it unimportant despite 593

already done so. This reveals a significant lack of 594

awareness about the impact that experimental envi- 595

ronments can have on the reliability, reproducibil- 596

ity, and stability of evaluation results. In fact, 597

various studies have demonstrated that different ex- 598

perimental environments, parameters, and prompts 599

can lead to substantial variations in outcomes (Xiao 600

et al., 2024; Wang et al., 2019, 2023a). 601

6 Conclusion 602

This paper proposes a rigorous guideline consisting 603

of 55 checklists covering the benchmark develop- 604

ment lifecycle. After investigating over 270 code- 605

related benchmarks, we exposed their merits and 606

limitations and provided suggestions for improving 607

them. Finally, our human study reveals the neglect 608

of details that may affect the benchmark’s reliabil- 609

ity. In the long run, HOW2BENCH helps to improve 610

the overall quality of benchmarks in the community 611

due to the propagation among benchmarks. 612

8

Limitations613

This paper has two primary limitations that offer614

avenues for future research. First, the collection of615

code-related benchmarks may be incomplete. To616

minimize this limitation, we covered papers pub-617

lished over the last decade, and conducted multiple618

rounds of snowballing. Ultimately, we collected619

274 benchmarks, which is comparable to the num-620

ber included in recent surveys (Hou et al., 2023;621

Schäfer et al., 2024) in the field. Second, the study622

involved substantial manual analysis, which could623

lead to oversight and discrepancies in the statisti-624

cal results. To mitigate this issue, we ensured that625

each benchmark was double-checked by at least626

two authors and underwent multiple rounds of iter-627

ation. Third, the guidelines may not cover all the628

details. Constructing a code-related benchmark in-629

volves numerous details, and some criteria are task-630

specific. To overcome this limitation, we iteratively631

refined the guidelines, interviewed practitioners,632

and tried to cover the entire benchmark develop-633

ment process as thoroughly as possible. Last, the634

human study participants may exhibit subjectiv-635

ity. To address this limitation, we endeavored to636

include a broad range of practitioners and seasoned637

researchers with experience in both AI and SE,638

aiming for the least biased results possible.639

References640

Yash Agarwal, Devansh Batra, and Ganesh Bagler.641
2020. Building hierarchically disentangled lan-642
guage models for text generation with named enti-643
ties. In Proceedings of the 28th International Confer-644
ence on Computational Linguistics, COLING 2020,645
Barcelona, Spain (Online), December 8-13, 2020,646
pages 26–38. International Committee on Computa-647
tional Linguistics.648

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer.649
2019. Juice: A large scale distantly supervised650
dataset for open domain context-based code gener-651
ation. In Proceedings of the 2019 Conference on652
Empirical Methods in Natural Language Processing653
and the 9th International Joint Conference on Nat-654
ural Language Processing, EMNLP-IJCNLP 2019,655
Hong Kong, China, November 3-7, 2019, pages 5435–656
5445. Association for Computational Linguistics.657

Lakshya A. Agrawal, Aditya Kanade, Navin Goyal,658
Shuvendu K. Lahiri, and Sriram K. Rajamani. 2023.659
Monitor-guided decoding of code lms with static anal-660
ysis of repository context. In Advances in Neural661
Information Processing Systems 36: Annual Confer-662
ence on Neural Information Processing Systems 2023,663
NeurIPS 2023, New Orleans, LA, USA, December 10664
- 16, 2023.665

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat 666
Chakraborty, and Kai-Wei Chang. 2023. AVATAR: A 667
parallel corpus for java-python program translation. 668
In Findings of the Association for Computational 669
Linguistics: ACL 2023, Toronto, Canada, July 9-14, 670
2023, pages 2268–2281. Association for Computa- 671
tional Linguistics. 672

Miltiadis Allamanis, Henry Jackson-Flux, and Marc 673
Brockschmidt. 2021. Self-supervised bug detection 674
and repair. In Advances in Neural Information Pro- 675
cessing Systems 34: Annual Conference on Neural 676
Information Processing Systems 2021, NeurIPS 2021, 677
December 6-14, 2021, virtual, pages 27865–27876. 678

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 679
2019. code2seq: Generating sequences from struc- 680
tured representations of code. In 7th International 681
Conference on Learning Representations, ICLR 2019, 682
New Orleans, LA, USA, May 6-9, 2019. OpenRe- 683
view.net. 684

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik 685
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha- 686
jishirzi. 2019. MathQA: Towards interpretable math 687
word problem solving with operation-based for- 688
malisms. In Proceedings of the 2019 Conference 689
of the North American Chapter of the Association for 690
Computational Linguistics: Human Language Tech- 691
nologies, Volume 1 (Long and Short Papers), pages 692
2357–2367, Minneapolis, Minnesota. Association for 693
Computational Linguistics. 694

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, 695
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin 696
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su- 697
jan Kumar Gonugondla, Hantian Ding, Varun Ku- 698
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain, 699
Robert Giaquinto, Haifeng Qian, Murali Krishna Ra- 700
manathan, Ramesh Nallapati, Baishakhi Ray, Parmin- 701
der Bhatia, Sudipta Sengupta, Dan Roth, and Bing 702
Xiang. 2022. Multi-lingual evaluation of code gener- 703
ation models. 704

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 705
Bosma, Henryk Michalewski, David Dohan, Ellen 706
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 707
Program synthesis with large language models. arXiv 708
preprint arXiv:2108.07732. 709

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, 710
Arjun Guha, Molly Q. Feldman, and Carolyn Jane 711
Anderson. 2024. Studenteval: A benchmark of 712
student-written prompts for large language models 713
of code. In Findings of the Association for Compu- 714
tational Linguistics, ACL 2024, Bangkok, Thailand 715
and virtual meeting, August 11-16, 2024, pages 8452– 716
8474. Association for Computational Linguistics. 717

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, 718
Vageesh D. C., Arun Iyer, Suresh Parthasarathy, Sri- 719
ram K. Rajamani, Balasubramanyan Ashok, and 720
Shashank Shet. 2024. Codeplan: Repository-level 721
coding using llms and planning. Proc. ACM Softw. 722
Eng., 1(FSE):675–698. 723

9

https://doi.org/10.18653/V1/2020.COLING-MAIN.3
https://doi.org/10.18653/V1/2020.COLING-MAIN.3
https://doi.org/10.18653/V1/2020.COLING-MAIN.3
https://doi.org/10.18653/V1/2020.COLING-MAIN.3
https://doi.org/10.18653/V1/2020.COLING-MAIN.3
https://doi.org/10.18653/V1/D19-1546
https://doi.org/10.18653/V1/D19-1546
https://doi.org/10.18653/V1/D19-1546
https://doi.org/10.18653/V1/D19-1546
https://doi.org/10.18653/V1/D19-1546
http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.143
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.143
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.143
https://proceedings.neurips.cc/paper/2021/hash/ea96efc03b9a050d895110db8c4af057-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ea96efc03b9a050d895110db8c4af057-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ea96efc03b9a050d895110db8c4af057-Abstract.html
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.48550/ARXIV.2210.14868
https://doi.org/10.48550/ARXIV.2210.14868
https://doi.org/10.48550/ARXIV.2210.14868
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.501
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.501
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.501
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.501
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.501
https://doi.org/10.1145/3643757
https://doi.org/10.1145/3643757
https://doi.org/10.1145/3643757

Antonio Valerio Miceli Barone and Rico Sennrich. 2017.724
A parallel corpus of python functions and documen-725
tation strings for automated code documentation and726
code generation. In Proceedings of the Eighth In-727
ternational Joint Conference on Natural Language728
Processing, IJCNLP 2017, Taipei, Taiwan, Novem-729
ber 27 - December 1, 2017, Volume 2: Short Papers,730
pages 314–319. Asian Federation of Natural Lan-731
guage Processing.732

Earl T Barr, Mark Harman, Phil McMinn, Muzammil733
Shahbaz, and Shin Yoo. 2014. The oracle problem734
in software testing: A survey. IEEE transactions on735
software engineering, 41(5):507–525.736

Berkay Berabi, Jingxuan He, Veselin Raychev, and Mar-737
tin T. Vechev. 2021. Tfix: Learning to fix coding738
errors with a text-to-text transformer. In Proceed-739
ings of the 38th International Conference on Ma-740
chine Learning, ICML 2021, 18-24 July 2021, Vir-741
tual Event, volume 139 of Proceedings of Machine742
Learning Research, pages 780–791. PMLR.743

Egor Bogomolov, Aleksandra Eliseeva, Timur Gal-744
imzyanov, Evgeniy Glukhov, Anton Shapkin, Maria745
Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie746
van Deursen, Maliheh Izadi, and Timofey Bryksin.747
2024. Long code arena: a set of benchmarks for748
long-context code models. CoRR, abs/2406.11612.749

Jialun Cao, Zhiyong Chen, Jiarong Wu, Shing-Chi Che-750
ung, and Chang Xu. 2024a. Can AI beat under-751
graduates in entry-level java assignments? bench-752
marking large language models on javabench. CoRR,753
abs/2406.12902.754

Jialun Cao, Wuqi Zhang, and Shing-Chi Cheung. 2024b.755
Concerned with data contamination? assessing coun-756
termeasures in code language model. arXiv preprint757
arXiv:2403.16898.758

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen,759
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han-760
chong Zhang, Yuchen Mao, Wenjing Hu, Tianbao761
Xie, Hongshen Xu, Danyang Zhang, Sida Wang,762
Ruoxi Sun, Pengcheng Yin, Caiming Xiong, Ansong763
Ni, Qian Liu, Victor Zhong, Lu Chen, Kai Yu, and764
Tao Yu. 2024c. Spider2-v: How far are multimodal765
agents from automating data science and engineering766
workflows? CoRR, abs/2407.10956.767

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-768
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,769
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,770
Molly Q Feldman, et al. 2022. Multipl-e: A scal-771
able and extensible approach to benchmarking neural772
code generation. arXiv preprint arXiv:2208.08227.773

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding,774
and Baishakhi Ray. 2022. Deep learning based vul-775
nerability detection: Are we there yet? IEEE Trans.776
Software Eng., 48(9):3280–3296.777

Shubham Chandel, Colin B Clement, Guillermo Serrato,778
and Neel Sundaresan. 2022. Training and evaluat-779
ing a jupyter notebook data science assistant. arXiv780
preprint arXiv:2201.12901.781

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, 782
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, 783
Cunxiang Wang, Yidong Wang, et al. 2024. A sur- 784
vey on evaluation of large language models. ACM 785
Transactions on Intelligent Systems and Technology, 786
15(3):1–45. 787

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 788
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 789
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 790
Greg Brockman, Alex Ray, Raul Puri, Gretchen 791
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 792
try, Pamela Mishkin, Brooke Chan, Scott Gray, 793
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 794
Kaiser, Mohammad Bavarian, Clemens Winter, 795
Philippe Tillet, Felipe Petroski Such, Dave Cum- 796
mings, Matthias Plappert, Fotios Chantzis, Eliza- 797
beth Barnes, Ariel Herbert-Voss, William Hebgen 798
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 799
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 800
William Saunders, Christopher Hesse, Andrew N. 801
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 802
Morikawa, Alec Radford, Matthew Knight, Miles 803
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 804
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 805
Sutskever, and Wojciech Zaremba. 2021a. Evaluat- 806
ing large language models trained on code. 807

Xinyun Chen, Linyuan Gong, Alvin Cheung, and Dawn 808
Song. 2021b. Plotcoder: Hierarchical decoding for 809
synthesizing visualization code in programmatic con- 810
text. In Proceedings of the 59th Annual Meeting of 811
the Association for Computational Linguistics and 812
the 11th International Joint Conference on Natural 813
Language Processing, ACL/IJCNLP 2021, (Volume 1: 814
Long Papers), Virtual Event, August 1-6, 2021, pages 815
2169–2181. Association for Computational Linguis- 816
tics. 817

Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun 818
Chen, and David A. Wagner. 2023. Diversevul: A 819
new vulnerable source code dataset for deep learning 820
based vulnerability detection. In Proceedings of the 821
26th International Symposium on Research in Attacks, 822
Intrusions and Defenses, RAID 2023, Hong Kong, 823
China, October 16-18, 2023, pages 654–668. ACM. 824

Jianbo Dai, Jianqiao Lu, Yunlong Feng, Rongju Ruan, 825
Ming Cheng, Haochen Tan, and Zhijiang Guo. 2024. 826
MHPP: exploring the capabilities and limitations 827
of language models beyond basic code generation. 828
CoRR, abs/2405.11430. 829

Xiang Deng, Ahmed Hassan Awadallah, Christopher 830
Meek, Oleksandr Polozov, Huan Sun, and Matthew 831
Richardson. 2021. Structure-grounded pretraining 832
for text-to-sql. In Proceedings of the 2021 Confer- 833
ence of the North American Chapter of the Asso- 834
ciation for Computational Linguistics: Human Lan- 835
guage Technologies, NAACL-HLT 2021, Online, June 836
6-11, 2021, pages 1337–1350. Association for Com- 837
putational Linguistics. 838

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, 839
Chawin Sitawarin, Xinyun Chen, Basel Alomair, 840

10

https://aclanthology.org/I17-2053/
https://aclanthology.org/I17-2053/
https://aclanthology.org/I17-2053/
https://aclanthology.org/I17-2053/
https://aclanthology.org/I17-2053/
http://proceedings.mlr.press/v139/berabi21a.html
http://proceedings.mlr.press/v139/berabi21a.html
http://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.48550/ARXIV.2406.11612
https://doi.org/10.48550/ARXIV.2406.11612
https://doi.org/10.48550/ARXIV.2406.11612
https://doi.org/10.48550/ARXIV.2406.12902
https://doi.org/10.48550/ARXIV.2406.12902
https://doi.org/10.48550/ARXIV.2406.12902
https://doi.org/10.48550/ARXIV.2406.12902
https://doi.org/10.48550/ARXIV.2406.12902
https://doi.org/10.48550/ARXIV.2407.10956
https://doi.org/10.48550/ARXIV.2407.10956
https://doi.org/10.48550/ARXIV.2407.10956
https://doi.org/10.48550/ARXIV.2407.10956
https://doi.org/10.48550/ARXIV.2407.10956
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/TSE.2021.3087402
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/V1/2021.ACL-LONG.169
https://doi.org/10.18653/V1/2021.ACL-LONG.169
https://doi.org/10.18653/V1/2021.ACL-LONG.169
https://doi.org/10.18653/V1/2021.ACL-LONG.169
https://doi.org/10.18653/V1/2021.ACL-LONG.169
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.48550/ARXIV.2405.11430
https://doi.org/10.48550/ARXIV.2405.11430
https://doi.org/10.48550/ARXIV.2405.11430
https://doi.org/10.18653/V1/2021.NAACL-MAIN.105
https://doi.org/10.18653/V1/2021.NAACL-MAIN.105
https://doi.org/10.18653/V1/2021.NAACL-MAIN.105

David A. Wagner, Baishakhi Ray, and Yizheng Chen.841
2024a. Vulnerability detection with code language842
models: How far are we? CoRR, abs/2403.18624.843

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han-844
tian Ding, Ming Tan, Nihal Jain, Murali Krishna Ra-845
manathan, Ramesh Nallapati, Parminder Bhatia, Dan846
Roth, and Bing Xiang. 2023. Crosscodeeval: A di-847
verse and multilingual benchmark for cross-file code848
completion. In Advances in Neural Information Pro-849
cessing Systems 36: Annual Conference on Neural850
Information Processing Systems 2023, NeurIPS 2023,851
New Orleans, LA, USA, December 10 - 16, 2023.852

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad,853
Murali Krishna Ramanathan, Ramesh Nallapati, Par-854
minder Bhatia, Dan Roth, and Bing Xiang. 2024b.855
Cocomic: Code completion by jointly modeling in-856
file and cross-file context. In Proceedings of the857
2024 Joint International Conference on Computa-858
tional Linguistics, Language Resources and Evalua-859
tion, LREC/COLING 2024, 20-25 May, 2024, Torino,860
Italy, pages 3433–3445. ELRA and ICCL.861

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng,862
Weikang Zhou, Muling Wu, Mingxu Chai, Jessica863
Fan, Caishuang Huang, Yunbo Tao, et al. 2024.864
What’s wrong with your code generated by large865
language models? an extensive study. arXiv preprint866
arXiv:2407.06153.867

Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and868
See-Kiong Ng. 2024. Mercury: A code efficiency869
benchmark for code large language models. In The870
Thirty-eight Conference on Neural Information Pro-871
cessing Systems Datasets and Benchmarks Track.872

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,873
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng874
Sha, Xin Peng, and Yiling Lou. 2023a. Classe-875
val: A manually-crafted benchmark for evaluat-876
ing llms on class-level code generation. Preprint,877
arXiv:2308.01861.878

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,879
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha,880
Xin Peng, and Yiling Lou. 2023b. Classeval: A881
manually-crafted benchmark for evaluating llms on882
class-level code generation. CoRR, abs/2308.01861.883

Aleksandra Eliseeva, Yaroslav Sokolov, Egor Bogo-884
molov, Yaroslav Golubev, Danny Dig, and Timofey885
Bryksin. 2023. From commit message generation886
to history-aware commit message completion. In887
38th IEEE/ACM International Conference on Auto-888
mated Software Engineering, ASE 2023, Luxembourg,889
September 11-15, 2023, pages 723–735. IEEE.890

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,891
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui892
Zhang, and Dragomir R. Radev. 2018. Improving893
text-to-sql evaluation methodology. In Proceedings894
of the 56th Annual Meeting of the Association for895
Computational Linguistics, ACL 2018, Melbourne,896
Australia, July 15-20, 2018, Volume 1: Long Papers,897

pages 351–360. Association for Computational Lin- 898
guistics. 899

Karl Fogel. 2005. Producing open source software: 900
How to run a successful free software project. " 901
O’Reilly Media, Inc.". 902

Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua Du, 903
Weiming Zhang, Longteng Fan, Jiayi Lei, Renting 904
Rui, Jianghao Lin, Yuchen Fang, Yifan Liu, Jingkuan 905
Wang, Siyuan Qi, Kangning Zhang, Weinan Zhang, 906
and Yong Yu. 2023. Codeapex: A bilingual pro- 907
gramming evaluation benchmark for large language 908
models. CoRR, abs/2309.01940. 909

Yanjun Fu, Ethan Baker, and Yizheng Chen. 2024. Con- 910
strained decoding for secure code generation. CoRR, 911
abs/2405.00218. 912

Yujian Gan, Xinyun Chen, Qiuping Huang, and 913
Matthew Purver. 2022. Measuring and improving 914
compositional generalization in text-to-sql via com- 915
ponent alignment. In Findings of the Association 916
for Computational Linguistics: NAACL 2022, Seattle, 917
WA, United States, July 10-15, 2022, pages 831–843. 918
Association for Computational Linguistics. 919

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew 920
Purver, John R. Woodward, Jinxia Xie, and Peng- 921
sheng Huang. 2021a. Towards robustness of text-to- 922
sql models against synonym substitution. In Proceed- 923
ings of the 59th Annual Meeting of the Association for 924
Computational Linguistics and the 11th International 925
Joint Conference on Natural Language Processing, 926
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual 927
Event, August 1-6, 2021, pages 2505–2515. Associa- 928
tion for Computational Linguistics. 929

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b. 930
Exploring underexplored limitations of cross-domain 931
text-to-sql generalization. In Proceedings of the 2021 932
Conference on Empirical Methods in Natural Lan- 933
guage Processing, EMNLP 2021, Virtual Event / 934
Punta Cana, Dominican Republic, 7-11 November, 935
2021, pages 8926–8931. Association for Computa- 936
tional Linguistics. 937

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 938
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 939
ham Neubig. 2023a. PAL: program-aided language 940
models. In International Conference on Machine 941
Learning, ICML 2023, 23-29 July 2023, Honolulu, 942
Hawaii, USA, volume 202 of Proceedings of Machine 943
Learning Research, pages 10764–10799. PMLR. 944

Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and 945
Chao Zhang. 2023b. How far have we gone in vulner- 946
ability detection using large language models. CoRR, 947
abs/2311.12420. 948

Spandan Garg, Roshanak Zilouchian Moghaddam, 949
Colin B. Clement, Neel Sundaresan, and Chen 950
Wu. 2022. Deepperf: A deep learning-based ap- 951
proach for improving software performance. CoRR, 952
abs/2206.13619. 953

11

https://doi.org/10.48550/ARXIV.2403.18624
https://doi.org/10.48550/ARXIV.2403.18624
https://doi.org/10.48550/ARXIV.2403.18624
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.1109/ASE56229.2023.00078
https://doi.org/10.1109/ASE56229.2023.00078
https://doi.org/10.1109/ASE56229.2023.00078
https://doi.org/10.18653/V1/P18-1033
https://doi.org/10.18653/V1/P18-1033
https://doi.org/10.18653/V1/P18-1033
https://doi.org/10.48550/ARXIV.2309.01940
https://doi.org/10.48550/ARXIV.2309.01940
https://doi.org/10.48550/ARXIV.2309.01940
https://doi.org/10.48550/ARXIV.2309.01940
https://doi.org/10.48550/ARXIV.2309.01940
https://doi.org/10.48550/ARXIV.2405.00218
https://doi.org/10.48550/ARXIV.2405.00218
https://doi.org/10.48550/ARXIV.2405.00218
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.62
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.62
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.62
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.62
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.62
https://doi.org/10.18653/V1/2021.ACL-LONG.195
https://doi.org/10.18653/V1/2021.ACL-LONG.195
https://doi.org/10.18653/V1/2021.ACL-LONG.195
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.702
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.702
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.702
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/ARXIV.2311.12420
https://doi.org/10.48550/ARXIV.2311.12420
https://doi.org/10.48550/ARXIV.2311.12420
https://doi.org/10.48550/ARXIV.2206.13619
https://doi.org/10.48550/ARXIV.2206.13619
https://doi.org/10.48550/ARXIV.2206.13619

Bijit Ghosh. 2024. Changing your gpu changes your954
llm behavior.955

Shahriar Golchin and Mihai Surdeanu. 2023. Time956
travel in llms: Tracing data contamination in large957
language models. CoRR, abs/2308.08493.958

Jing Gong, Yanghui Wu, Linxi Liang, Zibin Zheng, and959
Yanlin Wang. 2024. Cosqa+: Enhancing code search960
dataset with matching code. CoRR, abs/2406.11589.961

Alex Gu, Baptiste Rozière, Hugh Leather, Armando962
Solar-Lezama, Gabriel Synnaeve, and Sida I Wang.963
2024. Cruxeval: A benchmark for code reason-964
ing, understanding and execution. arXiv preprint965
arXiv:2401.03065.966

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.967
Deep code search. In Proceedings of the 40th Inter-968
national Conference on Software Engineering, ICSE969
2018, Gothenburg, Sweden, May 27 - June 03, 2018,970
pages 933–944. ACM.971

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma,972
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi Li,973
Ruibo Liu, Yue Wang, Shuyue Guo, Xingwei Qu, Xi-974
ang Yue, Ge Zhang, Wenhu Chen, and Jie Fu. 2024.975
Codeeditorbench: Evaluating code editing capability976
of large language models. CoRR, abs/2404.03543.977

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K.978
Shevade. 2017. Deepfix: Fixing common C lan-979
guage errors by deep learning. In Proceedings of980
the Thirty-First AAAI Conference on Artificial Intelli-981
gence, February 4-9, 2017, San Francisco, Califor-982
nia, USA, pages 1345–1351. AAAI Press.983

Nam Le Hai, Dung Manh Nguyen, and Nghi D. Q. Bui.984
2024. On the impacts of contexts on repository-level985
code generation. Preprint, arXiv:2406.11927.986

Patrick Haller, Jonas Golde, and Alan Akbik. 2024.987
PECC: problem extraction and coding challenges.988
In Proceedings of the 2024 Joint International Con-989
ference on Computational Linguistics, Language Re-990
sources and Evaluation, LREC/COLING 2024, 20-25991
May, 2024, Torino, Italy, pages 12690–12699. ELRA992
and ICCL.993

Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao,994
He Zong, Siyuan Jiang, Yang Liu, and Wei He. 2022.995
Aixbench: A code generation benchmark dataset.996
CoRR, abs/2206.13179.997

Md. Mahim Anjum Haque, Wasi Uddin Ahmad, Is-998
mini Lourentzou, and Chris Brown. 2023. Fixe-999
val: Execution-based evaluation of program fixes1000
for programming problems. In IEEE/ACM Inter-1001
national Workshop on Automated Program Repair,1002
APR@ICSE 2023, Melbourne, Australia, May 16,1003
2023, pages 11–18. IEEE.1004

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ish-1005
tiaq, Kazi Sajeed Mehrab, Md. Mahim Anjum Haque,1006
Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal,1007

and Rifat Shahriyar. 2021. Codesc: A large code- 1008
description parallel dataset. In Findings of the Asso- 1009
ciation for Computational Linguistics: ACL/IJCNLP 1010
2021, Online Event, August 1-6, 2021, volume ACL/I- 1011
JCNLP 2021 of Findings of ACL, pages 210–218. 1012
Association for Computational Linguistics. 1013

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. 1014
Text-to-sql in the wild: A naturally-occurring 1015
dataset based on stack exchange data. CoRR, 1016
abs/2106.05006. 1017

Jia He, Mukund Rungta, David Koleczek, Arshdeep 1018
Sekhon, Franklin X Wang, and Sadid Hasan. 2024a. 1019
Does prompt formatting have any impact on llm per- 1020
formance? Preprint, arXiv:2411.10541. 1021

Jia He, Mukund Rungta, David Koleczek, Arshdeep 1022
Sekhon, Franklin X Wang, and Sadid Hasan. 2024b. 1023
Does prompt formatting have any impact on llm per- 1024
formance? arXiv preprint arXiv:2411.10541. 1025

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, 1026
Petros Maniatis, and David Bieber. 2020. Global re- 1027
lational models of source code. In 8th International 1028
Conference on Learning Representations, ICLR 2020, 1029
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe- 1030
view.net. 1031

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 1032
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 1033
Samir Puranik, Horace He, Dawn Song, and Jacob 1034
Steinhardt. 2021. Measuring coding challenge com- 1035
petence with apps. NeurIPS. 1036

Geert Heyman and Tom Van Cutsem. 2020. Neu- 1037
ral code search revisited: Enhancing code snippet 1038
retrieval through natural language intent. CoRR, 1039
abs/2008.12193. 1040

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong 1041
Wang, Li Li, Xiapu Luo, David Lo, John C. Grundy, 1042
and Haoyu Wang. 2023. Large language models for 1043
software engineering: A systematic literature review. 1044
CoRR, abs/2308.10620. 1045

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a. 1046
Deep code comment generation. In Proceedings of 1047
the 26th Conference on Program Comprehension, 1048
ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, 1049
pages 200–210. ACM. 1050

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and 1051
Zhi Jin. 2018b. Summarizing source code with trans- 1052
ferred API knowledge. In Proceedings of the Twenty- 1053
Seventh International Joint Conference on Artificial 1054
Intelligence, IJCAI 2018, July 13-19, 2018, Stock- 1055
holm, Sweden, pages 2269–2275. ijcai.org. 1056

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli 1057
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing 1058
Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, 1059
Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu. 1060
2024. Infiagent-dabench: Evaluating agents on data 1061
analysis tasks. In Forty-first International Confer- 1062
ence on Machine Learning, ICML 2024, Vienna, Aus- 1063
tria, July 21-27, 2024. OpenReview.net. 1064

12

https://medium.com/@bijit211987/changing-your-gpu-changes-your-llm-behavior-16408c05677a#:~:text=This%20means%20that%20the%20way,variations%20in%20the%20model's%20behavior.
https://medium.com/@bijit211987/changing-your-gpu-changes-your-llm-behavior-16408c05677a#:~:text=This%20means%20that%20the%20way,variations%20in%20the%20model's%20behavior.
https://medium.com/@bijit211987/changing-your-gpu-changes-your-llm-behavior-16408c05677a#:~:text=This%20means%20that%20the%20way,variations%20in%20the%20model's%20behavior.
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2308.08493
https://doi.org/10.48550/ARXIV.2406.11589
https://doi.org/10.48550/ARXIV.2406.11589
https://doi.org/10.48550/ARXIV.2406.11589
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.48550/ARXIV.2404.03543
https://doi.org/10.48550/ARXIV.2404.03543
https://doi.org/10.48550/ARXIV.2404.03543
https://doi.org/10.1609/AAAI.V31I1.10742
https://doi.org/10.1609/AAAI.V31I1.10742
https://doi.org/10.1609/AAAI.V31I1.10742
https://arxiv.org/abs/2406.11927
https://arxiv.org/abs/2406.11927
https://arxiv.org/abs/2406.11927
https://aclanthology.org/2024.lrec-main.1111
https://doi.org/10.48550/ARXIV.2206.13179
https://doi.org/10.1109/APR59189.2023.00009
https://doi.org/10.1109/APR59189.2023.00009
https://doi.org/10.1109/APR59189.2023.00009
https://doi.org/10.1109/APR59189.2023.00009
https://doi.org/10.1109/APR59189.2023.00009
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.18
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.18
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.18
https://arxiv.org/abs/2106.05006
https://arxiv.org/abs/2106.05006
https://arxiv.org/abs/2106.05006
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.24963/IJCAI.2018/314
https://doi.org/10.24963/IJCAI.2018/314
https://doi.org/10.24963/IJCAI.2018/314
https://openreview.net/forum?id=d5LURMSfTx
https://openreview.net/forum?id=d5LURMSfTx
https://openreview.net/forum?id=d5LURMSfTx

Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben1065
Leong, and Abhik Roychoudhury. 2019. Re-1066
factoring based program repair applied to program-1067
ming assignments. In 2019 34th IEEE/ACM Interna-1068
tional Conference on Automated Software Engineer-1069
ing (ASE), pages 388–398.1070

Dong HUANG, Yuhao QING, Weiyi Shang, Heming1071
Cui, and Jie Zhang. 2024. Effibench: Benchmarking1072
the efficiency of automatically generated code. In1073
The Thirty-eight Conference on Neural Information1074
Processing Systems Datasets and Benchmarks Track.1075

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong1076
Yan, Haotian Cui, Jeevana Priya Inala, Colin B.1077
Clement, Nan Duan, and Jianfeng Gao. 2022.1078
Execution-based evaluation for data science code1079
generation models. CoRR, abs/2211.09374.1080

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong,1081
Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong Shen,1082
Chen Lin, Nan Duan, and Weizhu Chen. 2024.1083
Competition-level problems are effective LLM eval-1084
uators. In Findings of the Association for Computa-1085
tional Linguistics, ACL 2024, Bangkok, Thailand and1086
virtual meeting, August 11-16, 2024, pages 13526–1087
13544. Association for Computational Linguistics.1088

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis1089
Allamanis, and Marc Brockschmidt. 2019. Code-1090
searchnet challenge: Evaluating the state of semantic1091
code search. CoRR, abs/1909.09436.1092

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.1093
Mathprompter: Mathematical reasoning using large1094
language models. Preprint, arXiv:2303.05398.1095

Marko Ivanković, Goran Petrović, René Just, and Gor-1096
don Fraser. 2019. Code coverage at google. In1097
Proceedings of the 2019 27th ACM Joint Meeting1098
on European Software Engineering Conference and1099
Symposium on the Foundations of Software Engineer-1100
ing, ESEC/FSE 2019, page 955–963, New York, NY,1101
USA. Association for Computing Machinery.1102

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and1103
Luke Zettlemoyer. 2016. Summarizing source code1104
using a neural attention model. In Proceedings of the1105
54th Annual Meeting of the Association for Compu-1106
tational Linguistics, ACL 2016, August 7-12, 2016,1107
Berlin, Germany, Volume 1: Long Papers. The Asso-1108
ciation for Computer Linguistics.1109

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and1110
Luke Zettlemoyer. 2018. Mapping language to code1111
in programmatic context. In Proceedings of the 20181112
Conference on Empirical Methods in Natural Lan-1113
guage Processing, pages 1643–1652, Brussels, Bel-1114
gium. Association for Computational Linguistics.1115

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia1116
Yan, Tianjun Zhang, Sida Wang, Armando Solar-1117
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-1118
codebench: Holistic and contamination free eval-1119
uation of large language models for code. CoRR,1120
abs/2403.07974.1121

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 1122
2023. Impact of code language models on automated 1123
program repair. In 45th IEEE/ACM International 1124
Conference on Software Engineering, ICSE 2023, 1125
Melbourne, Australia, May 14-20, 2023, pages 1430– 1126
1442. IEEE. 1127

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, 1128
Xiaodong Gu, and Beijun Shen. 2023. On the eval- 1129
uation of neural code translation: Taxonomy and 1130
benchmark. In 38th IEEE/ACM International Con- 1131
ference on Automated Software Engineering, ASE 1132
2023, Luxembourg, September 11-15, 2023, pages 1133
1529–1541. IEEE. 1134

Carlos E Jimenez, John Yang, Alexander Wettig, 1135
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R 1136
Narasimhan. 2024. SWE-bench: Can language mod- 1137
els resolve real-world github issues? In The Twelfth 1138
International Conference on Learning Representa- 1139
tions. 1140

Matthew Jin, Syed Shahriar, Michele Tufano, Xin 1141
Shi, Shuai Lu, Neel Sundaresan, and Alexey Svy- 1142
atkovskiy. 2023. Inferfix: End-to-end program repair 1143
with llms. In Proceedings of the 31st ACM Joint Eu- 1144
ropean Software Engineering Conference and Sym- 1145
posium on the Foundations of Software Engineering, 1146
ESEC/FSE 2023, San Francisco, CA, USA, Decem- 1147
ber 3-9, 2023, pages 1646–1656. ACM. 1148

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, 1149
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and 1150
Mengnan Du. 2024. The impact of reasoning step 1151
length on large language models. arXiv preprint 1152
arXiv:2401.04925. 1153

René Just, Darioush Jalali, and Michael D. Ernst. 2014. 1154
Defects4j: a database of existing faults to enable con- 1155
trolled testing studies for java programs. In Interna- 1156
tional Symposium on Software Testing and Analysis, 1157
ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, 1158
pages 437–440. ACM. 1159

Mohammad Abdullah Matin Khan, M. Saiful Bari, 1160
Xuan Do Long, Weishi Wang, Md. Rizwan Parvez, 1161
and Shafiq Joty. 2024. Xcodeeval: An execution- 1162
based large scale multilingual multitask benchmark 1163
for code understanding, generation, translation and 1164
retrieval. In Proceedings of the 62nd Annual Meeting 1165
of the Association for Computational Linguistics (Vol- 1166
ume 1: Long Papers), ACL 2024, Bangkok, Thailand, 1167
August 11-16, 2024, pages 6766–6805. Association 1168
for Computational Linguistics. 1169

Rahul Kumar, Amar Raja Dibbu, Shrutendra Harsola, 1170
Vignesh Subrahmaniam, and Ashutosh Modi. 2024. 1171
Booksql: A large scale text-to-sql dataset for account- 1172
ing domain. In Proceedings of the 2024 Conference 1173
of the North American Chapter of the Association 1174
for Computational Linguistics: Human Language 1175
Technologies (Volume 1: Long Papers), NAACL 2024, 1176
Mexico City, Mexico, June 16-21, 2024, pages 497– 1177
516. Association for Computational Linguistics. 1178

13

https://doi.org/10.1109/ASE.2019.00044
https://doi.org/10.1109/ASE.2019.00044
https://doi.org/10.1109/ASE.2019.00044
https://doi.org/10.1109/ASE.2019.00044
https://doi.org/10.1109/ASE.2019.00044
https://openreview.net/forum?id=30XanJanJP
https://openreview.net/forum?id=30XanJanJP
https://openreview.net/forum?id=30XanJanJP
https://doi.org/10.48550/ARXIV.2211.09374
https://doi.org/10.48550/ARXIV.2211.09374
https://doi.org/10.48550/ARXIV.2211.09374
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.803
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.803
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.803
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.18653/V1/P16-1195
https://doi.org/10.18653/V1/P16-1195
https://doi.org/10.18653/V1/P16-1195
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.18653/V1/2024.ACL-LONG.367
https://doi.org/10.18653/V1/2024.ACL-LONG.367
https://doi.org/10.18653/V1/2024.ACL-LONG.367
https://doi.org/10.18653/V1/2024.ACL-LONG.367
https://doi.org/10.18653/V1/2024.ACL-LONG.367
https://doi.org/10.18653/V1/2024.ACL-LONG.367
https://doi.org/10.18653/V1/2024.ACL-LONG.367
https://doi.org/10.18653/V1/2024.NAACL-LONG.28
https://doi.org/10.18653/V1/2024.NAACL-LONG.28
https://doi.org/10.18653/V1/2024.NAACL-LONG.28

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying1179
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.1180
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-1181
cient memory management for large language model1182
serving with pagedattention. In Proceedings of the1183
ACM SIGOPS 29th Symposium on Operating Systems1184
Principles.1185

Beck LaBash, August Rosedale, Alex Reents, Lucas1186
Negritto, and Colin Wiel. 2024. RES-Q: evaluating1187
code-editing large language model systems at the1188
repository scale. CoRR, abs/2406.16801.1189

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,1190
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,1191
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS-1192
1000: A natural and reliable benchmark for data sci-1193
ence code generation. In International Conference1194
on Machine Learning, ICML 2023, 23-29 July 2023,1195
Honolulu, Hawaii, USA, volume 202 of Proceedings1196
of Machine Learning Research, pages 18319–18345.1197
PMLR.1198

Claire Le Goues, Neal J. Holtschulte, Edward K. Smith,1199
Yuriy Brun, Premkumar T. Devanbu, Stephanie For-1200
rest, and Westley Weimer. 2015. The manybugs and1201
introclass benchmarks for automated repair of C pro-1202
grams. IEEE Trans. Software Eng., 41(12):1236–1203
1256.1204

Alexander LeClair, Siyuan Jiang, and Collin McMil-1205
lan. 2019. A neural model for generating natural1206
language summaries of program subroutines. In Pro-1207
ceedings of the 41st International Conference on1208
Software Engineering, ICSE 2019, Montreal, QC,1209
Canada, May 25-31, 2019, pages 795–806. IEEE /1210
ACM.1211

Changyoon Lee, Yeon Seonwoo, and Alice Oh. 2022.1212
CS1QA: A dataset for assisting code-based question1213
answering in an introductory programming course.1214
In Proceedings of the 2022 Conference of the North1215
American Chapter of the Association for Computa-1216
tional Linguistics: Human Language Technologies,1217
NAACL 2022, Seattle, WA, United States, July 10-15,1218
2022, pages 2026–2040. Association for Computa-1219
tional Linguistics.1220

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew1221
Richardson. 2021. Kaggledbqa: Realistic evalua-1222
tion of text-to-sql parsers. In Proceedings of the 59th1223
Annual Meeting of the Association for Computational1224
Linguistics and the 11th International Joint Confer-1225
ence on Natural Language Processing, ACL/IJCNLP1226
2021, (Volume 1: Long Papers), Virtual Event, Au-1227
gust 1-6, 2021, pages 2261–2273. Association for1228
Computational Linguistics.1229

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu1230
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo,1231
Jong-Yeup Kim, and Edward Choi. 2023. EHRSQL:1232
A practical text-to-sql benchmark for electronic1233
health records. CoRR, abs/2301.07695.1234

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu1235
Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng1236

Fang, Lanshen Wang, Jiazheng Ding, Xuanming 1237
Zhang, Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua 1238
Li, Fei Huang, and Yongbin Li. 2024a. DevEval: A 1239
Manually-Annotated Code Generation Benchmark 1240
Aligned with Real-World Code Repositories. arXiv 1241
preprint. ArXiv:2405.19856 [cs]. 1242

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, 1243
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng, 1244
Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang 1245
Li, Kevin Chen-Chuan Chang, Fei Huang, Reynold 1246
Cheng, and Yongbin Li. 2023a. Can LLM already 1247
serve as A database interface? A big bench for large- 1248
scale database grounded text-to-sqls. In Advances in 1249
Neural Information Processing Systems 36: Annual 1250
Conference on Neural Information Processing Sys- 1251
tems 2023, NeurIPS 2023, New Orleans, LA, USA, 1252
December 10 - 16, 2023. 1253

Kaixin Li, Qisheng Hu, James Xu Zhao, Hui Chen, 1254
Yuxi Xie, Tiedong Liu, Michael Shieh, and Junxian 1255
He. 2024b. Instructcoder: Instruction tuning large 1256
language models for code editing. In Proceedings 1257
of the 62nd Annual Meeting of the Association for 1258
Computational Linguistics, ACL 2024 - Student Re- 1259
search Workshop, Bangkok, Thailand, August 11-16, 1260
2024, pages 50–70. Association for Computational 1261
Linguistics. 1262

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, and 1263
Jing Ma. 2024c. Mmcode: Evaluating multi-modal 1264
code large language models with visually rich pro- 1265
gramming problems. CoRR, abs/2404.09486. 1266

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, 1267
Ziyue Hua, Guanghan Ning, Siwei Wang, Tao Xie, 1268
and Hongxia Yang. 2024d. Infibench: Evaluating 1269
the question-answering capabilities of code large lan- 1270
guage models. Preprint, arXiv:2404.07940. 1271

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong 1272
Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023b. 1273
TACO: topics in algorithmic code generation dataset. 1274
CoRR, abs/2312.14852. 1275

Yujia Li, David Choi, Junyoung Chung, Nate Kush- 1276
man, Julian Schrittwieser, Rémi Leblond, Tom Ec- 1277
cles, James Keeling, Felix Gimeno, Agustin Dal 1278
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas- 1279
son d’Autume, Igor Babuschkin, Xinyun Chen, Po- 1280
Sen Huang, Johannes Welbl, Sven Gowal, Alexey 1281
Cherepanov, James Molloy, Daniel J. Mankowitz, 1282
Esme Sutherland Robson, Pushmeet Kohli, Nando 1283
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 1284
2022. Competition-level code generation with alpha- 1285
code. Science, 378(6624):1092–1097. 1286

Zehan Li, Jianfei Zhang, Chuantao Yin, Yuanxin 1287
Ouyang, and Wenge Rong. 2024e. Procqa: A large- 1288
scale community-based programming question an- 1289
swering dataset for code search. In Proceedings of 1290
the 2024 Joint International Conference on Computa- 1291
tional Linguistics, Language Resources and Evalua- 1292
tion, LREC/COLING 2024, 20-25 May, 2024, Torino, 1293
Italy, pages 13057–13067. ELRA and ICCL. 1294

14

https://doi.org/10.48550/ARXIV.2406.16801
https://doi.org/10.48550/ARXIV.2406.16801
https://doi.org/10.48550/ARXIV.2406.16801
https://doi.org/10.48550/ARXIV.2406.16801
https://doi.org/10.48550/ARXIV.2406.16801
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.18653/V1/2022.NAACL-MAIN.148
https://doi.org/10.18653/V1/2022.NAACL-MAIN.148
https://doi.org/10.18653/V1/2022.NAACL-MAIN.148
https://doi.org/10.18653/V1/2021.ACL-LONG.176
https://doi.org/10.18653/V1/2021.ACL-LONG.176
https://doi.org/10.18653/V1/2021.ACL-LONG.176
https://doi.org/10.48550/ARXIV.2301.07695
https://doi.org/10.48550/ARXIV.2301.07695
https://doi.org/10.48550/ARXIV.2301.07695
https://doi.org/10.48550/ARXIV.2301.07695
https://doi.org/10.48550/ARXIV.2301.07695
http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
http://arxiv.org/abs/2405.19856
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
https://aclanthology.org/2024.acl-srw.6
https://aclanthology.org/2024.acl-srw.6
https://aclanthology.org/2024.acl-srw.6
https://doi.org/10.48550/ARXIV.2404.09486
https://doi.org/10.48550/ARXIV.2404.09486
https://doi.org/10.48550/ARXIV.2404.09486
https://doi.org/10.48550/ARXIV.2404.09486
https://doi.org/10.48550/ARXIV.2404.09486
https://arxiv.org/abs/2404.07940
https://arxiv.org/abs/2404.07940
https://arxiv.org/abs/2404.07940
https://arxiv.org/abs/2404.07940
https://arxiv.org/abs/2404.07940
https://doi.org/10.48550/ARXIV.2312.14852
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://aclanthology.org/2024.lrec-main.1143
https://aclanthology.org/2024.lrec-main.1143
https://aclanthology.org/2024.lrec-main.1143
https://aclanthology.org/2024.lrec-main.1143
https://aclanthology.org/2024.lrec-main.1143

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei1295
Zhu, Zhaoxuan Chen, Sujuan Wang, and Jialai1296
Wang. 2018a. Sysevr: A framework for using deep1297
learning to detect software vulnerabilities. CoRR,1298
abs/1807.06756.1299

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai1300
Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong.1301
2018b. Vuldeepecker: A deep learning-based system1302
for vulnerability detection. In 25th Annual Network1303
and Distributed System Security Symposium, NDSS1304
2018, San Diego, California, USA, February 18-21,1305
2018. The Internet Society.1306

Dianshu Liao, Shidong Pan, Xiaoyu Sun, Xiaoxue1307
Ren, Qing Huang, Zhenchang Xing, Huan Jin, and1308
Qinying Li. 2024. A 3-codgen: A repository-level1309
code generation framework for code reuse with local-1310
aware, global-aware, and third-party-library-aware.1311
IEEE Transactions on Software Engineering.1312

Derrick Lin, James Koppel, Angela Chen, and Armando1313
Solar-Lezama. 2017. Quixbugs: a multi-lingual1314
program repair benchmark set based on the quixey1315
challenge. In Proceedings Companion of the 20171316
ACM SIGPLAN International Conference on Systems,1317
Programming, Languages, and Applications: Soft-1318
ware for Humanity, SPLASH 2017, Vancouver, BC,1319
Canada, October 23 - 27, 2017, pages 55–56. ACM.1320

Guanjun Lin, Wei Xiao, Jun Zhang, and Yang Xiang.1321
2019. Deep learning-based vulnerable function de-1322
tection: A benchmark. In Information and Commu-1323
nications Security - 21st International Conference,1324
ICICS 2019, Beijing, China, December 15-17, 2019,1325
Revised Selected Papers, volume 11999 of Lecture1326
Notes in Computer Science, pages 219–232. Springer.1327

Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Olivier Y.1328
de Vel, Paul Montague, and Yang Xiang. 2021.1329
Software vulnerability discovery via learning multi-1330
domain knowledge bases. IEEE Trans. Dependable1331
Secur. Comput., 18(5):2469–2485.1332

Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Yang Xiang,1333
Olivier Y. de Vel, and Paul Montague. 2018. Cross-1334
project transfer representation learning for vulnerable1335
function discovery. IEEE Trans. Ind. Informatics,1336
14(7):3289–3297.1337

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan,1338
Tengfei Ma, Fangli Xu, Alex X. Liu, Chunming Wu,1339
and Shouling Ji. 2021. Deep graph matching and1340
searching for semantic code retrieval. ACM Trans.1341
Knowl. Discov. Data, 15(5):88:1–88:21.1342

Chenxiao Liu and Xiaojun Wan. 2021. Codeqa: A1343
question answering dataset for source code compre-1344
hension. In Findings of the Association for Compu-1345
tational Linguistics: EMNLP 2021, Virtual Event /1346
Punta Cana, Dominican Republic, 16-20 November,1347
2021, pages 2618–2632. Association for Computa-1348
tional Linguistics.1349

Jiawei Liu, Jia Le Tian, Vijay Daita, Yuxiang Wei,1350
Yifeng Ding, Yuhan Katherine Wang, Jun Yang, and1351

Lingming Zhang. 2024a. Repoqa: Evaluating long 1352
context code understanding. CoRR, abs/2406.06025. 1353

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 1354
ming Zhang. 2023a. Is your code generated by chat- 1355
GPT really correct? rigorous evaluation of large lan- 1356
guage models for code generation. In Thirty-seventh 1357
Conference on Neural Information Processing Sys- 1358
tems. 1359

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 1360
ming Zhang. 2023b. Is your code generated by chat- 1361
gpt really correct? rigorous evaluation of large lan- 1362
guage models for code generation. In Advances in 1363
Neural Information Processing Systems 36: Annual 1364
Conference on Neural Information Processing Sys- 1365
tems 2023, NeurIPS 2023, New Orleans, LA, USA, 1366
December 10 - 16, 2023. 1367

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, 1368
and Yang Liu. 2021. Retrieval-augmented generation 1369
for code summarization via hybrid GNN. In 9th In- 1370
ternational Conference on Learning Representations, 1371
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 1372
OpenReview.net. 1373

Shangqing Liu, Cuiyun Gao, Sen Chen, Lun Yiu Nie, 1374
and Yang Liu. 2022. ATOM: commit message gener- 1375
ation based on abstract syntax tree and hybrid ranking. 1376
IEEE Trans. Software Eng., 48(5):1800–1817. 1377

Tianyang Liu, Canwen Xu, and Julian J. McAuley. 1378
2024b. Repobench: Benchmarking repository-level 1379
code auto-completion systems. In The Twelfth In- 1380
ternational Conference on Learning Representations, 1381
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open- 1382
Review.net. 1383

Yu Liu, Lang Gao, Mingxin Yang, Yu Xie, Ping Chen, 1384
Xiaojin Zhang, and Wei Chen. 2024c. Vuldetect- 1385
bench: Evaluating the deep capability of vulnera- 1386
bility detection with large language models. CoRR, 1387
abs/2406.07595. 1388

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu, 1389
Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan Hu, 1390
Zengxian Yang, Kaikai An, Ruijun Huang, Shuzheng 1391
Si, Sheng Chen, Haozhe Zhao, Zhengliang Li, Liang 1392
Chen, Yiming Zong, Yan Wang, Tianyu Liu, Zhi- 1393
wei Jiang, Baobao Chang, Yujia Qin, Wangchunshu 1394
Zhou, Yilun Zhao, Arman Cohan, and Mark Ger- 1395
stein. 2023c. Ml-bench: Large language models 1396
leverage open-source libraries for machine learning 1397
tasks. CoRR, abs/2311.09835. 1398

Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, 1399
Zhenchang Xing, and Xinyu Wang. 2018. Neural- 1400
machine-translation-based commit message gener- 1401
ation: how far are we? In Proceedings of the 1402
33rd ACM/IEEE International Conference on Auto- 1403
mated Software Engineering, ASE 2018, Montpellier, 1404
France, September 3-7, 2018, pages 373–384. ACM. 1405

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 1406
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, 1407

15

https://arxiv.org/abs/1807.06756
https://arxiv.org/abs/1807.06756
https://arxiv.org/abs/1807.06756
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-2_Li_paper.pdf
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1109/TDSC.2019.2954088
https://doi.org/10.1109/TDSC.2019.2954088
https://doi.org/10.1109/TDSC.2019.2954088
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.223
https://doi.org/10.48550/ARXIV.2406.06025
https://doi.org/10.48550/ARXIV.2406.06025
https://doi.org/10.48550/ARXIV.2406.06025
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://doi.org/10.1109/TSE.2020.3038681
https://doi.org/10.1109/TSE.2020.3038681
https://doi.org/10.1109/TSE.2020.3038681
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=pPjZIOuQuF
https://doi.org/10.48550/ARXIV.2406.07595
https://doi.org/10.48550/ARXIV.2406.07595
https://doi.org/10.48550/ARXIV.2406.07595
https://doi.org/10.48550/ARXIV.2406.07595
https://doi.org/10.48550/ARXIV.2406.07595
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.48550/ARXIV.2311.09835
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190

Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-1408
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-1409
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-1410
daresan, Shao Kun Deng, Shengyu Fu, and Shujie1411
Liu. 2021. Codexglue: A machine learning bench-1412
mark dataset for code understanding and generation.1413
In Proceedings of the Neural Information Process-1414
ing Systems Track on Datasets and Benchmarks 1,1415
NeurIPS Datasets and Benchmarks 2021, December1416
2021, virtual.1417

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel.1418
2019. Nl2type: inferring javascript function types1419
from natural language information. In Proceedings1420
of the 41st International Conference on Software En-1421
gineering, ICSE 2019, Montreal, QC, Canada, May1422
25-31, 2019, pages 304–315. IEEE / ACM.1423

Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan1424
Vasilescu, and Christian KaUstner. 2022. "did you1425
miss my comment or what?": understanding toxicity1426
in open source discussions. In Proceedings of the1427
44th International Conference on Software Engineer-1428
ing, ICSE ’22, page 710–722, New York, NY, USA.1429
Association for Computing Machinery.1430

Amir M. Mir, Evaldas Latoskinas, Sebastian Proksch,1431
and Georgios Gousios. 2022. Type4py: Practical1432
deep similarity learning-based type inference for1433
python. In 44th IEEE/ACM 44th International Con-1434
ference on Software Engineering, ICSE 2022, Pitts-1435
burgh, PA, USA, May 25-27, 2022, pages 2241–2252.1436
ACM.1437

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.1438
Convolutional neural networks over tree structures1439
for programming language processing. In Proceed-1440
ings of the Thirtieth AAAI Conference on Artificial1441
Intelligence, February 12-17, 2016, Phoenix, Ari-1442
zona, USA, pages 1287–1293. AAAI Press.1443

Hussein Mozannar, Valerie Chen, Mohammed Alsobay,1444
Subhro Das, Sebastian Zhao, Dennis Wei, Manish1445
Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, and1446
David A. Sontag. 2024. The realhumaneval: Eval-1447
uating large language models’ abilities to support1448
programmers. CoRR, abs/2404.02806.1449

Niklas Muennighoff, Qian Liu, Armel Randy Ze-1450
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,1451
Swayam Singh, Xiangru Tang, Leandro von Werra,1452
and Shayne Longpre. 2024. Octopack: Instruction1453
tuning code large language models. In The Twelfth1454
International Conference on Learning Representa-1455
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.1456
OpenReview.net.1457

Hoan Anh Nguyen, Tien N. Nguyen, Danny Dig,1458
Son Nguyen, Hieu Tran, and Michael Hilton. 2019.1459
Graph-based mining of in-the-wild, fine-grained, se-1460
mantic code change patterns. In Proceedings of the1461
41st International Conference on Software Engineer-1462
ing, ICSE 2019, Montreal, QC, Canada, May 25-31,1463
2019, pages 819–830. IEEE / ACM.1464

Daniel Nichols, Joshua Hoke Davis, Zhaojun Xie, Ar- 1465
jun Rajaram, and Abhinav Bhatele. 2024. Can large 1466
language models write parallel code? In Proceed- 1467
ings of the 33rd International Symposium on High- 1468
Performance Parallel and Distributed Computing, 1469
HPDC 2024, Pisa, Italy, June 3-7, 2024, pages 281– 1470
294. ACM. 1471

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. 1472
Mooney, and Milos Gligoric. 2023. Learning deep 1473
semantics for test completion. In 45th IEEE/ACM 1474
International Conference on Software Engineering, 1475
ICSE 2023, Melbourne, Australia, May 14-20, 2023, 1476
pages 2111–2123. IEEE. 1477

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 1478
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 1479
Xiong. 2022. Codegen: An open large language 1480
model for code with multi-turn program synthesis. 1481
arXiv preprint arXiv:2203.13474. 1482

Georgios Nikitopoulos, Konstantina Dritsa, Panos 1483
Louridas, and Dimitris Mitropoulos. 2021. Crossvul: 1484
a cross-language vulnerability dataset with commit 1485
data. In ESEC/FSE ’21: 29th ACM Joint Euro- 1486
pean Software Engineering Conference and Sympo- 1487
sium on the Foundations of Software Engineering, 1488
Athens, Greece, August 23-28, 2021, pages 1565– 1489
1569. ACM. 1490

Wonseok Oh and Hakjoo Oh. 2022. Pyter: effective pro- 1491
gram repair for python type errors. In Proceedings of 1492
the 30th ACM Joint European Software Engineering 1493
Conference and Symposium on the Foundations of 1494
Software Engineering, ESEC/FSE 2022, Singapore, 1495
Singapore, November 14-18, 2022, pages 922–934. 1496
ACM. 1497

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, 1498
Divya Sankar, Lambert Pouguem Wassi, Michele 1499
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, 1500
and Reyhaneh Jabbarvand. 2024. Lost in transla- 1501
tion: A study of bugs introduced by large language 1502
models while translating code. In Proceedings of the 1503
IEEE/ACM 46th International Conference on Soft- 1504
ware Engineering, ICSE ’24, New York, NY, USA. 1505
Association for Computing Machinery. 1506

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 1507
Joseph E. Gonzalez. 2023. Gorilla: Large lan- 1508
guage model connected with massive apis. CoRR, 1509
abs/2305.15334. 1510

Debalina Ghosh Paul, Hong Zhu, and Ian Bayley. 2024. 1511
Sceneval: A benchmark for scenario-based evalua- 1512
tion of code generation. In IEEE International Con- 1513
ference on Artificial Intelligence Testing, AITest 2024, 1514
Shanghai, China, July 15-18, 2024, pages 55–63. 1515
IEEE. 1516

Nathaniel Ross Pinckney, Christopher Batten, Mingjie 1517
Liu, Haoxing Ren, and Brucek Khailany. 2024. 1518
Revisiting verilogeval: Newer llms, in-context 1519
learning, and specification-to-rtl tasks. CoRR, 1520
abs/2408.11053. 1521

16

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1145/3510003.3510111
https://doi.org/10.1145/3510003.3510111
https://doi.org/10.1145/3510003.3510111
https://doi.org/10.1145/3510003.3510111
https://doi.org/10.1145/3510003.3510111
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1609/AAAI.V30I1.10139
https://doi.org/10.1609/AAAI.V30I1.10139
https://doi.org/10.1609/AAAI.V30I1.10139
https://doi.org/10.48550/ARXIV.2404.02806
https://doi.org/10.48550/ARXIV.2404.02806
https://doi.org/10.48550/ARXIV.2404.02806
https://doi.org/10.48550/ARXIV.2404.02806
https://doi.org/10.48550/ARXIV.2404.02806
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1145/3625549.3658689
https://doi.org/10.1145/3625549.3658689
https://doi.org/10.1145/3625549.3658689
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1145/3468264.3473122
https://doi.org/10.1145/3468264.3473122
https://doi.org/10.1145/3468264.3473122
https://doi.org/10.1145/3468264.3473122
https://doi.org/10.1145/3468264.3473122
https://doi.org/10.1145/3540250.3549130
https://doi.org/10.1145/3540250.3549130
https://doi.org/10.1145/3540250.3549130
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.48550/ARXIV.2305.15334
https://doi.org/10.48550/ARXIV.2305.15334
https://doi.org/10.48550/ARXIV.2305.15334
https://doi.org/10.1109/AITEST62860.2024.00015
https://doi.org/10.1109/AITEST62860.2024.00015
https://doi.org/10.1109/AITEST62860.2024.00015
https://doi.org/10.48550/ARXIV.2408.11053
https://doi.org/10.48550/ARXIV.2408.11053
https://doi.org/10.48550/ARXIV.2408.11053

Julian Aron Prenner, Hlib Babii, and Romain Robbes.1522
2022. Can openai’s codex fix bugs?: An evaluation1523
on quixbugs. In 3rd IEEE/ACM International Work-1524
shop on Automated Program Repair, APR@ICSE1525
2022, Pittsburgh, PA, USA, May 19, 2022, pages1526
69–75. IEEE.1527

Julian Aron Prenner and Romain Robbes. 2023. Runbu-1528
grun - an executable dataset for automated program1529
repair. CoRR, abs/2304.01102.1530

Ruizhong Qiu, Weiliang Will Zeng, Hanghang1531
Tong, James Ezick, and Christopher Lott. 2024a.1532
How efficient is llm-generated code? a rigor-1533
ous & high-standard benchmark. arXiv preprint1534
arXiv:2406.06647.1535

Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong,1536
James Ezick, and Christopher Lott. 2024b. How1537
efficient is llm-generated code? A rigorous & high-1538
standard benchmark. CoRR, abs/2406.06647.1539

Anka Reuel, Amelia Hardy, Chandler Smith, Max Lam-1540
parth, Malcolm Hardy, and Mykel J. Kochenderfer.1541
2024. Betterbench: Assessing ai benchmarks, uncov-1542
ering issues, and establishing best practices. Preprint,1543
arXiv:2411.12990.1544

Niklas Risse and Marcel Böhme. 2024. Uncovering the1545
limits of machine learning for automatic vulnerabil-1546
ity detection. In 33rd USENIX Security Symposium,1547
USENIX Security 2024, Philadelphia, PA, USA, Au-1548
gust 14-16, 2024. USENIX Association.1549

Anna Rogers, Matt Gardner, and Isabelle Augenstein.1550
2023. Qa dataset explosion: A taxonomy of nlp1551
resources for question answering and reading com-1552
prehension. ACM Comput. Surv., 55(10).1553

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanus-1554
sot, and Guillaume Lample. 2020. Unsupervised1555
translation of programming languages. In Advances1556
in Neural Information Processing Systems 33: An-1557
nual Conference on Neural Information Processing1558
Systems 2020, NeurIPS 2020, December 6-12, 2020,1559
virtual.1560

Baptiste Rozière, Jie Zhang, François Charton, Mark1561
Harman, Gabriel Synnaeve, and Guillaume Lample.1562
2022. Leveraging automated unit tests for unsuper-1563
vised code translation. In The Tenth International1564
Conference on Learning Representations, ICLR 2022,1565
Virtual Event, April 25-29, 2022. OpenReview.net.1566

Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton,1567
Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul M.1568
Ellingwood, and Marc W. McConley. 2018. Auto-1569
mated vulnerability detection in source code using1570
deep representation learning. In 17th IEEE Interna-1571
tional Conference on Machine Learning and Appli-1572
cations, ICMLA 2018, Orlando, FL, USA, December1573
17-20, 2018, pages 757–762. IEEE.1574

Jaehee Ryu, Seonhee Cho, Gyubok Lee, and Edward1575
Choi. 2024. Ehr-seqsql : A sequential text-to-sql1576
dataset for interactively exploring electronic health1577

records. In Findings of the Association for Computa- 1578
tional Linguistics, ACL 2024, Bangkok, Thailand and 1579
virtual meeting, August 11-16, 2024, pages 16388– 1580
16407. Association for Computational Linguistics. 1581

Oscar Sainz, Jon Campos, Iker García-Ferrero, Julen 1582
Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre. 1583
2023. NLP evaluation in trouble: On the need to mea- 1584
sure LLM data contamination for each benchmark. 1585
In Findings of the Association for Computational 1586
Linguistics: EMNLP 2023, pages 10776–10787, Sin- 1587
gapore. Association for Computational Linguistics. 1588

Irina Saparina and Mirella Lapata. 2024. AMBROSIA: 1589
A benchmark for parsing ambiguous questions into 1590
database queries. CoRR, abs/2406.19073. 1591

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank 1592
Tip. 2024. An empirical evaluation of using large 1593
language models for automated unit test generation. 1594
IEEE Trans. Software Eng., 50(1):85–105. 1595

Maximilian Schall, Tamara Czinczoll, and Gerard 1596
de Melo. 2024. Commitbench: A benchmark for 1597
commit message generation. In IEEE International 1598
Conference on Software Analysis, Evolution and 1599
Reengineering, SANER 2024, Rovaniemi, Finland, 1600
March 12-15, 2024, pages 728–739. IEEE. 1601

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank 1602
Tip. 2024. An empirical evaluation of using large 1603
language models for automated unit test genera- 1604
tion. IEEE Transactions on Software Engineering, 1605
50(1):85–105. 1606

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie 1607
Wang, Mohan Jing, Linran Xu, Xinyu Zhu, Siheng 1608
Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng 1609
Cai, and Yujiu Yang. 2024a. Chartmimic: Evaluating 1610
lmm’s cross-modal reasoning capability via chart-to- 1611
code generation. CoRR, abs/2406.09961. 1612

Quan Shi, Michael Tang, Karthik Narasimhan, and 1613
Shunyu Yao. 2024b. Can language models solve 1614
olympiad programming? CoRR, abs/2404.10952. 1615

Tianze Shi, Chen Zhao, Jordan L. Boyd-Graber, 1616
Hal Daumé III, and Lillian Lee. 2020. On the poten- 1617
tial of lexico-logical alignments for semantic parsing 1618
to SQL queries. In Findings of the Association for 1619
Computational Linguistics: EMNLP 2020, Online 1620
Event, 16-20 November 2020, volume EMNLP 2020 1621
of Findings of ACL, pages 1849–1864. Association 1622
for Computational Linguistics. 1623

Noah Shinn, Federico Cassano, Ashwin Gopinath, 1624
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 1625
flexion: language agents with verbal reinforcement 1626
learning. In Advances in Neural Information Pro- 1627
cessing Systems 36: Annual Conference on Neural 1628
Information Processing Systems 2023, NeurIPS 2023, 1629
New Orleans, LA, USA, December 10 - 16, 2023. 1630

Disha Shrivastava, Denis Kocetkov, Harm de Vries, 1631
Dzmitry Bahdanau, and Torsten Scholak. 2023a. Re- 1632
pofusion: Training code models to understand your 1633
repository. CoRR, abs/2306.10998. 1634

17

https://doi.org/10.1145/3524459.3527351
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.48550/ARXIV.2304.01102
https://doi.org/10.48550/ARXIV.2304.01102
https://doi.org/10.48550/ARXIV.2304.01102
https://doi.org/10.48550/ARXIV.2304.01102
https://doi.org/10.48550/ARXIV.2304.01102
https://doi.org/10.48550/ARXIV.2406.06647
https://doi.org/10.48550/ARXIV.2406.06647
https://doi.org/10.48550/ARXIV.2406.06647
https://doi.org/10.48550/ARXIV.2406.06647
https://doi.org/10.48550/ARXIV.2406.06647
https://arxiv.org/abs/2411.12990
https://arxiv.org/abs/2411.12990
https://arxiv.org/abs/2411.12990
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.971
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.971
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.971
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.971
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.971
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.48550/ARXIV.2406.19073
https://doi.org/10.48550/ARXIV.2406.19073
https://doi.org/10.48550/ARXIV.2406.19073
https://doi.org/10.48550/ARXIV.2406.19073
https://doi.org/10.48550/ARXIV.2406.19073
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/SANER60148.2024.00080
https://doi.org/10.1109/SANER60148.2024.00080
https://doi.org/10.1109/SANER60148.2024.00080
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.48550/ARXIV.2406.09961
https://doi.org/10.48550/ARXIV.2406.09961
https://doi.org/10.48550/ARXIV.2406.09961
https://doi.org/10.48550/ARXIV.2406.09961
https://doi.org/10.48550/ARXIV.2406.09961
https://doi.org/10.48550/ARXIV.2404.10952
https://doi.org/10.48550/ARXIV.2404.10952
https://doi.org/10.48550/ARXIV.2404.10952
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.167
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.167
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.167
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.167
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.167
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998
https://doi.org/10.48550/ARXIV.2306.10998

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-1635
low. 2023b. Repository-level prompt generation for1636
large language models of code. In International Con-1637
ference on Machine Learning, ICML 2023, 23-291638
July 2023, Honolulu, Hawaii, USA, volume 202 of1639
Proceedings of Machine Learning Research, pages1640
31693–31715. PMLR.1641

Alexander Shypula, Aman Madaan, Yimeng Zeng,1642
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-1643
lad Hashemi, Graham Neubig, Parthasarathy Ran-1644
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.1645
2024. Learning performance-improving code edits.1646
In The Twelfth International Conference on Learning1647
Representations, ICLR 2024, Vienna, Austria, May1648
7-11, 2024. OpenReview.net.1649

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo1650
Liu, and Diyi Yang. 2024. Design2code: How far are1651
we from automating front-end engineering? CoRR,1652
abs/2403.03163.1653

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi,1654
Nagarajan Natarajan, and Aditya Kanade. 2024.1655
Nofuneval: Funny how code lms falter on re-1656
quirements beyond functional correctness. CoRR,1657
abs/2401.15963.1658

Patrick Suppes, Joseph L Zinnes, et al. 1962. Basic1659
measurement theory.1660

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,1661
Chanchal Kumar Roy, and Mohammad Mamun Mia.1662
2014. Towards a big data curated benchmark of1663
inter-project code clones. In 30th IEEE International1664
Conference on Software Maintenance and Evolution,1665
Victoria, BC, Canada, September 29 - October 3,1666
2014, pages 476–480. IEEE Computer Society.1667

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen,1668
Xinyun Chen, and Mark B Gerstein. 2024. Biocoder:1669
a benchmark for bioinformatics code generation1670
with large language models. Bioinformatics,1671
40(Supplement_1):i266–i276.1672

Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Shi1673
Han, Hongyu Zhang, Dongmei Zhang, and Wen-1674
qiang Zhang. 2022. A large-scale empirical study1675
of commit message generation: models, datasets and1676
evaluation. Empir. Softw. Eng., 27(7):198.1677

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai1678
Lin, Yinxu Pan, Yesai Wu, Haotian Hui, Weichuan1679
Liu, Zhiyuan Liu, and Maosong Sun. 2024. De-1680
bugbench: Evaluating debugging capability of large1681
language models. In Findings of the Association1682
for Computational Linguistics, ACL 2024, Bangkok,1683
Thailand and virtual meeting, August 11-16, 2024,1684
pages 4173–4198. Association for Computational1685
Linguistics.1686

Michele Tufano, Shao Kun Deng, Neel Sundaresan, and1687
Alexey Svyatkovskiy. 2022. METHODS2TEST: A1688
dataset of focal methods mapped to test cases. In1689
19th IEEE/ACM International Conference on Mining1690
Software Repositories, MSR 2022, Pittsburgh, PA,1691
USA, May 23-24, 2022, pages 299–303. ACM.1692

Michele Tufano, Cody Watson, Gabriele Bavota, Massi- 1693
miliano Di Penta, Martin White, and Denys Poshy- 1694
vanyk. 2019. An empirical study on learning bug- 1695
fixing patches in the wild via neural machine transla- 1696
tion. ACM Trans. Softw. Eng. Methodol., 28(4):19:1– 1697
19:29. 1698

Prashanth Vijayaraghavan, Luyao Shi, Stefano Am- 1699
brogio, Charles Mackin, Apoorva Nitsure, David 1700
Beymer, and Ehsan Degan. 2024. Vhdl-eval: A 1701
framework for evaluating large language models in 1702
VHDL code generation. CoRR, abs/2406.04379. 1703

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, 1704
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im- 1705
proving automatic source code summarization via 1706
deep reinforcement learning. In Proceedings of the 1707
33rd ACM/IEEE International Conference on Auto- 1708
mated Software Engineering, ASE 2018, Montpellier, 1709
France, September 3-7, 2018, pages 397–407. ACM. 1710

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, 1711
Song Wang, and Qing Wang. 2024a. Software testing 1712
with large language models: Survey, landscape, and 1713
vision. IEEE Transactions on Software Engineering. 1714

Ping Wang, Tian Shi, and Chandan K. Reddy. 2020. 1715
Text-to-sql generation for question answering on elec- 1716
tronic medical records. In WWW ’20: The Web 1717
Conference 2020, Taipei, Taiwan, April 20-24, 2020, 1718
pages 350–361. ACM / IW3C2. 1719

Shuai Wang, Liang Ding, Li Shen, Yong Luo, Bo Du, 1720
and Dacheng Tao. 2024b. OOP: object-oriented pro- 1721
gramming evaluation benchmark for large language 1722
models. In Findings of the Association for Computa- 1723
tional Linguistics, ACL 2024, Bangkok, Thailand and 1724
virtual meeting, August 11-16, 2024, pages 13619– 1725
13639. Association for Computational Linguistics. 1726

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng 1727
Huang, Zhaoyang Chu, Da Song, Lingming Zhang, 1728
An Ran Chen, and Lei Ma. 2024c. TESTEVAL: 1729
benchmarking large language models for test case 1730
generation. CoRR, abs/2406.04531. 1731

Yibo Wang, Ying Wang, Tingwei Zhang, Yue Yu, Shing- 1732
Chi Cheung, Hai Yu, and Zhiliang Zhu. 2023a. Can 1733
machine learning pipelines be better configured? In 1734
Proceedings of the 31st ACM Joint European Soft- 1735
ware Engineering Conference and Symposium on 1736
the Foundations of Software Engineering, ESEC/FSE 1737
2023, page 463–475, New York, NY, USA. Associa- 1738
tion for Computing Machinery. 1739

Yu Emma Wang, Gu-Yeon Wei, and David Brooks. 1740
2019. Benchmarking tpu, gpu, and cpu platforms 1741
for deep learning. Preprint, arXiv:1907.10701. 1742

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F. Xu, 1743
and Graham Neubig. 2023b. Mconala: A benchmark 1744
for code generation from multiple natural languages. 1745
In Findings of the Association for Computational Lin- 1746
guistics: EACL 2023, Dubrovnik, Croatia, May 2-6, 1747
2023, pages 265–273. Association for Computational 1748
Linguistics. 1749

18

https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://openreview.net/forum?id=ix7rLVHXyY
https://doi.org/10.48550/ARXIV.2403.03163
https://doi.org/10.48550/ARXIV.2403.03163
https://doi.org/10.48550/ARXIV.2403.03163
https://doi.org/10.48550/ARXIV.2401.15963
https://doi.org/10.48550/ARXIV.2401.15963
https://doi.org/10.48550/ARXIV.2401.15963
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1007/S10664-022-10219-1
https://doi.org/10.1007/S10664-022-10219-1
https://doi.org/10.1007/S10664-022-10219-1
https://doi.org/10.1007/S10664-022-10219-1
https://doi.org/10.1007/S10664-022-10219-1
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.1145/3524842.3528009
https://doi.org/10.1145/3524842.3528009
https://doi.org/10.1145/3524842.3528009
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.48550/ARXIV.2406.04379
https://doi.org/10.48550/ARXIV.2406.04379
https://doi.org/10.48550/ARXIV.2406.04379
https://doi.org/10.48550/ARXIV.2406.04379
https://doi.org/10.48550/ARXIV.2406.04379
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3366423.3380120
https://doi.org/10.1145/3366423.3380120
https://doi.org/10.1145/3366423.3380120
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.808
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.808
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.808
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.808
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.808
https://doi.org/10.48550/ARXIV.2406.04531
https://doi.org/10.48550/ARXIV.2406.04531
https://doi.org/10.48550/ARXIV.2406.04531
https://doi.org/10.48550/ARXIV.2406.04531
https://doi.org/10.48550/ARXIV.2406.04531
https://doi.org/10.1145/3611643.3616352
https://doi.org/10.1145/3611643.3616352
https://doi.org/10.1145/3611643.3616352
https://arxiv.org/abs/1907.10701
https://arxiv.org/abs/1907.10701
https://arxiv.org/abs/1907.10701
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.20
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.20
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.20

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-1750
ham Neubig. 2022. Execution-based evaluation1751
for open-domain code generation. arXiv preprint1752
arXiv:2212.10481.1753

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,1754
Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel1755
Fried. 2024d. Coderag-bench: Can retrieval augment1756
code generation? CoRR, abs/2406.14497.1757

Cody Watson, Michele Tufano, Kevin Moran, Gabriele1758
Bavota, and Denys Poshyvanyk. 2020. On learning1759
meaningful assert statements for unit test cases. In1760
ICSE ’20: 42nd International Conference on Soft-1761
ware Engineering, Seoul, South Korea, 27 June - 191762
July, 2020, pages 1398–1409. ACM.1763

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.1764
2024. Jailbroken: How does llm safety training fail?1765
Advances in Neural Information Processing Systems,1766
36.1767

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten1768
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,1769
and Denny Zhou. 2022. Chain-of-thought prompt-1770
ing elicits reasoning in large language models. In1771
NeurIPS.1772

Jiayi Wei, Greg Durrett, and Isil Dillig. 2023. Typet5:1773
Seq2seq type inference using static analysis. In The1774
Eleventh International Conference on Learning Rep-1775
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,1776
2023. OpenReview.net.1777

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang,1778
Zhixuan Liang, Zeyu Lu, Ying Shan, and Ping Luo.1779
2024a. Plot2code: A comprehensive benchmark1780
for evaluating multi-modal large language models1781
in code generation from scientific plots. CoRR,1782
abs/2405.07990.1783

Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu,1784
Suyu Ma, Bo Jiang, Ping Yang, Zhenchang Xing,1785
Yuan-Fang Li, and Gholamreza Haffari. 2024b. Versi-1786
code: Towards version-controllable code generation.1787
CoRR, abs/2406.07411.1788

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang.1789
2024a. Top leaderboard ranking = top coding pro-1790
ficiency, always? evoeval: Evolving coding bench-1791
marks via LLM. CoRR, abs/2403.19114.1792

Yinghui Xia, Yuyan Chen, Tianyu Shi, Jun Wang, and1793
Jinsong Yang. 2024b. Aicodereval: Improving AI1794
domain code generation of large language models.1795
CoRR, abs/2406.04712.1796

Jie Xiao, Qianyi Huang, Xu Chen, and Chen Tian. 2024.1797
Large language model performance benchmarking on1798
mobile platforms: A thorough evaluation. Preprint,1799
arXiv:2410.03613.1800

Ruiyang Xu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xi-1801
anpei Han, Ben He, Shing-Chi Cheung, and Le Sun.1802
2024. Cruxeval-x: A benchmark for multilingual1803
code reasoning, understanding and execution. CoRR,1804
abs/2408.13001.1805

Ankit Yadav, Himanshu Beniwal, and Mayank Singh. 1806
2024a. Pythonsaga: Redefining the benchmark to 1807
evaluate code generating llms. In Findings of the 1808
Association for Computational Linguistics: EMNLP 1809
2024, pages 17113–17126. 1810

Ankit Yadav, Himanshu Beniwal, and Mayank Singh. 1811
2024b. Pythonsaga: Redefining the benchmark to 1812
evaluate code generating llms. In Findings of the 1813
Association for Computational Linguistics: EMNLP 1814
2024, Miami, Florida, USA, November 12-16, 2024, 1815
pages 17113–17126. Association for Computational 1816
Linguistics. 1817

Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and 1818
Lingxiao Jiang. 2020. Are the code snippets what 1819
we are searching for? A benchmark and an empirical 1820
study on code search with natural-language queries. 1821
In 27th IEEE International Conference on Software 1822
Analysis, Evolution and Reengineering, SANER 2020, 1823
London, ON, Canada, February 18-21, 2020, pages 1824
344–354. IEEE. 1825

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and 1826
Wen Wang. 2023. Codetransocean: A comprehen- 1827
sive multilingual benchmark for code translation. In 1828
Findings of the Association for Computational Lin- 1829
guistics: EMNLP 2023, Singapore, December 6-10, 1830
2023, pages 5067–5089. Association for Computa- 1831
tional Linguistics. 1832

Hongyu Yang, Liyang He, Min Hou, Shuanghong Shen, 1833
Rui Li, Jiahui Hou, Jianhui Ma, and Junda Zhao. 1834
2024a. Aligning llms through multi-perspective user 1835
preference ranking-based feedback for programming 1836
question answering. CoRR, abs/2406.00037. 1837

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, 1838
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan, 1839
Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, 1840
and Maosong Sun. 2024b. Matplotagent: Method 1841
and evaluation for llm-based agentic scientific data 1842
visualization. In Findings of the Association for Com- 1843
putational Linguistics, ACL 2024, Bangkok, Thai- 1844
land and virtual meeting, August 11-16, 2024, pages 1845
11789–11804. Association for Computational Lin- 1846
guistics. 1847

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan 1848
Sun. 2018. Staqc: A systematically mined question- 1849
code dataset from stack overflow. In Proceedings of 1850
the 2018 World Wide Web Conference on World Wide 1851
Web, WWW 2018, Lyon, France, April 23-27, 2018, 1852
pages 1693–1703. ACM. 1853

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai 1854
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao 1855
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui, 1856
Qi Zhang, and Xuanjing Huang. 2023. A comprehen- 1857
sive capability analysis of gpt-3 and gpt-3.5 series 1858
models. Preprint, arXiv:2303.10420. 1859

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan 1860
Vasilescu, and Graham Neubig. 2018. Learning to 1861
mine aligned code and natural language pairs from 1862

19

https://doi.org/10.48550/ARXIV.2406.14497
https://doi.org/10.48550/ARXIV.2406.14497
https://doi.org/10.48550/ARXIV.2406.14497
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://openreview.net/forum?id=4TyNEhI2GdN
https://openreview.net/forum?id=4TyNEhI2GdN
https://openreview.net/forum?id=4TyNEhI2GdN
https://doi.org/10.48550/ARXIV.2405.07990
https://doi.org/10.48550/ARXIV.2405.07990
https://doi.org/10.48550/ARXIV.2405.07990
https://doi.org/10.48550/ARXIV.2405.07990
https://doi.org/10.48550/ARXIV.2405.07990
https://doi.org/10.48550/ARXIV.2406.07411
https://doi.org/10.48550/ARXIV.2406.07411
https://doi.org/10.48550/ARXIV.2406.07411
https://doi.org/10.48550/ARXIV.2403.19114
https://doi.org/10.48550/ARXIV.2403.19114
https://doi.org/10.48550/ARXIV.2403.19114
https://doi.org/10.48550/ARXIV.2403.19114
https://doi.org/10.48550/ARXIV.2403.19114
https://doi.org/10.48550/ARXIV.2406.04712
https://doi.org/10.48550/ARXIV.2406.04712
https://doi.org/10.48550/ARXIV.2406.04712
https://arxiv.org/abs/2410.03613
https://arxiv.org/abs/2410.03613
https://arxiv.org/abs/2410.03613
https://doi.org/10.48550/arXiv.2408.13001
https://doi.org/10.48550/arXiv.2408.13001
https://doi.org/10.48550/arXiv.2408.13001
https://aclanthology.org/2024.findings-emnlp.996
https://aclanthology.org/2024.findings-emnlp.996
https://aclanthology.org/2024.findings-emnlp.996
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.337
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.337
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.337
https://doi.org/10.48550/ARXIV.2406.00037
https://doi.org/10.48550/ARXIV.2406.00037
https://doi.org/10.48550/ARXIV.2406.00037
https://doi.org/10.48550/ARXIV.2406.00037
https://doi.org/10.48550/ARXIV.2406.00037
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.701
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.701
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.701
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.701
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.701
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3178876.3186081
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408

stack overflow. In International Conference on Min-1863
ing Software Repositories, MSR, pages 476–486.1864
ACM.1865

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek1866
Rao, Yeming Wen, Kensen Shi, Joshua Howland,1867
Paige Bailey, Michele Catasta, Henryk Michalewski,1868
Oleksandr Polozov, and Charles Sutton. 2023. Nat-1869
ural language to code generation in interactive data1870
science notebooks. In Proceedings of the 61st Annual1871
Meeting of the Association for Computational Lin-1872
guistics (Volume 1: Long Papers), ACL 2023, Toronto,1873
Canada, July 9-14, 2023, pages 126–173. Associa-1874
tion for Computational Linguistics.1875

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,1876
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and1877
Qianxiang Wang. 2023. Codereval: A benchmark1878
of pragmatic code generation with generative pre-1879
trained models. arXiv preprint arXiv:2302.00288.1880

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,1881
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi,1882
Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sun-1883
grok Shim, Tao Chen, Alexander R. Fabbri, Zifan Li,1884
Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent1885
Zhang, Caiming Xiong, Richard Socher, Walter S.1886
Lasecki, and Dragomir R. Radev. 2019a. Cosql: A1887
conversational text-to-sql challenge towards cross-1888
domain natural language interfaces to databases. In1889
Proceedings of the 2019 Conference on Empirical1890
Methods in Natural Language Processing and the1891
9th International Joint Conference on Natural Lan-1892
guage Processing, EMNLP-IJCNLP 2019, Hong1893
Kong, China, November 3-7, 2019, pages 1962–1979.1894
Association for Computational Linguistics.1895

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,1896
Dongxu Wang, Zifan Li, James Ma, Irene Li,1897
Qingning Yao, Shanelle Roman, Zilin Zhang, and1898
Dragomir R. Radev. 2018. Spider: A large-scale1899
human-labeled dataset for complex and cross-domain1900
semantic parsing and text-to-sql task. In Proceed-1901
ings of the 2018 Conference on Empirical Methods1902
in Natural Language Processing, Brussels, Belgium,1903
October 31 - November 4, 2018, pages 3911–3921.1904
Association for Computational Linguistics.1905

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern1906
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene1907
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,1908
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-1909
cent Zhang, Caiming Xiong, Richard Socher, and1910
Dragomir R. Radev. 2019b. Sparc: Cross-domain se-1911
mantic parsing in context. In Proceedings of the 57th1912
Conference of the Association for Computational Lin-1913
guistics, ACL 2019, Florence, Italy, July 28- August1914
2, 2019, Volume 1: Long Papers, pages 4511–4523.1915
Association for Computational Linguistics.1916

Xiao Yu, Lei Liu, Xing Hu, Jacky Wai Keung, Jin Liu,1917
and Xin Xia. 2024. Fight fire with fire: How much1918
can we trust chatgpt on source code-related tasks?1919
arXiv preprint arXiv:2405.12641.1920

Xiaojing Yu, Tianlong Chen, Zhengjie Yu, Huiyu Li, 1921
Yang Yang, Xiaoqian Jiang, and Anxiao Jiang. 2020. 1922
Dataset and enhanced model for eligibility criteria-to- 1923
sql semantic parsing. In Proceedings of The 12th Lan- 1924
guage Resources and Evaluation Conference, LREC 1925
2020, Marseille, France, May 11-16, 2020, pages 1926
5829–5837. European Language Resources Associa- 1927
tion. 1928

Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, Jen tse 1929
Huang, Pinjia He, Shuming Shi, and Zhaopeng Tu. 1930
2024a. Gpt-4 is too smart to be safe: Stealthy chat 1931
with llms via cipher. Preprint, arXiv:2308.06463. 1932

Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, 1933
Yixuan Chen, Xin Peng, and Yiling Lou. 2024b. Eval- 1934
uating and improving chatgpt for unit test generation. 1935
Proceedings of the ACM on Software Engineering, 1936
1(FSE):1703–1726. 1937

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, 1938
Kaixin Wang, Yixuan Chen, and Xin Peng. 2023a. 1939
No more manual tests? evaluating and improving 1940
chatgpt for unit test generation. arXiv preprint 1941
arXiv:2305.04207. 1942

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji 1943
Ding, Kaixin Wang, Yixuan Chen, and Xin Peng. 1944
2023b. No more manual tests? evaluating and 1945
improving chatgpt for unit test generation. CoRR, 1946
abs/2305.04207. 1947

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, 1948
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu 1949
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao 1950
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan 1951
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, 1952
Huan Sun, Yu Su, and Wenhu Chen. 2024. Mmmu: 1953
A massive multi-discipline multimodal understand- 1954
ing and reasoning benchmark for expert agi. Preprint, 1955
arXiv:2311.16502. 1956

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham- 1957
mad Qazim Bhat, Yongxin Wang, Zutao Jiang, 1958
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo 1959
Li, Haonan Li, Preslav Nakov, Timothy Baldwin, 1960
Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and 1961
Zhiqiang Shen. 2024. Web2code: A large-scale 1962
webpage-to-code dataset and evaluation framework 1963
for multimodal llms. CoRR, abs/2406.20098. 1964

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Yongji 1965
Wang, and Jian-Guang Lou. 2022a. When lan- 1966
guage model meets private library. arXiv preprint 1967
arXiv:2210.17236. 1968

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, 1969
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, 1970
and Jian-Guang Lou. 2022b. Cert: continual pre- 1971
training on sketches for library-oriented code genera- 1972
tion. arXiv preprint arXiv:2206.06888. 1973

Zhengran Zeng, Yidong Wang, Rui Xie, Wei Ye, and 1974
Shikun Zhang. 2024. Coderujb: An executable and 1975
unified java benchmark for practical programming 1976
scenarios. In Proceedings of the 33rd ACM SIGSOFT 1977

20

https://doi.org/10.1145/3196398.3196408
https://doi.org/10.18653/V1/2023.ACL-LONG.9
https://doi.org/10.18653/V1/2023.ACL-LONG.9
https://doi.org/10.18653/V1/2023.ACL-LONG.9
https://doi.org/10.18653/V1/2023.ACL-LONG.9
https://doi.org/10.18653/V1/2023.ACL-LONG.9
https://doi.org/10.18653/V1/D19-1204
https://doi.org/10.18653/V1/D19-1204
https://doi.org/10.18653/V1/D19-1204
https://doi.org/10.18653/V1/D19-1204
https://doi.org/10.18653/V1/D19-1204
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/P19-1443
https://doi.org/10.18653/V1/P19-1443
https://doi.org/10.18653/V1/P19-1443
https://aclanthology.org/2020.lrec-1.714/
https://aclanthology.org/2020.lrec-1.714/
https://aclanthology.org/2020.lrec-1.714/
https://arxiv.org/abs/2308.06463
https://arxiv.org/abs/2308.06463
https://arxiv.org/abs/2308.06463
https://doi.org/10.48550/ARXIV.2305.04207
https://doi.org/10.48550/ARXIV.2305.04207
https://doi.org/10.48550/ARXIV.2305.04207
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://doi.org/10.48550/ARXIV.2406.20098
https://doi.org/10.48550/ARXIV.2406.20098
https://doi.org/10.48550/ARXIV.2406.20098
https://doi.org/10.48550/ARXIV.2406.20098
https://doi.org/10.48550/ARXIV.2406.20098
https://doi.org/10.1145/3650212.3652115
https://doi.org/10.1145/3650212.3652115
https://doi.org/10.1145/3650212.3652115
https://doi.org/10.1145/3650212.3652115
https://doi.org/10.1145/3650212.3652115

International Symposium on Software Testing and1978
Analysis, ISSTA 2024, Vienna, Austria, September1979
16-20, 2024, pages 124–136. ACM.1980

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.1981
2024a. Codeagent: Enhancing code generation with1982
tool-integrated agent systems for real-world repo-1983
level coding challenges. In Proceedings of the 62nd1984
Annual Meeting of the Association for Computa-1985
tional Linguistics (Volume 1: Long Papers), ACL1986
2024, Bangkok, Thailand, August 11-16, 2024, pages1987
13643–13658. Association for Computational Lin-1988
guistics.1989

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong1990
Fang, Bowen Yu, Weisong Sun, and Zhenyu Chen.1991
2023a. A critical review of large language model on1992
software engineering: An example from chatgpt and1993
automated program repair. CoRR, abs/2310.08879.1994

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng,1995
Zehan Qi, Xiaotao Gu, Xiaohan Zhang, Yuxiao Dong,1996
and Jie Tang. 2024b. Naturalcodebench: Examining1997
coding performance mismatch on humaneval and1998
natural user prompts. CoRR, abs/2405.04520.1999

Yusen Zhang, Jun Wang, Zhiguo Wang, and Rui Zhang.2000
2023b. Xsemplr: Cross-lingual semantic parsing in2001
multiple natural languages and meaning representa-2002
tions. In Proceedings of the 61st Annual Meeting of2003
the Association for Computational Linguistics (Vol-2004
ume 1: Long Papers), ACL 2023, Toronto, Canada,2005
July 9-14, 2023, pages 15918–15947. Association for2006
Computational Linguistics.2007

Ziyin Zhang, Lizhen Xu, Zhaokun Jiang, Hongkun2008
Hao, and Rui Wang. 2024c. Multiple-choice ques-2009
tions are efficient and robust LLM evaluators. CoRR,2010
abs/2405.11966.2011

Dewu Zheng, Yanlin Wang, Ensheng Shi, Ruikai2012
Zhang, Yuchi Ma, Hongyu Zhang, and Zibin Zheng.2013
2024. Towards more realistic evaluation of llm-based2014
code generation: an experimental study and beyond.2015
CoRR, abs/2406.06918.2016

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan2017
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,2018
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023a.2019
Codegeex: A pre-trained model for code generation2020
with multilingual benchmarking on humaneval-x. In2021
Proceedings of the 29th ACM SIGKDD Conference2022
on Knowledge Discovery and Data Mining, KDD ’23,2023
page 5673–5684, New York, NY, USA. Association2024
for Computing Machinery.2025

Yunhui Zheng, Saurabh Pujar, Burn L. Lewis, Luca2026
Buratti, Edward A. Epstein, Bo Yang, Jim Laredo,2027
Alessandro Morari, and Zhong Su. 2021. D2A: A2028
dataset built for ai-based vulnerability detection meth-2029
ods using differential analysis. In 43rd IEEE/ACM2030
International Conference on Software Engineering:2031
Software Engineering in Practice, ICSE (SEIP) 2021,2032
Madrid, Spain, May 25-28, 2021, pages 111–120.2033
IEEE.2034

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen 2035
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen. 2036
2023b. A survey of large language models for code: 2037
Evolution, benchmarking, and future trends. arXiv 2038
preprint arXiv:2311.10372. 2039

Victor Zhong, Caiming Xiong, and Richard Socher. 2040
2017. Seq2sql: Generating structured queries 2041
from natural language using reinforcement learning. 2042
CoRR, abs/1709.00103. 2043

Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning 2044
Du, and Yang Liu. 2019. Devign: Effective vul- 2045
nerability identification by learning comprehensive 2046
program semantics via graph neural networks. In Ad- 2047
vances in Neural Information Processing Systems 32: 2048
Annual Conference on Neural Information Process- 2049
ing Systems 2019, NeurIPS 2019, December 8-14, 2050
2019, Vancouver, BC, Canada, pages 10197–10207. 2051

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin- 2052
dran, Sindhu Tipirneni, and Chandan K. Reddy. 2022. 2053
Xlcost: A benchmark dataset for cross-lingual code 2054
intelligence. CoRR, abs/2206.08474. 2055

Qiming Zhu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xian- 2056
pei Han, Le Sun, and Shing-Chi Cheung. 2024. Do- 2057
maineval: An auto-constructed benchmark for multi- 2058
domain code generation. CoRR, abs/2408.13204. 2059

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, 2060
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani 2061
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon 2062
Brunner, Chen Gong, Thong Hoang, Armel Randy 2063
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad- 2064
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na- 2065
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, 2066
Qian Liu, Zijian Wang, David Lo, Binyuan Hui, 2067
Niklas Muennighoff, Daniel Fried, Xiaoning Du, 2068
Harm de Vries, and Leandro von Werra. 2024. Big- 2069
codebench: Benchmarking code generation with di- 2070
verse function calls and complex instructions. CoRR, 2071
abs/2406.15877. 2072

Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and 2073
Hai Jin. 2020. µvuldeepecker: A deep learning- 2074
based system for multiclass vulnerability detection. 2075
CoRR, abs/2001.02334. 2076

21

https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://doi.org/10.18653/V1/2024.ACL-LONG.737
https://doi.org/10.48550/ARXIV.2310.08879
https://doi.org/10.48550/ARXIV.2310.08879
https://doi.org/10.48550/ARXIV.2310.08879
https://doi.org/10.48550/ARXIV.2310.08879
https://doi.org/10.48550/ARXIV.2310.08879
https://doi.org/10.48550/ARXIV.2405.04520
https://doi.org/10.48550/ARXIV.2405.04520
https://doi.org/10.48550/ARXIV.2405.04520
https://doi.org/10.48550/ARXIV.2405.04520
https://doi.org/10.48550/ARXIV.2405.04520
https://doi.org/10.18653/V1/2023.ACL-LONG.887
https://doi.org/10.18653/V1/2023.ACL-LONG.887
https://doi.org/10.18653/V1/2023.ACL-LONG.887
https://doi.org/10.18653/V1/2023.ACL-LONG.887
https://doi.org/10.18653/V1/2023.ACL-LONG.887
https://doi.org/10.48550/ARXIV.2405.11966
https://doi.org/10.48550/ARXIV.2405.11966
https://doi.org/10.48550/ARXIV.2405.11966
https://doi.org/10.48550/ARXIV.2406.06918
https://doi.org/10.48550/ARXIV.2406.06918
https://doi.org/10.48550/ARXIV.2406.06918
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://doi.org/10.48550/ARXIV.2206.08474
https://doi.org/10.48550/ARXIV.2206.08474
https://doi.org/10.48550/ARXIV.2206.08474
https://doi.org/10.48550/arXiv.2408.13204
https://doi.org/10.48550/arXiv.2408.13204
https://doi.org/10.48550/arXiv.2408.13204
https://doi.org/10.48550/arXiv.2408.13204
https://doi.org/10.48550/arXiv.2408.13204
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://arxiv.org/abs/2001.02334
https://arxiv.org/abs/2001.02334
https://arxiv.org/abs/2001.02334

A Statistics of studied benchmarks2077

In this section, we conducted a comprehensive and2078

detailed statistical analysis of the 274 benchmarks2079

collected.2080

(2,2) CodeContest

(4) CodeEditorBench
CodeXGLUE (3)

CodeNet (4)

(1,3) TACO

CommitChornicle (1) (1) Long Code Arena

HumanEval (15)

(8) CodeRAGBench

MBPP (5)

LiveCodeBench (1)
DS-1000 (1)

(1,2) ODEX

RepoEval (1)

(1,1) SWE-bench-Lite
SWE-bench (2)

(1) SWE-bench-Verified

CodeSearchNet (5)

Verilog-Eval (1) (1) VHDL-Eval
SecurityEval (1) (1) CodeGuard+

(1) MBXP

(1) Multi-HumanEval

(1,1) MathQA-Python (1) MathQA-X

(2) MultiPL-E

MCoNaLa (1)

CoNaLa (3)

(2) PythonIO

APPS (1)
Description2Code (2)

BigVul (1)

(5) PRIMEVUL

CrossVul (1)
DiverseVul (1)

Devign (3)

(2) PACS
StaQC (2)

FB-Java (1)

(2) DGMS-dataset

CoSQA (1) (2) CoSQA+

Spider (6)
(1) Spider-Realistic

(1) Spider-SS

EHRSQL (1)

(1) EHR-SeqSQL

(1) ENAMEL
(1) RealHumanEval

Defects4j (2) (1) CoderUJB

(1) EvoEval

(2) HumanEvalFix

(1) HumanEvalExplain
(1) HumanEvalSynthesize

(1,1) HumanEval+
(1) HumanEval+ -MINI

(1) HumanEval-X

JuiCe (2) (1) PlotCoder

MathQA (1)

(1) RunBugRun

MAGMA (1)
(4) VulBench

D2A (1)
Big-Vul (1)

(2) VulnPatchPairs

(2) XSEMPLR

(1) Spider-DK
(1) Spider-Syn

Wizard-of-Oz (1)
(1) CoSQL

(1) SParC

The Stack V1.1 (1)
(1) Stack-Repo

NoFunEval (1)

PandasEval (1)
(1) MonkeyEvalNumpyEval (1)

(1) BeatNumEvalGSM8K (1)
(1) GSM-HARD

(1) ExeDS

(2) EditEval

ManyTypes4Py (1)
(1) BetterTypes4PyTypilus (1)
(2) InferTypes4PyType4Py (1)

(3) CoDesc

DeepCom (1)
FunCom (1)

(1) HumanEval-Java

(1) PIE

(1) ChatTester

(1) Method2Test

(3) Code Lingua

Avatar+ (1)

CruxEval (1) (1) CruxEval-X

2024/12/14 晚上7:01 graph_sample.html

file:///C:/Users/User/Desktop/code benchmark paper/graph_sample.html 1/1

Figure 8: Relationships between Benchmarks

A.1 Profile of Studied Benchmarks2081

We first show the trend in the development of2082

benchmarks from 2014 to 2024. As shown in Fig-2083

ure 9, the data shows a modest beginning, with2084

only a handful of benchmarks created annually un-2085

til 2017. From 2018 onwards, there is a noticeable2086

uptrend in benchmark creation, culminating in a2087

significant jump to 149 benchmarks in 2024. This2088

sharp increase indicates a recent heightened inter-2089

est and demand for comprehensive code-related2090

benchmarks for LLMs, reflecting the evolving com-2091

plexities and expanding requirements of automated2092

software engineering.2093

Hierarchy of Benchmarks. Figure 8 visualize2094

the inheritance relationships among benchmarks, 2095

indicating that the benchmarks on the left serve as 2096

sources for those on the right. It highlights that 2097

18% (50 out of 274) of benchmarks act as data 2098

sources, continuously benefiting the construction 2099

of subsequent benchmarks. 2100

Figure 8 reveals that HumanEval (Chen et al., 2101

2021a), as the most significant source benchmark, 2102

benefits at least 15 downstream benchmarks, fol- 2103

lowed by MBPP (Austin et al., 2021) and Code- 2104

SearchNet (Husain et al., 2019). From the right 2105

side of the figure, some benchmarks, like Vul- 2106

Bench (Gao et al., 2023b), incorporate method- 2107

ologies or data from 4 previous benchmarks, and 2108

codeRagBench (Wang et al., 2024d) integrates ele- 2109

ments from 8 prior benchmarks. 2110

This hierarchical structure among benchmarks 2111

also alerts us that the data quality of a benchmark 2112

not only affects its own credibility but can con- 2113

tinue to impact others if it serves as a source. This 2114

underscores the importance of adhering to strin- 2115

gent guidelines during benchmark development 2116

and highlights the crucial role of establishing stan- 2117

dards to ensure the integrity and utility of bench- 2118

mark data across research and development efforts. 2119

Figure 9: Benchmark Distribution over Years

Annual Trend. Regarding the coding tasks, Fig- 2120

ure 11 illustrates the distribution of various cod- 2121

ing tasks across benchmarks. It is clear that the 2122

task of Code Generation is most prevalent, with 2123

99 benchmarks focusing on this area according to 2124

36% (99/274) of studied benchmarks, indicating 2125

a significant interest in generating code automat- 2126

ically. Program Repair and Defeat Detection are 2127

well-represented, with 27 and 25 benchmarks, re- 2128

spectively, reflecting the importance of correcting 2129

code and detecting defects. 2130

Citation distribution. We also visualized the 2131

citations of 274 code-related benchmarks. The 2132

citation statistics were collected on September 1st, 2133

22

2024. From Figure 10, we can see a clear long-2134

tail trend of the citations, from the highest 27352135

(HumanEval (Chen et al., 2021a)) to the lowest 0.2136

0

1000

2000

3000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Citations

Figure 10: Citation Distribution of Benchmarks

Coding Task. Tasks like Code Summarization2137

and Text2SQL are similarly significant, each with2138

25 and 22 benchmarks. These tasks focus on mak-2139

ing code more understandable and converting nat-2140

ural language queries into SQL queries. Other2141

tasks, such as Code Retrieval, Code Reasoning, and2142

Code Translation, are represented with 18, 17, and2143

16 benchmarks, respectively. Lesser-represented2144

benchmarks are Test Generation, Code Optimiza-2145

tion, and Code Completion, each represented by2146

8 and 7 benchmarks, indicating the inadequacy of2147

these tasks.2148

Figure 11: Benchmark Distribution over Tasks

Programming Languages. Figure 12 shows2149

the distribution of benchmarks across various pro-2150

gramming languages. The overall trend indicates a2151

strong preference for benchmarking Python, which2152

leads with 158 benchmarks, followed by Java and2153

C++, with 107 and 63, respectively. The graph also2154

reveals a diverse range of languages being used.2155

In total, 724 programming languages are studied2156

by these 274 benchmarks. Though some program-2157

ming languages, such as Kotlin, Swift, and Scala,2158

are less frequently exercised, the benchmarks in-2159

volving them are tailored to different application2160

needs and technology environments. This distribu-2161

tion shows the existing benchmarks are dominated2162

by three mainstream programming languages, leav-2163

ing other programming languages less studied and 2164

benchmarked. 2165

Figure 12: Benchmark Distribution over Programming
Language

Natural Language. Figure 13 illustrates the 2166

distribution of benchmarks for different natural lan- 2167

guages. The bar chart overwhelmingly shows that 2168

English is the dominant language, with 192 bench- 2169

marks highlighting its ubiquity in research and 2170

development. Other languages have significantly 2171

fewer benchmarks, with six for Chinese and only 2172

two each for Japanese, Russian, and Spanish. The 2173

category labeled “Other” includes 20 benchmarks 2174

spread across other natural languages, indicating 2175

some diversity but limited attention to non-English 2176

benchmarks. This distribution highlights the promi- 2177

nence of English in the global research community 2178

and also demonstrates the uneven representation 2179

of natural languages in the studied benchmarks. 2180

Figure 13: Benchmark Distribution over Natural Lan-
guage

Modals in the benchmarks. Figure 14 presents 2181

23

the distribution of benchmarks according to the2182

type of language used in their prompts. The2183

chart shows that the majority, at 47.1%, of the2184

benchmarks use a combination of natural language2185

and programming Language, followed by PL only2186

(31.0%) and NL only (21.9%).

Figure 14: Benchmark Distribution over Modal in
Prompt

2187
Granularity. The code snippet in a code-related2188

benchmark varies from statement-level (i.e., one2189

line of code. For example, CoNaLa (Yin et al.,2190

2018) and Math-QA (Amini et al., 2019)), function-2191

level (i.e., a function unit of code. For example, Hu-2192

manEval (Chen et al., 2021a) and MBPP (Austin2193

et al., 2021)), class-level (i.e., a class with mul-2194

tiple function units of code. For example, Clas-2195

sEval (Du et al., 2023b)) and project-level (i.e., a2196

project with multiple classes or modules. For exam-2197

ple, DevEval (Li et al., 2024a) and JavaBench (Cao2198

et al., 2024a)). Figure 15 illustrates the granular-2199

ity levels at which benchmarks are typically con-2200

ducted. The chart shows that the majority of bench-2201

marks, comprising 71.8%, focus on the function2202

level. Projects constitute 15.0% of the benchmarks.2203

Class-level granularity is the least represented at2204

2.6%.2205

The majority of benchmarks are currently at the
function level (70+%), followed by the project
level (15+%). This indicates that the current ma-
jor demand is for assessing individual functions
within a single task, followed by the demand
for evaluating functionalities more aligned with
actual project-level code development.

A.2 Statistics about Benchmark Design2206

Design of Studied Capabilities. To understand2207

whether benchmark developers recognize the ca-2208

pabilities of LLMs they aim to evaluate, we care-2209

fully analyzed 30 representative benchmarks (Ap-2210

pendix C) to see if they clearly specify the capabili-2211

Figure 15: Benchmark Distribution over Granularity

ties being assessed by their benchmarks. As shown 2212

in Figure 16, 90% of benchmarks explicitly specify 2213

the capabilities (e.g., intention understanding, prob- 2214

lem solving, testing, debugging capabilities)to be 2215

evaluated, while 10% do not. The statistics show 2216

that the most highly cited benchmarks clearly de- 2217

fine the assessment capabilities. 2218

Figure 16: Benchmark Distribution Over Capabilities
Consideration

Furthermore, we investigated the 30 focused 2219

benchmarks and identified a case (Figure 17) from 2220

MBPP (Austin et al., 2021) where the case is likely 2221

to fall outside of the targeted capability of the 2222

benchmark. In particular, MBPP (Austin et al., 2223

2021) aims to “measure the ability of these models 2224

to synthesize short Python programs from natural 2225

language descriptions” for “entry-level program- 2226

mers”. As we can see from Figure 17, the prompt 2227

requires LLMs to “Write a function to calculate 2228

the dogs’ years.” Simply from this description, 2229

an entry-level programmer is unlikely to write a 2230

correct program without knowing the conversion 2231

equation from dogs’ year to dogs’ age. In other 2232

words, this case is more about assessing whether 2233

LLMs have acquired this specific knowledge rather 2234

than evaluating the most fundamental program- 2235

ming skills. 2236

Design of Studied Application Scenarios. Simi- 2237

larly, to understand whether benchmark developers 2238

24

Out of Targeted Capabilities

{
 'source_file': 'Benchmark Questions

Verification V2.ipynb',
'task_id’: 264,

 'prompt': 'Write a function to calculate
 a dog's age in dog's years.'

'test_list': ["assert dog_age(12)==61",
 "assert dog_age(15)==73",
 "assert dog_age(24)==109"]
}

1
2
3
4
5
6
7
8
9

10

Figure 17: An Example of Out-of-capability Case from
MBPP (Austin et al., 2021).

scoped the application scenarios of LLMs they aim2239

to evaluate, we carefully analyzed 30 representa-2240

tive benchmarks (Appendix C) to see whether they2241

explicitly specify the application scenarios their2242

benchmarks target. As shown in Figure 18, 70%2243

representative benchmarks have clearly specified2244

application scenarios (e.g., programming assistant),2245

while the rest do not. Indeed, clearly defining the2246

application scenarios could help benchmark con-2247

structors establish precise goals for the design and2248

development of the benchmark, ensuring accuracy2249

in the evaluation.2250

Figure 18: Benchmark Distribution Over Expected Ap-
plication Scenario Consideration

A.3 Statistics about Data Preparation2251

A.3.1 Data Preprocessing2252

Data Deduplication. During benchmark prepara-2253

tion, data cleaning and preprocessing are necessary.2254

However, as shown in Figure 19, only 38% bench-2255

marks have deduplicated the collected data. More2256

than half of them didn’t mention this process.2257

To investigate the situation, we went through2258

the 30 representative benchmarks (Listed in Ap-2259

Figure 19: Benchmark Distribution over Deduplication

pendix C) and found two duplicated subjects in 2260

MBPP (Austin et al., 2021). Tasks with id 71 and 2261

141 examined the same functionality, i.e., “Write a 2262

function to sort a list of elements.”, collected from 2263

the same source. 2264

1
2
3
4
5
6
7
8
9

10
11

Duplicated Data

{
 'source_file': 'Mike's Copy of Benchmark
 Questions Verification V2.ipynb',

'task_id’: 71,
 'prompt': 'Write a function to sort a list of elements. '
}

{
 'source_file': 'Mike's Copy of Benchmark
 Questions Verification V2.ipynb',

'task_id’: 141,
 'prompt': 'Write a function to sort a list of elements. '
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Figure 20: A Counterexample of Rule 16 from
MBPP (Austin et al., 2021).

The significance of data preprocessing, such
as deduplication, is frequently overlooked by
benchmark builders, leading to data duplication
even in highly cited benchmarks.

Data Quality Assurance. Ensuring data quality 2265

for the benchmark is essential. However, our statis- 2266

tics (Figure 21) show disappointing results. 67.9% 2267

of benchmarks do NOT take any measures for 2268

data quality assurance. Among those benchmarks 2269

that do incorporate data quality measures, the ma- 2270

jority rely on manual checks, which accounts for 2271

22.6%. Other countermeasurements, such as code 2272

execution, constitute only 2.2%, while verification 2273

using LLMs accounts for 1.5%. Additional meth- 2274

ods, such as using download counts as a basis, are 2275

also employed. 2276

Additionally, we dived into the 30 representative 2277

25

Figure 21: Benchmark Distribution over Quality Assur-
ance Method

benchmarks (Listed in Appendix C) and identified2278

an example where the code cannot be executed2279

successfully. As shown in Figure 22, the function2280

swap() in line 7 has not been defined, so the2281

execution of the code would fail if the code has2282

been executed. This highlights a significant gap in2283

ensuring the reliability and validity of benchmark2284

data, underscoring the need for more rigorous and2285

automated data quality assurance practices.2286

Problem in Execution

Import math
def min_Operations (A, B):
 """ Write a python function to find
 the minimum operations required
 to make two numbers equal. ""“
 if (A > B):
 swap(A,B)
 B = B // math.gcd(A,B);
 return B - 1

1
2
3
4
5
6
7
8
9

Figure 22: An Example from MBPP (Austin et al.,
2021) that failed to be executed.

Data Contamination Resolution. Data con-2287

tamination (Golchin and Surdeanu, 2023; Cao2288

et al., 2024b) threat has been widely discussed.2289

A benchmark with contaminated data may yield2290

overclaimed results, misleading the understand-2291

ing of the LLMs’ capabilities. According to our2292

statistics (Figure 23 on benchmarks from the year2293

2023 to 2024 (the duration when most LLMs were2294

launched), most (81.8 %) benchmarks were not2295

aware of and have not taken any measures to alle-2296

viate data contamination, being vulnerable to data2297

contamination threat.2298

A.3.2 Statistics about Data Curation2299

Ground truth solutions. Figure 24 shows that al-2300

though the majority (92.3%) of benchmarks pro-2301

0
Figure 23: Benchmark Distribution over Quality Assur-
ance on Data Contamination

vide reference code as ground truth, there are 5% 2302

of benchmarks without reference code. Although it 2303

is not compulsory as long as object measurements 2304

(e.g., test cases) are provided, a reference code 2305

is still recommended. Indeed, if a benchmark 2306

provides reference code, its reliability tends to be 2307

better because it ensures that there are feasible so- 2308

lutions for the tasks involved. This guarantees that 2309

the tasks are theoretical and practically solvable, 2310

enhancing the benchmark’s usefulness and credi- 2311

bility in real-world applications. 2312

Figure 24: Benchmark Distribution over Solution

Additionally, the correctness of the ground 2313

truth solution should also be noted. Figure 25 2314

shows an incorrect code solution provided in Hu- 2315

manEval (Chen et al., 2021a). This should draw 2316

benchmark constructors’ attention to the correct- 2317

ness of the benchmark reference code. 2318

Oracle. An oracle (Barr et al., 2014) is a way 2319

to determine whether the output is correct or not. 2320

For example, assume the output of LLMs is in the 2321

form of code, then an oracle could be running tests 2322

against the code and see whether the code can pass 2323

all the tests. Figure 26 shows the distribution of 2324

types of oracle that are used in these benchmarks. 2325

Clear that the exact match 41.97% (115/274) and 2326

test case passing (114/274) 41.6% are the most 2327

26

Incorrect Ground-truth

def check_dict_case(dict):
 """ Given a dictionary, return True if all keys are strings
 in lower case or all keys are strings in upper case, else
 return False. The function should return False is the
 given dictionary is empty. """
 if len(dict.keys()) == 0:
 return False
 else:
 state = "start"
 for key in dict.keys():
 if isinstance(key, str) == False:
 state = "mixed"
 break
 if state == "start“:
 if key.isupper():
 state = "upper"
 elif key.islower():
 state = "lower"
 else:
 break
 elif (state == "upper" and not key.isupper())
 or (state == "lower" and not
 key.islower()):
 state = "mixed"
 break
 else:
 break
 return state == "upper" or state == "lower"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Figure 25: An Example from Humaneval (Chen et al.,
2021a) which shows an incorrect solution provided in
the benchmark.

common oracle used in code-related benchmarks,2328

followed by thresholds (i.e., similarities smaller2329

than a specific threshold).2330

Figure 26: Benchmark Distribution over Test Orcale

Code test coverage (Ivanković et al., 2019), as a2331

common oracle for code-related benchmarks, has2332

been widely adopted to determine the output cor-2333

rectness. It should be considered if a benchmark2334

uses test case passing as a criterion for the correct-2335

ness of the generated code. Otherwise, a test could2336

be too weak to detect the existence of a defect in2337

the generated code. For example, as pointed out2338

by prior work (Liu et al., 2023a), existing bench-2339

marks such as HumanEval (Chen et al., 2021a) and2340

MBPP (Austin et al., 2021) still suffer from “insuf- 2341

ficient tests”, allowing incorrect code to pass all 2342

the tests without capturing the bugs. 2343

Despite its importance, as shown in Figure 27, 2344

among the benchmarks that use test cases as the 2345

oracle, only 8.7% considered and reported “test 2346

coverage” explicitly in their papers, while 87.8% 2347

did not mention the test coverage of their provided 2348

code. 2349

Figure 27: Benchmark Distribution over Test Coverage

Furthermore, we dived into 30 representative 2350

benchmarks (Listed in Appendix C) and identified 2351

an example (Figure 28) from MBPP (Austin et al., 2352

2021) where the test is incorrect. It alerts us that 2353

both the quality of the test and the test adequacy 2354

(e.g., code coverage) should be considered. 2355

Wrong Example Tests

{
 'source_file': 'charlessutton@: Benchmark

Questions Verification V2.ipynb',
'task_id’: 461,

 'prompt': 'Write a python function to count the
 upper case characters in a given string.'

'test_list': ["assert upper_ctr('PYthon') == 1",
 "assert upper_ctr('BigData') == 1",
 "assert upper_ctr('program') == 0"]
}

1
2
3
4
5
6
7
8
9

10

Figure 28: An Example of Incorrect Tests from
MBPP (Austin et al., 2021).

A.4 Statistics about Evaluation 2356

Studied LLMs. We summarize the number of 2357

LLMs that have been evaluated in each benchmark 2358

evaluation. Among the 274 benchmarks, 183 of 2359

them are evaluated over LLMs, so we show the 2360

statistics over them. As shown in Figure 29, over 2361

34% of the benchmarks were evaluated on fewer 2362

27

than 3 LLMs, with 11.48% benchmarks only eval-2363

uated on one LLM. Such evaluation results can2364

hardly be generalized to other LLMs. Further-2365

more, more than half of the benchmarks studied2366

fewer than 6 LLMs (51% = (21 +22 + 20 + 4 +2367

12+15)/183).2368

Figure 29: Benchmark Distribution over LLM Experi-
mented

Additionally, we listed the top-10 LLMs by the2369

number of code-related benchmarks they have been2370

evaluated, as shown in Figure 30. GPT series leads2371

significantly with 116 benchmarks, suggesting its2372

widespread adoption and possibly its versatility2373

or superior performance in handling code-related2374

tasks. The rest, including CodeLlama, StarCoder,2375

CodeGen, and others, show varying degrees of in-2376

volvement, with numbers ranging from 60 down2377

to 24 benchmarks for Claude. This figure may2378

provide a reference for choosing which model to2379

evaluate. In addition, it is worth mentioning that2380

different LLMs should be considered considering2381

different coding tasks.2382

Figure 30: Top-10 Studied LLMs for Code-related
Benchmarks

Experiment Environments. The experimental2383

environment (such as the operating system and2384

hardware) is important for the reproduction of the2385

experiment. However, Figure 32 and Figure 31 2386

highlight a significant gap. A mere 27.4% of bench- 2387

marks document the devices used in their experi- 2388

ments, leaving a substantial 72.6% that do not. The 2389

situation appears even more dire when considering 2390

os, with only 3.6% of benchmarks documenting 2391

the OS used, while a staggering 96.4% neglect to 2392

record this information. 2393

Figure 31: Benchmark Distribution over Recording Ex-
periment Devices

Figure 32: Benchmark Distribution over Recording Ex-
periment OS

Prompting and Prompting Strategies Prompt- 2394

ing has a direct impact on the quality of the LLMs’ 2395

output results (Wei et al., 2022; He et al., 2024a; 2396

Jin et al., 2024). So, we summarized whether differ- 2397

ent prompting strategies have been evaluated and 2398

statistics the distribution. Figure 33 shows the us- 2399

age of four kinds of prompts: zero-shot, few-shot, 2400

chain-of-thought, and retrievals (RAG). From Fig- 2401

ure 33, we can see that a vast majority (94.9%) 2402

benchmarks were evaluated in a zero-shot context 2403

setting, while only 21.2% benchmarks were evalu- 2404

ated in a few-shot manner. Even fewer benchmarks 2405

were evaluated under the COT and RAG settings, 2406

utilized by only 8.8% and 2.6%. 2407

Prompt Quality The prompt quality also greatly 2408

impacts the LLM evaluation (He et al., 2024b). So, 2409

carefully designing a prompt needs consideration. 2410

However, as shown in Figure 34, 73.3% represen- 2411

28

Figure 33: Benchmark Distribution over Context Setting

tative benchmarks (Appendix C) do not validate2412

whether the prompt they used is well-designed.2413

Figure 34: Benchmark Distribution Over Validation of
Prompts

Repeated Experiment Given the random na-2414

ture of LLMs, the experiments are expected to re-2415

peat, ensuring the stability and reliability of the re-2416

sults. However, as shown in Figure 35, only 35.4%2417

benchmarks went through a repeated experiment,2418

while a majority of 64.6% opted against repeating2419

the experiment. This reflects a lack of awareness2420

regarding the stability and reproducibility of evalu-2421

ations.2422

A.5 Statistics about Analysis2423

Experiment Explanation. Explaining experiment2424

results is crucial for other practitioners to under-2425

stand what the outcomes mean in the context of2426

the research questions. So, we investigate whether2427

the representative benchmarks (Appendix C) have2428

explained the experiment results. As shown in2429

Figure 36, 70% benchmarks have detailed explana-2430

tions and analyses of their evaluation results, while2431

still 30% have not. Indeed, an explanation con-2432

Figure 35: Benchmark Distribution over Repeating the
Experiment

tributes to the body of knowledge by making it 2433

possible to understand and compare results with 2434

previous studies, promoting transparency within 2435

the community. 2436

Figure 36: Benchmark Distribution Over Explaining the
Experiment

A clear and precise presentation of experimental 2437

results is important for enabling robust interpre- 2438

tation and comparison across benchmarks. How- 2439

ever, further examination of the 30 representative 2440

benchmarks (listed in Appendix C) revealed no- 2441

table deficiencies in result visualization. As shown 2442

in Figure 37, CruxEval (Gu et al., 2024) exhibits 2443

unclear experimental result presentation. Specif- 2444

ically, the scatter plot suffers from ambiguous la- 2445

beling, poor readability of axis values, and incon- 2446

sistent marker encoding, making it difficult for re- 2447

searchers to extract meaningful insights. Such pre- 2448

sentation shortcomings obscure the performance 2449

relationships between methods and compromise 2450

the benchmark’s usability for fair evaluation. To 2451

address these issues, benchmarks should adopt stan- 2452

dardized and well-documented visualization prac- 2453

tices, ensuring results are interpretable, accessible, 2454

and reproducible. 2455

29

Unclear Presentation of the Experiment Result

Figure 37: An Example of Unclear Experiment Analysis
and Display from CruxEval (Gu et al., 2024)

A.6 Statistics about Release2456

Data Accessibility. The fundamental requirement2457

for releasing a benchmark is that it must be open-2458

sourced. However, surprisingly, as shown in Fig-2459

ure 38, we observed that 5.1% of the benchmarks2460

are only partially open-sourced (e.g., missing some2461

subjects or tests), and 5.8% are not open-sourced2462

at all (e.g., links/web pages are no longer active).2463

Figure 38: Benchmark Data Availability

Prompt Accessibility. Detailed prompts are es-2464

sential for ensuring the reproducibility and trans-2465

parency of code-related benchmarks. However, as2466

shown in Figure 39, we found that 52.6% of bench-2467

marks do not provide detailed prompts, limiting2468

the ability to accurately replicate and evaluate the2469

performance of LLMs. This lack of prompt disclo-2470

sure highlights a gap in benchmark design practices,2471

as prompts are often indispensable for understand-2472

ing model performance under specific conditions.2473

While 47.4% of benchmarks include such prompts,2474

the absence of comprehensive prompt documenta-2475

tion in over half of the cases raises concerns about2476

the consistency and reproducibility of reported re-2477

sults. 2478

Figure 39: Availability of Prompts

Logging Info Accessibility. Providing detailed 2479

logging information, including comprehensive ex- 2480

perimental results, is essential for ensuring trans- 2481

parency, verifiability, and reproducibility in bench- 2482

marking research. However, as shown in Figure 40, 2483

only 16.7% of the benchmarks make their experi- 2484

mental results publicly available, while 80.0% fail 2485

to disclose this critical information. Alarmingly, 2486

an additional 3.3% provide only partial logging de- 2487

tails, further complicating result verification. The 2488

absence of complete logging information creates 2489

significant barriers for researchers attempting to 2490

reproduce experiments or validate reported find- 2491

ings, thereby undermining the reliability of bench- 2492

marks. To address this, we emphasize the necessity 2493

of making detailed logging information, including 2494

intermediate results and metrics, publicly acces- 2495

sible to uphold rigorous scientific standards and 2496

foster trustworthy comparisons across models. 2497

Figure 40: Availability of Logging Information

User Manual Accessibility. A high-quality user 2498

manual, such as a well-documented README 2499

file, is crucial for enhancing benchmark usabil- 2500

ity, enabling users to understand the dataset, ex- 2501

ecute provided scripts, and reproduce results ef- 2502

ficiently. However, our analysis revealed that a 2503

significant number of benchmarks lack comprehen- 2504

sive user manuals, hindering accessibility and adop- 2505

30

tion. As depicted in Figure 41, poorly structured2506

or incomplete manuals often omit essential com-2507

ponents such as benchmark introductions, usage2508

instructions, and evaluation scripts. This creates un-2509

necessary barriers for researchers who rely on these2510

manuals for setup and experimentation. To address2511

this, we advocate for benchmarks to include clear,2512

standardized user manuals that provide an overview2513

of the benchmark, step-by-step execution guides,2514

and troubleshooting instructions, ensuring a seam-2515

less and reproducible user experience.2516

Figure 41: Availability of User Manual

Convenient Evaluation Interface Availability.2517

Providing convenient evaluation interfaces is es-2518

sential for enhancing the usability and accessibility2519

of benchmarks, enabling researchers to easily re-2520

produce results and compare models. As shown2521

in Figure 42, 16.7% of benchmarks fail to offer2522

any evaluation interfaces, imposing significant2523

barriers to usability. While a majority of bench-2524

marks (83.3%) provide such interfaces, including2525

command-line tools, Docker images, or scripts, the2526

absence of standardized and user-friendly evalua-2527

tion tools in a notable minority of cases highlights2528

an area for improvement. Benchmarks without2529

convenient evaluation interfaces require users to2530

spend additional effort in setup and result verifi-2531

cation, which can discourage adoption and hin-2532

der reproducibility. To address this, we emphasize2533

the importance of releasing benchmarks with well-2534

documented, ready-to-use evaluation pipelines to2535

promote efficient, reliable, and fair benchmarking2536

practices.2537

Temperature Records. One critical parameter2538

for benchmarking is the temperature setting, which2539

influences stochasticity in LLMs. As shown in Fig-2540

ure 43, we observed that 57.3% of benchmarks2541

fail to record the temperature setting, hindering2542

reproducibility and fair evaluation. While 42.7% of2543

benchmarks do document this parameter, the major-2544

ity omission highlights an overlooked yet essential2545

Figure 42: Availability of Convenient Evaluation Inter-
faces

aspect of benchmark transparency. 2546

Figure 43: Benchmark Distribution over Recording
Temperature

License Provision. Releasing benchmarks under 2547

a clear and accessible license is fundamental for 2548

legal compliance and ensuring open collaboration. 2549

Figure 44 reveals that 19.3% of benchmarks do 2550

not provide a license, limiting their usability and 2551

distribution. Encouragingly, 80.7% of benchmarks 2552

do include a license, but the lack of licensing in 2553

nearly one-fifth of the benchmarks raises concerns 2554

about widespread adoption and usage. These find- 2555

ings emphasize the need for standardized practices 2556

in benchmark releases to promote legal clarity and 2557

accessibility. 2558

Figure 44: Provision of License

Data Security. Ensuring data security is a criti- 2559

cal yet often overlooked aspect of benchmark de- 2560

31

velopment. Sensitive information, such as API2561

keys, credentials, or private tokens, should never2562

be included in benchmark releases. However, fur-2563

ther investigation into 30 representative bench-2564

marks (listed in Appendix C) revealed instances2565

of sensitive data leakage. As shown in Figure 45,2566

XSemPLR (Zhang et al., 2023b) inadvertently in-2567

cluded an API key in its release, a critical oversight2568

that can expose resources to external exploitation.2569

Similarly, Figure 46 highlights an example from

API Key Leakage

#! /bin/bash

conda activate skg
#export WANDB_API_KEY=**************************
export WANDB_PROJECT=mt5-large_mgeoquery_few-shot
export CUDA_LAUNCH_BLOCKING=1

1
2
3
4
5
6

Figure 45: An Example of API Key Leakage in Bench-
mark Release from XSemPLR (Zhang et al., 2023b).

2570
CrossVul (Nikitopoulos et al., 2021), where per-2571

sonal names and email addresses were uninten-2572

tionally disclosed. Such leakage poses risks of2573

unauthorized access and resource misuse, poten-2574

tially compromising systems and research integrity.2575

Name or Email Leakage

Individual \fIreadline\fP initialization file
.PD
.SH AUTHORS
Anonymous, Anonymous
.br
Anonymous@example.com
.PP
Anonymous, Anonymous
.br
Anonymous@example.com
.SH BUG REPORTS

1
2
3
4
5
6
7
8
9

10
11

Figure 46: An Example of Name & Email Leakage in
Benchmark Release from CrossVul (Nikitopoulos et al.,
2021).

2576

Usability. Clear and comprehensive documenta-2577

tion is crucial for ensuring the usability of bench-2578

marks, as poorly written instructions can signif-2579

icantly hinder adoption and reproducibility. We2580

dived into the 30 representative benchmarks (listed2581

in Appendix C) and identified an example where2582

the README file provided insufficient and unclear2583

information. As shown in Figure 47, VulDeeP-2584

ecker (Li et al., 2018b) includes a less-than-ideal2585

ReadMe file, which lacks essential usage instruc- 2586

tions and evaluation guidelines, making the bench- 2587

mark difficult to understand and deploy. In con- 2588

trast, Figure 48 highlights APPS (Hendrycks et al., 2589

2021), which provides well-structured and easy- 2590

to-follow documentation. The APPS benchmark 2591

includes step-by-step instructions for generating, 2592

evaluating, and analyzing results, enabling users 2593

to efficiently reproduce experiments. These obser- 2594

vations emphasize the importance of high-quality 2595

documentation for benchmarks to enhance acces- 2596

sibility, reduce friction in usage, and foster repro- 2597

ducible research. 2598

A Less-than-ideal Readme File

Explanation

This Readme file only provides limited information of the dataset.

Figure 47: An Example of Unreadable and Hard-to-
Use README in Benchmark Release from VulDeeP-
ecker (Li et al., 2018b).

Convenient Evaluation Interfaces

Figure 48: A Good Example of Easy-to-Read README
in Benchmark Release from APPS (Hendrycks et al.,
2021).

B Details of Human Study 2599

B.1 Interviewee Selection 2600

The selection of interviewees is pivotal to ensuring 2601

the representativeness and relevance of the data 2602

collected. This involves identifying individuals 2603

32

with the knowledge or experience pertinent to the2604

research theme.2605

To this end, we chose graduate students from2606

SE or AI fields who have published at least one2607

paper. This criterion ensures that participants have2608

research experience and judgment capabilities. The2609

focus on SE and AI fields is due to their likely2610

interest in code benchmarks. Particularly, we aimed2611

to recruit individuals who have published papers2612

on code benchmarks to obtain firsthand feedback2613

from experienced benchmark developers.2614

B.2 Survey Question Design2615

Questions. The body of the survey was divided2616

into five stages of benchmark development (fol-2617

lowing Figure 1), with necessary background in-2618

formation provided for each stage. Each criterion2619

in HOW2BENCH was slightly modified to be in2620

the first-person perspective, making it easier for in-2621

terviewees to empathize and answer the questions2622

from their own viewpoint. Finally, to facilitate2623

comprehension, questions and instructions were2624

translated into both English and Chinese.2625

Question Setting. To minimize the effort re-2626

quired from respondents, we designed single-2627

choice questions with four options:2628

❒ I found it important, and I have done it.2629

❒ I found it important, although I haven’t done2630

it.2631

❒ I found it not important, but I have done it.2632

❒ I found it not important, and I wouldn’t do it.2633

This format is intended to orthogonally explore the2634

correlation between awareness and behavior.2635

B.3 Interview Process2636

Questionnaire Distribution The questionnaire2637

was distributed via online platforms, targeting aca-2638

demic and professional networks related to SE and2639

AI. The distribution started on October 27, 2024,2640

and ended on November 27th, 2024, lasting one2641

month.2642

Results Collection The responses were automat-2643

ically collected through the online platform used2644

for distribution.2645

Survey Screening Since the requirement was for2646

participants who have published papers, responses2647

from those selecting “No” to having published a2648

paper were excluded. Also, incomplete surveys2649

where not all questions were answered were also2650

considered invalid and excluded from the analysis.2651

B.4 Interview Result Analysis 2652

In total, we collected 50 responses. The re- 2653

spondents were from seven regions, including the 2654

United States, the United Kingdom, Germany, Aus- 2655

tralia, China, and others, as shown in Figure 49. 2656

Only one survey was invalid due to the respondent 2657

selecting “have not published a paper”, leaving 2658

49 valid surveys for analysis. A breakdown of 2659

the respondents’ demographics is shown in Fig- 2660

ure 50. The detailed responses for all 55 criteria 2661

in HOW2BENCH are shown in Figure 51 and Fig- 2662

ure 52. 2663

Figure 49: Geographical Distribution of Interviewees

C List of Studied Benchmarks (Focused 2664

Ones) 2665

Code Generation: Five with top citations: 2666

• HumanEval (Chen et al., 2021a) 2667

• MBPP (Austin et al., 2021) 2668

• CodeContest (Li et al., 2022) 2669

• leetcodehardgym (Shinn et al., 2023) 2670

• APPS (Hendrycks et al., 2021) 2671

The latest one as of 31/8/2024: 2672

• VerilogEval (Pinckney et al., 2024) 2673

Defect Detection: Five with top citations: 2674

• VulDeePecker (Li et al., 2018b) 2675

• Devign (Zhou et al., 2019) 2676

• Chromium and Debian (Chakraborty et al., 2022) 2677

• µVulDeePecker (Zou et al., 2020) 2678

• Synthetic Dataset (Hellendoorn et al., 2020) 2679

33

Figure 50: Demography of Interviewees

Figure 51: Results of Human Study (Questions 1 - 28

The latest one as of 31/8/2024:2680

• VulDetectBench (Liu et al., 2024c)2681

Program Repair: Five with top citations:2682

• Defects4J (Just et al., 2014)2683

• BFP (Tufano et al., 2019)2684

Figure 52: Results of Human Study (Questions 29 - 55

• MANYBUGS, INTROCLASS (Le Goues et al., 2685

2015) 2686

• HumanEval-Java (Jiang et al., 2023) 2687

• QuixBugs (Prenner et al., 2022) 2688

The latest one as of 31/8/2024: 2689

• DebugBench (Tian et al., 2024) 2690

34

Code Summarization: Five with top citations:2691

• CODE-NN (Iyer et al., 2016)2692

• Java-small/med/large (Alon et al., 2019)2693

• code-summarization-public (Wan et al., 2018)2694

• HumanEvalPack (Muennighoff et al., 2024)2695

• Shrivastava et al. (Shrivastava et al., 2023b)2696

The latest one as of 31/8/2024:2697

• Long Code Arena (Bogomolov et al., 2024)2698

Text To SQL: Five with top citations:2699

• WikiSQL (Zhong et al., 2017)2700

• Spider (Yu et al., 2018)2701

• Advising (Finegan-Dollak et al., 2018)2702

• BIRD (Li et al., 2023a)2703

• Spider-Realistic (Deng et al., 2021)2704

The latest one as of 31/8/2024:2705

• AMBROSIA (Saparina and Lapata, 2024)2706

D List of Studied Benchmarks (Full)2707

We collected and studied 274 code-related bench-2708

marks. We then listed and grouped them by year.2709

2024:2710

• CodeEditorBench (Guo et al., 2024)2711

• MHPP (Dai et al., 2024)2712

• LiveCodeBench (Jain et al., 2024)2713

• CodeAgentBench (Zhang et al., 2024a)2714

• CruxEval (Gu et al., 2024)2715

• BigCodeBench (Zhuo et al., 2024)2716

• OOPEval (Wang et al., 2024b)2717

• DevEval (Li et al., 2024a)2718

• Long Code Arena (Bogomolov et al., 2024)2719

• CodeRAGBench (Wang et al., 2024d)2720

• ScenEval (Paul et al., 2024)2721

• AICoderEval (Xia et al., 2024b)2722

• VersiCode (Wu et al., 2024b)2723

• VHDL-Eval (Vijayaraghavan et al., 2024) 2724

• NaturalCodeBench (Zhang et al., 2024b) 2725

• CodeGuard+ (Fu et al., 2024) 2726

• PECC (Haller et al., 2024) 2727

• USACO (Shi et al., 2024b) 2728

• ParEval (Nichols et al., 2024) 2729

• MxEval (Athiwaratkun et al., 2022) 2730

• MMCode (Li et al., 2024c) 2731

• Plot2Code (Wu et al., 2024a) 2732

• ChartMimic (Shi et al., 2024a) 2733

• DebugBench (Tian et al., 2024) 2734

• PythonIO (Zhang et al., 2024c) 2735

• StaCCQA (Yang et al., 2024a) 2736

• RepoQA (Liu et al., 2024a) 2737

• PRIMEVUL (Ding et al., 2024a) 2738

• VulDetectBench (Liu et al., 2024c) 2739

• ProCQA (Li et al., 2024e) 2740

• CoSQA+ (Gong et al., 2024) 2741

• JavaBench (Cao et al., 2024a) 2742

• HumanEvo (Zheng et al., 2024) 2743

• REPOEXEC (Hai et al., 2024) 2744

• EHR-SeqSQL (Ryu et al., 2024) 2745

• BookSQL (Kumar et al., 2024) 2746

• AMBROSIA (Saparina and Lapata, 2024) 2747

• WUB, WCGB (Yun et al., 2024) 2748

• RES-Q (LaBash et al., 2024) 2749

• PythonSaga (Yadav et al., 2024b) 2750

• Mercury (Du et al., 2024) 2751

• ENAMEL (Qiu et al., 2024b) 2752

• RealHumanEval (Mozannar et al., 2024) 2753

• CoderUJB (Zeng et al., 2024) 2754

• EvoEval (Xia et al., 2024a) 2755

35

• ML-Bench (Liu et al., 2023c)2756

• VerilogEval (Pinckney et al., 2024)2757

• CodeApex (Fu et al., 2023)2758

• HumanEvalPack (Muennighoff et al., 2024)2759

• HumanEval+ (Liu et al., 2023b)2760

• HumanEval-X (Zheng et al., 2023a)2761

• XCodeEval (Khan et al., 2024)2762

• CoderEval (Yu et al., 2023)2763

• CodeXGLUE (Lu et al., 2021)2764

• VulnPatchPairs (Risse and Böhme, 2024)2765

• WikiSQL (Zhong et al., 2017)2766

• CrossCodeEval (Ding et al., 2023)2767

• SWE-bench (Jimenez et al., 2024)2768

• BAIRI et al. (Bairi et al., 2024)2769

• BioCoder (Tang et al., 2024)2770

• RepoBench (Liu et al., 2024b)2771

• NoFunEval (Singhal et al., 2024)2772

• CoCoMIC (Ding et al., 2024b)2773

• Java-small/med/large (Alon et al., 2019)2774

• FixEval (Haque et al., 2023)2775

• CommitBench (Schall et al., 2024)2776

• InfiAgent-DABench (Hu et al., 2024)2777

• InfiBench (Li et al., 2024d)2778

• Design2Code (Si et al., 2024)2779

• MatPlotBench (Yang et al., 2024b)2780

• EditEval (Li et al., 2024b)2781

• D1, D2, D3 (Huang et al., 2024)2782

• RepoEval (Liao et al., 2024)2783

• BetterTypes4Py, InferTypes4Py (Wei et al., 2023)2784

• HumanEval-Java (Jiang et al., 2023)2785

• PIE (Shypula et al., 2024)2786

• EvalGPTFix (Zhang et al., 2023a)2787

• EHRSQL (Lee et al., 2023) 2788

• Spider2-V (Cao et al., 2024c) 2789

• TESTEVAL (Wang et al., 2024c) 2790

• ChatTester (Yuan et al., 2023b) 2791

• Code Lingua (Pan et al., 2024) 2792

• EffiBench (HUANG et al., 2024) 2793

• CRUXEval-X (Xu et al., 2024) 2794

• DomainEval (Zhu et al., 2024) 2795

2023: 2796

• MCoNaLa (Wang et al., 2023b) 2797

• MultiPL-E (Cassano et al., 2022) 2798

• ODEX (Wang et al., 2022) 2799

• TACO (Li et al., 2023b) 2800

• DOTPROMPTS, MGDMI- 2801

CROBENCH (Agrawal et al., 2023) 2802

• StudentEval (Babe et al., 2024) 2803

• CodeTransOcean (Yan et al., 2023) 2804

• G-TransEval (Jiao et al., 2023) 2805

• AVATAR (Ahmad et al., 2023) 2806

• RunBugRun (Prenner and Robbes, 2023) 2807

• VulBench (Gao et al., 2023b) 2808

• DiverseVul (Chen et al., 2023) 2809

• Hellendoorn et al. (Hellendoorn et al., 2020) 2810

• XSemPLR (Zhang et al., 2023b) 2811

• BIRD (Li et al., 2023a) 2812

• Stack-Repo (Shrivastava et al., 2023a) 2813

• RepoEval (Liao et al., 2024) 2814

• MTPB (Nijkamp et al., 2022) 2815

• ARCADE (Yin et al., 2023) 2816

• Shrivastava et al. (Shrivastava et al., 2023b) 2817

• Grag et al. (Garg et al., 2022) 2818

• GSM-HARD (Gao et al., 2023a) 2819

36

• InferredBugs (Jin et al., 2023)2820

• LeetcodeHardGym (Shinn et al., 2023)2821

• APIBench (Patil et al., 2023)2822

• ClassEval (Du et al., 2023b)2823

• CommitChronicle (Eliseeva et al., 2023)2824

• TeCo (Nie et al., 2023)2825

• TESTPILOT (Schäfer et al., 2024)2826

2022:2827

• AixBench (Hao et al., 2022)2828

• TypeBugs (Oh and Oh, 2022)2829

• XLCoST (Zhu et al., 2022)2830

• CS1QA (Lee et al., 2022)2831

• Chromium and Debian (Chakraborty et al., 2022)2832

• Spider-Realistic (Deng et al., 2021)2833

• Spider-SS (Gan et al., 2022)2834

• DSP (Chandel et al., 2022)2835

• CodeContest (Li et al., 2022)2836

• PandasEval, NumpyEval (Zan et al., 2022b)2837

• TorchDataEval, MonkeyEval, BeatNu-2838

mEval (Zan et al., 2022a)2839

• DS-1000 (Lai et al., 2023)2840

• MCMD (Tao et al., 2022)2841

• ExeDS (Huang et al., 2022)2842

• QuixBugs (Prenner et al., 2022)2843

• ManyTypes4Py v0.7 (Mir et al., 2022)2844

2021:2845

• SySeVR (Li et al., 2018a)2846

• Ling&Wu et al. (Ling et al., 2021)2847

• Chen et al. (Chen et al., 2021b)2848

• MBPP, MathQA-Python (Austin et al., 2021)2849

• HumanEval (Chen et al., 2021a)2850

• APPS (Hendrycks et al., 2021)2851

• Berabi et al. (Berabi et al., 2021) 2852

• CrossVul (Nikitopoulos et al., 2021) 2853

• PYPIBUGS, RANDOMBUGS (Allamanis et al., 2854

2021) 2855

• D2A (Zheng et al., 2021) 2856

• CodeQA (Liu and Wan, 2021) 2857

• Spider-DK (Gan et al., 2021b) 2858

• KaggleDBQA (Lee et al., 2021) 2859

• SEDE (Hazoom et al., 2021) 2860

• Spider-Syn (Gan et al., 2021a) 2861

• CoDesc (Hasan et al., 2021) 2862

• Methods2Test (Tufano et al., 2022) 2863

• Rozière et al. (Rozière et al., 2022) 2864

2020: 2865

• Lachaux&Roziere et al. (Rozière et al., 2020) 2866

• µVulDeePecker (Zou et al., 2020) 2867

• CosBench (Yan et al., 2020) 2868

• PACS (Heyman and Cutsem, 2020) 2869

• Criteria2SQL (Yu et al., 2020) 2870

• SQUALL (Shi et al., 2020) 2871

• Hu et al. (Hu et al., 2019) 2872

• CodeSearchNet Challenge (Husain et al., 2019) 2873

• MIMICSQL (Wang et al., 2020) 2874

• Atlas (Watson et al., 2020) 2875

• Liu et al. (Liu et al., 2022) 2876

• Android (Agarwal et al., 2020) 2877

• CCSD (Liu et al., 2021) 2878

2019: 2879

• BFP (Tufano et al., 2019) 2880

• SARD (Lin et al., 2019) 2881

• Spider (Yu et al., 2018) 2882

• JuICe (Agashe et al., 2019) 2883

37

• Nguyen et al. (Nguyen et al., 2019)2884

• Lin et al. (Lin et al., 2021)2885

• Zhou et al. (Zhou et al., 2019)2886

• CoSQL (Yu et al., 2019a)2887

• SParC (Yu et al., 2019b)2888

• Malik (Malik et al., 2019)2889

• LeClair (LeClair et al., 2019)2890

2018:2891

• CoNaLa (Yin et al., 2018)2892

• DeepCom (Hu et al., 2018a)2893

• TL-CodeSum (Hu et al., 2018b)2894

• code-summarization-public (Wan et al., 2018)2895

• Russell et al. (Russell et al., 2018)2896

• VulDeePecker (Li et al., 2018b)2897

• Lin et al. (Lin et al., 2018)2898

• StaQC (Yao et al., 2018)2899

• Advising (Finegan-Dollak et al., 2018)2900

• ConCode (Iyer et al., 2018)2901

• NNGen (Liu et al., 2018)2902

• Gu et al. (Gu et al., 2018)2903

2017:2904

• QuixBugs (Lin et al., 2017)2905

• the DeepFix dataset (Gupta et al., 2017)2906

• Barone et al. (Barone and Sennrich, 2017)2907

2016:2908

• CODE-NN (Iyer et al., 2016)2909

• Mou et al. (Mou et al., 2016)2910

2015:2911

• MANYBUGS, INTROCLASS (Le Goues et al.,2912

2015)2913

2014:2914

• Defects4j (Just et al., 2014)2915

• BigCloneBench (Svajlenko et al., 2014)2916

E Guideline 2917

Finally, for ease of printing and use, we organized 2918

the guideline HOW2BENCH into a clear, color- 2919

coded checklist (4 pages in total) that is easy to 2920

print, attached at the end of the paper. 2921

38

№ HOW-TO-BENCH (1/4)

Phase 0. Benchmark Design

1 Consider whether the benchmark can fill the gap in related research.

2 Consider what is the expected scope of the benchmark set (e.g., what natural languages,
programming languages, task granularity).

3 Consider the expected application scenario of this benchmark (e.g., programming
assistant, automated tester).

4
Consider the LLMs' capabilities (e.g., understanding, reasoning, calculation) and domain
knowledge (e.g., OOP, memory management, fault localization, process scheduling) that
the benchmark hopes to evaluate.

Phase 1. Benchmark Construction

5 Consider whether the data source of the benchmark is traceable.

6 Consider whether the data source of the benchmark is of high quality (e.g., stars,
downloads, last update times, number of forks).

7
Consider whether the benchmark's data source is representative (e.g., choose an open-
source community or code hosting platform that matches the task, capability, and scope
under study)

8
Consider data contamination issues during the benchmark collection (e.g., considering
the upload time of the source code or checking whether the data source is included in the
training data of LLMs).

9 If data sampling is needed, consider whether the choice of sample size is scientific (e.g.,
considering the confidence level/margin of error/sampling proportion, etc.).

10 If data sampling is needed, consider whether the sampling process is rigorous (e.g.,
random sampling, stratified sampling, etc.).

11 Ensure each data point in the benchmark falls into the targeted scope (e.g., checking each
data point's evaluated capabilities or domain knowledge).

12 Consider whether the data in the benchmark can cover the studied capabilities/domain
knowledge/application scenarios.

13 Consider whether there is a standard answer for each sample in the benchmark (such as
reference code, etc.).

14 For code, consider whether the code is compilable/executable.

2922

№ HOW-TO-BENCH (2/4)

15 Consider the possibility of noise in the data and perform denoise.

16 Consider the possibility of duplication in the data and deduplicate them.

17 Clean the sensitive information (such as data desensitization and anonymization) unless
the benchmark is deliberately designed so.

18 Manually review some or all of the data in the benchmark to ensure its quality.

19 Use LLMs to review some or all of the data in the benchmark to ensure its quality.

20 Design appropriate output validation methods for the benchmark (e.g., using exact
matching or designing test cases).

21 Design appropriate evaluation metrics for the evaluation set (e.g., precision, accuracy,
pass@K, recall).

22 Consider the adequacy of the evaluation metrics (e.g., is the code coverage high
enough).

23 Consider if there are any other evaluation perspectives (e.g., readability, efficiency, safety,
security).

Phase 2. Benchmark Evaluation

24 Consider whether sufficient LLMs are evaluated.

25 Consider whether representative LLMs (e.g., covering latest/classical LLM families,
small/large LLMs, and open-/closed-source LLMs) are evaluated.

26 Consider whether the prompt is of high quality (e.g., the instruction and intent are clear).

27
The prompts have been validated by humans or LLMs (e.g., evaluated or discussed by
participants or preliminarily tried out on several LLMs).

28 Try different paraphrases of the prompt.

29 Try different prompting strategies to observe the impact on the evaluation results (e.g.,
in-context learning, chain-of-thought).

30 Pay attention to the hardware environment (such as GPU card, storage size, etc.) of the
experiment.

31 Pay attention to the operating system and software environment (e.g. operating system,
version, etc.) used for the experiment.

2923

№ HOW-TO-BENCH (3/4)

32 Pay attention to the off-the-shelf platforms, frameworks, or libraries for LLM
evaluation (e.g., fast chat, vllm, huggingface) that are used.

33 Repeat the experiment multiple times to reduce the impact of randomness on the
evaluation.

34 Consider various randomization strategies (e.g., trying various temperature
parameters) to reduce the impact of parameter configuration on the evaluation.

35 Record the experimental process in detail (e.g., parameter settings, running time,
input/output pairs, etc.).

Phase 3. Benchmark Analysis

36 Observe the difficulty of the benchmark, checking if the benchmark is too hard or
too easy for LLMs (i.e., most LLMs score too high/low).

37 Consider whether the benchmark can distinguish the pros and cons of different
LLMs.

38
If the experiment is repeated several times, consider the stability of the
benchmark (i.e., whether the experimental results vary too much in the repeated
experiments).

39
Analyze the correlation between the data and their score. For example, if there is a
correlation between the data (such as similar difficulty and knowledge required),
then the scores should also be correlated.

40 Compare the performance of LLMs on this benchmark with their performance on other
related benchmarks.

41 Consider presenting the experiment results in an appropriate way (e.g., table, line
graph, pie chart, etc.).

42 Consider presenting the experiment results clearly (e.g., distinguishable
colors/labels/shapes, etc.).

43 Explain the experiment results.

44 Observe correlations via multiple perspectives from the experimental results (e.g.,
performance is correlated with model size or amount of context).

45 The analysis of the evaluation results will be inspiring (e.g., shed light on future
direction, make actionable advice, etc.).

2924

№ HOW-TO-BENCH (4/4)

Phase 4. Benchmark Release

46 Set the appropriate license for the benchmark.

47 Review the released benchmark or other artifacts to ensure they do NOT contain
sensitive information (e.g., API keys, usernames, passwords, etc.).

48 review the released benchmark or other artifacts to ensure they do NOT contain
toxicity information (e.g., abusive comments/identifiers).

49 Make sure the benchmark is open-accessible.

50 Make sure the test cases or reference data are open and accessible.

51 Provide prompts used in the experiment to ensure the experiments are
reproducible.

52 Disclose the experimental environment (e.g., hardware, operating system, software
version, framework platform) to ensure the reproducibility of the experiment.

53 Make the detailed experimental results public for verification.

54 Ensure the quality of the user manual such as README (e.g., it contains necessary
benchmark introduction, executable scripts, etc.).

55 Provide convenient evaluation interfaces for the released benchmark (e.g.,
providing a command line interface, docker, etc.).

2925

	Introduction
	Background
	Code-related Benchmarks
	Related Studies and Surveys

	Design
	The Lifecycle of Benchmark Development
	Study Design

	Guideline – ``How2Bench''
	Guideline for Benchmark Design
	Guideline for Construction
	Guideline for Evaluation
	Guideline for Evaluation Analysis
	Guideline for Benchmark Release

	Human Study
	Conclusion
	Statistics of studied benchmarks
	Profile of Studied Benchmarks
	Statistics about Benchmark Design
	Statistics about Data Preparation
	Data Preprocessing
	Statistics about Data Curation

	Statistics about Evaluation
	Statistics about Analysis
	Statistics about Release

	Details of Human Study
	Interviewee Selection
	Survey Question Design
	Interview Process
	Interview Result Analysis

	List of Studied Benchmarks (Focused Ones)
	List of Studied Benchmarks (Full)
	Guideline

