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Abstract

Various benchmarks have been proposed to as-001
sess the performance of large language models002
(LLMs) in different coding scenarios. We refer003
to them as code-related benchmarks. However,004
there are no systematic guidelines by which005
such a benchmark should be developed to as-006
sure its quality, reliability, and reproducibil-007
ity. We propose How2Bench comprising a 55-008
criteria checklist as a set of guidelines to com-009
prehensively govern the development of code-010
related benchmarks. Using HOW2BENCH, we011
profiled 274 code-related benchmarks released012
within the past decade and found concerning013
issues. Nearly 70% of the benchmarks did not014
take measures for data quality assurance; over015
10% did not even open source or only partially016
open source. Many highly cited benchmarks017
have loopholes, including duplicated samples,018
incorrect reference codes/tests/prompts, and019
unremoved sensitive/confidential information.020
Finally, we conducted a human study involv-021
ing 49 participants and revealed significant022
gaps in awareness of the importance of data023
quality, reproducibility, and transparency. For024
ease of use, we provide a printable version of025
HOW2BENCH in Appendix E.026

1 Introduction027

❝ If you cannot measure it, you cannot028

improve it. ❞ — Lord Kelvin (1824-029

1907)030

Recent large language models (LLMs) have031

shown remarkable capabilities across various do-032

mains such as software development (Chen et al.,033

2021a), question answering (Rogers et al., 2023),034

and math reasoning (Imani et al., 2023). Various035

benchmarks (Chen et al., 2021a; Jimenez et al.,036

2024; Austin et al., 2021; Yue et al., 2024; Du et al.,037

2023a) are proposed to evaluate LLMs’ effective-038

ness and limitations from multiple perspectives in039

different application scenarios.040

However, doubts regarding the quality, relia- 041

bility, and transparency of various code-related 042

benchmarks arise. For example, a recent study 043

pointed out that “current programming benchmarks 044

are inadequate for assessing the actual correctness 045

of LLM-generated code” (Liu et al., 2023a). Other 046

accusations, including irreproducible (Reuel et al., 047

2024), closed data sources (Cao et al., 2024b), low 048

quality (Qiu et al., 2024a; Yadav et al., 2024a), 049

and inadequate validation measures (Liu et al., 050

2023a), were also raised, undermining the credibil- 051

ity of these benchmarks and thereby their subse- 052

quent evaluation results. This motivates the need 053

for rigorous and thorough guidelines to govern 054

code-related benchmark development. 055

In this paper, we introduce HOW2BENCH, 056

a comprehensive guideline consisting of a 55- 057

criteria checklist specially designed for code- 058

related benchmarks. This checklist covers the en- 059

tire lifecycle of benchmark development, from de- 060

sign and construction to evaluation, analysis, and 061

release as shown in Figure 1. It underwent multiple 062

iterations — we initiated a draft inspired by open- 063

source software guidelines (Fogel, 2005) and clas- 064

sical measurement theory (Suppes et al., 1962). We 065

refined it through iterative discussions with prac- 066

titioners, leading to the finalization of these crite- 067

ria. HOW2BENCH emphasizes reliability, validity, 068

open access, and reproducibility in the benchmark 069

development, ensuring high standards and fostering 070

a more reliable and transparent environment. 071

Following HOW2BENCH, we conducted an in- 072

depth profiling of 270+ code-related benchmarks 073

developed over the past decade (2014 - 2024). The 074

extent of criteria violations by the profiled bench- 075

marks is concerning: 076

● Almost 70% of the benchmarks did not take 077

any measures for data quality assurance; 078

● Over 90% did not consider code coverage 079

when use passing test cases as an oracle; 080

● Over half of the benchmarks did not provide 081
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the essential information (e.g., experiment setup,082

prompts) for reproducibility;083

● Over 10% are not open source or only partially084

open source.085

We observed that even highly cited benchmarks086

have loopholes, including duplicated samples, in-087

correct reference/tests, unclear displays, and unre-088

moved sensitive/confidential information. We also089

observed these loopholes can propagate. Over 18%090

of the benchmarks serve as data sources for subse-091

quent benchmarks (Figure 8). Therefore, the data092

quality of benchmarks affects their credibility and093

likely impacts future benchmarks.094

To understand the usefulness of the criteria in095

How2Bench, we conducted a human study involv-096

ing 49 participants through questionnaires. All097

participants concurred on the necessity of having098

a checklist for benchmark construction to enhance099

quality. Nearly all participants with experience100

in benchmark development acknowledged the im-101

portance of all these 55 criteria. The study also102

exposed gaps in quality awareness: 16% of par-103

ticipants were unaware of the necessity for data104

denoising, and over 40% were not aware that the105

experimental setup and environment could impact106

the reproducibility and transparency. This paper107

makes contributions in five aspects:108

• Novelty. We introduce HOW2BENCH, a com-109

prehensive set of guidelines packaged as a 55-110

criteria checklist that covers the lifecycle of code-111

related benchmark development.112

• Significance. HOW2BENCH presents the first113

comprehensive set of actionable guidelines for114

developing high-quality benchmarks, striving to115

create a more reliable and transparent environ-116

ment. The human study also highlighted the de-117

mand for such a detailed guideline.118

• Usefulness. HOW2BENCH serves as a guideline119

for practitioners before/during developing code-120

related benchmarks, and a checklist for evaluat-121

ing existing benchmarks after their release. For122

ease of use, we also provide a printable version123

of HOW2BENCH on Appendix E.124

• Generalizability. Most criteria listed in125

HOW2BENCH can be adopted or adapted to other126

benchmarks such as Question-answering, mathe-127

matical reasoning, and multi-modal benchmarks.128

• Long-term Impact. Our statistics alert the com-129

munity to the severity and prevalence of non-130

standard practices in benchmark development. It 131

ultimately improves the overall quality of bench- 132

marks due to the propagation effect among them. 133

2 Background 134

2.1 Code-related Benchmarks 135

Benchmarks for coding tasks like code genera- 136

tion (Chen et al., 2021a; Austin et al., 2021), de- 137

fect detection (Just et al., 2014; Gao et al., 2023b; 138

Liu et al., 2024c), and program repair (Jimenez 139

et al., 2024; Risse and Böhme, 2024) are increas- 140

ingly common, reflecting the growing needs for 141

using LLMs for coding tasks. Recent studies have 142

highlighted various issues with these benchmarks, 143

ranging from design inconsistencies to scope and 144

applicability limitations. For example, (Liu et al., 145

2023a) found that even some widely used bench- 146

marks, such as HumanEval (Chen et al., 2021a) and 147

MBPP (Austin et al., 2021), contains a non-trivial 148

proportion of bugs in implementation, documenta- 149

tion, and test cases. Our work, in comparison, in- 150

troduces a detailed guideline that guides the bench- 151

mark development during the entire lifecycle. 152

2.2 Related Studies and Surveys 153

Several recent surveys and empirical studies have 154

profiled the status quo of LLM development. These 155

studies either explore the overall performance for 156

certain areas such as software engineering (Hou 157

et al., 2023; Wang et al., 2024a) or investigate the 158

capabilities of LLMs on specific tasks such as code 159

generation (Dou et al., 2024; Yu et al., 2024) and 160

test generation (Schäfer et al., 2024; Yuan et al., 161

2024b, 2023a). A survey (Chang et al., 2024) about 162

how to evaluate LLMs was proposed to answer 163

what/where/how to evaluate LLMs. This paper dif- 164

fers from these studies in its purpose and perspec- 165

tives. Unlike these benchmarks, our work proposed 166

guidelines for future benchmark development and 167

provided a checklist to assess the quality of these 168

existing benchmarks. 169

Recently, BetterBench (Reuel et al., 2024) is 170

a concurrent work assessing the AI benchmarks 171

against 46 criteria. Then, it scored 24 AI bench- 172

marks in various domains and ranked them. Better- 173

Bench differs from this paper in several key aspects: 174

scope (general benchmarks vs. code-related bench- 175

marks), lifecycle division (it addresses benchmark 176

retirement, while How2Bench focuses on bench- 177

mark evaluation, analysis, and release), and objec- 178

tives (scoring benchmarks vs. offering comprehen- 179

sive guidelines for future benchmark development). 180
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Figure 1: Lifecycle of Benchmark Development

Additionally, the study in this paper was conducted181

on a much larger scale (24 vs. 274 benchmarks),182

statistically highlighting the prevalent issues in ex-183

isting benchmarks.184

3 Design185

3.1 The Lifecycle of Benchmark Development186

Code-related benchmark development comprises187

five typical phases (Phase 0 - 4), as shown in Fig-188

ure 1, explained in detail as follows.189

Phase 0. Design. At the beginning of bench-190

mark development, it is vital to identify the moti-191

vation, the scope and the capabilities required by192

the application scenario of interest. To achieve this193

objective, one needs to carefully consider the appli-194

cation scenarios, making sure these scenarios align195

with real-world demands. Also, it is also necessary196

to assess whether other benchmarks already exist197

that address similar tasks, and to identify any short-198

comings they may possess. Furthermore, this new199

benchmark should be designed to evaluate specific200

LLMs’ capabilities; the crafted tasks are expected201

to reflect these capabilities.202

Phase 1. Construction. After establishing the203

motivation and purpose, the Benchmark Construc-204

tion phase moves from design to execution. Typ-205

ically, data is collected from public coding web-206

sites such as GitHub, LeetCode and StackOverflow.207

This is followed by preprocessing, which includes208

filtering, cleaning (e.g., deduplication, denoising),209

and curation (e.g., aligning tests with correspond-210

ing code). The phase usually ends with a validation211

process, which can be manual or automated.212

Phase 2. Evaluation. Once the benchmark is213

available, the next step is to apply it to LLMs, val-214

idating if it can effectively measure the intended215

LLM capabilities. Essential considering factors216

include selecting a representative array of LLMs,217

configuring settings like prompts and hyperparam-218

eters for consistency, choosing appropriate experi- 219

mental environments to meet LLM requirements, 220

and implementing thorough logging to ensure de- 221

pendable and reproducible results. 222

Phase 3. Analysis. After evaluation, experimen- 223

tal results are analyzed, drawing conclusions on 224

LLMs’ capabilities. This phase involves compar- 225

ing each LLM’s performance to identify standout 226

or underperforming models. Then, proper visual 227

aids such as bar charts and tables can be used to 228

display the experimental results, presenting clearer 229

observation and deeper inspiration, such as the cor- 230

relations between models, the correlations with re- 231

lated benchmarks, or performance in upper-/down- 232

stream tasks. Indeed, a thorough analysis helps 233

pinpoint areas for improvement and guides future 234

enhancements in LLM development. 235

Phase 4. Release. The final phase is to make the 236

benchmark open-accessible. This phase involves 237

meticulously preparing all materials associated 238

with the benchmark, ensuring they are ready for 239

open access to foster widespread adoption and col- 240

laboration. Clear, comprehensive documentation 241

is provided to guide users on effectively utilizing 242

the benchmark. Additionally, all logged exper- 243

iment details are made available, enhancing the 244

reproducibility and transparency of the benchmark. 245

3.2 Study Design 246

Our study consists of four steps (Figure 2). All 247

steps are explained as follows. 248

Step 1. Guideline Construction. To begin with, 249

we sketched the initial guidelines for each phase in 250

the benchmark development lifecycle (Section 3.1, 251

Figure 1) by reviewing existing literature (Suppes 252

et al., 1962; Zheng et al., 2023b; Schäfer et al., 253

2024; Reuel et al., 2024) and brainstorming. After 254

that, we refined the guidelines through a series 255

of interviews with various stakeholders, including 256
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1. Guideline Construction 2. Literature Profiling 3. Focused Case Study 4. Human Interview

Sketch the initial guideline
• Review literature
• Brain storming

Collect related benchmarks
• Scope the time, publication

venue and tasks
• Snowballing

Select representatives
• Rank by citation/time
• Group by tasks

Refine the guideline
• Interview stakeholders,

model developers,
benchmark builders

• Add/delete/modify criteria in
the guideline

• Discuss with coauthors

Finalize 55 criteria as guideline

Profile benchmarks
• Scan the papers
• Scan the released

artifacts/homepage

Report statistics
• Report overall statistics
• Identify pros and cons

Analyze against the guideline
• Evaluate the representative

benchmarks against the
criteria in the guideline

• Study the overall statistics
• Identify the exemplars
• Collect bad cases
• Find reference from

literatures

Design questionnaire
• Design question types
• Group the question
• Add clarification and

necessary background

Distribute questionnaire
• Select target audience 
• Send out questionnaire

Collect the response
• Filter out invalid response

Analyze the response

Release “How2Bench” – A Guideline for Code-related Benchmark Development

Figure 2: Workflow of study process

model developers and benchmark builders, allow-257

ing for the addition, deletion, or modification of258

criteria based on expert feedback and practical in-259

sights. This phase concludes with the finalization260

of our guidelines, HOW2BENCH. This detailed261

checklist consists of 55 criteria over the bench-262

mark lifecycle, providing effective guidelines for263

rigorous and reliable benchmark development.264

Step 2. Literature Profiling. This step begins265

by collecting related benchmarks according to266

their publication time, venue, and coding tasks,267

and then employing techniques like snowballing to268

ensure a comprehensive collection. This step leads269

to 274 code-related benchmarks for study. The de-270

tailed statistics can be found in the Appendix D.271

This step is followed by profiling each selected272

benchmark through a thorough review of corre-273

sponding papers and examination of the released274

artifacts or homepages associated with these bench-275

marks. The phase is completed by reporting statis-276

tics that highlight overall trends, pros, and cons277

identified during the profiling, providing a struc-278

tured overview of existing benchmarks.279

Step 3. Focused Case Study. After obtaining280

an overall impression of existing benchmarks, we281

selected 30 (= 5 * 6) representative benchmarks282

from top-5 tasks, with top-5 highly-cited bench-283

marks plus the latest 1 benchmark (Appendix C).284

Each selected benchmark is then analyzed against285

HOW2BENCH, examining how well they meet the286

established criteria, studying their overall statistics,287

and identifying both exemplary and poor cases. In-288

sights and references from existing literature are289

also incorporated to enrich the analysis, providing290

a deeper understanding of the benchmarks’ perfor-291

mance and areas for improvement. 292

Step 4. Human Study. The final step is a human 293

study that evaluates the importance and practicality 294

of HOW2BENCH. This involves designing a ques- 295

tionnaire by first initiating and iterating to gather 296

diverse, logical insights, which is then distributed 297

to a targeted audience. After collecting and filter- 298

ing responses for quality, the data is analyzed to 299

derive insights. See Appendix B for details. 300

4 Guideline – “HOW2BENCH” 301

The completed guideline HOW2BENCH with 55 302

criteria can be found in Appendix E. 303

Phase 0. Benchmark Design 

1 Consider whether the benchmark can fill the gap in related research.

2 Consider what is the expected scope of the benchmark set.

3 Consider the expected application scenario of this benchmark (e.g., programming
assistant, automated tester).

4
Consider the LLMs' capabilities (e.g., understanding, reasoning, calculation) and
domain knowledge (e.g., OOP, memory management, fault localization, process
scheduling) that the benchmark hopes to evaluate.

Figure 3: Guideline for Benchmark Design

4.1 Guideline for Benchmark Design 304

Explanation – For benchmark design, we listed 305

four essential criteria, as shown in Figure 3. In 306

particular, the guideline starts by recommending 307

that benchmarks should initially assess if they are 308

addressing a significant gap in existing research, 309

ensuring the relevance and necessity of the bench- 310

mark. The scope of the benchmark is expected 311

to be well-defined, clarifying the capabilities or 312

characteristics being tested, how these relate to 313

practical scenarios such as programming assistance 314

4



or automated testing, and the relevance of these315

capabilities in real-world applications.316

■ Key Statistics – According to our statistics317

among 270+ benchmarks, apparent research bias318

can be observed in terms of coding tasks, pro-319

gramming languages, and code granularities are320

observed (Appendix A.1). For example, 36.13%321

(99/274) are code generation benchmarks, followed322

by program repair, with 9.85% (27/274).323

Also, during the focused case study (listed in324

Appendix C), we identified that 10% benchmarks325

have not explicitly specified the capabilities (e.g.,326

intention understanding, program synthesis) to be327

evaluated, and 30% have not specified application328

scenarios the benchmark targets.329

Besides, we also identified a case in330

MBPP (Austin et al., 2021) where a case331

fell out of the target evaluation capabilities332

(Appendix A.2). Indeed, clearly defining the333

application scenarios/scopes/capabilities could334

help benchmark constructors establish precise335

goals for the design and development of the336

benchmark, ensuring accuracy in the evaluation.337

Lastly, Figure 12 shows that 58% (158/274)338

code-related benchmarks involve Python, followed339

by 39% (107/274) involving Java. Yet, 31 program-340

ming languages are only covered by one bench-341

mark, and less than five benchmarks cover other 19342

programming languages. This observation consol-343

idates the observation from previous works (Cao344

et al., 2024a; Hou et al., 2023) on a larger scale.345

▲ Severity – Current benchmarks exhibit an
apparent imbalance in coding tasks and pro-
gramming languages dominated by code gener-
ation and Python, leaving research blanks to be
filled. Also, even highly cited benchmarks may
have samples that do not fall into the examined
capabilities.

4.2 Guideline for Construction346

☞ Explanation – Figure 4 shows 19 criteria for347

benchmark construction. Essentially, for data348

source, the key considerations include verifying349

the traceability and quality of the data source, ad-350

dressing potential data contamination (Sainz et al.,351

2023), and ensuring that the data sampling pro-352

cesses are scientifically robust and rigorous. Also,353

for data representativeness, it also guides through354

specific checks to ensure the benchmark’s scope355

is strictly adhered to, such as making sure every356

Phase 1. Benchmark Construction

5 Consider whether the data source of the benchmark is traceable.

6 Consider whether the data source of the benchmark is of high quality (e.g., stars,
downloads, last update times, number of forks).

7
Consider whether the benchmark's data source is representative (e.g., choose an
open-source community or code hosting platform that matches the task, capability,
and scope under study)

8
Consider data contamination issues during the benchmark collection (e.g.,
considering the upload time of the source code or checking whether the data source
is included in the training data of LLMs).

9 If data sampling is needed, consider whether the choice of sample size is scientific
(e.g., considering the confidence level/margin of error/sampling proportion, etc.).

10 If data sampling is needed, consider whether the sampling process is rigorous (e.g.,
random sampling, stratified sampling, etc.).

11 Ensure each data point in the benchmark falls into the targeted scope (e.g., checking
each data point's evaluated capabilities or domain knowledge).

12 Consider whether the data in the benchmark can cover the studied
capabilities/domain knowledge/application scenarios.

13 Consider whether there is a standard answer for each sample in the benchmark
(such as reference code, etc.).

14 For code, consider whether the code is compilable/executable.

15 Consider the possibility of noise in the data and perform denoise.

16 Consider the possibility of duplication in the data and deduplicate them.

17 Clean the sensitive information (such as data desensitization and anonymization)
unless the benchmark is deliberately designed so.

18 Manually review some or all of the data in the benchmark to ensure its quality.

19 Use LLMs to review some or all of the data in the benchmark to ensure its quality.

20 Design appropriate output validation methods for the benchmark (e.g., using exact
matching or designing test cases).

21 Design appropriate evaluation metrics for the evaluation set (e.g., precision,
accuracy, pass@K, recall).

22 Consider the adequacy of the evaluation metrics (e.g., is the code coverage high
enough).

23 Consider if there are any other evaluation perspectives (e.g., readability, efficiency,
safety, security).

Figure 4: Guideline for Benchmark Construction

data point falls within the targeted scope and that 357

the data can cover all studied capabilities, domain 358

knowledge, and application scenarios. 359

For data preprocess and cleaning, it also 360

stresses handling code-specific aspects, such as 361

compilability and execution, along with cleaning 362

and manually reviewing data for quality assurance. 363

Output validation methods and evaluation metrics 364

must be carefully designed and reviewed to ensure 365

they effectively measure the benchmark’s goals. 366

Lastly, it suggests considering additional evalua- 367

tion perspectives, such as safety (Wei et al., 2024; 368

Yuan et al., 2024a) checks, ensuring the code does 369

not contain sensitive information. 370

■ Key Statistics – According to our statistics (Ap- 371

pendix A.3), the 270+ benchmarks exhibit numer- 372

ous irregularities in their implementation, which 373

could significantly threaten the reliability of the 374

benchmarks. Surprisingly, 62% of benchmarks 375

did not deduplicate or did not mention. Near 80% 376

benchmarks did not consider or handle data 377

contamination threats. About 70% of the bench- 378

marks did not go through any quality assurance 379

checks such as manual checks and code execu- 380

tion. In particular, we summarized the commonly- 381

used data quality assurance metrics and their fre- 382

quency: manual check (22.6%), code execution 383
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(2.2%), LLM check (1.5%), others (e.g. the num-384

ber of stars or heuristic rules, 5.8%).385

Also, since we focus on code-related bench-386

marks, which usually accompany test cases, test387

coverage also needs to be considered. As pointed388

out by prior study (Liu et al., 2023a), inadequate389

test coverage can lead to inflated evaluation results.390

However, we observed that only 8.7% of bench-391

marks have considered test coverage when using392

test cases as oracles (Appendix A.3). It severely393

affects the reliability of findings on these bench-394

marks, potentially misguiding future research and395

applications based on these flawed assessments.396

▲ Severity – Most benchmarks display se-
vere loopholes in data preparation and curation.
Quality checks are often neglected.

4.3 Guideline for Evaluation397

Phase 2. Benchmark Evaluation

24 Consider whether sufficient LLMs are evaluated.

25 Consider whether representative LLMs (e.g., covering latest/classical LLM families,
small/large LLMs, and open-/closed-source LLMs) are evaluated.

26 Consider whether the prompt is of high quality (e.g., the instruction and intent are
clear).

27 The prompts have been validated by humans or LLMs (e.g., evaluated or discussed by
participants or preliminarily tried out on several LLMs).

28 Try different paraphrases of the prompt.

29 Try different prompting strategies to observe the impact on the evaluation results
(e.g., in-context learning, chain-of-thought).

30 Pay attention to the hardware environment (such as GPU card, storage size, etc.) of
the experiment.

31 Pay attention to the operating system and software environment (e.g. operating
system, version, etc.) used for the experiment.

32 Pay attention to the off-the-shelf platforms, frameworks, or libraries for LLM
evaluation (e.g., fast chat, vllm, huggingface) that are used.

33 Repeat the experiment multiple times to reduce the impact of randomness on the
evaluation

34 Consider various randomization strategies (e.g., trying various temperature
parameters) to reduce the impact of parameter configuration on the evaluation.

35 Record the experimental process in detail (e.g., parameter settings, running time,
input/output pairs, etc.).

Figure 5: Guideline for Benchmark Evaluation

☞ Explanation – Guidelines for benchmark398

evaluation focus on the rigorousness and reliabil-399

ity of the evaluation. HOW2BENCH provides 12400

criteria for benchmark evaluation, as shown in Fig-401

ure 5. It mainly focuses on the comprehensive eval-402

uation processes for benchmarks involving LLMs.403

For evaluation design, it stresses the importance404

of assessing a sufficient and representative range405

of LLMs to ensure the benchmark’s applicability406

across various model families and configurations,407

both open and closed-source. Figure 29 and Fig-408

ure 30 shows the distribution of numbers of LLMs409

studied and the most exercised LLMs.410

Also, prompting has a direct impact on the qual-411

ity of the LLMs’ output results (Wei et al., 2022; 412

He et al., 2024a; Jin et al., 2024; Ye et al., 2023). 413

As pointed out by a recent study, up to 40% perfor- 414

mance gap could be observed in code translation 415

when prompts vary (He et al., 2024b). 416

Additionally, the experiment environment is es- 417

sential for reproducibility and transparency. Indeed, 418

the hardware, software, and platform environments 419

used during experiments might influence the out- 420

comes (Ghosh, 2024). Furthermore, because of 421

the nondeterministic nature of LLMs, experiments 422

should be repeated, and randomization strategies 423

should be used to mitigate the effects of random- 424

ness and parameter configuration biases. Lastly, 425

meticulously documented logs of the experimental 426

process are advised to facilitate transparency and 427

reproducibility, detailing everything from parame- 428

ter settings to the specific LLM pipelines such as 429

vLLM (Kwon et al., 2023) used. 430

■ Key Statistics – Among the 274 benchmarks, 431

183 of them are evaluated over LLMs. Accord- 432

ing to our statistics (Figure 29), over 34% of the 433

benchmarks were evaluated on fewer than 3 LLMs, 434

with 11.48% benchmarks only evaluated on one 435

LLM. Such evaluation results can hardly be gener- 436

alized to other LLMs. Furthermore, more than half 437

of the benchmarks studied fewer than 6 LLMs 438

(51% = (21 +22 + 20 + 4 + 12+15)/183). 439

☛ For reference, we listed the top 10 most stud- 440

ied LLM families in Figure 30. Among them, the 441

GPT and CodeLlama series are the most exten- 442

sively studied, accounting for 63% (116/183) and 443

33% (60/183), respectively. Under the constraints 444

of time and available resources, it is beneficial to 445

evaluate more representative LLMs. 446

The prompt quality also greatly impacts the 447

LLM evaluation (He et al., 2024b). According to a 448

recent study, up to 40% performance vary could be 449

observed in code translation task (He et al., 2024b). 450

So, carefully designing a prompt needs considera- 451

tion. However, 73.3% representative benchmarks 452

(Appendix C) do not validate whether the prompts 453

they used are well-designed (Appendix A.4). Sim- 454

ilarly, though 94.9% benchmarks were evaluated 455

in a zero-shot manner, only 21.2% benchmarks 456

were evaluated under few-shot, 8.8% under Chain- 457

of-Thought and 2.6% under RAG (Appendix A.4). 458

However, as shown in Figure 34, 73.3% represen- 459

tative benchmarks (Appendix C) do not validate 460

whether the prompt they used is well-designed. 461

Regarding the evaluation process, our statistics 462

exposed that only 35.4% of benchmark evalua- 463
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tions have been repeated (Appendix A.4). Also,464

regarding the transparency and matriculated doc-465

uments, the observation is not optimistic – Only466

3.6% benchmarks provided their experiment467

environment. More than 50% of benchmarks468

did not provide reproducible instructions such469

as prompts, examples for few-shot learning, or470

content for retrieval (Figure 39). Less than half471

(42.7%) provide hyperparameters such as tem-472

perature for reproduction.473

▲ Severity – Over 60% of evaluations have not
been repeated to eliminate the impact of ran-
domness. Only a few (less than 3.6%) provide
the complete and necessary information re-
quired for reproducibility such as prompts and
environment.

4.4 Guideline for Evaluation Analysis474

Phase 3. Benchmark Analysis

36 Observe the difficulty of the benchmark, checking if the benchmark is too hard or too easy
for LLMs (i.e., most LLMs score too high/low).

37 Consider whether the benchmark can distinguish the pros and cons of different LLMs.

38 If the experiment is repeated several times, consider the stability of the benchmark (i.e.,
whether the experimental results vary too much in the repeated experiments).

39
Analyze the correlation between the data and their score. For example, if there is a
correlation between the data (such as similar difficulty and knowledge required), then the
scores should also be correlated.

40 Compare the performance of LLMs on this benchmark with their performance on other
related benchmarks.

41 Consider presenting the experiment results in an appropriate way (e.g., table, line graph,
pie chart, etc.).

42 Consider presenting the experiment results clearly (e.g., distinguishable
colors/labels/shapes, etc.).

43 Explain the experiment results.

44 Observe correlations via multiple perspectives from the experimental results (e.g.,
performance is correlated with model size or amount of context).

45 The analysis of the evaluation results will be inspiring (e.g., shed light on future direction,
make actionable advice, etc.).

Figure 6: Guideline for Evaluation Analysis

☞ Explanation – The analysis of the experiment475

results is expected to be objective and comprehen-476

sive, hopefully providing insights or actionable ad-477

vice. So, we listed 10 criteria for the evaluation478

analysis phase, as shown in Figure 6. Regarding479

the perspectives of analysis, inspired by classic480

measurement theory (Suppes et al., 1962), we sug-481

gest four essential perspectives, including difficulty482

(whether a benchmark is appropriately challeng-483

ing for LLMs), stability (whether the results are484

consistent through repeated trials), differentiability485

(whether benchmarks can differentiate the strengths486

and weaknesses of various LLMs), and inspiration487

(e.g., the correlations between the upper-/down-488

stream coding tasks and LLM scores).489

Moreover, effective presentation of results us-490

ing clear visual and textual descriptions is recom-491

mended to ensure the findings are understandable 492

and actionable. The phase concludes with the sug- 493

gestion to interpret and explain the results compre- 494

hensively, providing a basis for future research and 495

application enhancements. 496

■ Key Statistics – Because experimental analy- 497

sis is relatively subjective and cannot be obtained 498

through mechanical scanning, we focus on 30 rep- 499

resentative focus benchmarks (Appendix C), cov- 500

ering the highest cited and latest benchmarks in 501

top five tasks. Figure 37 shows an example from 502

CruxEval (Gu et al., 2024) where the experimental 503

scores can hardly be read from the figures. 504

Also, explaining experiment results is crucial 505

for other practitioners to understand what the out- 506

comes mean in the context of the research ques- 507

tions. According to our statistics (Appendix A.5), 508

70% benchmarks have detailed explanations and 509

analyses of their evaluation results, while still 30% 510

have not. Indeed, an explanation contributes to the 511

body of knowledge by making it possible to under- 512

stand and compare results with previous studies, 513

promoting transparency within the community. 514

▲ Severity – The analysis of experimental data
and the clarity of data presentation may receive
less attention and worth consideration. Even in
papers cited 1k+ times like MBPP (Austin et al.,
2021), there are instances of unclear evaluation
analysis and display.

4.5 Guideline for Benchmark Release 515

Phase 4. Benchmark Release

46 Set the appropriate license for the benchmark.

47 Review the released benchmark or other artifacts to ensure they do NOT contain sensitive
information (e.g., API keys, usernames, passwords, etc.).

48 review the released benchmark or other artifacts to ensure they do NOT contain toxicity
information (e.g., abusive comments/identifiers).

49 Make sure the benchmark is open-accessible.

50 Make sure the test cases or reference data are open and accessible.

51 Provide prompts used in the experiment to ensure the experiments are reproducible.

52 Disclose the experimental environment (e.g., hardware, operating system, software version,
framework platform) to ensure the reproducibility of the experiment.

53 Make the detailed experimental results public for verification.

54 Ensure the quality of the user manual such as README (e.g., it contains necessary benchmark
introduction, executable scripts, etc.).

55 Provide convenient evaluation interfaces for the released benchmark (e.g., providing a command
line interface, docker, etc.).

Figure 7: Guideline for Benchmark Release

☞ Explanation – Finally, releasing a benchmark 516

for open access also needs careful consideration. 517

We offered 10 suggestions for this step, as shown 518

in Figure 7, to highlight essential steps for public 519

release preparation, emphasizing accessibility and 520

ethical compliance. This includes setting an appro- 521

7



priate license to clarify usage rights, conducting a522

thorough review to eliminate sensitive or harm-523

ful content such as the API keys to access LLMs,524

the personal emails or toxic code comments (Miller525

et al., 2022) unless they are a part of the benchmark,526

and ensuring transparency and reproducibility527

by making all related materials openly available.528

Detailed prompts and clear descriptions of the529

experimental setup are advised to facilitate repli-530

cation. Additionally, providing user manuals and531

evaluation interfaces is crucial for effective user532

engagement with the benchmark, enhancing its re-533

liability and value for the research community.534

■ Key Statistics – The final step involves the re-535

lease of the benchmark. The fundamental require-536

ment for releasing a benchmark is that it must537

be open-sourced. However, surprisingly, we ob-538

served that 5.1% of the benchmarks are only par-539

tially open-sourced (e.g., missing some subjects540

or tests), and 5.8% are not open-sourced at all541

(e.g., links/web pages are no longer active). 19.3%542

have not properly set up the license. Furthermore,543

prompts, which are necessary for reproducibility,544

are not disclosed in 52.6% of the benchmarks (Fig-545

ure 39). Not to mention the lack of public informa-546

tion on experimental settings (Figure 32 and Fig-547

ure 31) and experimental parameters (Figure 43).548

What is worse, 19.3% benchmarks do not setup549

licenses (Figure 44). The absence of licensing may550

lead to severe legal and ethical issues, potentially551

resulting in unauthorized use and distribution of552

proprietary technologies. Additionally, only 16.7%553

of the benchmarks make their logged experimental554

results publicly available (Appendix A.6).555

▲ Severity – The release of existing bench-
marks exhibits several issues. For example, over
10% of the benchmarks are either not open to
public access or are only partially open-sourced.
Only 47.4% of benchmarks are released with
replicable prompts.

5 Human Study556

To delve deeper into the integration of knowledge557

and action, we surveyed 49 global researchers in558

AI (42.6%) and SE (57.14%), as shown in Fig-559

ure 50. Each participant had published at least one560

research paper, and about half had constructed561

code-related benchmarks. See Appendix B.562

First, all participants agreed that having a563

checklist for benchmark construction would con-564

tribute to the quality of the benchmark. 47/55 cri- 565

teria in HOW2BENCH are deemed important by 566

more 80% participants. Additionally, among the 567

21 participants who have constructed code-related 568

benchmarks, 53 out of 55 criteria were deemed 569

important by all benchmark developers; only two 570

criteria (criteria 3 and 4 in Section 4) were consid- 571

ered unimportant by a few individuals (3 and 2 par- 572

ticipants, respectively). Additionally, we received 573

two valuable suggestions that draw importance to 574

recording the time/monetary costs of constructing 575

the benchmark and conducting the experiments. 576

However, we also identified some notable gaps 577

in awareness. First, regarding the data prepara- 578

tion, more than 15% of participants were not aware 579

that the selection of data should consider the tar- 580

get scope of the evaluation set (i.e., the data must 581

be representative), and 16% of participants were 582

unaware of the need for data denoising. This over- 583

sight can significantly affect the validity and gen- 584

eralizability of experimental results, underscoring 585

the importance of a comprehensive understanding 586

of data handling for reliable research outcomes. 587

Second, regarding evaluation replicability and re- 588

liability. Over 40% of participants believe that 589

recording and publicizing the hardware and soft- 590

ware environments, software versions, and libraries 591

used in experiments is not important, with more 592

than 20% still considering it unimportant despite 593

already done so. This reveals a significant lack of 594

awareness about the impact that experimental envi- 595

ronments can have on the reliability, reproducibil- 596

ity, and stability of evaluation results. In fact, 597

various studies have demonstrated that different ex- 598

perimental environments, parameters, and prompts 599

can lead to substantial variations in outcomes (Xiao 600

et al., 2024; Wang et al., 2019, 2023a). 601

6 Conclusion 602

This paper proposes a rigorous guideline consisting 603

of 55 checklists covering the benchmark develop- 604

ment lifecycle. After investigating over 270 code- 605

related benchmarks, we exposed their merits and 606

limitations and provided suggestions for improving 607

them. Finally, our human study reveals the neglect 608

of details that may affect the benchmark’s reliabil- 609

ity. In the long run, HOW2BENCH helps to improve 610

the overall quality of benchmarks in the community 611

due to the propagation among benchmarks. 612
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Limitations613

This paper has two primary limitations that offer614

avenues for future research. First, the collection of615

code-related benchmarks may be incomplete. To616

minimize this limitation, we covered papers pub-617

lished over the last decade, and conducted multiple618

rounds of snowballing. Ultimately, we collected619

274 benchmarks, which is comparable to the num-620

ber included in recent surveys (Hou et al., 2023;621

Schäfer et al., 2024) in the field. Second, the study622

involved substantial manual analysis, which could623

lead to oversight and discrepancies in the statisti-624

cal results. To mitigate this issue, we ensured that625

each benchmark was double-checked by at least626

two authors and underwent multiple rounds of iter-627

ation. Third, the guidelines may not cover all the628

details. Constructing a code-related benchmark in-629

volves numerous details, and some criteria are task-630

specific. To overcome this limitation, we iteratively631

refined the guidelines, interviewed practitioners,632

and tried to cover the entire benchmark develop-633

ment process as thoroughly as possible. Last, the634

human study participants may exhibit subjectiv-635

ity. To address this limitation, we endeavored to636

include a broad range of practitioners and seasoned637

researchers with experience in both AI and SE,638

aiming for the least biased results possible.639
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A Statistics of studied benchmarks2077

In this section, we conducted a comprehensive and2078

detailed statistical analysis of the 274 benchmarks2079

collected.2080
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Figure 8: Relationships between Benchmarks

A.1 Profile of Studied Benchmarks2081

We first show the trend in the development of2082

benchmarks from 2014 to 2024. As shown in Fig-2083

ure 9, the data shows a modest beginning, with2084

only a handful of benchmarks created annually un-2085

til 2017. From 2018 onwards, there is a noticeable2086

uptrend in benchmark creation, culminating in a2087

significant jump to 149 benchmarks in 2024. This2088

sharp increase indicates a recent heightened inter-2089

est and demand for comprehensive code-related2090

benchmarks for LLMs, reflecting the evolving com-2091

plexities and expanding requirements of automated2092

software engineering.2093

Hierarchy of Benchmarks. Figure 8 visualize2094

the inheritance relationships among benchmarks, 2095

indicating that the benchmarks on the left serve as 2096

sources for those on the right. It highlights that 2097

18% (50 out of 274) of benchmarks act as data 2098

sources, continuously benefiting the construction 2099

of subsequent benchmarks. 2100

Figure 8 reveals that HumanEval (Chen et al., 2101

2021a), as the most significant source benchmark, 2102

benefits at least 15 downstream benchmarks, fol- 2103

lowed by MBPP (Austin et al., 2021) and Code- 2104

SearchNet (Husain et al., 2019). From the right 2105

side of the figure, some benchmarks, like Vul- 2106

Bench (Gao et al., 2023b), incorporate method- 2107

ologies or data from 4 previous benchmarks, and 2108

codeRagBench (Wang et al., 2024d) integrates ele- 2109

ments from 8 prior benchmarks. 2110

This hierarchical structure among benchmarks 2111

also alerts us that the data quality of a benchmark 2112

not only affects its own credibility but can con- 2113

tinue to impact others if it serves as a source. This 2114

underscores the importance of adhering to strin- 2115

gent guidelines during benchmark development 2116

and highlights the crucial role of establishing stan- 2117

dards to ensure the integrity and utility of bench- 2118

mark data across research and development efforts. 2119

Figure 9: Benchmark Distribution over Years

Annual Trend. Regarding the coding tasks, Fig- 2120

ure 11 illustrates the distribution of various cod- 2121

ing tasks across benchmarks. It is clear that the 2122

task of Code Generation is most prevalent, with 2123

99 benchmarks focusing on this area according to 2124

36% (99/274) of studied benchmarks, indicating 2125

a significant interest in generating code automat- 2126

ically. Program Repair and Defeat Detection are 2127

well-represented, with 27 and 25 benchmarks, re- 2128

spectively, reflecting the importance of correcting 2129

code and detecting defects. 2130

Citation distribution. We also visualized the 2131

citations of 274 code-related benchmarks. The 2132

citation statistics were collected on September 1st, 2133
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2024. From Figure 10, we can see a clear long-2134

tail trend of the citations, from the highest 27352135

(HumanEval (Chen et al., 2021a)) to the lowest 0.2136

0

1000
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0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Citations

Figure 10: Citation Distribution of Benchmarks

Coding Task. Tasks like Code Summarization2137

and Text2SQL are similarly significant, each with2138

25 and 22 benchmarks. These tasks focus on mak-2139

ing code more understandable and converting nat-2140

ural language queries into SQL queries. Other2141

tasks, such as Code Retrieval, Code Reasoning, and2142

Code Translation, are represented with 18, 17, and2143

16 benchmarks, respectively. Lesser-represented2144

benchmarks are Test Generation, Code Optimiza-2145

tion, and Code Completion, each represented by2146

8 and 7 benchmarks, indicating the inadequacy of2147

these tasks.2148

Figure 11: Benchmark Distribution over Tasks

Programming Languages. Figure 12 shows2149

the distribution of benchmarks across various pro-2150

gramming languages. The overall trend indicates a2151

strong preference for benchmarking Python, which2152

leads with 158 benchmarks, followed by Java and2153

C++, with 107 and 63, respectively. The graph also2154

reveals a diverse range of languages being used.2155

In total, 724 programming languages are studied2156

by these 274 benchmarks. Though some program-2157

ming languages, such as Kotlin, Swift, and Scala,2158

are less frequently exercised, the benchmarks in-2159

volving them are tailored to different application2160

needs and technology environments. This distribu-2161

tion shows the existing benchmarks are dominated2162

by three mainstream programming languages, leav-2163

ing other programming languages less studied and 2164

benchmarked. 2165

Figure 12: Benchmark Distribution over Programming
Language

Natural Language. Figure 13 illustrates the 2166

distribution of benchmarks for different natural lan- 2167

guages. The bar chart overwhelmingly shows that 2168

English is the dominant language, with 192 bench- 2169

marks highlighting its ubiquity in research and 2170

development. Other languages have significantly 2171

fewer benchmarks, with six for Chinese and only 2172

two each for Japanese, Russian, and Spanish. The 2173

category labeled “Other” includes 20 benchmarks 2174

spread across other natural languages, indicating 2175

some diversity but limited attention to non-English 2176

benchmarks. This distribution highlights the promi- 2177

nence of English in the global research community 2178

and also demonstrates the uneven representation 2179

of natural languages in the studied benchmarks. 2180

Figure 13: Benchmark Distribution over Natural Lan-
guage

Modals in the benchmarks. Figure 14 presents 2181

23



the distribution of benchmarks according to the2182

type of language used in their prompts. The2183

chart shows that the majority, at 47.1%, of the2184

benchmarks use a combination of natural language2185

and programming Language, followed by PL only2186

(31.0%) and NL only (21.9%).

Figure 14: Benchmark Distribution over Modal in
Prompt

2187
Granularity. The code snippet in a code-related2188

benchmark varies from statement-level (i.e., one2189

line of code. For example, CoNaLa (Yin et al.,2190

2018) and Math-QA (Amini et al., 2019)), function-2191

level (i.e., a function unit of code. For example, Hu-2192

manEval (Chen et al., 2021a) and MBPP (Austin2193

et al., 2021)), class-level (i.e., a class with mul-2194

tiple function units of code. For example, Clas-2195

sEval (Du et al., 2023b)) and project-level (i.e., a2196

project with multiple classes or modules. For exam-2197

ple, DevEval (Li et al., 2024a) and JavaBench (Cao2198

et al., 2024a)). Figure 15 illustrates the granular-2199

ity levels at which benchmarks are typically con-2200

ducted. The chart shows that the majority of bench-2201

marks, comprising 71.8%, focus on the function2202

level. Projects constitute 15.0% of the benchmarks.2203

Class-level granularity is the least represented at2204

2.6%.2205

The majority of benchmarks are currently at the
function level (70+%), followed by the project
level (15+%). This indicates that the current ma-
jor demand is for assessing individual functions
within a single task, followed by the demand
for evaluating functionalities more aligned with
actual project-level code development.

A.2 Statistics about Benchmark Design2206

Design of Studied Capabilities. To understand2207

whether benchmark developers recognize the ca-2208

pabilities of LLMs they aim to evaluate, we care-2209

fully analyzed 30 representative benchmarks (Ap-2210

pendix C) to see if they clearly specify the capabili-2211

Figure 15: Benchmark Distribution over Granularity

ties being assessed by their benchmarks. As shown 2212

in Figure 16, 90% of benchmarks explicitly specify 2213

the capabilities (e.g., intention understanding, prob- 2214

lem solving, testing, debugging capabilities)to be 2215

evaluated, while 10% do not. The statistics show 2216

that the most highly cited benchmarks clearly de- 2217

fine the assessment capabilities. 2218

Figure 16: Benchmark Distribution Over Capabilities
Consideration

Furthermore, we investigated the 30 focused 2219

benchmarks and identified a case (Figure 17) from 2220

MBPP (Austin et al., 2021) where the case is likely 2221

to fall outside of the targeted capability of the 2222

benchmark. In particular, MBPP (Austin et al., 2223

2021) aims to “measure the ability of these models 2224

to synthesize short Python programs from natural 2225

language descriptions” for “entry-level program- 2226

mers”. As we can see from Figure 17, the prompt 2227

requires LLMs to “Write a function to calculate 2228

the dogs’ years.” Simply from this description, 2229

an entry-level programmer is unlikely to write a 2230

correct program without knowing the conversion 2231

equation from dogs’ year to dogs’ age. In other 2232

words, this case is more about assessing whether 2233

LLMs have acquired this specific knowledge rather 2234

than evaluating the most fundamental program- 2235

ming skills. 2236

Design of Studied Application Scenarios. Simi- 2237

larly, to understand whether benchmark developers 2238

24



Out of Targeted Capabilities

{
    'source_file': 'Benchmark Questions 

Verification V2.ipynb',
'task_id’: 264,

    'prompt': 'Write a function to calculate 
                      a dog's age in dog's years.'

'test_list': [ "assert dog_age(12)==61", 
                         "assert dog_age(15)==73", 
                         "assert dog_age(24)==109" ]
}

1
2
3
4
5
6
7
8
9

10

Figure 17: An Example of Out-of-capability Case from
MBPP (Austin et al., 2021).

scoped the application scenarios of LLMs they aim2239

to evaluate, we carefully analyzed 30 representa-2240

tive benchmarks (Appendix C) to see whether they2241

explicitly specify the application scenarios their2242

benchmarks target. As shown in Figure 18, 70%2243

representative benchmarks have clearly specified2244

application scenarios (e.g., programming assistant),2245

while the rest do not. Indeed, clearly defining the2246

application scenarios could help benchmark con-2247

structors establish precise goals for the design and2248

development of the benchmark, ensuring accuracy2249

in the evaluation.2250

Figure 18: Benchmark Distribution Over Expected Ap-
plication Scenario Consideration

A.3 Statistics about Data Preparation2251

A.3.1 Data Preprocessing2252

Data Deduplication. During benchmark prepara-2253

tion, data cleaning and preprocessing are necessary.2254

However, as shown in Figure 19, only 38% bench-2255

marks have deduplicated the collected data. More2256

than half of them didn’t mention this process.2257

To investigate the situation, we went through2258

the 30 representative benchmarks (Listed in Ap-2259

Figure 19: Benchmark Distribution over Deduplication

pendix C) and found two duplicated subjects in 2260

MBPP (Austin et al., 2021). Tasks with id 71 and 2261

141 examined the same functionality, i.e., “Write a 2262

function to sort a list of elements.”, collected from 2263

the same source. 2264

1
2
3
4
5
6
7
8
9

10
11

Duplicated Data

{
    'source_file': 'Mike's Copy of Benchmark
                              Questions Verification V2.ipynb',

'task_id’: 71,
    'prompt': 'Write a function to sort a list of elements. '
}

{
    'source_file': 'Mike's Copy of Benchmark 
                              Questions Verification V2.ipynb',

'task_id’: 141,
    'prompt': 'Write a function to sort a list of elements. '
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Figure 20: A Counterexample of Rule 16 from
MBPP (Austin et al., 2021).

The significance of data preprocessing, such
as deduplication, is frequently overlooked by
benchmark builders, leading to data duplication
even in highly cited benchmarks.

Data Quality Assurance. Ensuring data quality 2265

for the benchmark is essential. However, our statis- 2266

tics (Figure 21) show disappointing results. 67.9% 2267

of benchmarks do NOT take any measures for 2268

data quality assurance. Among those benchmarks 2269

that do incorporate data quality measures, the ma- 2270

jority rely on manual checks, which accounts for 2271

22.6%. Other countermeasurements, such as code 2272

execution, constitute only 2.2%, while verification 2273

using LLMs accounts for 1.5%. Additional meth- 2274

ods, such as using download counts as a basis, are 2275

also employed. 2276

Additionally, we dived into the 30 representative 2277

25



Figure 21: Benchmark Distribution over Quality Assur-
ance Method

benchmarks (Listed in Appendix C) and identified2278

an example where the code cannot be executed2279

successfully. As shown in Figure 22, the function2280

swap() in line 7 has not been defined, so the2281

execution of the code would fail if the code has2282

been executed. This highlights a significant gap in2283

ensuring the reliability and validity of benchmark2284

data, underscoring the need for more rigorous and2285

automated data quality assurance practices.2286

Problem in Execution

Import math
def  min_Operations (A, B):
       """ Write a python function to find 
       the minimum operations required 
       to make two numbers equal. ""“
       if (A > B):
                 swap(A,B)
       B = B // math.gcd(A,B);
       return B - 1

1
2
3
4
5
6
7
8
9

Figure 22: An Example from MBPP (Austin et al.,
2021) that failed to be executed.

Data Contamination Resolution. Data con-2287

tamination (Golchin and Surdeanu, 2023; Cao2288

et al., 2024b) threat has been widely discussed.2289

A benchmark with contaminated data may yield2290

overclaimed results, misleading the understand-2291

ing of the LLMs’ capabilities. According to our2292

statistics (Figure 23 on benchmarks from the year2293

2023 to 2024 (the duration when most LLMs were2294

launched), most (81.8 %) benchmarks were not2295

aware of and have not taken any measures to alle-2296

viate data contamination, being vulnerable to data2297

contamination threat.2298

A.3.2 Statistics about Data Curation2299

Ground truth solutions. Figure 24 shows that al-2300

though the majority (92.3%) of benchmarks pro-2301

0
Figure 23: Benchmark Distribution over Quality Assur-
ance on Data Contamination

vide reference code as ground truth, there are 5% 2302

of benchmarks without reference code. Although it 2303

is not compulsory as long as object measurements 2304

(e.g., test cases) are provided, a reference code 2305

is still recommended. Indeed, if a benchmark 2306

provides reference code, its reliability tends to be 2307

better because it ensures that there are feasible so- 2308

lutions for the tasks involved. This guarantees that 2309

the tasks are theoretical and practically solvable, 2310

enhancing the benchmark’s usefulness and credi- 2311

bility in real-world applications. 2312

Figure 24: Benchmark Distribution over Solution

Additionally, the correctness of the ground 2313

truth solution should also be noted. Figure 25 2314

shows an incorrect code solution provided in Hu- 2315

manEval (Chen et al., 2021a). This should draw 2316

benchmark constructors’ attention to the correct- 2317

ness of the benchmark reference code. 2318

Oracle. An oracle (Barr et al., 2014) is a way 2319

to determine whether the output is correct or not. 2320

For example, assume the output of LLMs is in the 2321

form of code, then an oracle could be running tests 2322

against the code and see whether the code can pass 2323

all the tests. Figure 26 shows the distribution of 2324

types of oracle that are used in these benchmarks. 2325

Clear that the exact match 41.97% (115/274) and 2326

test case passing (114/274) 41.6% are the most 2327

26



Incorrect Ground-truth

def check_dict_case(dict):
       """ Given a dictionary, return True if all keys are strings
       in lower case or all keys are strings in upper case, else
       return False. The function should return False is the   
       given dictionary is empty. """
       if len(dict.keys()) == 0:
             return False
       else:
              state = "start"     
              for key in dict.keys():
                     if isinstance(key, str) == False: 
                         state = "mixed" 
                 break 
                     if state == "start“:
                           if key.isupper(): 
                        state = "upper" 
                   elif key.islower(): 
                        state = "lower" 
                   else:  
                         break 
                 elif (state == "upper" and not key.isupper())
                                          or (state == "lower" and not 
                                                 key.islower()):
                      state = "mixed" 
                      break 
                 else: 
                      break
        return state == "upper"  or state == "lower"   

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Figure 25: An Example from Humaneval (Chen et al.,
2021a) which shows an incorrect solution provided in
the benchmark.

common oracle used in code-related benchmarks,2328

followed by thresholds (i.e., similarities smaller2329

than a specific threshold).2330

Figure 26: Benchmark Distribution over Test Orcale

Code test coverage (Ivanković et al., 2019), as a2331

common oracle for code-related benchmarks, has2332

been widely adopted to determine the output cor-2333

rectness. It should be considered if a benchmark2334

uses test case passing as a criterion for the correct-2335

ness of the generated code. Otherwise, a test could2336

be too weak to detect the existence of a defect in2337

the generated code. For example, as pointed out2338

by prior work (Liu et al., 2023a), existing bench-2339

marks such as HumanEval (Chen et al., 2021a) and2340

MBPP (Austin et al., 2021) still suffer from “insuf- 2341

ficient tests”, allowing incorrect code to pass all 2342

the tests without capturing the bugs. 2343

Despite its importance, as shown in Figure 27, 2344

among the benchmarks that use test cases as the 2345

oracle, only 8.7% considered and reported “test 2346

coverage” explicitly in their papers, while 87.8% 2347

did not mention the test coverage of their provided 2348

code. 2349

Figure 27: Benchmark Distribution over Test Coverage

Furthermore, we dived into 30 representative 2350

benchmarks (Listed in Appendix C) and identified 2351

an example (Figure 28) from MBPP (Austin et al., 2352

2021) where the test is incorrect. It alerts us that 2353

both the quality of the test and the test adequacy 2354

(e.g., code coverage) should be considered. 2355

Wrong Example Tests

{
    'source_file': 'charlessutton@: Benchmark

Questions Verification V2.ipynb',
'task_id’: 461,

    'prompt': 'Write a python function to count the 
                      upper case characters in a given string.'

'test_list': [ "assert upper_ctr('PYthon') == 1", 
                         "assert upper_ctr('BigData') == 1", 
                         "assert upper_ctr('program') == 0" ]
}

1
2
3
4
5
6
7
8
9

10

Figure 28: An Example of Incorrect Tests from
MBPP (Austin et al., 2021).

A.4 Statistics about Evaluation 2356

Studied LLMs. We summarize the number of 2357

LLMs that have been evaluated in each benchmark 2358

evaluation. Among the 274 benchmarks, 183 of 2359

them are evaluated over LLMs, so we show the 2360

statistics over them. As shown in Figure 29, over 2361

34% of the benchmarks were evaluated on fewer 2362
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than 3 LLMs, with 11.48% benchmarks only eval-2363

uated on one LLM. Such evaluation results can2364

hardly be generalized to other LLMs. Further-2365

more, more than half of the benchmarks studied2366

fewer than 6 LLMs (51% = (21 +22 + 20 + 4 +2367

12+15)/183).2368

Figure 29: Benchmark Distribution over LLM Experi-
mented

Additionally, we listed the top-10 LLMs by the2369

number of code-related benchmarks they have been2370

evaluated, as shown in Figure 30. GPT series leads2371

significantly with 116 benchmarks, suggesting its2372

widespread adoption and possibly its versatility2373

or superior performance in handling code-related2374

tasks. The rest, including CodeLlama, StarCoder,2375

CodeGen, and others, show varying degrees of in-2376

volvement, with numbers ranging from 60 down2377

to 24 benchmarks for Claude. This figure may2378

provide a reference for choosing which model to2379

evaluate. In addition, it is worth mentioning that2380

different LLMs should be considered considering2381

different coding tasks.2382

Figure 30: Top-10 Studied LLMs for Code-related
Benchmarks

Experiment Environments. The experimental2383

environment (such as the operating system and2384

hardware) is important for the reproduction of the2385

experiment. However, Figure 32 and Figure 31 2386

highlight a significant gap. A mere 27.4% of bench- 2387

marks document the devices used in their experi- 2388

ments, leaving a substantial 72.6% that do not. The 2389

situation appears even more dire when considering 2390

os, with only 3.6% of benchmarks documenting 2391

the OS used, while a staggering 96.4% neglect to 2392

record this information. 2393

Figure 31: Benchmark Distribution over Recording Ex-
periment Devices

Figure 32: Benchmark Distribution over Recording Ex-
periment OS

Prompting and Prompting Strategies Prompt- 2394

ing has a direct impact on the quality of the LLMs’ 2395

output results (Wei et al., 2022; He et al., 2024a; 2396

Jin et al., 2024). So, we summarized whether differ- 2397

ent prompting strategies have been evaluated and 2398

statistics the distribution. Figure 33 shows the us- 2399

age of four kinds of prompts: zero-shot, few-shot, 2400

chain-of-thought, and retrievals (RAG). From Fig- 2401

ure 33, we can see that a vast majority (94.9%) 2402

benchmarks were evaluated in a zero-shot context 2403

setting, while only 21.2% benchmarks were evalu- 2404

ated in a few-shot manner. Even fewer benchmarks 2405

were evaluated under the COT and RAG settings, 2406

utilized by only 8.8% and 2.6%. 2407

Prompt Quality The prompt quality also greatly 2408

impacts the LLM evaluation (He et al., 2024b). So, 2409

carefully designing a prompt needs consideration. 2410

However, as shown in Figure 34, 73.3% represen- 2411
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Figure 33: Benchmark Distribution over Context Setting

tative benchmarks (Appendix C) do not validate2412

whether the prompt they used is well-designed.2413

Figure 34: Benchmark Distribution Over Validation of
Prompts

Repeated Experiment Given the random na-2414

ture of LLMs, the experiments are expected to re-2415

peat, ensuring the stability and reliability of the re-2416

sults. However, as shown in Figure 35, only 35.4%2417

benchmarks went through a repeated experiment,2418

while a majority of 64.6% opted against repeating2419

the experiment. This reflects a lack of awareness2420

regarding the stability and reproducibility of evalu-2421

ations.2422

A.5 Statistics about Analysis2423

Experiment Explanation. Explaining experiment2424

results is crucial for other practitioners to under-2425

stand what the outcomes mean in the context of2426

the research questions. So, we investigate whether2427

the representative benchmarks (Appendix C) have2428

explained the experiment results. As shown in2429

Figure 36, 70% benchmarks have detailed explana-2430

tions and analyses of their evaluation results, while2431

still 30% have not. Indeed, an explanation con-2432

Figure 35: Benchmark Distribution over Repeating the
Experiment

tributes to the body of knowledge by making it 2433

possible to understand and compare results with 2434

previous studies, promoting transparency within 2435

the community. 2436

Figure 36: Benchmark Distribution Over Explaining the
Experiment

A clear and precise presentation of experimental 2437

results is important for enabling robust interpre- 2438

tation and comparison across benchmarks. How- 2439

ever, further examination of the 30 representative 2440

benchmarks (listed in Appendix C) revealed no- 2441

table deficiencies in result visualization. As shown 2442

in Figure 37, CruxEval (Gu et al., 2024) exhibits 2443

unclear experimental result presentation. Specif- 2444

ically, the scatter plot suffers from ambiguous la- 2445

beling, poor readability of axis values, and incon- 2446

sistent marker encoding, making it difficult for re- 2447

searchers to extract meaningful insights. Such pre- 2448

sentation shortcomings obscure the performance 2449

relationships between methods and compromise 2450

the benchmark’s usability for fair evaluation. To 2451

address these issues, benchmarks should adopt stan- 2452

dardized and well-documented visualization prac- 2453

tices, ensuring results are interpretable, accessible, 2454

and reproducible. 2455
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Unclear Presentation of the Experiment Result

Figure 37: An Example of Unclear Experiment Analysis
and Display from CruxEval (Gu et al., 2024)

A.6 Statistics about Release2456

Data Accessibility. The fundamental requirement2457

for releasing a benchmark is that it must be open-2458

sourced. However, surprisingly, as shown in Fig-2459

ure 38, we observed that 5.1% of the benchmarks2460

are only partially open-sourced (e.g., missing some2461

subjects or tests), and 5.8% are not open-sourced2462

at all (e.g., links/web pages are no longer active).2463

Figure 38: Benchmark Data Availability

Prompt Accessibility. Detailed prompts are es-2464

sential for ensuring the reproducibility and trans-2465

parency of code-related benchmarks. However, as2466

shown in Figure 39, we found that 52.6% of bench-2467

marks do not provide detailed prompts, limiting2468

the ability to accurately replicate and evaluate the2469

performance of LLMs. This lack of prompt disclo-2470

sure highlights a gap in benchmark design practices,2471

as prompts are often indispensable for understand-2472

ing model performance under specific conditions.2473

While 47.4% of benchmarks include such prompts,2474

the absence of comprehensive prompt documenta-2475

tion in over half of the cases raises concerns about2476

the consistency and reproducibility of reported re-2477

sults. 2478

Figure 39: Availability of Prompts

Logging Info Accessibility. Providing detailed 2479

logging information, including comprehensive ex- 2480

perimental results, is essential for ensuring trans- 2481

parency, verifiability, and reproducibility in bench- 2482

marking research. However, as shown in Figure 40, 2483

only 16.7% of the benchmarks make their experi- 2484

mental results publicly available, while 80.0% fail 2485

to disclose this critical information. Alarmingly, 2486

an additional 3.3% provide only partial logging de- 2487

tails, further complicating result verification. The 2488

absence of complete logging information creates 2489

significant barriers for researchers attempting to 2490

reproduce experiments or validate reported find- 2491

ings, thereby undermining the reliability of bench- 2492

marks. To address this, we emphasize the necessity 2493

of making detailed logging information, including 2494

intermediate results and metrics, publicly acces- 2495

sible to uphold rigorous scientific standards and 2496

foster trustworthy comparisons across models. 2497

Figure 40: Availability of Logging Information

User Manual Accessibility. A high-quality user 2498

manual, such as a well-documented README 2499

file, is crucial for enhancing benchmark usabil- 2500

ity, enabling users to understand the dataset, ex- 2501

ecute provided scripts, and reproduce results ef- 2502

ficiently. However, our analysis revealed that a 2503

significant number of benchmarks lack comprehen- 2504

sive user manuals, hindering accessibility and adop- 2505
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tion. As depicted in Figure 41, poorly structured2506

or incomplete manuals often omit essential com-2507

ponents such as benchmark introductions, usage2508

instructions, and evaluation scripts. This creates un-2509

necessary barriers for researchers who rely on these2510

manuals for setup and experimentation. To address2511

this, we advocate for benchmarks to include clear,2512

standardized user manuals that provide an overview2513

of the benchmark, step-by-step execution guides,2514

and troubleshooting instructions, ensuring a seam-2515

less and reproducible user experience.2516

Figure 41: Availability of User Manual

Convenient Evaluation Interface Availability.2517

Providing convenient evaluation interfaces is es-2518

sential for enhancing the usability and accessibility2519

of benchmarks, enabling researchers to easily re-2520

produce results and compare models. As shown2521

in Figure 42, 16.7% of benchmarks fail to offer2522

any evaluation interfaces, imposing significant2523

barriers to usability. While a majority of bench-2524

marks (83.3%) provide such interfaces, including2525

command-line tools, Docker images, or scripts, the2526

absence of standardized and user-friendly evalua-2527

tion tools in a notable minority of cases highlights2528

an area for improvement. Benchmarks without2529

convenient evaluation interfaces require users to2530

spend additional effort in setup and result verifi-2531

cation, which can discourage adoption and hin-2532

der reproducibility. To address this, we emphasize2533

the importance of releasing benchmarks with well-2534

documented, ready-to-use evaluation pipelines to2535

promote efficient, reliable, and fair benchmarking2536

practices.2537

Temperature Records. One critical parameter2538

for benchmarking is the temperature setting, which2539

influences stochasticity in LLMs. As shown in Fig-2540

ure 43, we observed that 57.3% of benchmarks2541

fail to record the temperature setting, hindering2542

reproducibility and fair evaluation. While 42.7% of2543

benchmarks do document this parameter, the major-2544

ity omission highlights an overlooked yet essential2545

Figure 42: Availability of Convenient Evaluation Inter-
faces

aspect of benchmark transparency. 2546

Figure 43: Benchmark Distribution over Recording
Temperature

License Provision. Releasing benchmarks under 2547

a clear and accessible license is fundamental for 2548

legal compliance and ensuring open collaboration. 2549

Figure 44 reveals that 19.3% of benchmarks do 2550

not provide a license, limiting their usability and 2551

distribution. Encouragingly, 80.7% of benchmarks 2552

do include a license, but the lack of licensing in 2553

nearly one-fifth of the benchmarks raises concerns 2554

about widespread adoption and usage. These find- 2555

ings emphasize the need for standardized practices 2556

in benchmark releases to promote legal clarity and 2557

accessibility. 2558

Figure 44: Provision of License

Data Security. Ensuring data security is a criti- 2559

cal yet often overlooked aspect of benchmark de- 2560
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velopment. Sensitive information, such as API2561

keys, credentials, or private tokens, should never2562

be included in benchmark releases. However, fur-2563

ther investigation into 30 representative bench-2564

marks (listed in Appendix C) revealed instances2565

of sensitive data leakage. As shown in Figure 45,2566

XSemPLR (Zhang et al., 2023b) inadvertently in-2567

cluded an API key in its release, a critical oversight2568

that can expose resources to external exploitation.2569

Similarly, Figure 46 highlights an example from

API Key Leakage

#! /bin/bash

# conda activate skg
#export WANDB_API_KEY=**************************
export WANDB_PROJECT=mt5-large_mgeoquery_few-shot
export CUDA_LAUNCH_BLOCKING=1

1
2
3
4
5
6

Figure 45: An Example of API Key Leakage in Bench-
mark Release from XSemPLR (Zhang et al., 2023b).

2570
CrossVul (Nikitopoulos et al., 2021), where per-2571

sonal names and email addresses were uninten-2572

tionally disclosed. Such leakage poses risks of2573

unauthorized access and resource misuse, poten-2574

tially compromising systems and research integrity.2575

Name or Email Leakage

Individual \fIreadline\fP initialization file
.PD
.SH AUTHORS
Anonymous, Anonymous
.br
Anonymous@example.com
.PP
Anonymous, Anonymous
.br
Anonymous@example.com
.SH BUG REPORTS

1
2
3
4
5
6
7
8
9

10
11

Figure 46: An Example of Name & Email Leakage in
Benchmark Release from CrossVul (Nikitopoulos et al.,
2021).

2576

Usability. Clear and comprehensive documenta-2577

tion is crucial for ensuring the usability of bench-2578

marks, as poorly written instructions can signif-2579

icantly hinder adoption and reproducibility. We2580

dived into the 30 representative benchmarks (listed2581

in Appendix C) and identified an example where2582

the README file provided insufficient and unclear2583

information. As shown in Figure 47, VulDeeP-2584

ecker (Li et al., 2018b) includes a less-than-ideal2585

ReadMe file, which lacks essential usage instruc- 2586

tions and evaluation guidelines, making the bench- 2587

mark difficult to understand and deploy. In con- 2588

trast, Figure 48 highlights APPS (Hendrycks et al., 2589

2021), which provides well-structured and easy- 2590

to-follow documentation. The APPS benchmark 2591

includes step-by-step instructions for generating, 2592

evaluating, and analyzing results, enabling users 2593

to efficiently reproduce experiments. These obser- 2594

vations emphasize the importance of high-quality 2595

documentation for benchmarks to enhance acces- 2596

sibility, reduce friction in usage, and foster repro- 2597

ducible research. 2598

A Less-than-ideal Readme File

Explanation

This Readme file only provides limited information of the dataset. 

Figure 47: An Example of Unreadable and Hard-to-
Use README in Benchmark Release from VulDeeP-
ecker (Li et al., 2018b).

Convenient Evaluation Interfaces

Figure 48: A Good Example of Easy-to-Read README
in Benchmark Release from APPS (Hendrycks et al.,
2021).

B Details of Human Study 2599

B.1 Interviewee Selection 2600

The selection of interviewees is pivotal to ensuring 2601

the representativeness and relevance of the data 2602

collected. This involves identifying individuals 2603
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with the knowledge or experience pertinent to the2604

research theme.2605

To this end, we chose graduate students from2606

SE or AI fields who have published at least one2607

paper. This criterion ensures that participants have2608

research experience and judgment capabilities. The2609

focus on SE and AI fields is due to their likely2610

interest in code benchmarks. Particularly, we aimed2611

to recruit individuals who have published papers2612

on code benchmarks to obtain firsthand feedback2613

from experienced benchmark developers.2614

B.2 Survey Question Design2615

Questions. The body of the survey was divided2616

into five stages of benchmark development (fol-2617

lowing Figure 1), with necessary background in-2618

formation provided for each stage. Each criterion2619

in HOW2BENCH was slightly modified to be in2620

the first-person perspective, making it easier for in-2621

terviewees to empathize and answer the questions2622

from their own viewpoint. Finally, to facilitate2623

comprehension, questions and instructions were2624

translated into both English and Chinese.2625

Question Setting. To minimize the effort re-2626

quired from respondents, we designed single-2627

choice questions with four options:2628

❒ I found it important, and I have done it.2629

❒ I found it important, although I haven’t done2630

it.2631

❒ I found it not important, but I have done it.2632

❒ I found it not important, and I wouldn’t do it.2633

This format is intended to orthogonally explore the2634

correlation between awareness and behavior.2635

B.3 Interview Process2636

Questionnaire Distribution The questionnaire2637

was distributed via online platforms, targeting aca-2638

demic and professional networks related to SE and2639

AI. The distribution started on October 27, 2024,2640

and ended on November 27th, 2024, lasting one2641

month.2642

Results Collection The responses were automat-2643

ically collected through the online platform used2644

for distribution.2645

Survey Screening Since the requirement was for2646

participants who have published papers, responses2647

from those selecting “No” to having published a2648

paper were excluded. Also, incomplete surveys2649

where not all questions were answered were also2650

considered invalid and excluded from the analysis.2651

B.4 Interview Result Analysis 2652

In total, we collected 50 responses. The re- 2653

spondents were from seven regions, including the 2654

United States, the United Kingdom, Germany, Aus- 2655

tralia, China, and others, as shown in Figure 49. 2656

Only one survey was invalid due to the respondent 2657

selecting “have not published a paper”, leaving 2658

49 valid surveys for analysis. A breakdown of 2659

the respondents’ demographics is shown in Fig- 2660

ure 50. The detailed responses for all 55 criteria 2661

in HOW2BENCH are shown in Figure 51 and Fig- 2662

ure 52. 2663

Figure 49: Geographical Distribution of Interviewees

C List of Studied Benchmarks (Focused 2664

Ones) 2665

Code Generation: Five with top citations: 2666

• HumanEval (Chen et al., 2021a) 2667

• MBPP (Austin et al., 2021) 2668

• CodeContest (Li et al., 2022) 2669

• leetcodehardgym (Shinn et al., 2023) 2670

• APPS (Hendrycks et al., 2021) 2671

The latest one as of 31/8/2024: 2672

• VerilogEval (Pinckney et al., 2024) 2673

Defect Detection: Five with top citations: 2674

• VulDeePecker (Li et al., 2018b) 2675

• Devign (Zhou et al., 2019) 2676

• Chromium and Debian (Chakraborty et al., 2022) 2677

• µVulDeePecker (Zou et al., 2020) 2678

• Synthetic Dataset (Hellendoorn et al., 2020) 2679
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Figure 50: Demography of Interviewees

Figure 51: Results of Human Study (Questions 1 - 28

The latest one as of 31/8/2024:2680

• VulDetectBench (Liu et al., 2024c)2681

Program Repair: Five with top citations:2682

• Defects4J (Just et al., 2014)2683

• BFP (Tufano et al., 2019)2684

Figure 52: Results of Human Study (Questions 29 - 55

• MANYBUGS, INTROCLASS (Le Goues et al., 2685

2015) 2686

• HumanEval-Java (Jiang et al., 2023) 2687

• QuixBugs (Prenner et al., 2022) 2688

The latest one as of 31/8/2024: 2689

• DebugBench (Tian et al., 2024) 2690
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Code Summarization: Five with top citations:2691

• CODE-NN (Iyer et al., 2016)2692

• Java-small/med/large (Alon et al., 2019)2693

• code-summarization-public (Wan et al., 2018)2694

• HumanEvalPack (Muennighoff et al., 2024)2695

• Shrivastava et al. (Shrivastava et al., 2023b)2696

The latest one as of 31/8/2024:2697

• Long Code Arena (Bogomolov et al., 2024)2698

Text To SQL: Five with top citations:2699

• WikiSQL (Zhong et al., 2017)2700

• Spider (Yu et al., 2018)2701

• Advising (Finegan-Dollak et al., 2018)2702

• BIRD (Li et al., 2023a)2703

• Spider-Realistic (Deng et al., 2021)2704

The latest one as of 31/8/2024:2705

• AMBROSIA (Saparina and Lapata, 2024)2706

D List of Studied Benchmarks (Full)2707

We collected and studied 274 code-related bench-2708

marks. We then listed and grouped them by year.2709

2024:2710

• CodeEditorBench (Guo et al., 2024)2711

• MHPP (Dai et al., 2024)2712

• LiveCodeBench (Jain et al., 2024)2713

• CodeAgentBench (Zhang et al., 2024a)2714

• CruxEval (Gu et al., 2024)2715

• BigCodeBench (Zhuo et al., 2024)2716

• OOPEval (Wang et al., 2024b)2717

• DevEval (Li et al., 2024a)2718

• Long Code Arena (Bogomolov et al., 2024)2719

• CodeRAGBench (Wang et al., 2024d)2720

• ScenEval (Paul et al., 2024)2721

• AICoderEval (Xia et al., 2024b)2722

• VersiCode (Wu et al., 2024b)2723

• VHDL-Eval (Vijayaraghavan et al., 2024) 2724

• NaturalCodeBench (Zhang et al., 2024b) 2725

• CodeGuard+ (Fu et al., 2024) 2726

• PECC (Haller et al., 2024) 2727

• USACO (Shi et al., 2024b) 2728

• ParEval (Nichols et al., 2024) 2729

• MxEval (Athiwaratkun et al., 2022) 2730

• MMCode (Li et al., 2024c) 2731

• Plot2Code (Wu et al., 2024a) 2732

• ChartMimic (Shi et al., 2024a) 2733

• DebugBench (Tian et al., 2024) 2734

• PythonIO (Zhang et al., 2024c) 2735

• StaCCQA (Yang et al., 2024a) 2736

• RepoQA (Liu et al., 2024a) 2737

• PRIMEVUL (Ding et al., 2024a) 2738

• VulDetectBench (Liu et al., 2024c) 2739

• ProCQA (Li et al., 2024e) 2740

• CoSQA+ (Gong et al., 2024) 2741

• JavaBench (Cao et al., 2024a) 2742

• HumanEvo (Zheng et al., 2024) 2743

• REPOEXEC (Hai et al., 2024) 2744

• EHR-SeqSQL (Ryu et al., 2024) 2745

• BookSQL (Kumar et al., 2024) 2746

• AMBROSIA (Saparina and Lapata, 2024) 2747

• WUB, WCGB (Yun et al., 2024) 2748

• RES-Q (LaBash et al., 2024) 2749

• PythonSaga (Yadav et al., 2024b) 2750

• Mercury (Du et al., 2024) 2751

• ENAMEL (Qiu et al., 2024b) 2752

• RealHumanEval (Mozannar et al., 2024) 2753

• CoderUJB (Zeng et al., 2024) 2754

• EvoEval (Xia et al., 2024a) 2755
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• ML-Bench (Liu et al., 2023c)2756

• VerilogEval (Pinckney et al., 2024)2757

• CodeApex (Fu et al., 2023)2758

• HumanEvalPack (Muennighoff et al., 2024)2759

• HumanEval+ (Liu et al., 2023b)2760

• HumanEval-X (Zheng et al., 2023a)2761

• XCodeEval (Khan et al., 2024)2762

• CoderEval (Yu et al., 2023)2763

• CodeXGLUE (Lu et al., 2021)2764

• VulnPatchPairs (Risse and Böhme, 2024)2765

• WikiSQL (Zhong et al., 2017)2766

• CrossCodeEval (Ding et al., 2023)2767

• SWE-bench (Jimenez et al., 2024)2768

• BAIRI et al. (Bairi et al., 2024)2769

• BioCoder (Tang et al., 2024)2770

• RepoBench (Liu et al., 2024b)2771

• NoFunEval (Singhal et al., 2024)2772

• CoCoMIC (Ding et al., 2024b)2773

• Java-small/med/large (Alon et al., 2019)2774

• FixEval (Haque et al., 2023)2775

• CommitBench (Schall et al., 2024)2776

• InfiAgent-DABench (Hu et al., 2024)2777

• InfiBench (Li et al., 2024d)2778

• Design2Code (Si et al., 2024)2779

• MatPlotBench (Yang et al., 2024b)2780

• EditEval (Li et al., 2024b)2781

• D1, D2, D3 (Huang et al., 2024)2782

• RepoEval (Liao et al., 2024)2783

• BetterTypes4Py, InferTypes4Py (Wei et al., 2023)2784

• HumanEval-Java (Jiang et al., 2023)2785

• PIE (Shypula et al., 2024)2786

• EvalGPTFix (Zhang et al., 2023a)2787

• EHRSQL (Lee et al., 2023) 2788

• Spider2-V (Cao et al., 2024c) 2789

• TESTEVAL (Wang et al., 2024c) 2790

• ChatTester (Yuan et al., 2023b) 2791

• Code Lingua (Pan et al., 2024) 2792

• EffiBench (HUANG et al., 2024) 2793

• CRUXEval-X (Xu et al., 2024) 2794

• DomainEval (Zhu et al., 2024) 2795

2023: 2796

• MCoNaLa (Wang et al., 2023b) 2797

• MultiPL-E (Cassano et al., 2022) 2798

• ODEX (Wang et al., 2022) 2799

• TACO (Li et al., 2023b) 2800

• DOTPROMPTS, MGDMI- 2801

CROBENCH (Agrawal et al., 2023) 2802

• StudentEval (Babe et al., 2024) 2803

• CodeTransOcean (Yan et al., 2023) 2804

• G-TransEval (Jiao et al., 2023) 2805

• AVATAR (Ahmad et al., 2023) 2806

• RunBugRun (Prenner and Robbes, 2023) 2807

• VulBench (Gao et al., 2023b) 2808

• DiverseVul (Chen et al., 2023) 2809

• Hellendoorn et al. (Hellendoorn et al., 2020) 2810

• XSemPLR (Zhang et al., 2023b) 2811

• BIRD (Li et al., 2023a) 2812

• Stack-Repo (Shrivastava et al., 2023a) 2813

• RepoEval (Liao et al., 2024) 2814

• MTPB (Nijkamp et al., 2022) 2815

• ARCADE (Yin et al., 2023) 2816

• Shrivastava et al. (Shrivastava et al., 2023b) 2817

• Grag et al. (Garg et al., 2022) 2818

• GSM-HARD (Gao et al., 2023a) 2819
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• InferredBugs (Jin et al., 2023)2820

• LeetcodeHardGym (Shinn et al., 2023)2821

• APIBench (Patil et al., 2023)2822

• ClassEval (Du et al., 2023b)2823

• CommitChronicle (Eliseeva et al., 2023)2824

• TeCo (Nie et al., 2023)2825

• TESTPILOT (Schäfer et al., 2024)2826

2022:2827

• AixBench (Hao et al., 2022)2828

• TypeBugs (Oh and Oh, 2022)2829

• XLCoST (Zhu et al., 2022)2830

• CS1QA (Lee et al., 2022)2831

• Chromium and Debian (Chakraborty et al., 2022)2832

• Spider-Realistic (Deng et al., 2021)2833

• Spider-SS (Gan et al., 2022)2834

• DSP (Chandel et al., 2022)2835

• CodeContest (Li et al., 2022)2836

• PandasEval, NumpyEval (Zan et al., 2022b)2837

• TorchDataEval, MonkeyEval, BeatNu-2838

mEval (Zan et al., 2022a)2839

• DS-1000 (Lai et al., 2023)2840

• MCMD (Tao et al., 2022)2841

• ExeDS (Huang et al., 2022)2842

• QuixBugs (Prenner et al., 2022)2843

• ManyTypes4Py v0.7 (Mir et al., 2022)2844

2021:2845

• SySeVR (Li et al., 2018a)2846

• Ling&Wu et al. (Ling et al., 2021)2847

• Chen et al. (Chen et al., 2021b)2848

• MBPP, MathQA-Python (Austin et al., 2021)2849

• HumanEval (Chen et al., 2021a)2850

• APPS (Hendrycks et al., 2021)2851

• Berabi et al. (Berabi et al., 2021) 2852

• CrossVul (Nikitopoulos et al., 2021) 2853

• PYPIBUGS, RANDOMBUGS (Allamanis et al., 2854

2021) 2855

• D2A (Zheng et al., 2021) 2856

• CodeQA (Liu and Wan, 2021) 2857

• Spider-DK (Gan et al., 2021b) 2858

• KaggleDBQA (Lee et al., 2021) 2859

• SEDE (Hazoom et al., 2021) 2860

• Spider-Syn (Gan et al., 2021a) 2861

• CoDesc (Hasan et al., 2021) 2862

• Methods2Test (Tufano et al., 2022) 2863

• Rozière et al. (Rozière et al., 2022) 2864

2020: 2865

• Lachaux&Roziere et al. (Rozière et al., 2020) 2866

• µVulDeePecker (Zou et al., 2020) 2867

• CosBench (Yan et al., 2020) 2868

• PACS (Heyman and Cutsem, 2020) 2869

• Criteria2SQL (Yu et al., 2020) 2870

• SQUALL (Shi et al., 2020) 2871

• Hu et al. (Hu et al., 2019) 2872

• CodeSearchNet Challenge (Husain et al., 2019) 2873

• MIMICSQL (Wang et al., 2020) 2874

• Atlas (Watson et al., 2020) 2875

• Liu et al. (Liu et al., 2022) 2876

• Android (Agarwal et al., 2020) 2877

• CCSD (Liu et al., 2021) 2878

2019: 2879

• BFP (Tufano et al., 2019) 2880

• SARD (Lin et al., 2019) 2881

• Spider (Yu et al., 2018) 2882

• JuICe (Agashe et al., 2019) 2883
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• Nguyen et al. (Nguyen et al., 2019)2884

• Lin et al. (Lin et al., 2021)2885

• Zhou et al. (Zhou et al., 2019)2886

• CoSQL (Yu et al., 2019a)2887

• SParC (Yu et al., 2019b)2888

• Malik (Malik et al., 2019)2889

• LeClair (LeClair et al., 2019)2890

2018:2891

• CoNaLa (Yin et al., 2018)2892

• DeepCom (Hu et al., 2018a)2893

• TL-CodeSum (Hu et al., 2018b)2894

• code-summarization-public (Wan et al., 2018)2895

• Russell et al. (Russell et al., 2018)2896

• VulDeePecker (Li et al., 2018b)2897

• Lin et al. (Lin et al., 2018)2898

• StaQC (Yao et al., 2018)2899

• Advising (Finegan-Dollak et al., 2018)2900

• ConCode (Iyer et al., 2018)2901

• NNGen (Liu et al., 2018)2902

• Gu et al. (Gu et al., 2018)2903

2017:2904

• QuixBugs (Lin et al., 2017)2905

• the DeepFix dataset (Gupta et al., 2017)2906

• Barone et al. (Barone and Sennrich, 2017)2907

2016:2908

• CODE-NN (Iyer et al., 2016)2909

• Mou et al. (Mou et al., 2016)2910

2015:2911

• MANYBUGS, INTROCLASS (Le Goues et al.,2912

2015)2913

2014:2914

• Defects4j (Just et al., 2014)2915

• BigCloneBench (Svajlenko et al., 2014)2916

E Guideline 2917

Finally, for ease of printing and use, we organized 2918

the guideline HOW2BENCH into a clear, color- 2919

coded checklist (4 pages in total) that is easy to 2920

print, attached at the end of the paper. 2921
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№ HOW-TO-BENCH (1/4)

Phase 0. Benchmark Design

1 Consider whether the benchmark can fill the gap in related research.

2 Consider what is the expected scope of the benchmark set (e.g., what natural languages,
programming languages, task granularity).

3 Consider the expected application scenario of this benchmark (e.g., programming
assistant, automated tester).

4
Consider the LLMs' capabilities (e.g., understanding, reasoning, calculation) and domain
knowledge (e.g., OOP, memory management, fault localization, process scheduling) that
the benchmark hopes to evaluate.

Phase 1. Benchmark Construction

5 Consider whether the data source of the benchmark is traceable.

6 Consider whether the data source of the benchmark is of high quality (e.g., stars,
downloads, last update times, number of forks).

7
Consider whether the benchmark's data source is representative (e.g., choose an open-
source community or code hosting platform that matches the task, capability, and scope
under study)

8
Consider data contamination issues during the benchmark collection (e.g., considering
the upload time of the source code or checking whether the data source is included in the
training data of LLMs).

9 If data sampling is needed, consider whether the choice of sample size is scientific (e.g.,
considering the confidence level/margin of error/sampling proportion, etc.).

10 If data sampling is needed, consider whether the sampling process is rigorous (e.g.,
random sampling, stratified sampling, etc.).

11 Ensure each data point in the benchmark falls into the targeted scope (e.g., checking each
data point's evaluated capabilities or domain knowledge).

12 Consider whether the data in the benchmark can cover the studied capabilities/domain
knowledge/application scenarios.

13 Consider whether there is a standard answer for each sample in the benchmark (such as
reference code, etc.).

14 For code, consider whether the code is compilable/executable.
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№ HOW-TO-BENCH (2/4)

15 Consider the possibility of noise in the data and perform denoise.

16 Consider the possibility of duplication in the data and deduplicate them.

17 Clean the sensitive information (such as data desensitization and anonymization) unless
the benchmark is deliberately designed so.

18 Manually review some or all of the data in the benchmark to ensure its quality.

19 Use LLMs to review some or all of the data in the benchmark to ensure its quality.

20 Design appropriate output validation methods for the benchmark (e.g., using exact
matching or designing test cases).

21 Design appropriate evaluation metrics for the evaluation set (e.g., precision, accuracy,
pass@K, recall).

22 Consider the adequacy of the evaluation metrics (e.g., is the code coverage high
enough).

23 Consider if there are any other evaluation perspectives (e.g., readability, efficiency, safety,
security).

Phase 2. Benchmark Evaluation

24 Consider whether sufficient LLMs are evaluated.

25 Consider whether representative LLMs (e.g., covering latest/classical LLM families,
small/large LLMs, and open-/closed-source LLMs) are evaluated.

26 Consider whether the prompt is of high quality (e.g., the instruction and intent are clear).

27
The prompts have been validated by humans or LLMs (e.g., evaluated or discussed by
participants or preliminarily tried out on several LLMs).

28 Try different paraphrases of the prompt.

29 Try different prompting strategies to observe the impact on the evaluation results (e.g.,
in-context learning, chain-of-thought).

30 Pay attention to the hardware environment (such as GPU card, storage size, etc.) of the
experiment.

31 Pay attention to the operating system and software environment (e.g. operating system,
version, etc.) used for the experiment.
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№ HOW-TO-BENCH (3/4)

32 Pay attention to the off-the-shelf platforms, frameworks, or libraries for LLM
evaluation (e.g., fast chat, vllm, huggingface) that are used.

33 Repeat the experiment multiple times to reduce the impact of randomness on the
evaluation.

34 Consider various randomization strategies (e.g., trying various temperature
parameters) to reduce the impact of parameter configuration on the evaluation.

35 Record the experimental process in detail (e.g., parameter settings, running time,
input/output pairs, etc.).

Phase 3. Benchmark Analysis

36 Observe the difficulty of the benchmark, checking if the benchmark is too hard or
too easy for LLMs (i.e., most LLMs score too high/low).

37 Consider whether the benchmark can distinguish the pros and cons of different
LLMs.

38
If the experiment is repeated several times, consider the stability of the
benchmark (i.e., whether the experimental results vary too much in the repeated
experiments).

39
Analyze the correlation between the data and their score. For example, if there is a
correlation between the data (such as similar difficulty and knowledge required),
then the scores should also be correlated.

40 Compare the performance of LLMs on this benchmark with their performance on other
related benchmarks.

41 Consider presenting the experiment results in an appropriate way (e.g., table, line
graph, pie chart, etc.).

42 Consider presenting the experiment results clearly (e.g., distinguishable
colors/labels/shapes, etc.).

43 Explain the experiment results.

44 Observe correlations via multiple perspectives from the experimental results (e.g.,
performance is correlated with model size or amount of context).

45 The analysis of the evaluation results will be inspiring (e.g., shed light on future
direction, make actionable advice, etc.).
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№ HOW-TO-BENCH (4/4)

Phase 4. Benchmark Release

46 Set the appropriate license for the benchmark.

47 Review the released benchmark or other artifacts to ensure they do NOT contain
sensitive information (e.g., API keys, usernames, passwords, etc.).

48 review the released benchmark or other artifacts to ensure they do NOT contain
toxicity information (e.g., abusive comments/identifiers).

49 Make sure the benchmark is open-accessible.

50 Make sure the test cases or reference data are open and accessible.

51 Provide prompts used in the experiment to ensure the experiments are
reproducible.

52 Disclose the experimental environment (e.g., hardware, operating system, software
version, framework platform) to ensure the reproducibility of the experiment.

53 Make the detailed experimental results public for verification.

54 Ensure the quality of the user manual such as README (e.g., it contains necessary
benchmark introduction, executable scripts, etc.).

55 Provide convenient evaluation interfaces for the released benchmark (e.g.,
providing a command line interface, docker, etc.).
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