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Abstract

Graph anomaly detection (GAD), which aims to identify abnormal nodes that1

differ from the majority in graphs, has attracted considerable research attention. In2

real-world GAD scenarios, such as reviews in e-commerce platforms, the original3

features in graphs are raw text. Existing methods only treat these texts with a4

simple context embedding, without a comprehensive understanding of semantic5

information. In this work, we propose TAGAD, a novel Text-Attributed Graph6

Anomaly Detection framework that jointly trains the context feature and the se-7

mantic feature of texts with graph structure to detect the anomaly nodes. TAGAD8

consists of a global GAD module and a local GAD module, respectively for detect-9

ing global anomaly nodes and local anomaly nodes. In the global GAD module,10

we employ a contrastive learning strategy to jointly train the graph-text model and11

an autoencoder to compute the global anomaly scores. In the local GAD module,12

an ego graph and a text graph are constructed for each node. Then, we devise13

two different methods to compute local anomaly scores based on the difference14

between the two subgraphs, respectively for the zero-shot settings and the few-shot15

settings. Extensive experiments demonstrate the effectiveness of our model under16

both zero-shot and few-shot settings on text-attributed GAD scenarios. Codes are17

available at https://anonymous.4open.science/r/TAGAD-1223.18

1 Introduction19

Graph anomaly detection (GAD) aims to identify abnormal nodes that exhibit significant deviation20

from the majority in the graph, which has attracted much interest due to its wide applications, such21

as financial fraud detection Huang et al. (2022), anti-money-laundering Weber et al. (2019), and22

review management Dou et al. (2020). In real-world scenarios, node labeling is often costly, making23

the low-resource GAD, where there are few or no labeled nodes, a critical and challenging research24

problem.25

In the GAD lecture, nodes often carry rich textual information, such as the identification of fraudulent26

reviews on platforms like Amazon. To address anomaly detection on such text-attributed graphs27

(TAGs), both the context features capturing the statistical properties of texts and the semantic features28

inflecting the deep linguistic meaning are critical to detect the anomaly nodes. Therefore, it is29

essential to design a model that jointly learns contextual features, semantic features, and the graph30

structure.31

However, existing GAD methods handle textual features in a simplistic way. Simple bag-of-words32

(BOW) representations Sennrich et al. (2016) or shallow embedding vectors Mikolov et al. (2013)33

are fed into GAD models as node features. While these techniques enable basic handling of textual34

data, they fail to capture its full semantic and contextual richness.35
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Recent works on Text-Attributed Graphs (TAGs) Yan et al. (2023) have explored joint training of the36

graph structure and the text embedding for the node classification task. They categorize nodes with37

similar text features and similar neighbors into one class. Some of these methods, like G2P2 Wen38

and Fang (2023) and P2TAG Zhao et al. (2024), utilize the text of the class due to the high similarity39

between the text feature and the text of the class. However, in the GAD problem, anomalous nodes40

often exhibit diverse and irregular textual and structural patterns, making them difficult to classify41

based on similarity. Moreover, it is meaningless to compute the similarity between the node feature42

and the text of the class, “anomalous” or “normal”. Consequently, existing TAG-based methods43

developed for node classification cannot be applied to the GAD problem.44

There are two main challenges on TAGs towards the anomaly detection problem. (1) Joint training45

of the graph-text model. While some recent works explore joint training of the graph-text model46

for tasks like node classification, they are not designed to detect anomaly nodes and thus cannot47

directly address the requirements of GAD. (2) Detection of both global and local anomaly nodes.48

There are both global and local anomaly nodes in GAD problem. Global anomaly nodes are those49

whose features deviate from the majority of the nodes, while local anomaly nodes exhibit abnormal50

features within their immediate neighborhood or subgraph. Thus, a key challenge is how to detect51

both the global and local anomaly nodes.52

In this paper, we propose a Text-Attributed Graph Anomaly Detection model called TAGAD, which53

jointly trains the context feature and the semantic feature of texts with the graph structure to find both54

global and local anomaly nodes. Two modules are composed in TAGAD: a global GAD module55

and a local GAD module, designed to identify global and local anomaly nodes, respectively. In the56

global GAD module, our model first obtains the semantic embedding by LM and the context graph57

feature by BOW and GNN, then aligns the GNN and the LM using a contrastive learning based loss58

function. Then, the autoencoder based technique is employed to find the anomaly nodes. In the local59

GAD module, two subgraphs are constructed for each node: the ego graph capturing the local graph60

structure and the text graph indicating the similarity of the semantic embedding between neighboring61

nodes. Then, we devise two different methods to compute the local anomaly scores, respectively for62

zero-shot settings and few-shot settings. Under zero-shot settings, the difference between the ego63

graph and the text graph is computed as the local anomaly score. However, due to the globally shared64

feature of nodes, textual similarities are uniformly high, thereby hiding some local anomaly nodes. In65

few-shot settings, we introduce a common embedding that captures the common feature of nodes.66

By removing this common feature, the similarity between anomalous and normal nodes is reduced,67

amplifying local deviations and improving the model’s ability to detect local anomaly nodes.68

Accordingly, our main contributions can be summarized as follows:69

1. To the best of our knowledge, this is the first attempt towards anomaly detection problem on70

the text-attributed graphs.71

2. We propose a novel framework TAGAD, that jointly trains context and semantic features of72

text with the graph structure.73

3. We design two GAD methods based on comparing each node’s ego graph with its corre-74

sponding text graph, respectively for the zero-shot settings and few-shot settings.75

4. Our proposed TAGAD archives an improvement with +7.8% ∼ +36.9% compared to76

GAD methods under low-resource settings.77

2 Related Work78

2.1 Graph Anomaly Detection79

Existing GAD methods are divided into two groups based on different settings: supervised and80

unsupervised. Under the supervised setting, GAD is formulated as a binary classification task.81

Various GNN-based supervised detectors have been devised in the lecture Tang et al. (2024), such as82

BWGNN Tang et al. (2022), AMNet Chai et al. (2022), PC-GNN Liu et al. (2021a), H2FDetector Liu83

et al. (2020).84

Apart from these supervised detectors, there are numerous unsupervised GAD techniques Liu et al.85

(2022) aiming to detect anomalies without labeled data. As a typical approach in unsupervised graph86

learning, Graph Auto-Encoder (GAE) has been widely used in the GAD models. For example,87
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DOMINANT Ding et al. (2019) uses GCN to reconstruct graph data of both topological structure and88

node attributes. ANOMALYDAE Fan et al. (2020) employs the attention mechanism to learn the89

importance between a node and its neighbors. There are also many methods using contrastive learning90

to compute the anomaly score, such as CONAD Liu et al. (2021b), COLA Liu et al. (2021b), and91

NLGAD Duan et al. (2023). Others like SCAN Roy et al. (2024), RADAR Li et al. (2017), and92

ANOMALOUS Peng et al. (2018) identify the anomaly nodes by using traditional shallow methods.93

However, all these methods overlook the textual information associated with nodes in graphs, only94

relying on node attributes. To the best of our knowledge, this paper is the first work to explore graph95

anomaly detection towards text-attributed graphs.96

2.2 Graph Pre-training and Prompt Learning97

Recently, there has been a boom in the research of graph pre-training Jin et al. (2020), which aims98

to learn the general knowledge of the graphs. Numerous effective graph pre-training models have99

been introduced in this area. Among these models, GCA Zhu et al. (2021) adopts the node-level100

comparison method, while GraphCL You et al. (2020) and SimGRACE Xia et al. (2022) focus on the101

graph-level contrastive learning.102

With the increasing interest in the large language model (LLM), utilizing node texts in graphs has103

gained growing attention. Many works incorporate pre-trained language models (PLMs), such as104

BERT Devlin (2018), into graph learning by leveraging node texts. Most of these works follow the105

paradigm of pre-training and prompt learning. For example, Prog Sun et al. (2023) unifies the graph106

prompt and language prompts. G2P2 Wen and Fang (2023) pretrains a Graph-Text model by aligning107

the graph structure with the corresponding text representation. In the prompt learning phase, the label108

texts are used to generate the prompt and jointly train the pre-trained Graph-LLM model. Similarly,109

P2TAG Zhao et al. (2024) introduces a language masking strategy for pretraining and utilizes both110

the label texts and the node texts to build a prompt graph. Nevertheless, these methods can’t be111

applied to graph anomaly detection problems, as anomaly nodes vary significantly across different112

domains.113

3 Preliminaries114

In this section, we introduce the background of our paper including the definition of text-attributed115

graph and the text-attributed graph anomaly detection problem.116

Definition 1 (Text-Attributed Graph) A text-attributed graph (TAG) is a graph G = (V,E,D),117

where each node u ∈ V is associated with a text sequence du ∈ D and E represents the set of edges118

between nodes.119

In graph anomaly detection, each node has a label yv ∈ {0, 1}, where 0 represents normal and 1120

represents anomaly. Vn and Va represent the normal node set and anomaly node set, respectively.121

We denote Y as the labels assigned to the nodes. The whole graph contains two types of nodes, the122

training nodes Vtrain and the testing nodes Vtest, labeled with Ytrain, and Ytest. Ytest are inaccessible123

during the training.124

Given the above definition, we formally define our problem, text-attributed graph anomaly detection.125

Definition 2 (Text-Attributed Graph Anomaly Detection) Given a text-attributed graph G =126

(V,E,D), the observed nodes Vtrain with label Ytrain, the Text-Attributed Graph Anomaly Detec-127

tion problem aims to learn a function f that measures node abnormalities by calculating their128

anomaly scores S:129

f(G, Ytrain) → S, (1)

where S ∈ Rn indicates the anomaly score matrix, and n =| V | is the node number in the graph.130

Low-resource Graph Anomaly Detection. In the low-resource lecture, the number of Ytrain is small131

or even zero. In the K-shot graph anomaly detection problem, the number of anomaly nodes and132

normal nodes is K. As a special case, the problem with K = 0 is known as zero-shot classification,133

which means that there are no labeled nodes.134

3



Text 

Encoder

(frozen)

Graph 

Encoder

(GNN)

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

BOW

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

𝑡1ℎ1 𝑡1ℎ2 𝑡1ℎ3 𝑡1ℎ4 𝑡1ℎ5

𝑡2ℎ1 𝑡2ℎ2 𝑡2ℎ3 𝑡2ℎ4 𝑡2ℎ5

𝑡3ℎ1 𝑡3ℎ2 𝑡3ℎ3 𝑡3ℎ4 𝑡3ℎ5

𝑡4ℎ1 𝑡4ℎ2 𝑡4ℎ3 𝑡4ℎ4 𝑡4ℎ5

𝑡5ℎ1 𝑡5ℎ2 𝑡5ℎ3 𝑡5ℎ4 𝑡5ℎ5

(b) Local GAD Module(a) Global GAD Module

…

Graph 
Structure

Contex Feature
Ego Subgraph Text Subgraph

ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑍𝐸
𝑢 𝑍𝑇

𝑢

Feature Difference

Structural Difference

Construct
-

𝑡1, 𝑡2, … , 𝑡𝑛

𝑤𝑡

Alignment Loss 𝐿𝑎

Local anomaly score 𝑆𝐿

Pool Pool

-

𝑤𝑡

𝑤𝑡

𝑤𝑡

𝑤𝑡

𝑤𝑡

𝑤𝑡

𝑤𝑡

𝑤𝑡

𝑤𝑡

𝑤𝑡

Mean Initialize
Central node

Text … ℎ6

𝑡6 𝑡6ℎ1 𝑡6ℎ2 𝑡6ℎ3 𝑡6ℎ4 𝑡6ℎ5

𝑡1ℎ6

𝑡2ℎ6

𝑡3ℎ6

𝑡4ℎ6

𝑡5ℎ6

𝑡6ℎ6

Graph 

Decoder

(GNN)

𝑋

෠𝑋

MLP

Reconstruction Loss 𝐿𝑅

Global anomaly 
score 𝑆𝐺

Figure 1: Our proposed framework TAGAD. (a) We first align the GNNs and the LM using a
contrastive learning based objective. Then, the GNN decoder is introduced to compute the global
anomaly scores. (b) Next, the common embedding is initialized as the mean embedding of all
semantic embeddings. The local semantic embeddings are then obtained by subtracting the semantic
embedding. Then, for each node, the ego graph is built based on the graph structure, while the text
graph is formed by computing the similarity of the local semantic embedding. The local anomaly
score is finally computed by comparing the two subgraphs. The figure only shows the local anomaly
score under few-shot settings, while zero-shot inference adopts a simplified scheme.

4 Method135

As shown in Figure 1, our TAGAD model consists of two modules: (a) Global GAD module, which136

aligns the GNNs and the LM using a contrastive learning based objective and calculates the global137

anomaly scores by the autoencoder. (b) Local GAD module, which computes the local anomaly138

scores by comparing the ego graph and the text graph of each node. The pseudocode of the algorithms139

and complexity analysis of TAGAD can be found in Appendix A.140

4.1 Global GAD module141

In this part, we introduce our proposed global GAD module in detail. The goal of the global GAD142

module is to detect the anomaly nodes that deviate from the major distribution. We first introduce the143

triple encoders to encode the context embedding by BOW, the semantic embedding by LM, and the144

graph structure by GNNs. However, GNNs are randomly initialized, not directly suitable for detecting145

global anomaly nodes, and the graph embedding space is different from the semantic embedding146

space. Therefore, we divide the global GAD module into two stages. First, we align the GNNs and147

LM embedding spaces using the contrastive learning based strategy. Then, we use an autoencoder148

based approach to detect global anomaly nodes.149

4.1.1 Triple Encoders150

In the TAG, text encoding requires capturing both deep semantic information and shallow context151

patterns to identify both global and local anomalies. Therefore, along with the GNN to encode152

the graph structure, triple encoders are introduced in our global GAD module. The triple encoders153

comprise: (1) BOW encoder for shallow context text encoding, (2) LM encoder for deep semantic154

text encoding, and (3) GNN encoder for graph structural encoding.155

Shallow context Encoder To capture shallow context features of the texts, we first employ the156

BOW (Bag of Words) technique to obtain the context embedding. For each text du, we compute157

xu ∈ RdV as xu = BOW(du), where dV is the vocabulary size. These context features show158

distributional anomalies that may not appear in the deep semantic space.159
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Deep Semantic Encoder While the BOW can capture the context feature, it may miss the con-160

textual semantic information of the TAG. Therefore, we use a typical pre-trained language model,161

BERT Devlin (2018) with 110M parameters. The BERT model is trained using the masked language162

modeling objective. We use the starting token ([CLS]) to represent a summary of the input text. For a163

text du, its semantic embedding is denoted as tu ∈ RdL , where tu = LM(du). Let T represent the164

semantic embedding matrix. Since BERT has already been optimized on large corpora, we freeze its165

parameters and only train the GNN component.166

Structural Graph Encoder For the GNN encoder, we choose the classic GCN Kipf and Welling167

(2016) module, which effectively integrates the feature of graphs with the graph structure. For each168

node u, the graph embedding hg
u ∈ RdH is encoded by GNNs, hg

u = GNN(xu), where dH is the169

encoder size. Likewise, let Hg be the graph embedding matrix encoded by GNNs. We use context170

(BOW-based) embedding rather than semantic embeddings as the GNN input, as the GNN operates171

over the entire graph structure.172

4.1.2 Text-Graph alignment173

In this stage, we align the graph encoder with the text encoder. In the triple-encoders, the space of the174

graph embedding Hg is different from the semantic embedding space T . Therefore, we first feed the175

feature encoded by GNNs to an MLP to align the space:176

hu = MLP(hg
u), (2)

where hu indicates the decoded context feature by the MLP. We denote H as the projected graph177

feature. Then, the scaled cosine similarities Λ ∈ Rn×n between the semantic embeddings T and the178

decoded feature embeddings H are computed:179

Λ = T ·H⊤ × eτ , (3)

where τ indicates the hyperparameter temperature to scale the similarity values.180

Then, in the first stage, we use a contrastive learning based loss function to align the semantic181

embeddings and the projected graph embeddings:182

La =
1

2
(CE(Λ, yP ) + CE(Λ⊤, yP )), (4)

where yP = (1, 2, . . . , n)T is the pseudo label vector for contrastive training and CE denotes the183

cross entropy loss function.184

4.1.3 Graph Decoder185

As discussed before, GAEs have been proven to be effective in GAD task. The features of global186

anomaly nodes deviate significantly from the majority, making them difficult to reconstruct using187

GNNs. In contrast, normal nodes tend to be more easily reconstructed. Therefore, after alignment for188

some epochs, a graph decoder is introduced to reconstruct the context feature and detect the anomaly189

nodes. The decoded feature x̂u ∈ RV is obtained by GNN:190

x̂u = GNN(hu). (5)

Let X̂ be the decoded embedding matrix. The loss function LG of the second stage combines the191

reconstruction loss and the alignment loss:192

LG = (1− α)∥X̂ −X∥2 + αLa, (6)
where α balances the reconstruction loss and the alignment loss. Let LG

u be the loss score of node193

u. We reconstruct the context feature rather than the semantic feature, as they capture more the194

statistical distribution, thus more effective to identify global anomaly nodes. Experiments in Section 5195

also show the context features are more important than semantic embeddings in TAGs towards the196

anomaly detection problem.197

Finally, the global anomaly score sG
u are computed by the loss score of each node, sG

u = NORM(LG
u),198

where the min-max Normalization is employed to normalize the global anomaly score. The alignment199
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loss scores are also critical in TAGs toward the anomaly detection problem, because for anomaly200

nodes, their context and semantic features may be inconsistent, making it difficult to align the GNN201

and LM, resulting in a high alignment loss. In contrast, for the normal nodes, there tends to be202

coherent, thus easier to align.203

4.2 Local GAD module204

In this stage, we propose a novel local GAD module to compute the local anomaly score of nodes. As205

discussed in Section 1, there is a distinct distribution difference between the local anomaly node and206

its neighbors. Therefore, TAGAD leverages the local subgraph of each node to compute the local207

anomaly score.208

Specifically, for each node u, we construct two subgraphs: the ego graph Gu
E and the text graph209

Gu
T . The ego graph captures the original local graph structure, while the text graph Gu

T reflects210

node similarity within the local neighborhood based on semantic features. For an anomaly node211

whose neighbor features differ substantially, the text similarity with its neighbors is low, leading to a212

significant mismatch between Gu
T and Gu

E .213

Therefore, we define the local anomaly score of node u as the differences between Gu
T and Gu

E . In the214

zero-shot settings, the final anomaly score is computed by combining the local and global anomaly215

scores directly. In the few-shot settings, instead of training the full model, we learn a common216

embedding that captures the shared semantics among nodes. By subtracting this common embedding217

from the semantic features, we amplify the distinction between the ego and text graphs, thereby218

making anomalies more detectable. Theoretical justifications of the proposed local GAD module can219

be found in Appendix B.220

4.2.1 Zero-shot detection.221

Under the zero-shot settings, we first construct two subgraphs for each node u: the ego graph Gu
E222

and the text graph Gu
T . To build the ego graph, we select up to W first-order neighbors of the node u,223

along with u itself, to form the node set Vu of the ego graph (W = 100 in practice). The induced224

subgraph over Vu from the original graph then forms the ego graph Gu
E .225

In the text graph construction, we aim to capture semantic similarity among nodes in Vu using their226

semantic embeddings T . For each pair of nodes i, j ∈ Vu, we compute their similarity based on the227

semantic embeddings. An edge (i, j) ∈ ET
u is added if the similarity exceeds a threshold ϵ:228

Au
T (i, j) =

{
1, if SIM(ti, tj) ≥ ϵ,

0, otherwise,
(7)

where Au
T denotes the adjacency matrix in the text graph and SIM is the cosine similarity function.229

In the message passing, for the local anomaly node, the feature is always different from its neighbors.230

Therefore, we use the difference between Gu
E and Gu

T to indicate the local anomaly score of a node231

u. First, we get the summary embeddings Zu
E and Zu

T of two subgraphs Gu
E and Gu

T :232

Zu
E = READOUT(hi; i ∈ Vu), Z

u
T = READOUT(ti; i ∈ Vu), (8)

where READOUT means the pooling operation, such as mean pooling and max pooling.233

The differences between the ego graph and the text graph consist of feature differences and structural234

differences. We measure the feature difference using the distance between their respective summary235

embeddings, and the structural difference using the distance between their adjacency matrices:236

sL
u = NORM((1− β)∥Zu

E − Zu
T ∥2 + β∥Au

E −Au
T ∥2), (9)

where Au
E and Au

T indicate the adjacency matrix of two subgraphs, and β ∈ (0, 1) is the hyperparam-237

eter to control the importance of the structural difference. Similarly, Min-Max Normalization is also238

used here as the NORM function.239

Finally, the summary score consists of two parts: the local anomaly score reflecting the local240

discrepancy and the global anomaly score indicating the common anomaly likelihood:241

su = (1− λ)sG
u + λsL

u, (10)
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where λ ∈ (0, 1) indicates the hyperparameter to control the importance of the local anomaly score.242

4.2.2 Few-shot detection243

In subgraph construction, semantic features often contain excessive common information, which244

leads to uniformly high similarity among nodes and hides the local anomaly nodes. Therefore,245

it becomes critical to determine an appropriate value for the sensitivity parameter ϵ. In the few-246

shot settings, we intend to remove the common information from the local subgraph to amplify247

the structural differences for anomaly nodes. Consequently, a trainable parameter wt ∈ RdL with248

common knowledge is learned. We use the mean embedding of all the features to initialize:249

wt = MEAN(tu;u ∈ V ) (11)

Then, the common embedding is removed from the graph embedding and the semantic embedding:250

hl
i = hi − wt, t

l
i = ti − wt, (12)

where hl
i and tli denote the local graph embedding and the local semantic embedding of node i.251

Then, we build the ego graph and the text graph similarly. When building the text graph, the binary252

indicator in Eq 7 is non-differentiable, making the Neural Network hard to train. To address this253

issue, we approximate the binary indicator with the Gumbel softmax trick Jang et al. (2017) to build254

the text graph. Specifically, the text graph is computed by:255

Au
T (i, j) = Sigmoid((Sim(tli, t

l
j) + log δ − log(1− δ))/τg), (13)

where δ ∼ Uniform(0, 1) is the sampled Gumbel random variate and τg > 0 is the temperature256

hyperparameter of Gumbel softmax, which is closer to 0. In this way, the Au
T (i, j) tends to be closer257

to 0 or 1.258

After that, we use the same functions as Eq. 8 to get the summary embeddings Zu
E and Zu

T . Finally,259

the Cross Entropy Loss is used as the loss function of the local GAD module:260

LL =
∑

u∈Vtrain

CE(yu, sL
u) (14)

5 Experiments261

5.1 Experiment Setup262

Datasets The experiments were performed on three synthetic datasets, including Cora, Arxiv,263

and Pubmed. We use a commonly used method Sen et al. (2008) in GAD to inject the anomaly264

nodes into the graph. This method introduces two types of anomaly nodes into the graph: structural265

anomaly nodes, created by forming densely connected subgraphs with probabilistic edge deletion;266

and contextual anomaly nodes, generated by altering node features to maximize dissimilarity from267

the randomly chosen nodes. A detailed description of each dataset and the anomaly injection process268

is provided in Appendix C.1.269

Baselines We compare TAGAD with both unsupervised and supervised learning methods. These270

methods can only deal with the numeric feature, so we use the feature obtained by BOW and LM,271

respectively. We also compare the performance of baselines by concatenating the feature obtained by272

BOW and LM in Appendix D.1.273

Unsupervised learning methods include traditional shallow methods SCAN Xu et al. (2007), Radar Li274

et al. (2017) and ANOMALOUS Peng et al. (2018), reconstruction based methods, DOMINANT Ding275

et al. (2019), AnomalyDAE Fan et al. (2020), and GAD-NR Roy et al. (2024), contrastive learning276

based methods, CONAD Xu et al. (2022), NLGAD Duan et al. (2023), and CoLA Liu et al. (2021b) .277

Supervised learning methods include two conventional GNNs, GCN Kipf and Welling (2016)278

and GAT Veličković et al. (2017), five state-of-the-art GNNs specifically designed for GAD, i.e.,279

GATSEP Platonov et al. (2023), PC-GNN Liu et al. (2021a), AMNET Chai et al. (2022), and280
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BWGNN Tang et al. (2022), and two decision-tree based GAD methods, XGBGRAPH and RF-281

GRAPH Tang et al. (2024). For detailed information, refer to Appendix C.2.282

We also conduct experiments by removing the key components of TAGAD on all datasets. Specifi-283

cally, we evaluate four variants, namely TAGAD(A), TAGAD(R), TAGAD(G), and TAGAD(L).284

In TAGAD(A), only the alignment loss is used as the anomaly score, without incorporating the285

reconstruction loss and the local GAD module. Similarly, in TAGAD(R), the alignment stage is re-286

moved, and the reconstruction loss alone is used to compute the anomaly score. TAGAD(G) removes287

the local GAD module entirely and relies on the global anomaly score for prediction. Conversely,288

TAGAD(L) eliminates the global GAD module, using only the summary representations from the289

LM as node features in the local subgraph for anomaly detection.290

Evaluation and Implementation Following the benchmark Tang et al. (2024), we employ Area291

Under ROC (AUC) as our evaluation metric for GAD. We report the average AUC across 5 trials.292

More implementation details can be found in Appendix C.3. All experiments were run on an Ubuntu293

18.04 LTS server with six Intel Xeon 6130 CPUs (13 cores, 2.10GHz), 256GB of main memory, and294

two NVIDIA GeForce RTX V100 GPUs.295

5.2 Performance of GAD296

Zero-shots We first compare TAGAD with unsupervised baseline methods. The results are shown297

in Table 1 (more results in Appendix D.1). We have the following observations: (1) The proposed298

TAGAD performs best on most datasets, with an average improvement of +7.8% ∼ +36.9%. In299

the Arxiv dataset, most of the models can’t work due to the limited GPU memory, while our model300

can perform well because only two simple GCN and MLP are trained in the global module. (2)301

We can also find a huge improvement of TAGAD compared with the four variants of TAGAD.302

Specifically, TAGAD achieves an improvement in AUC of 17% and 22% compared to TAGAD(G)303

and TAGAD(L) in the Cora dataset. This improvement is due to the combination of both the global304

anomaly score and the local anomaly score. The TAGAD(G) method also performs better than305

TAGAD(A) and TAGAD(R) because of the two stages of alignment and reconstruction. (3) Most306

models perform better using Bag-of-Words (BOW) based context features as input features than307

using LM-based semantic representations, indicating that in GAD tasks, context features play a more308

critical role than semantic features.309

Few-shots Table 2 shows the comparison results of TAGAD with supervised methods under two310

few-shot settings: 2-shots, and 5-shots. The global GAD module of TAGAD is unsupervised, so we311

don’t compare TAGAD(A), TAGAD(R), and TAGAD(G) in this settings and only compare the312

local GAD module TAGAD(L). TAGAD consistently emerges as the top performer, outperforming313

the best baseline by around 0.3% ∼ 18%. TAGAD performance is remarkably stable, varying by no314

more than 2% across two different settings. The stability is due to the effectiveness of the simple315

common embedding, which can be reliably trained with very limited labeled data. In contrast, the316

decision-tree-based methods, such as XGBGraph and RFGraph, which perform well in the GAD317

problem under fully supervised settings Tang et al. (2024), suffer notable degradation under the318

few-shot settings. This suggests that these models are heavily reliant on labeled datasets and struggle319

to generalize under few-shot settings.320

5.3 Ablation Studies321

To better analyze the impact of LMs, we explore other LMs such as e5-v2-base Wang et al. (2022)322

with 110M parameters. We also try larger LMs such as e5-v2-large with 335M parameters and323

DeBERTa-large with 350M parameters. An external experiment is conducted to assess whether to324

fine-tune the LM. The LM is mainly used in the global module, so we only report the performance325

achieved with P2TAG(G) under zero-shot settings. The results are reported in Table 3. Generally, the326

results of LMs are quite similar, with differences within 4%. We also observe that training with the327

fine-tuned language model (LM) is significantly slower than using the frozen LM. More critically,328

fine-tuning results in suboptimal performance, for example, achieving only 0.511 AUC on the Cora329

dataset, whereas the frozen LM attains much higher accuracy. This performance gap arises because330

the pretrained LM has already learned rich semantic representations. When the LM is jointly trained331
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Table 1: Performance Comparison under zero-shot settings. The highest performance is highlighted
in boldface; the second highest performance is underlined. “—” indicates that the algorithm cannot
complete on large datasets due to limited GPU memory.

Method Cora Arxiv Pubmed
BOW LM BOW LM BOW LM

SCAN 0.705 0.705 0.668 0.668 0.721 0.721
RADAR 0.578 0.566 – – 0.480 0.497

ANOMALOUS 0.550 0.582 – – 0.463 0.465
DOMINANT 0.780 0.618 0.709 0.522 0.771 0.773

ANOMALYDAE 0.773 0.737 – – 0.850 0.844
GAD-NR 0.742 0.739 – – 0.686 0.694
CONAD 0.827 0.583 0.685 0.481 0.796 0.740
NLGAD 0.665 0.676 – – 0.741 0.709
COLA 0.536 0.6327 – – 0.489 0.696

TAGAD 0.905 0.747 0.874
TAGAD(A) 0.804 0.671 0.727
TAGAD(R) 0.777 0.704 0.705
TAGAD(G) 0.834 0.714 0.849
TAGAD(L) 0.685 0.507 0.708

Table 2: Comparison of Classification Performance in few-shot settings

Method
Cora Arxiv Pubmed

2-shot 5-shot 2-shot 5-shot 2-shot 5-shot
BOW Text BOW Text BOW Text BOW Text BOW Text BOW Text

GCN 0.757 0.656 0.818 0.599 0.617 0.688 0.741 0.685 0.626 0.672 0.706 0.658
GAT 0.722 0.582 0.646 0.528 0.695 0.487 0.702 0.497 0.699 0.524 0.690 0.515

GATSEP 0.689 0.529 0.810 0.519 0.677 0.497 0.706 0.508 0.696 0.510 0.718 0.501
PC-GNN 0.787 0.632 0.815 0.604 0.644 0.624 0.745 0.622 0.678 0.619 0.735 0.618
AMNET 0.591 0.673 0.525 0.653 0.657 0.526 0.696 0.663 0.739 0.519 0.739 0.566
BWGNN 0.744 0.557 0.768 0.558 0.649 0.524 0.672 0.529 0.730 0.676 0.762 0.672

XGB-GRAPH 0.5 0.5 0.615 0.483 0.5 0.5 0.596 0.501 0.5 0.5 0.592 0.511
RF-GRAPH 0.749 0.535 0.782 0.553 0.683 0.675 0.744 0.724 0.615 0.582 0.686 0.526

TAGAD 0.930 0.941 0.748 0.757 0.875 0.877
TAGAD(L) 0.748 0.764 0.738 0.741 0.704 0.707

with a randomly initialized graph neural network (GNN), its parameters may have substantial changes,332

thereby disrupting its ability to represent the semantic features.333

6 Conclusions334

In this paper, we study the problem of anomaly detection on the TAG. We propose a novel framework335

named TAGAD, which consists of two modules, respectively Contrastive learning based global GAD336

and Subgraph comparison based local GAD. The global GAD module utilizes a contrastive learning337

based method to align the GNN and LM, then employs the GAE technique to compute the global338

anomaly scores. In the local GAD module, we compute the local anomaly score by comparing the339

ego graph and the text graph for each node. Extensive experiments on three datasets demonstrate the340

effectiveness of our model compared to existing approaches.341

LM Cora Arxiv Pubmed
AUC Time(s) AUC Time(s) AUC Time(s)

DeBERTa-base 0.834 13.76 0.714 700.38 0.849 61.27
e5-v2-base 0.828 20.98 0.728 850.17 0.813 62.95

DeBERTa-large 0.812 42.14 0.727 1923.86 0.793 198.83
e5-v2-large 0.825 34.81 0.725 1671.43 0.829 155.28

DeBERTa-base (FT) 0.518 561.25 – – 0.562 1981.44
e5-v2-base (FT) 0.671 564.77 – – 0.486 3941.81

DeBERTa-large (FT) 0.511 549.87 – – 0.572 1672.92
e5-v2-large (FT) 0.582 1671.43 – – 0.493 1675.40

Table 3: Ablation study of language models on the datasets. We choose various LMs, then report the
performance achieved with P2TAG(G). The highest performance and the shortest time are highlighted
in boldface.

9



References342

Ziwei Chai, Siqi You, Yang Yang, Shiliang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang. 2022.343

Can abnormality be detected by graph neural networks?. In IJCAI. 1945–1951.344

Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding.345

arXiv preprint arXiv:1810.04805 (2018).346

Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep anomaly detection on347

attributed networks. In Proceedings of the 2019 SIAM international conference on data mining.348

SIAM, 594–602.349

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. 2020. Enhancing graph350

neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th351

ACM international conference on information & knowledge management. 315–324.352

Jingcan Duan, Pei Zhang, Siwei Wang, Jingtao Hu, Hu Jin, Jiaxin Zhang, Haifang Zhou, and Xinwang353

Liu. 2023. Normality learning-based graph anomaly detection via multi-scale contrastive learning.354

In Proceedings of the 31st ACM International Conference on Multimedia. 7502–7511.355

Haoyi Fan, Fengbin Zhang, and Zuoyong Li. 2020. Anomalydae: Dual autoencoder for anomaly de-356

tection on attributed networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics,357

Speech and Signal Processing (ICASSP). IEEE, 5685–5689.358

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on graph-structured359

data. arXiv preprint arXiv:1506.05163 (2015).360

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,361

and Michalis Vazirgiannis. 2022. Dgraph: A large-scale financial dataset for graph anomaly362

detection. Advances in Neural Information Processing Systems 35 (2022), 22765–22777.363

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparametrization with Gumble-Softmax.364

In International Conference on Learning Representations (ICLR 2017). OpenReview. net.365

Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang. 2020. Self-366

supervised learning on graphs: Deep insights and new direction. arXiv preprint arXiv:2006.10141367

(2020).368

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional369

networks. arXiv preprint arXiv:1609.02907 (2016).370

Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. 2017. Radar: Residual analysis for anomaly detection371

in attributed networks.. In IJCAI, Vol. 17. 2152–2158.372

Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu373

Chen, Hao Peng, Kai Shu, et al. 2022. Bond: Benchmarking unsupervised outlier node detection374

on static attributed graphs. Advances in Neural Information Processing Systems 35 (2022), 27021–375

27035.376

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. 2021a. Pick and377

choose: a GNN-based imbalanced learning approach for fraud detection. In Proceedings of the378

web conference 2021. 3168–3177.379

Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. 2021b. Anomaly380

detection on attributed networks via contrastive self-supervised learning. IEEE transactions on381

neural networks and learning systems 33, 6 (2021), 2378–2392.382

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. 2020. Alleviating the383

inconsistency problem of applying graph neural network to fraud detection. In Proceedings of the384

43rd international ACM SIGIR conference on research and development in information retrieval.385

1569–1572.386

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word387

representations in vector space. arXiv preprint arXiv:1301.3781 (2013).388

10



Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor389

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,390

high-performance deep learning library. Advances in neural information processing systems 32391

(2019).392

Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, Qinghua Zheng, et al. 2018. ANOMALOUS: A393

Joint Modeling Approach for Anomaly Detection on Attributed Networks.. In IJCAI, Vol. 18.394

3513–3519.395

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.396

2023. A critical look at the evaluation of GNNs under heterophily: Are we really making progress?397

arXiv preprint arXiv:2302.11640 (2023).398

Amit Roy, Juan Shu, Jia Li, Carl Yang, Olivier Elshocht, Jeroen Smeets, and Pan Li. 2024. Gad-399

nr: Graph anomaly detection via neighborhood reconstruction. In Proceedings of the 17th ACM400

International Conference on Web Search and Data Mining. 576–585.401

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.402

2008. Collective classification in network data. AI magazine 29, 3 (2008), 93–93.403

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare404

Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for405

Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,406

1715.407

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in One: Multi-Task408

Prompting for Graph Neural Networks.(2023). (2023).409

Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. 2024. Gadbench: Revisiting and410

benchmarking supervised graph anomaly detection. Advances in Neural Information Processing411

Systems 36 (2024).412

Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural networks for anomaly413

detection. In International Conference on Machine Learning. PMLR, 21076–21089.414
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Algorithm 1: TAGAD(G)
Input :A TAG G = (V,E,D), the total training epoch N , the first stage training epoch M , the

scaled temperature τ , the similarity threshold ϵ, the hyperparameter α
Output :Global anomaly score S of all nodes.

1 T = LM(D), X = BOW(D) ;
2 p = True ;
3 for epoch = 1, . . . , N do
4 Hg = GNN(X; θE) ;
5 H = MLP(Hg; θ) ;
6 X̂ = GNN(H; θD) ;
7 Λ = T ·HT × eτ ;
8 La = (CE(Λ, y) + CE(ΛT , y))/2 ;
9 LR = (1− α)∥X̂ −X∥2 ;

10 if p then
11 LG = La ;
12 else
13 LG = (1− α)La + αLR ;
14 if epoch ≥ M then
15 p = False
16 Update the weight parameters θ, θE , and θD by using gradient descent
17 SG = NORM(L) ;
18 return SG;

Algorithm 2: TAGAD(L)
Input :A TAG G = (V,E,D), a set of training nodes Vtrain, the class label yi of the node

vi ∈ Vtrain, the training epochs N , the projected features H , the semantic embeddings
T , the similarity threshold ϵ, the hyperparameter β

Output :Anomaly score SL of all nodes.
1 wt = MEAN{tu;u ∈ V } ;
2 for epoch = 1, . . . , N do
3 H = H − wt ;
4 T = T − wt ;
5 for v ∈ Vtrain do
6 Sampling W first-order nodes of v to form the ego graph Av

E ;
7 Build the text graph Av

T using Eq. 13 ;
8 Compute ego graph embedding Zv

E and text graph embedding Zv
T and using Eq. 8;

9 sLv = NORM(∥Zu
E − Zu

T ∥+ β∥Au
E −Au

T ∥)
10 Compute the loss L using Eq. 14 ;
11 Update wt by using gradient descent
12 for v ∈ V do
13 Compute the local score Sv

L using a similar way to Lines 18–21.
14 return SL;

A Algorithm and Complexity448

A.1 Algorithmic description449

The global GAD module of TAGAD, the local GAD module of TAGAD are presented in Algorithm 1450

and Algorithm 2, respectively.451

A.2 Complexity Analysis452

In the global module, Lines 1–2 are pre-processing. For each epoch, the time complexity of the453

GNN encoder (line 4) is O(nLdVdH), where L is the layer number of the GNN. In line 5, it takes454
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O(ndHdL) in the feature projection. In line 6, the GNN decoder process takes O(ndLdV) Overall,455

the time complexity of Algorithm 1 is bounded by O(Nn(LdVdH + LdLdV + dHdL))456

In the local module, it takes O(ndL) for initialization (line 1). Then, for each epoch and each training457

node v, it takes O(W ) to sample an ego graph Av
E (line 6) and takes O(W 2dL) to build the text graph458

Av
T (line 7). Then, the time complexity of Eq. 8 is O(WdL). In the few-shot settings, there are few459

nodes in Vtrain. Therefore, it takes O(NW 2dL) to train the local module of TAGAD (lines 2–11).460

Similarly, computing the local anomaly score Sl (lines 12–13) takes O(nW 2dL). Overall, the time461

complexity of Algorithm 2 is bounded by O(nW 2dL)462

B Theoretical Analyze463

B.1 Local anomaly score464

Theorem 1 Given a TAG G = (V,E,D), in the local GAD module, the expected local anomaly465

score for anomalous nodes is greater than that for normal nodes.466

To prove this theorem, we make the following assumptions:467

1. For a local anomaly node, the feature deviation is random, not correlated to its neighbors.468

2. For normal nodes, the structural and textual similarities are positively correlated, as their469

text content and graph neighbors are semantically coherent.470

3. For a normal node, the feature deviation from the overall distribution is similar to that of its471

neighboring nodes.472

We first consider the structural difference between GE and GT :473

E(∥Au
E −Au

T ∥) =
∑
i,j

E[(Au
E(i, j)−Au

T (i, j))
2]

=
∑

i,j∈Vu

Var(Au
E(i, j)) + Var(Au

T (i, j))− Cov(Au
E(i, j)), A

u
T (i, j)))

(15)

According to our assumption, for anomaly nodes u, the ego graph and the text graph are less correlated474

the normal nodes v, so Cov(Au
E(u, j)), A

u
T (u, j)) < Cov(Au

E(u, j)), A
u
T (u, j)). Meanwhile, the475

feature of anomaly nodes is more random, hence, the variance of the text graph for anomaly nodes is476

also large. Overall, the expected structural difference between the ego graph and the text graph is477

larger for anomaly nodes than for normal nodes.478

As discussed in Section 4.1, the feature embedding difference for anomaly nodes is also higher479

due to the hard alignment. Therefore, the total difference between the ego graph and the text480

graph—comprising both feature and structural components as defined in Eq. 10—serves as an481

effective local anomaly score, particularly sensitive to the presence of anomaly nodes.482

B.2 Remove embeddings483

Theorem 2 Given a TAG G = (V,E,D), and the common embedding vector wt representing the484

shared semantic information among node features, in the local GAD module, removing wt from the485

semantic embeddings in the local GAD module amplifies the structural differences between the ego486

graph and the text graph for anomalous nodes.487

We denote the semantic embedding for the node i as ti = wt + δi, where δi is a deviation. δi is488

a significant deviation for anomaly nodes, while δi is a small noise, related to the structure of the489

normal nodes. For the original similarity between node i and node j,490

sim(ti, tj) =
ti · tj
|ti||tj |

=
(wt + δi) · (wt + δj)

∥wt + δi∥∥wt + δj∥
. (16)

It can be easily found that the common feature hides local anomalies by inducing high similarities.491

In the special case, if wt ≫ δi, the similarity sim(ti, tj) ≈ 1 for any pair of nodes, regardless of492

whether they are normal or anomalous.493
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Dataset #Node #Edges #Attributes #Anomalies (Rate)
Cora 2.2K 8.1K 1361 194(8.51)
Arxiv 169K 1.4M 128 10K(6.14)

Pubmed 19K 112K 500 963(4.89)
Table 4: Statistics of datasets.

After removing wt, the local embedding is δi for node i. Therefore, the new similarity is:494

sim(tlu, t
l
v) =

δi · δj
∥δi∥ · ∥δj∥

(17)

From the above assumptions, for a normal node, δi and δj are similar, leading to high similarity.495

However, for anomalous nodes, δi is uncorrelated with neighbors’ deviations, leading to significantly496

lower similarity scores. Consequently, the structure of the text graph diverges more strongly from497

that of the ego graph for anomalous nodes, thereby amplifying the local anomaly signal.498

Overall, removing the common embedding wt from the semantic embeddings amplifies the structural499

differences between the ego graph and the text graph for anomalous nodes.500

C Details of Experiment Setup501

C.1 Description of Datasets502

The statistics of the datasets are shown in Table 4.503

We make a slight modification to a widely used approach Liu et al. (2022) to inject anomaly nodes in504

the TAG. We use two techniques in the method, injecting structural anomaly nodes and contextual505

anomaly nodes. The method is described below.506

Injecting structural anomaly nodes. In this technique, we create g densely connected groups of507

nodes to inject the structural outliers. Each group contains m nodes, resulting in a total of m × g508

structural anomaly nodes. Specifically, for each group, we first randomly sample m nodes without509

replacement to form this group. Then, for these nodes, we make them fully connected and then drop510

each edge independently with probability p. In experiments, we set p = 0.2.511

Injecting contextual anomaly nodes. In this technique, we inject o contextual anomaly nodes.512

First, we sample o nodes as contextual anomaly nodes from the node set V without replacement.513

These selected nodes are denoted as Vc, where |Vc| = o. The remaining nodes Vr = V \ Vc form514

the reference set. Then, for each node v ∈ Vc, we randomly choose q nodes without replacement515

from Vr. Among these q reference nodes, we identify the most dissimilar node u to v by computing516

Euclidean distances and then modify sv = su.517

C.2 Description of Baselines518

The following unsupervised learning methods are compared to highlight the effectiveness of the519

proposed TAGAD under zero-shot settings.520

• SCAN Xu et al. (2007): A structural clustering method to detect clusters and anomaly nodes521

based on a structural similarity measure.522

• RADAR Li et al. (2017): A learning framework that characterizes the residuals of attribute523

information.524

• ANOMALOUS Peng et al. (2018): A joint framework to conduct attribute selection and525

anomaly detection jointly based on CUR decomposition and residual analysis.526

• DOMINANT Henaff et al. (2015): GNN that reconstructs the features and structure of the527

graph using the auto-encoder.528

• ANOMALYDAE Fan et al. (2020): GAE that reconstructs both node embeddings and529

attribute embeddings.530
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• GAD-NR Roy et al. (2024): GAE that incorporates neighborhood reconstruction.531

• CONAD Xu et al. (2022): GNN that uses a data augmentation strategy to model prior532

human knowledge.533

• NLGAD Duan et al. (2023): Normality learning-based GNN via multi-scale contrastive534

learning.535

• COLA Liu et al. (2021b): A contrastive learning based GNN that captures the relationship536

between each node and its neighboring structure.537

The following supervised learning methods are compared to highlight the effectiveness of the proposed538

TAGAD under few-shot settings.539

• GCN Kipf and Welling (2016): Standard graph convolution network (GCN).540

• GAT Veličković et al. (2017): Standard graph attention network (GAT).541

• GATSEP Platonov et al. (2023): GNN that deals with the heterophilous graphs.542

• PC-GNN Liu et al. (2021a): GNN that handles imbalanced classes.543

• AMNET Chai et al. (2022): GNN that analyzes anomalies via the lens of the graph spectrum.544

• BWGNN Tang et al. (2022): GNN using graph spectral filters to detect fraudsters.545

• RF-GRAPH Tang et al. (2024): Tree-ensembled method using random forest and neighbor546

aggregation.547

• XGB-GRAPH Tang et al. (2024): Tree-ensembled method using XGBoost and neighbor548

aggregation.549

C.3 Details of Implementation550

We implemented TAGAD in PyTorch 2.2.0 Paszke et al. (2019) and Python 3.11. For our model, the551

selection of LMs and GNNs is flexible. In our experiment, we choose a representative LM–DeBERTa-552

base and a powerful GCN model for the main experiments. The DeBERTa-base is a pre-trained553

language model with 100M parameters. The hidden size of the DeBERTa-base model is 768. We554

keep the same hidden size of the GCN model with DeBERTa-base. We use AdamW optimizer with555

learning rate lr = 1e− 3 and weighting decay 5e− 4 for model optimization. For all datasets, we run556

200 epochs in the global GAD module and 50 epochs in the local GAD module. In the global GAD557

module, the scaled temperature τ is 0.07. In the local GAD module, the similarity threshold ϵ is 0.95.558

The hyperparameters α, β, λ are set to be 0.6, 0.4, 0.4. Additionally, we apply Early Stopping with a559

patience of 10 to prevent overfitting and terminate training when performance stops improving.560

In unsupervised settings, for NLGAD and COLA, we use the default parameters described in561

the original papers. For other methods, we use the codes and parameters provided in the PyGOD562

library Liu et al. (2022). In supervised settings, we use the codes and parameters provided in the563

GAD benchmark Tang et al. (2024). The links to their source codes are as follows:564

• PyGoD: https://github.com/pygod-team/pygod565

• GADBench: https://github.com/squareRoot3/GADBench566

• NLGAD: https://github.com/FelixDJC/NLGAD567

• COLA: https://github.com/TrustAGI-Lab/CoLA568

D Supplemental Experiments569

D.1 Performance with combined feature570

In this section, we compare our model performance with unsupervised baselines using the combined571

feature of the BOW feature and the LM feature as input. As shown in Table 5, our model continues to572

outperform the baselines, although both global and local perspectives of textual features are provided.573

Notably, the baselines, despite both types of features input, perform worse than when using only one574

perspective (either BOW or LM) in most cases. This highlights the importance of joint modeling575

rather than simple feature concatenation for effectively leveraging textual information in GAD.576
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Table 5: Performance Comparison with combined feature of the BOW feature and the LM feature
under zero-shot settings. The highest performance is highlighted in boldface. “—” indicates that the
algorithm cannot complete on large datasets due to limited GPU memory.

Method Cora Arxiv Pubmed
SCAN 0.705 0.668 0.721
RADAR 0.575 – 0.489

ANOMALOUS 0.547 – 0.358
DOMINANT 0.707 0.688 0.459

ANOMALYDAE 0.713 – 0.499
GAD-NR 0.712 – 0.677
CONAD 0.688 0.692 0.694
NLGAD 0.500 – 0.571
COLA 0.590 – 0.554

TAGAD 0.905 0.747 0.874
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Figure 2: ROC curves on different datasets. The seven subplots show the True Positive Rate (TPR) vs
False Positive Rate (FPR) for different algorithms across various datasets. The larger the area under
the curve, the better the performance of graph anomaly detection.

D.2 Performance Comparison in Terms of AUC577

We compare TAGAD with 6 unsupervised baselines in two datasets. The ROC curves on three578

datasets are illustrated in Fig. 3. We can find that the True Positive Rate of our model is higher than579

other models in most conditions.580

D.3 Hyperparameter Analysis581

In this part, we conduct a comprehensive analysis of four key hyperparameters α, β, λ, and ϵ to582

evaluate their impact on the performance of our framework. In detail, the analysis of α is performed583

on TAGAD(G), while others are performed on TAGAD under zero-shot settings. Figure 3 shows584

the AUC of our model on three datasets under zero-shot settings as one of the parameters α, β, λ, ϵ585

varies. By default, α = 0.5, β = 0.5, λ = 0.5, ϵ = 0.9.586

Parameter α As shown in Figure 3a, with increasing α, the performance improves at first, but587

decreases later. This is due to the balance of the alignment and the reconstruction loss. Ignoring588

either loss will degrade the model’s performance.589

Parameter β From Figure 3b, we can observe that the performance of different β is stable. This is590

because both the structural difference and the feature difference provide overlapping insights into591

local anomaly nodes.592

Parameter λ Figure 3c shows the performance with different λ. We can find the best performance593

in different λ. This is because the ratio of global and local anomaly nodes is different across different594

datasets. For the datasets with more global anomaly nodes, such as Pubmed, a smaller value of λ595

leads to better performance. For the datasets with more local anomaly nodes, such as Arxiv, the larger596

value of λ is better.597
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(d) Effect of ϵ.

Figure 3: Parameter sensitivities of TAGAD w.r.t. five hyper-parameters on three datasets.

Parameter ϵ In order to evaluate the effectiveness of ϵ, we adopt different values of to adjust the598

similarity threshold when constructing the text graph under zero-shot settings. We can see that the599

best parameter ϵ is different in different datasets. This is related to the ratio of common features. A600

higher ϵ performs better when nodes share many same features, while performance is more stable601

when feature diversity is high.602

E Limitation of Our work603

One limitation of this work is the absence of publicly available real-world datasets, necessitating the604

use of synthetic datasets with the widely used injected anomaly nodes approach in the experiment.605

A potential future direction involves exploring the integration of large language models (LLMs) to606

enhance anomaly detection on TAGs.607
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Question: Do the main claims made in the abstract and introduction accurately reflect the610

paper’s contributions and scope?611

Answer: [Yes]612

Justification: Our main claims are elaborated in both the abstract and introduction sections.613

Guidelines:614

• The answer NA means that the abstract and introduction do not include the claims615

made in the paper.616
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contributions made in the paper and important assumptions and limitations. A No or618

NA answer to this question will not be perceived well by the reviewers.619
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are not attained by the paper.623

2. Limitations624

Question: Does the paper discuss the limitations of the work performed by the authors?625

Answer: [Yes]626

Justification: : The limitations of this paper have been discussed in Section E.627
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• The answer NA means that the paper has no limitation while the answer No means that629

the paper has limitations, but those are not discussed in the paper.630

• The authors are encouraged to create a separate "Limitations" section in their paper.631

• The paper should point out any strong assumptions and how robust the results are to632

violations of these assumptions (e.g., independence assumptions, noiseless settings,633

model well-specification, asymptotic approximations only holding locally). The authors634

should reflect on how these assumptions might be violated in practice and what the635

implications would be.636

• The authors should reflect on the scope of the claims made, e.g., if the approach was637

only tested on a few datasets or with a few runs. In general, empirical results often638
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• The authors should reflect on the factors that influence the performance of the approach.640
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• The authors should discuss the computational efficiency of the proposed algorithms645

and how they scale with dataset size.646

• If applicable, the authors should discuss possible limitations of their approach to647

address problems of privacy and fairness.648

• While the authors might fear that complete honesty about limitations might be used by649

reviewers as grounds for rejection, a worse outcome might be that reviewers discover650

limitations that aren’t acknowledged in the paper. The authors should use their best651

judgment and recognize that individual actions in favor of transparency play an impor-652

tant role in developing norms that preserve the integrity of the community. Reviewers653

will be specifically instructed to not penalize honesty concerning limitations.654

3. Theory assumptions and proofs655

Question: For each theoretical result, does the paper provide the full set of assumptions and656

a complete (and correct) proof?657

Answer: [Yes]658
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Justification: The assumptions and the proof are shown in Appendix B.659

Guidelines:660

• The answer NA means that the paper does not include theoretical results.661

• All the theorems, formulas, and proofs in the paper should be numbered and cross-662

referenced.663

• All assumptions should be clearly stated or referenced in the statement of any theorems.664

• The proofs can either appear in the main paper or the supplemental material, but if665

they appear in the supplemental material, the authors are encouraged to provide a short666

proof sketch to provide intuition.667

• Inversely, any informal proof provided in the core of the paper should be complemented668

by formal proofs provided in appendix or supplemental material.669
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4. Experimental result reproducibility671

Question: Does the paper fully disclose all the information needed to reproduce the main ex-672

perimental results of the paper to the extent that it affects the main claims and/or conclusions673

of the paper (regardless of whether the code and data are provided or not)?674

Answer: [Yes]675
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ter search space, and upload the source code for reproduction of the proposed method.677

Guidelines:678

• The answer NA means that the paper does not include experiments.679

• If the paper includes experiments, a No answer to this question will not be perceived680
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whether the code and data are provided or not.682

• If the contribution is a dataset and/or model, the authors should describe the steps taken683

to make their results reproducible or verifiable.684

• Depending on the contribution, reproducibility can be accomplished in various ways.685

For example, if the contribution is a novel architecture, describing the architecture fully686

might suffice, or if the contribution is a specific model and empirical evaluation, it may687

be necessary to either make it possible for others to replicate the model with the same688

dataset, or provide access to the model. In general. releasing code and data is often689

one good way to accomplish this, but reproducibility can also be provided via detailed690

instructions for how to replicate the results, access to a hosted model (e.g., in the case691

of a large language model), releasing of a model checkpoint, or other means that are692

appropriate to the research performed.693
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nature of the contribution. For example696

(a) If the contribution is primarily a new algorithm, the paper should make it clear how697

to reproduce that algorithm.698

(b) If the contribution is primarily a new model architecture, the paper should describe699

the architecture clearly and fully.700
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either be a way to access this model for reproducing the results or a way to reproduce702
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In the case of closed-source models, it may be that access to the model is limited in707

some way (e.g., to registered users), but it should be possible for other researchers708

to have some path to reproducing or verifying the results.709

5. Open access to data and code710
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tions to faithfully reproduce the main experimental results, as described in supplemental712

material?713

20



Answer: [Yes]714

Justification: Yes, all the datasets are included along with the uploaded source code.715

Guidelines:716

• The answer NA means that paper does not include experiments requiring code.717

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/718

public/guides/CodeSubmissionPolicy) for more details.719

• While we encourage the release of code and data, we understand that this might not be720

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not721

including code, unless this is central to the contribution (e.g., for a new open-source722

benchmark).723

• The instructions should contain the exact command and environment needed to run to724

reproduce the results. See the NeurIPS code and data submission guidelines (https:725

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.726

• The authors should provide instructions on data access and preparation, including how727

to access the raw data, preprocessed data, intermediate data, and generated data, etc.728

• The authors should provide scripts to reproduce all experimental results for the new729

proposed method and baselines. If only a subset of experiments are reproducible, they730

should state which ones are omitted from the script and why.731
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versions (if applicable).733
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Answer: [Yes]779
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societal impacts of the work performed?803

Answer: [NA]804

Justification: There is no societal impact of the work performed.805
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Question: Does the paper describe the usage of LLMs if it is an important, original, or917

non-standard component of the core methods in this research? Note that if the LLM is used918

only for writing, editing, or formatting purposes and does not impact the core methodology,919
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