© © N O O A W N =

20
21
22
23
24
25

26
27
28
29
30
31

32
33
34
35

Towards Anomaly Detection on Text-Attributed
Graphs

Anonymous Author(s)
Affiliation
Address

email

Abstract

Graph anomaly detection (GAD), which aims to identify abnormal nodes that
differ from the majority in graphs, has attracted considerable research attention. In
real-world GAD scenarios, such as reviews in e-commerce platforms, the original
features in graphs are raw text. Existing methods only treat these texts with a
simple context embedding, without a comprehensive understanding of semantic
information. In this work, we propose TAGAD, a novel Text-Attributed Graph
Anomaly Detection framework that jointly trains the context feature and the se-
mantic feature of texts with graph structure to detect the anomaly nodes. TAGAD
consists of a global GAD module and a local GAD module, respectively for detect-
ing global anomaly nodes and local anomaly nodes. In the global GAD module,
we employ a contrastive learning strategy to jointly train the graph-text model and
an autoencoder to compute the global anomaly scores. In the local GAD module,
an ego graph and a text graph are constructed for each node. Then, we devise
two different methods to compute local anomaly scores based on the difference
between the two subgraphs, respectively for the zero-shot settings and the few-shot
settings. Extensive experiments demonstrate the effectiveness of our model under
both zero-shot and few-shot settings on text-attributed GAD scenarios. Codes are
available at https://anonymous.4open.science/r/TAGAD-1223|

1 Introduction

Graph anomaly detection (GAD) aims to identify abnormal nodes that exhibit significant deviation
from the majority in the graph, which has attracted much interest due to its wide applications, such
as financial fraud detection [Huang et al.| (2022), anti-money-laundering Weber et al.| (2019), and
review management |Dou et al.|(2020). In real-world scenarios, node labeling is often costly, making
the low-resource GAD, where there are few or no labeled nodes, a critical and challenging research
problem.

In the GAD lecture, nodes often carry rich textual information, such as the identification of fraudulent
reviews on platforms like Amazon. To address anomaly detection on such text-attributed graphs
(TAGs), both the context features capturing the statistical properties of texts and the semantic features
inflecting the deep linguistic meaning are critical to detect the anomaly nodes. Therefore, it is
essential to design a model that jointly learns contextual features, semantic features, and the graph
structure.

However, existing GAD methods handle textual features in a simplistic way. Simple bag-of-words
(BOW) representations |Sennrich et al.|(2016) or shallow embedding vectors Mikolov et al.| (2013)
are fed into GAD models as node features. While these techniques enable basic handling of textual
data, they fail to capture its full semantic and contextual richness.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/TAGAD-1223

36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

70
71

72
73

74
75

76
77

78

79

80
81
82
83
84

85
86
87

Recent works on Text-Attributed Graphs (TAGs) |Yan et al.[(2023) have explored joint training of the
graph structure and the text embedding for the node classification task. They categorize nodes with
similar text features and similar neighbors into one class. Some of these methods, like G2P2|Wen
and Fang|(2023) and P2TAG Zhao et al.|(2024), utilize the text of the class due to the high similarity
between the text feature and the text of the class. However, in the GAD problem, anomalous nodes
often exhibit diverse and irregular textual and structural patterns, making them difficult to classify
based on similarity. Moreover, it is meaningless to compute the similarity between the node feature
and the text of the class, “anomalous” or “normal”. Consequently, existing TAG-based methods
developed for node classification cannot be applied to the GAD problem.

There are two main challenges on TAGs towards the anomaly detection problem. (1) Joint training
of the graph-text model. While some recent works explore joint training of the graph-text model
for tasks like node classification, they are not designed to detect anomaly nodes and thus cannot
directly address the requirements of GAD. (2) Detection of both global and local anomaly nodes.
There are both global and local anomaly nodes in GAD problem. Global anomaly nodes are those
whose features deviate from the majority of the nodes, while local anomaly nodes exhibit abnormal
features within their immediate neighborhood or subgraph. Thus, a key challenge is how to detect
both the global and local anomaly nodes.

In this paper, we propose a Text-Attributed Graph Anomaly Detection model called TAGAD, which
jointly trains the context feature and the semantic feature of texts with the graph structure to find both
global and local anomaly nodes. Two modules are composed in TAGAD: a global GAD module
and a local GAD module, designed to identify global and local anomaly nodes, respectively. In the
global GAD module, our model first obtains the semantic embedding by LM and the context graph
feature by BOW and GNN, then aligns the GNN and the LM using a contrastive learning based loss
function. Then, the autoencoder based technique is employed to find the anomaly nodes. In the local
GAD module, two subgraphs are constructed for each node: the ego graph capturing the local graph
structure and the text graph indicating the similarity of the semantic embedding between neighboring
nodes. Then, we devise two different methods to compute the local anomaly scores, respectively for
zero-shot settings and few-shot settings. Under zero-shot settings, the difference between the ego
graph and the text graph is computed as the local anomaly score. However, due to the globally shared
feature of nodes, textual similarities are uniformly high, thereby hiding some local anomaly nodes. In
few-shot settings, we introduce a common embedding that captures the common feature of nodes.
By removing this common feature, the similarity between anomalous and normal nodes is reduced,
amplifying local deviations and improving the model’s ability to detect local anomaly nodes.

Accordingly, our main contributions can be summarized as follows:

1. To the best of our knowledge, this is the first attempt towards anomaly detection problem on
the text-attributed graphs.

2. We propose a novel framework TAGAD, that jointly trains context and semantic features of
text with the graph structure.

3. We design two GAD methods based on comparing each node’s ego graph with its corre-
sponding text graph, respectively for the zero-shot settings and few-shot settings.

4. Our proposed TAGAD archives an improvement with +7.8% ~ +36.9% compared to
GAD methods under low-resource settings.

2 Related Work

2.1 Graph Anomaly Detection

Existing GAD methods are divided into two groups based on different settings: supervised and
unsupervised. Under the supervised setting, GAD is formulated as a binary classification task.
Various GNN-based supervised detectors have been devised in the lecture [Tang et al.[(2024), such as
BWGNN Tang et al.| (2022), AMNet|Chai et al.| (2022), PC-GNN [Liu et al.|(2021a), H2FDetector [Liu
et al.[(2020).

Apart from these supervised detectors, there are numerous unsupervised GAD techniques |Liu et al.
(2022)) aiming to detect anomalies without labeled data. As a typical approach in unsupervised graph
learning, Graph Auto-Encoder (GAE) has been widely used in the GAD models. For example,

88
89
90
91
92
93

94
95
96

97

98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113

114

115
116

17
118
119

120
121
122
123
124

125

126
127
128
129

130

131
132
133
134

DOMINANT Ding et al.| (2019) uses GCN to reconstruct graph data of both topological structure and
node attributes. ANOMALYDAE [Fan et al|(2020) employs the attention mechanism to learn the
importance between a node and its neighbors. There are also many methods using contrastive learning
to compute the anomaly score, such as CONAD |Liu et al.| (2021b), COLA |Liu et al.|(2021b), and
NLGAD Duan et al.|(2023). Others like SCAN [Roy et al.[(2024), RADAR|Li et al.| (2017), and
ANOMALOUS |Peng et al.|(2018) identify the anomaly nodes by using traditional shallow methods.

However, all these methods overlook the textual information associated with nodes in graphs, only
relying on node attributes. To the best of our knowledge, this paper is the first work to explore graph
anomaly detection towards text-attributed graphs.

2.2 Graph Pre-training and Prompt Learning

Recently, there has been a boom in the research of graph pre-training Jin et al.|(2020), which aims
to learn the general knowledge of the graphs. Numerous effective graph pre-training models have
been introduced in this area. Among these models, GCA Zhu et al|(2021)) adopts the node-level
comparison method, while GraphCL |You et al.| (2020) and SimGRACE |Xia et al.| (2022) focus on the
graph-level contrastive learning.

With the increasing interest in the large language model (LLM), utilizing node texts in graphs has
gained growing attention. Many works incorporate pre-trained language models (PLMs), such as
BERT Devlin| (2018)), into graph learning by leveraging node texts. Most of these works follow the
paradigm of pre-training and prompt learning. For example, Prog Sun et al.[(2023) unifies the graph
prompt and language prompts. G2P2 Wen and Fang| (2023)) pretrains a Graph-Text model by aligning
the graph structure with the corresponding text representation. In the prompt learning phase, the label
texts are used to generate the prompt and jointly train the pre-trained Graph-LLM model. Similarly,
P2TAG [Zhao et al.|(2024) introduces a language masking strategy for pretraining and utilizes both
the label texts and the node texts to build a prompt graph. Nevertheless, these methods can’t be
applied to graph anomaly detection problems, as anomaly nodes vary significantly across different
domains.

3 Preliminaries

In this section, we introduce the background of our paper including the definition of text-attributed
graph and the text-attributed graph anomaly detection problem.

Definition 1 (Text-Attributed Graph) A rext-attributed graph (TAG) is a graph G = (V, E, D),
where each node u € V is associated with a text sequence d,, € D and E represents the set of edges
between nodes.

In graph anomaly detection, each node has a label y,, € {0, 1}, where 0 represents normal and 1
represents anomaly. V,, and V,, represent the normal node set and anomaly node set, respectively.
We denote Y as the labels assigned to the nodes. The whole graph contains two types of nodes, the
training nodes Vi, and the testing nodes Vi, labeled with Yiuin, and Y. Yieq are inaccessible
during the training.

Given the above definition, we formally define our problem, text-attributed graph anomaly detection.

Definition 2 (Text-Attributed Graph Anomaly Detection) Given a text-attributed graph G =
(V,E, D), the observed nodes Vi with label Vi, the Text-Attributed Graph Anomaly Detec-
tion problem aims to learn a function f that measures node abnormalities by calculating their
anomaly scores S:

f(Gv Y;min) — Sv (1)

where S € R™ indicates the anomaly score matrix, and n =| V' | is the node number in the graph.

Low-resource Graph Anomaly Detection. In the low-resource lecture, the number of Y., is small
or even zero. In the K-shot graph anomaly detection problem, the number of anomaly nodes and
normal nodes is K. As a special case, the problem with K = 0 is known as zero-shot classification,
which means that there are no labeled nodes.

135

136
137
138
139
140

141

142
143
144
145
146
147
148
149

150

151
152
153
154
155

156
157
158
159

ty,ty, st
0 Central node
Mean Initialize

[We |
Ego Subgraph Text Subgraph

@ @ Construct

Graph
@ Structure

Contex Feature

Reconstruction Loss L® | |Pool | Structural Difference | Pool
N\ | L
Global anomaly E ‘ Local anomaly score S* [a

tihy| tihy tyhy tihy tihd tih, G
score S
tohy| thy| tyhy tyhy tyhg tyh

t3hy| tshy tshq tyhy tsh] tsh /

fah taha tohg tahy tahy b Alignment Loss L&

,,,,,,,,,,,,,,,,,,,,,

tshy| tshy tshy tshy tshd tshq

tehy| tehy tehd tehy tehy teh,

(a) Global GAD Module i (b) Local GAD Module

Figure 1: Our proposed framework TAGAD. (a) We first align the GNNs and the LM using a
contrastive learning based objective. Then, the GNN decoder is introduced to compute the global
anomaly scores. (b) Next, the common embedding is initialized as the mean embedding of all
semantic embeddings. The local semantic embeddings are then obtained by subtracting the semantic
embedding. Then, for each node, the ego graph is built based on the graph structure, while the text
graph is formed by computing the similarity of the local semantic embedding. The local anomaly
score is finally computed by comparing the two subgraphs. The figure only shows the local anomaly
score under few-shot settings, while zero-shot inference adopts a simplified scheme.

4 Method

As shown in Figure our TAGAD model consists of two modules: (a) Global GAD module, which
aligns the GNNs and the LM using a contrastive learning based objective and calculates the global
anomaly scores by the autoencoder. (b) Local GAD module, which computes the local anomaly
scores by comparing the ego graph and the text graph of each node. The pseudocode of the algorithms
and complexity analysis of TAGAD can be found in Appendix[A]

4.1 Global GAD module

In this part, we introduce our proposed global GAD module in detail. The goal of the global GAD
module is to detect the anomaly nodes that deviate from the major distribution. We first introduce the
triple encoders to encode the context embedding by BOW, the semantic embedding by LM, and the
graph structure by GNNs. However, GNNs are randomly initialized, not directly suitable for detecting
global anomaly nodes, and the graph embedding space is different from the semantic embedding
space. Therefore, we divide the global GAD module into two stages. First, we align the GNNs and
LM embedding spaces using the contrastive learning based strategy. Then, we use an autoencoder
based approach to detect global anomaly nodes.

4.1.1 Triple Encoders

In the TAG, text encoding requires capturing both deep semantic information and shallow context
patterns to identify both global and local anomalies. Therefore, along with the GNN to encode
the graph structure, triple encoders are introduced in our global GAD module. The triple encoders
comprise: (1) BOW encoder for shallow context text encoding, (2) LM encoder for deep semantic
text encoding, and (3) GNN encoder for graph structural encoding.

Shallow context Encoder To capture shallow context features of the texts, we first employ the
BOW (Bag of Words) technique to obtain the context embedding. For each text d,,, we compute
Ty, € R¥ as ¢, = BOW(d,,), where dy is the vocabulary size. These context features show
distributional anomalies that may not appear in the deep semantic space.

160
161
162
163
164
165

167

169
170
171
172

173

174
175
176

177
178
179

180

181
182

183
184

185

186
187
188
189
190

191
192

193
194

196

197

198
199

Deep Semantic Encoder While the BOW can capture the context feature, it may miss the con-
textual semantic information of the TAG. Therefore, we use a typical pre-trained language model,
BERT Devlin| (2018)) with 110M parameters. The BERT model is trained using the masked language
modeling objective. We use the starting token ([CLS]) to represent a summary of the input text. For a
text d,,, its semantic embedding is denoted as t,, € R%, where t,, = LM(d,). Let T represent the
semantic embedding matrix. Since BERT has already been optimized on large corpora, we freeze its
parameters and only train the GNN component.

Structural Graph Encoder For the GNN encoder, we choose the classic GCN [Kipf and Welling
(2016)) module, which effectively integrates the feature of graphs with the graph structure. For each
node u, the graph embedding hE € R% js encoded by GNNS, h = GNN(z,,), where dy is the
encoder size. Likewise, let H# be the graph embedding matrix encoded by GNNs. We use context
(BOW-based) embedding rather than semantic embeddings as the GNN input, as the GNN operates
over the entire graph structure.

4.1.2 Text-Graph alignment

In this stage, we align the graph encoder with the text encoder. In the triple-encoders, the space of the
graph embedding H¢ is different from the semantic embedding space T'. Therefore, we first feed the
feature encoded by GNNs to an MLP to align the space:

hu = MLP(h2), @)

where h,, indicates the decoded context feature by the MLP. We denote H as the projected graph
feature. Then, the scaled cosine similarities A € R™*™ between the semantic embeddings 7" and the
decoded feature embeddings H are computed:

A=T-H" xe¢, 3)
where 7 indicates the hyperparameter temperature to scale the similarity values.

Then, in the first stage, we use a contrastive learning based loss function to align the semantic
embeddings and the projected graph embeddings:

) 1
L* = 5(CE(A,yp) + CE(A",yp)), @

where yp = (1,2,...,n)7 is the pseudo label vector for contrastive training and CE denotes the
cross entropy loss function.

4.1.3 Graph Decoder

As discussed before, GAEs have been proven to be effective in GAD task. The features of global
anomaly nodes deviate significantly from the majority, making them difficult to reconstruct using
GNNG. In contrast, normal nodes tend to be more easily reconstructed. Therefore, after alignment for
some epochs, a graph decoder is introduced to reconstruct the context feature and detect the anomaly
nodes. The decoded feature 7, € RY is obtained by GNN:

&, = GNN(h,,). (5)

Let X be the decoded embedding matrix. The loss function L of the second stage combines the
reconstruction loss and the alignment loss:

L= (1-a)|X = X[+aL’, (©)

where « balances the reconstruction loss and the alignment loss. Let LS be the loss score of node
u. We reconstruct the context feature rather than the semantic feature, as they capture more the
statistical distribution, thus more effective to identify global anomaly nodes. Experiments in Section[5]
also show the context features are more important than semantic embeddings in TAGs towards the
anomaly detection problem.

Finally, the global anomaly score s are computed by the loss score of each node, s¢ = NoRM(LS),

where the min-max Normalization is employed to normalize the global anomaly score. The alignment

200
201
202
203

204

205
206
207
208

209
210
211
212
213

214
215
216
217
218
219
220

221

222
223
224
225

226
227
228

229

230
231
232

233

234
235
236

237
238
239

240
241

loss scores are also critical in TAGs toward the anomaly detection problem, because for anomaly
nodes, their context and semantic features may be inconsistent, making it difficult to align the GNN
and LM, resulting in a high alignment loss. In contrast, for the normal nodes, there tends to be
coherent, thus easier to align.

4.2 Local GAD module

In this stage, we propose a novel local GAD module to compute the local anomaly score of nodes. As
discussed in Section] there is a distinct distribution difference between the local anomaly node and
its neighbors. Therefore, TAGAD leverages the local subgraph of each node to compute the local
anomaly score.

Specifically, for each node u, we construct two subgraphs: the ego graph G'%, and the text graph
G%. The ego graph captures the original local graph structure, while the text graph G¥. reflects
node similarity within the local neighborhood based on semantic features. For an anomaly node
whose neighbor features differ substantially, the text similarity with its neighbors is low, leading to a
significant mismatch between G and G'%.

Therefore, we define the local anomaly score of node u as the differences between G and G%,. In the
zero-shot settings, the final anomaly score is computed by combining the local and global anomaly
scores directly. In the few-shot settings, instead of training the full model, we learn a common
embedding that captures the shared semantics among nodes. By subtracting this common embedding
from the semantic features, we amplify the distinction between the ego and text graphs, thereby
making anomalies more detectable. Theoretical justifications of the proposed local GAD module can
be found in Appendix [B]

4.2.1 Zero-shot detection.

Under the zero-shot settings, we first construct two subgraphs for each node u: the ego graph G'%
and the text graph G.. To build the ego graph, we select up to W first-order neighbors of the node v,
along with w itself, to form the node set V,, of the ego graph (W = 100 in practice). The induced
subgraph over V,, from the original graph then forms the ego graph G'%.

In the text graph construction, we aim to capture semantic similarity among nodes in V,, using their
semantic embeddings 7T'. For each pair of nodes 7, j € V,,, we compute their similarity based on the
semantic embeddings. An edge (i, j) € EI is added if the similarity exceeds a threshold e:

1, if SM(t;,t5) > €
Au A) 1y vy) = & 7
7(i:7) {0, otherwise, @
where A% denotes the adjacency matrix in the text graph and SIM is the cosine similarity function.

In the message passing, for the local anomaly node, the feature is always different from its neighbors.
Therefore, we use the difference between G'% and G’ to indicate the local anomaly score of a node
u. First, we get the summary embeddings Z} and Z§ of two subgraphs G% and G

7% = READOUT(h;i € V), Z3 = READOUT (451 € V), 8)
where READOUT means the pooling operation, such as mean pooling and max pooling.

The differences between the ego graph and the text graph consist of feature differences and structural
differences. We measure the feature difference using the distance between their respective summary
embeddings, and the structural difference using the distance between their adjacency matrices:

su = NORM((L = B)[|Z}; — ZF |2 + Bl Af; — Aftl2), ©)
where AY, and A% indicate the adjacency matrix of two subgraphs, and 3 € (0, 1) is the hyperparam-
eter to control the importance of the structural difference. Similarly, Min-Max Normalization is also
used here as the NORM function.

Finally, the summary score consists of two parts: the local anomaly score reflecting the local
discrepancy and the global anomaly score indicating the common anomaly likelihood:

su = (1—N)sS + Ask, (10)

242

243

244
245
246
247
248
249

250

251

252
253
254

256
257
258

259
260

261

262

263
264
265
266
267
268
269

270
271
272
273

274
275
276
277

278
279
280

where A € (0,1) indicates the hyperparameter to control the importance of the local anomaly score.

4.2.2 Few-shot detection

In subgraph construction, semantic features often contain excessive common information, which
leads to uniformly high similarity among nodes and hides the local anomaly nodes. Therefore,
it becomes critical to determine an appropriate value for the sensitivity parameter €. In the few-
shot settings, we intend to remove the common information from the local subgraph to amplify
the structural differences for anomaly nodes. Consequently, a trainable parameter w; € R% with
common knowledge is learned. We use the mean embedding of all the features to initialize:

wy = MEAN(t,;u € V) (11

Then, the common embedding is removed from the graph embedding and the semantic embedding:

hi = hi —wi, b} = t; —wy, (12)
where h! and ¢! denote the local graph embedding and the local semantic embedding of node 4.

Then, we build the ego graph and the text graph similarly. When building the text graph, the binary
indicator in Eq [7]is non-differentiable, making the Neural Network hard to train. To address this
issue, we approximate the binary indicator with the Gumbel softmax trick Jang et al.|(2017)) to build
the text graph. Specifically, the text graph is computed by:

AY(i,5) = Sigmoid((Sim(t},) +logd — log(1 — 8))/7,), (13)

(2R]
where ¢ ~ Uniform(0, 1) is the sampled Gumbel random variate and 7, > 0 is the temperature
hyperparameter of Gumbel softmax, which is closer to 0. In this way, the A% (7, j) tends to be closer
toOor 1.

After that, we use the same functions as Eq. E]to get the summary embeddings Z7 and Z%. Finally,
the Cross Entropy Loss is used as the loss function of the local GAD module:

L= Y CE(yu,sy) (14)

UE Viain

5 Experiments

5.1 Experiment Setup

Datasets The experiments were performed on three synthetic datasets, including Cora, Arxiv,
and Pubmed. We use a commonly used method [Sen et al.| (2008) in GAD to inject the anomaly
nodes into the graph. This method introduces two types of anomaly nodes into the graph: structural
anomaly nodes, created by forming densely connected subgraphs with probabilistic edge deletion;
and contextual anomaly nodes, generated by altering node features to maximize dissimilarity from
the randomly chosen nodes. A detailed description of each dataset and the anomaly injection process
is provided in Appendix [C.T]

Baselines We compare TAGAD with both unsupervised and supervised learning methods. These
methods can only deal with the numeric feature, so we use the feature obtained by BOW and LM,
respectively. We also compare the performance of baselines by concatenating the feature obtained by
BOW and LM in Appendix

Unsupervised learning methods include traditional shallow methods SCAN Xu et al.[(2007)), Radar|Li
et al. (2017) and ANOMALOUS Peng et al.[(2018)), reconstruction based methods, DOMINANT Ding
et al. (2019), AnomalyDAE [Fan et al.| (2020), and GAD-NR Roy et al.|(2024), contrastive learning
based methods, CONAD [Xu et al.|(2022), NLGAD [Duan et al.|(2023), and CoL A [Liu et al.|(2021Db)) .

Supervised learning methods include two conventional GNNs, GCN |Kipf and Welling| (2016)
and GAT |Velickovic et al.| (2017)), five state-of-the-art GNNSs specifically designed for GAD, i.e.,
GATSEP Platonov et al.| (2023)), PC-GNN |Liu et al.| (2021a), AMNET |Chai et al.| (2022)), and

281
282

284

291
292
293
294
295

296

297
298

300
301
302
303
304
305

307
308
309

310
311
312
313
314
315
316
317
318

320

321

322
323
324
325
326
327
328

330
331

BWGNN [Tang et al.| (2022), and two decision-tree based GAD methods, XGBGRAPH and RF-
GRAPH [Tang et al.[(2024). For detailed information, refer to Appendix[C.2]

We also conduct experiments by removing the key components of TAGAD on all datasets. Specifi-
cally, we evaluate four variants, namely TAGAD(A), TAGAD(R), TAGAD(G), and TAGAD(L).
In TAGAD(A), only the alignment loss is used as the anomaly score, without incorporating the
reconstruction loss and the local GAD module. Similarly, in TAGAD(R), the alignment stage is re-
moved, and the reconstruction loss alone is used to compute the anomaly score. TAGAD(G) removes
the local GAD module entirely and relies on the global anomaly score for prediction. Conversely,
TAGAD(L) eliminates the global GAD module, using only the summary representations from the
LM as node features in the local subgraph for anomaly detection.

Evaluation and Implementation Following the benchmark [Tang et al.| (2024), we employ Area
Under ROC (AUC) as our evaluation metric for GAD. We report the average AUC across 5 trials.
More implementation details can be found in Appendix [C.3] All experiments were run on an Ubuntu
18.04 LTS server with six Intel Xeon 6130 CPUs (13 cores, 2.10GHz), 256GB of main memory, and
two NVIDIA GeForce RTX V100 GPUs.

5.2 Performance of GAD

Zero-shots We first compare TAGAD with unsupervised baseline methods. The results are shown
in Table[I] (more results in Appendix [D.T). We have the following observations: (1) The proposed
TAGAD performs best on most datasets, with an average improvement of +7.8% ~ +36.9%. In
the Arxiv dataset, most of the models can’t work due to the limited GPU memory, while our model
can perform well because only two simple GCN and MLP are trained in the global module. (2)
We can also find a huge improvement of TAGAD compared with the four variants of TAGAD.
Specifically, TAGAD achieves an improvement in AUC of 17% and 22% compared to TAGAD(G)
and TAGAD(L) in the Cora dataset. This improvement is due to the combination of both the global
anomaly score and the local anomaly score. The TAGAD(G) method also performs better than
TAGAD(A) and TAGAD(R) because of the two stages of alignment and reconstruction. (3) Most
models perform better using Bag-of-Words (BOW) based context features as input features than
using LM-based semantic representations, indicating that in GAD tasks, context features play a more
critical role than semantic features.

Few-shots Table|2[shows the comparison results of TAGAD with supervised methods under two
few-shot settings: 2-shots, and 5-shots. The global GAD module of TAGAD is unsupervised, so we
don’t compare TAGAD(A), TAGAD(R), and TAGAD(G) in this settings and only compare the
local GAD module TAGAD(L). TAGAD consistently emerges as the top performer, outperforming
the best baseline by around 0.3% ~ 18%. TAGAD performance is remarkably stable, varying by no
more than 2% across two different settings. The stability is due to the effectiveness of the simple
common embedding, which can be reliably trained with very limited labeled data. In contrast, the
decision-tree-based methods, such as XGBGraph and RFGraph, which perform well in the GAD
problem under fully supervised settings [Tang et al.| (2024)), suffer notable degradation under the
few-shot settings. This suggests that these models are heavily reliant on labeled datasets and struggle
to generalize under few-shot settings.

5.3 Ablation Studies

To better analyze the impact of LMs, we explore other LMs such as e5-v2-base |Wang et al.| (2022)
with 110M parameters. We also try larger LMs such as e5-v2-large with 335M parameters and
DeBERTa-large with 350M parameters. An external experiment is conducted to assess whether to
fine-tune the LM. The LM is mainly used in the global module, so we only report the performance
achieved with P2TAG(G) under zero-shot settings. The results are reported in Table[3] Generally, the
results of LMs are quite similar, with differences within 4%. We also observe that training with the
fine-tuned language model (LM) is significantly slower than using the frozen LM. More critically,
fine-tuning results in suboptimal performance, for example, achieving only 0.511 AUC on the Cora
dataset, whereas the frozen LM attains much higher accuracy. This performance gap arises because
the pretrained LM has already learned rich semantic representations. When the LM is jointly trained

332
333

334

335
336
337
338
339
340
341

Table 1: Performance Comparison under zero-shot settings. The highest performance is highlighted
in boldface; the second highest performance is underlined. “— indicates that the algorithm cannot
complete on large datasets due to limited GPU memory.

Method Cora Arxiv Pubmed
BOW LM BOW LM BOW LM
SCAN 0.705 0.705 0.668 0.668 0.721 0.721
RADAR 0.578 0.566 - - 0.480 0.497
ANOMALOUS 0.550 0.582 - - 0.463 0.465
DOMINANT 0.780 0.618 0.709 0.522 0.771 0.773
ANOMALYDAE 0.773 0.737 - - 0.850 | 0.844
GAD-NR 0.742 0.739 - - 0.686 0.694
CONAD 0.827 0.583 0.685 0.481 0.796 0.740
NLGAD 0.665 0.676 - - 0.741 0.709
COLA 0.536 0.6327 - - 0.489 0.696
TAGAD 0.905 0.747 0.874
TAGAD(A) 0.804 0.671 0.727
TAGAD(R) 0.777 0.704 0.705
TAGAD(G) 0.834 0.714 0.849
TAGAD(L) 0.685 0.507 0.708

Table 2: Comparison of Classification Performance in few-shot settings

Cora Arxiv Pubmed

Method 2-shot 5-shot 2-shot 5-shot 2-shot 5-shot
BOW Text BOW Text BOW Text BOW Text BOW Text BOW Text
GCN 0.757 | 0.656 | 0.818 | 0.599 0.617 0.688 0.741 0.685 0.626 0.672 0.706 0.658
GAT 0.722 0.582 0.646 0.528 | 0.695 | 0.487 0.702 0.497 0.699 0.524 0.690 | 0.515
GATSEP 0.689 0.529 0.810 0.519 0.677 0.497 0.706 0.508 0.696 0.510 0.718 0.501
PC-GNN 0.787 0.632 0.815 0.604 | 0.644 0.624 | 0.745 | 0.622 | 0.678 0.619 0.735 0.618
AMNET 0.591 0.673 0.525 0.653 0.657 0.526 | 0.696 0.663 | 0.739 | 0.519 0.739 0.566
BWGNN 0.744 0.557 0.768 0.558 0.649 0.524 | 0.672 0.529 0.730 0.676 | 0.762 | 0.672
XGB-GRAPH 0.5 0.5 0.615 0.483 0.5 0.5 0.596 0.501 0.5 0.5 0.592 0.511
RF-GRAPH 0.749 0.535 0.782 0.553 0.683 0.675 0.744 0.724 | 0.615 0.582 0.686 0.526

TAGAD 0.930 0.941 0.748 0.757 0.875 0.877

TAGAD(L) 0.748 0.764 0.738 0.741 0.704 0.707

with a randomly initialized graph neural network (GNN)), its parameters may have substantial changes,
thereby disrupting its ability to represent the semantic features.

6 Conclusions

In this paper, we study the problem of anomaly detection on the TAG. We propose a novel framework
named TAGAD, which consists of two modules, respectively Contrastive learning based global GAD
and Subgraph comparison based local GAD. The global GAD module utilizes a contrastive learning
based method to align the GNN and LM, then employs the GAE technique to compute the global
anomaly scores. In the local GAD module, we compute the local anomaly score by comparing the
ego graph and the text graph for each node. Extensive experiments on three datasets demonstrate the
effectiveness of our model compared to existing approaches.

LM Cora Arxiv Pubmed

AUC Time(s) AUC Time(s) AUC Time(s)

DeBERTa-base 0.834 13.76 0.714 700.38 0.849 61.27

e5-v2-base 0.828 20.98 0.728 850.17 0.813 62.95
DeBERTa-large 0.812 42.14 0.727 1923.86 | 0.793 198.83
e5-v2-large 0.825 34.81 0.725 1671.43 0.829 155.28
DeBERTa-base (FT) 0.518 561.25 - - 0.562 1981.44
e5-v2-base (FT) 0.671 564.77 - - 0.486 | 3941.81
DeBERTa-large (FT) | 0.511 549.87 - - 0.572 1672.92
e5-v2-large (FT) 0.582 1671.43 - - 0.493 1675.40

Table 3: Ablation study of language models on the datasets. We choose various LMs, then report the
performance achieved with P2TAG(G). The highest performance and the shortest time are highlighted
in boldface.

342

343
344

345
346

347
348
349

350
351
352

353
354
355

356

358

359
360

361
362
363

364
365

366
367
368

369
370

371
372

373
374
375
376

377
378
379

380
381
382

383
384
385
386

387
388

References

Ziwei Chai, Siqi You, Yang Yang, Shiliang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang. 2022.
Can abnormality be detected by graph neural networks?. In ZJCAI. 1945-1951.

Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep anomaly detection on
attributed networks. In Proceedings of the 2019 SIAM international conference on data mining.
SIAM, 594-602.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. 2020. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th
ACM international conference on information & knowledge management. 315-324.

Jingcan Duan, Pei Zhang, Siwei Wang, Jingtao Hu, Hu Jin, Jiaxin Zhang, Haifang Zhou, and Xinwang
Liu. 2023. Normality learning-based graph anomaly detection via multi-scale contrastive learning.
In Proceedings of the 31st ACM International Conference on Multimedia. 7502-7511.

Haoyi Fan, Fengbin Zhang, and Zuoyong Li. 2020. Anomalydae: Dual autoencoder for anomaly de-
tection on attributed networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 5685-5689.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163 (2015).

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,
and Michalis Vazirgiannis. 2022. Dgraph: A large-scale financial dataset for graph anomaly
detection. Advances in Neural Information Processing Systems 35 (2022), 22765-22777.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparametrization with Gumble-Softmax.
In International Conference on Learning Representations (ICLR 2017). OpenReview. net.

Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang. 2020. Self-
supervised learning on graphs: Deep insights and new direction. arXiv preprint arXiv:2006.10141
(2020).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. 2017. Radar: Residual analysis for anomaly detection
in attributed networks.. In IJCAI, Vol. 17. 2152-2158.

Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu
Chen, Hao Peng, Kai Shu, et al. 2022. Bond: Benchmarking unsupervised outlier node detection
on static attributed graphs. Advances in Neural Information Processing Systems 35 (2022), 27021-
27035.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. 2021a. Pick and
choose: a GNN-based imbalanced learning approach for fraud detection. In Proceedings of the
web conference 2021. 3168-3177.

Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. 2021b. Anomaly
detection on attributed networks via contrastive self-supervised learning. IEEE transactions on
neural networks and learning systems 33, 6 (2021), 2378-2392.

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. 2020. Alleviating the
inconsistency problem of applying graph neural network to fraud detection. In Proceedings of the
43rd international ACM SIGIR conference on research and development in information retrieval.

1569-1572.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

10

389
390
391
392

393
394
395

396
397
398

399
400
401

402
403

404
405
406
407

408
409

410
411
412

413
414

415
416

417
418
419

420
421
422

423
424
425

426

427

428

429

431

432

433
434

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems 32
(2019).

Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, Qinghua Zheng, et al. 2018. ANOMALOUS: A
Joint Modeling Approach for Anomaly Detection on Attributed Networks.. In IJCAI, Vol. 18.
3513-3519.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
2023. A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
arXiv preprint arXiv:2302.11640 (2023).

Amit Roy, Juan Shu, Jia Li, Carl Yang, Olivier Elshocht, Jeroen Smeets, and Pan Li. 2024. Gad-
nr: Graph anomaly detection via neighborhood reconstruction. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining. 576-585.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
2008. Collective classification in network data. Al magazine 29, 3 (2008), 93-93.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
1715.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in One: Multi-Task
Prompting for Graph Neural Networks.(2023). (2023).

Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. 2024. Gadbench: Revisiting and
benchmarking supervised graph anomaly detection. Advances in Neural Information Processing
Systems 36 (2024).

Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural networks for anomaly
detection. In International Conference on Machine Learning. PMLR, 21076-21089.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533 (2022).

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robinson,
and Charles E Leiserson. 2019. Anti-money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019).

Zhihao Wen and Yuan Fang. 2023. Augmenting low-resource text classification with graph-grounded
pre-training and prompting. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 506-516.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Conference
2022. 1070-1079.

Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. Scan: a structural clus-
tering algorithm for networks. In Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining. 824—833.

Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. 2022. Contrastive attributed

network anomaly detection with data augmentation. In Pacific-Asia conference on knowledge
discovery and data mining. Springer, 444-457.

11

435
436
437
438

439
440
441

442
443
444
445

446
447

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. 2023. A comprehensive study on text-attributed graphs:
Benchmarking and rethinking. Advances in Neural Information Processing Systems 36 (2023),
17238-17264.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020.
Graph contrastive learning with augmentations. Advances in neural information processing systems

33 (2020), 5812-5823.

Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny Khar-
lamov, Shu Zhao, and Jie Tang. 2024. Pre-training and prompting for few-shot node classification
on text-attributed graphs. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 4467-4478.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021. Graph contrastive
learning with adaptive augmentation. In Proceedings of the web conference 2021. 2069-2080.

12

e R N U R W=

P T S S O
X NN R W N =S

O NN AN R W N =

I <
W N =S

448

449

450
451

452

453
454

Algorithm 1: TAGAD(G)

Input :A TAG G = (V, E, D), the total training epoch N, the first stage training epoch M, the
scaled temperature 7, the similarity threshold ¢, the hyperparameter
Output : Global anomaly score S of all nodes.
T=LM(D),X =BOW(D);
p = True ;
for epoch =1,..., N do
H8 = GNN(X;0g) ;
H = MLP(H%;0) ;
X = GNN(H;0p);
A=T -H' xe™;
L* = (CE(A,y) + CE(AT y))/2;
LR = (1 - a)||X — X2
if p then
‘ LG = L@ :
else
| LS=(1-a)L*+al®;
if epoch > M then
| p=False
Update the weight parameters 6, 0, and 6 by using gradient descent
SE = NorM(L) ;
return S€:;

Algorithm 2: TAGAD(L)

Input :ATAG G = (V, E, D), a set of training nodes Vi, the class label y; of the node
V; € Virain, the training epochs NV, the projected features H, the semantic embeddings
T, the similarity threshold ¢, the hyperparameter

Output : Anomaly score Sy, of all nodes.

wy = MEAN{t,;u € V};
for epoch =1,..., N do
H=H - Wt
T=T—wy;;
for v € Vi, do
Sampling W first-order nodes of v to form the ego graph AY, ;
Build the text graph A%, using Eq.|13|;
Compute ego graph embedding Z7, and text graph embedding Z7 and using Eq.
sy = NorM(|| Z}; — Zi| + Bl Af — A%|)
Compute the loss L using Eq.|14(;
Update w; by using gradient descent
forv e Vdo
| Compute the local score S} using a similar way to Lines 18-21.
return Sp;

A Algorithm and Complexity

A.1 Algorithmic description

The global GAD module of TAGAD, the local GAD module of TAGAD are presented in Algorithm[I]
and Algorithm [2] respectively.

A.2 Complexity Analysis

In the global module, Lines 1-2 are pre-processing. For each epoch, the time complexity of the
GNN encoder (line 4) is O(nLdydy), where L is the layer number of the GNN. In line 3, it takes

13

455
456

457
458
459
460
461
462

463

464

465
466

467

468

469
470

471
472

473

474
475
476
477
478

479
480
481
482

483

484
485
486
487

489
490

491
492
493

O(ndydy) in the feature projection. In line 6, the GNN decoder process takes O(ndydy) Overall,
the time complexity of Algorithm |1|is bounded by O(Nn(Ldydy + Ldpdy + dudy))

In the local module, it takes O(ndy) for initialization (line 1). Then, for each epoch and each training
node v, it takes O (W) to sample an ego graph A%, (line 6) and takes O(W2dy) to build the text graph
A% (line 7). Then, the time complexity of Eq. s O(Wdy). In the few-shot settings, there are few
nodes in Vipin. Therefore, it takes O(N W?2dy) to train the local module of TAGAD (lines 2—11).
Similarly, computing the local anomaly score S; (lines 12—13) takes O(nW?2dy). Overall, the time
complexity of Algorithm is bounded by O(nW?2dy.)

B Theoretical Analyze

B.1 Local anomaly score

Theorem 1 Given a TAG G = (V, E, D), in the local GAD module, the expected local anomaly
score for anomalous nodes is greater than that for normal nodes.

To prove this theorem, we make the following assumptions:

1. For a local anomaly node, the feature deviation is random, not correlated to its neighbors.

2. For normal nodes, the structural and textual similarities are positively correlated, as their
text content and graph neighbors are semantically coherent.

3. For a normal node, the feature deviation from the overall distribution is similar to that of its
neighboring nodes.

We first consider the structural difference between G g and Gr:
E(| Ay — A% = > E[(A%(,5) — A (i, 5))?]
]

(15)
= Y Var(A§(i,) + Var(A$ (i, §) — Cov(AR (i, 1)), A%(i, 1))

,JE€EVy

According to our assumption, for anomaly nodes u, the ego graph and the text graph are less correlated
the normal nodes v, so Cov(A%(u, j)), A%(u,7)) < Cov(A%(u,s)), A%(u,j)). Meanwhile, the
feature of anomaly nodes is more random, hence, the variance of the text graph for anomaly nodes is
also large. Overall, the expected structural difference between the ego graph and the text graph is
larger for anomaly nodes than for normal nodes.

As discussed in Section [4.1] the feature embedding difference for anomaly nodes is also higher
due to the hard alignment. Therefore, the total difference between the ego graph and the text
graph—comprising both feature and structural components as defined in Eq. [[0}—serves as an
effective local anomaly score, particularly sensitive to the presence of anomaly nodes.

B.2 Remove embeddings

Theorem 2 Given a TAG G = (V, E, D), and the common embedding vector w; representing the
shared semantic information among node features, in the local GAD module, removing w; from the
semantic embeddings in the local GAD module amplifies the structural differences between the ego
graph and the text graph for anomalous nodes.

We denote the semantic embedding for the node 7 as t; = w; + J;, where §; is a deviation. §; is
a significant deviation for anomaly nodes, while d; is a small noise, related to the structure of the
normal nodes. For the original similarity between node ¢ and node j,

) ti-t; (wt'f'(si)'(wt—"_é')
ti,t;) = L = K 1o
B 1 B R A et A ()

It can be easily found that the common feature hides local anomalies by inducing high similarities.
In the special case, if w; > §;, the similarity sim(t;,t;) = 1 for any pair of nodes, regardless of
whether they are normal or anomalous.

14

494

495
496
497
498

499
500

501

502

503

504
505
506

507
508
509
510
511

512
513
514
515
516
517

518

519
520

521
522

523
524

525
526

527

529
530

Dataset #Node #Edges #Attributes #Anomalies (Rate)

Cora 22K 8.1K 1361 194(8.51)
Arxiv 169K 1.4M 128 10K(6.14)
Pubmed 19K 112K 500 963(4.89)

Table 4: Statistics of datasets.

After removing w;, the local embedding is §; for node . Therefore, the new similarity is:
8i o 6
sim(th 1)) = —— a7
[16:1] - 11511

From the above assumptions, for a normal node, J; and ¢; are similar, leading to high similarity.
However, for anomalous nodes, §; is uncorrelated with neighbors’ deviations, leading to significantly
lower similarity scores. Consequently, the structure of the text graph diverges more strongly from
that of the ego graph for anomalous nodes, thereby amplifying the local anomaly signal.

Overall, removing the common embedding w, from the semantic embeddings amplifies the structural
differences between the ego graph and the text graph for anomalous nodes.

C Details of Experiment Setup

C.1 Description of Datasets

The statistics of the datasets are shown in Table[d]

We make a slight modification to a widely used approach|Liu et al.[(2022) to inject anomaly nodes in
the TAG. We use two techniques in the method, injecting structural anomaly nodes and contextual
anomaly nodes. The method is described below.

Injecting structural anomaly nodes. In this technique, we create g densely connected groups of
nodes to inject the structural outliers. Each group contains m nodes, resulting in a total of m x g
structural anomaly nodes. Specifically, for each group, we first randomly sample m nodes without
replacement to form this group. Then, for these nodes, we make them fully connected and then drop
each edge independently with probability p. In experiments, we set p = 0.2.

Injecting contextual anomaly nodes. In this technique, we inject o contextual anomaly nodes.
First, we sample o nodes as contextual anomaly nodes from the node set V' without replacement.
These selected nodes are denoted as V., where |V.| = o. The remaining nodes V,. = V' \ V, form
the reference set. Then, for each node v € V., we randomly choose ¢ nodes without replacement
from V.. Among these ¢ reference nodes, we identify the most dissimilar node u to v by computing
Euclidean distances and then modify s, = s,,.

C.2 Description of Baselines

The following unsupervised learning methods are compared to highlight the effectiveness of the
proposed TAGAD under zero-shot settings.

* SCANXu et al.|(2007): A structural clustering method to detect clusters and anomaly nodes
based on a structural similarity measure.

* RADAR[Li et al|(2017): A learning framework that characterizes the residuals of attribute
information.

* ANOMALOUS [Peng et al.|(2018): A joint framework to conduct attribute selection and
anomaly detection jointly based on CUR decomposition and residual analysis.

e DOMINANT [Henaff et al.| (2015): GNN that reconstructs the features and structure of the
graph using the auto-encoder.

* ANOMALYDAE [Fan et al.| (2020): GAE that reconstructs both node embeddings and
attribute embeddings.

15

531

532
533

534
535

536
537

538
539

540

541

542

543

544

545

546
547

548
549

550

551
552
553
554
555
556
557
558
559
560

561
562
563
564

566

567

568

569

570

571
572
573
574
575
576

GAD-NR Roy et al.[(2024): GAE that incorporates neighborhood reconstruction.

CONAD Xu et al.| (2022): GNN that uses a data augmentation strategy to model prior
human knowledge.

NLGAD |Duan et al.,| (2023)): Normality learning-based GNN via multi-scale contrastive
learning.

* COLA|Liu et al.|(2021b): A contrastive learning based GNN that captures the relationship
between each node and its neighboring structure.

The following supervised learning methods are compared to highlight the effectiveness of the proposed
TAGAD under few-shot settings.

* GCN Kipf and Welling (2016)): Standard graph convolution network (GCN).

* GAT Velickovic et al.|(2017)): Standard graph attention network (GAT).

* GATSEP Platonov et al.|(2023): GNN that deals with the heterophilous graphs.

e PC-GNN |L1u et al.[|(2021a): GNN that handles imbalanced classes.

* AMNET|Chai et al.[(2022)): GNN that analyzes anomalies via the lens of the graph spectrum.

* BWGNN [Tang et al.|(2022)): GNN using graph spectral filters to detect fraudsters.

* RF-GRAPH Tang et al.|(2024): Tree-ensembled method using random forest and neighbor
aggregation.

* XGB-GRAPH Tang et al.| (2024): Tree-ensembled method using XGBoost and neighbor
aggregation.

C.3 Details of Implementation

We implemented TAGAD in PyTorch 2.2.0 Paszke et al.|(2019) and Python 3.11. For our model, the
selection of LMs and GNNss is flexible. In our experiment, we choose a representative LM—DeBERTa-
base and a powerful GCN model for the main experiments. The DeBERTa-base is a pre-trained
language model with 100M parameters. The hidden size of the DeBERTa-base model is 768. We
keep the same hidden size of the GCN model with DeBERTa-base. We use AdamW optimizer with
learning rate [r = le — 3 and weighting decay 5e — 4 for model optimization. For all datasets, we run
200 epochs in the global GAD module and 50 epochs in the local GAD module. In the global GAD
module, the scaled temperature 7 is 0.07. In the local GAD module, the similarity threshold € is 0.95.
The hyperparameters «, 3, A are set to be 0.6, 0.4, 0.4. Additionally, we apply Early Stopping with a
patience of 10 to prevent overfitting and terminate training when performance stops improving.

In unsupervised settings, for NLGAD and COLA, we use the default parameters described in
the original papers. For other methods, we use the codes and parameters provided in the PyGOD
library [Liu et al.| (2022)). In supervised settings, we use the codes and parameters provided in the
GAD benchmark [Tang et al.|(2024). The links to their source codes are as follows:

* PyGoD: https://github.com/pygod-team/pygod

* GADBench: https://github.com/squareRoot3/GADBench
* NLGAD: https://github.com/FelixDJC/NLGAD

* COLA:https://github.com/TrustAGI-Lab/CoLA

D Supplemental Experiments

D.1 Performance with combined feature

In this section, we compare our model performance with unsupervised baselines using the combined
feature of the BOW feature and the LM feature as input. As shown in Table 5} our model continues to
outperform the baselines, although both global and local perspectives of textual features are provided.
Notably, the baselines, despite both types of features input, perform worse than when using only one
perspective (either BOW or LM) in most cases. This highlights the importance of joint modeling
rather than simple feature concatenation for effectively leveraging textual information in GAD.

16

https://github.com/pygod-team/pygod
https://github.com/squareRoot3/GADBench
https://github.com/FelixDJC/NLGAD
https://github.com/TrustAGI-Lab/CoLA

577

578
579
580

581

582
583

585
586

587
588
589

590
591
592

593
594
595
596
597

Table 5: Performance Comparison with combined feature of the BOW feature and the LM feature
under zero-shot settings. The highest performance is highlighted in boldface. “—" indicates that the
algorithm cannot complete on large datasets due to limited GPU memory.

Method Cora | Arxiv | Pubmed
SCAN 0.705 | 0.668 0.721
RADAR 0.575 - 0.489
ANOMALOUS | 0.547 - 0.358
DOMINANT 0.707 | 0.688 0.459

ANOMALYDAE | 0.713 - 0.499
GAD-NR 0.712 - 0.677
CONAD 0.688 | 0.692 0.694
NLGAD 0.500 - 0.571
COLA 0.590 - 0.554
TAGAD 0.905 | 0.747 0.874
1.0 = 1.0 1.0

o
3
o
%
o
%0

o
>
o
>
o
>

—— TAGAD
SCAN

I
=
I
i
I
=~

\

RADAR

True Positive Rate

I
1Y)

o
==

True Positive Rate
True Positive Rate

e
o

ANOMALOUS
DOMINANT

S
o

=
==
=
==

0 02 04 06 08 10 0 02 04 06 08 10 0 02 04 06 08 1.0 AnomalDAE

False Positive Rate False Positive Rate False Positive Rate CONAD

(a) Cora (b) Arxiv (c) Pubmed

Figure 2: ROC curves on different datasets. The seven subplots show the True Positive Rate (TPR) vs
False Positive Rate (FPR) for different algorithms across various datasets. The larger the area under
the curve, the better the performance of graph anomaly detection.

D.2 Performance Comparison in Terms of AUC

We compare TAGAD with 6 unsupervised baselines in two datasets. The ROC curves on three
datasets are illustrated in Fig.|3] We can find that the True Positive Rate of our model is higher than
other models in most conditions.

D.3 Hyperparameter Analysis

In this part, we conduct a comprehensive analysis of four key hyperparameters a, 3, A, and € to
evaluate their impact on the performance of our framework. In detail, the analysis of « is performed
on TAGAD(G), while others are performed on TAGAD under zero-shot settings. Figure 3] shows
the AUC of our model on three datasets under zero-shot settings as one of the parameters «, 3, A, €
varies. By default, « = 0.5, 3 = 0.5, A = 0.5, = 0.9.

Parameter o« As shown in Figure [3a] with increasing «, the performance improves at first, but
decreases later. This is due to the balance of the alignment and the reconstruction loss. Ignoring
either loss will degrade the model’s performance.

Parameter 3 From Figure [3b, we can observe that the performance of different [is stable. This is
because both the structural difference and the feature difference provide overlapping insights into
local anomaly nodes.

Parameter \ Figure [3c[shows the performance with different A. We can find the best performance
in different \. This is because the ratio of global and local anomaly nodes is different across different
datasets. For the datasets with more global anomaly nodes, such as Pubmed, a smaller value of A
leads to better performance. For the datasets with more local anomaly nodes, such as Arxiv, the larger
value of \ is better.

17

598
599
600

602

603

604
605
606
607

Cora Arxiv Pubmed

0.95 0.90
0.90 0.85
0.85 0.80
00.80 O
=) -0.75
<0.75 <
0.70 0.70
0.65 0.65
06000 02 04 06 08 1.0 06000 02 04 06 08 10
(a) Effect of a. (b) Effect of 5.
0.9
0.90
0.8 0.85
0.80
S 00.75
—0.7
< <0.70
0.65
0.6 0.60
0.55
9500 02 04 06 08 10 00 02 04 06 08 1.0
(c) Effect of \. (d) Effect of €.

Figure 3: Parameter sensitivities of TAGAD w.r.t. five hyper-parameters on three datasets.

Parameter ¢ In order to evaluate the effectiveness of €, we adopt different values of to adjust the
similarity threshold when constructing the text graph under zero-shot settings. We can see that the
best parameter e is different in different datasets. This is related to the ratio of common features. A
higher € performs better when nodes share many same features, while performance is more stable
when feature diversity is high.

E Limitation of Our work

One limitation of this work is the absence of publicly available real-world datasets, necessitating the
use of synthetic datasets with the widely used injected anomaly nodes approach in the experiment.
A potential future direction involves exploring the integration of large language models (LLMs) to
enhance anomaly detection on TAGs.

18

608

609

610
611

612

614
615
616

617
618
619

620
621

622

623

624

625

626

627

628

629

630

631

632
633
634
635
636

637
638

640
641
642
643
644

646

647
648

649
650

652
653
654

655

656
657

658

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our main claims are elaborated in both the abstract and introduction sections.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: : The limitations of this paper have been discussed in Section [E]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

19

659

660

661
662
663

665
666
667
668
669
670

671

672
673
674

675

676
677

678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

704
705
706
707
708
709

710

71
712
713

Justification: The assumptions and the proof are shown in Appendix B}

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We display the experimental instruction in the paper, provide the hyperparame-
ter search space, and upload the source code for reproduction of the proposed method.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

714

715

716

77

718
719

720
721
722
723

724
725
726

727
728

729
730
731

732
733

734
735
736

737
738
739

740

741

742

743

744
745

746
747
748

749
750

751

752
753

754

756
757
758
759
760
761
762
763

764

Answer: [Yes]
Justification: Yes, all the datasets are included along with the uploaded source code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the experimental details are given in Section [and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment context significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the context significance of the experiments?

Answer: [Yes]

Justification: All the experimental results are acquired by multiple trials of experiments, and
we report the average results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or context significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

765
766

767

769

770
771
772

773
774

775

776
77
778

779

780

781

782

784

791
792

793

794

795

796

797
798

799
800
801

802
803

804

805

806

807

808
809

810
811
812
813

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we provide the computing infrastructures in Sec [6]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This research conforms with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

814
815
816
817
818
819
820
821
822
823
824

825
826
827
828

829

830
831
832

833

834

835

836

837
838
839
840

841
842

843
844

846

847
848
849

850

851

852

853
854

855
856
857
858
859
860
861
862
863
864
865

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

866
867

868

869
870

871

872

873

874
875

877

878
879

880
881

882

883
884
885

886

887

888

889

890

891
892
893
894
895
896

897
898

899
900
901
902

903

904

905

906

908
909
910
911
912
913
914
915

916

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve potential risks incurred by study participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

24

917
918
919
920

921

922
923

924

925
926
927
928

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM used in this paper does not impact the core methodology, scientific
rigorousness, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Graph Anomaly Detection
	Graph Pre-training and Prompt Learning

	Preliminaries
	Method
	Global GAD module
	Triple Encoders
	Text-Graph alignment
	Graph Decoder

	Local GAD module
	Zero-shot detection.
	Few-shot detection

	Experiments
	Experiment Setup
	Performance of GAD
	Ablation Studies

	Conclusions
	Algorithm and Complexity
	Algorithmic description
	Complexity Analysis

	Theoretical Analyze
	Local anomaly score
	Remove embeddings

	Details of Experiment Setup
	Description of Datasets
	Description of Baselines
	Details of Implementation

	Supplemental Experiments
	Performance with combined feature
	Performance Comparison in Terms of AUC
	Hyperparameter Analysis

	Limitation of Our work

