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ABSTRACT

This paper proposes a video scratch removal method based on guided diffusion
with locally constrained generation. By estimating optical flow between adjacent
frames and integrating visual features, we construct a guidance map that encodes
both temporal and spatial information. A relaxed mask is computed using a mean
filter, which helps mitigate motion estimation errors while effectively distinguish-
ing potential scratch regions.To further reduce motion-induced blurring during
the restoration process, the proposed method leverages the guidance map—fused
from temporal and spatial cues of neighboring frames—as a conditioning input to
the diffusion model for restoring the current frame. In addition, the relaxed mask
is used to constrain the generation to local regions, allowing uncorrupted areas to
retain their original content.Experimental results demonstrate that our approach
not only significantly improves restoration quality but also effectively reduces the
likelihood of missing scratches.

1 INTRODUCTION

A vast number of old films and video archives with significant artistic and historical value still exist
today. However, due to long-term environmental degradation and improper storage conditions, these
invaluable visual records often suffer from irreversible image deterioration, including scratches,
blotches, and tears. Such degradations severely compromise both the visual quality and the semantic
integrity of the content. To preserve the cultural memory and historical value embodied in these
legacy films, film restoration technologies have been widely adopted in archives, museums, and
professional restoration institutions. Traditional restoration workflows, heavily rely on manual labor,
which is time-consuming, labor-intensive, and inherently difficult to scale to large collections. This
highlights the pressing need for developing automated, intelligent, and efficient restoration methods.

Among the various forms of degradation in deteriorated vintage films, scratches are among the most
common and visually disruptive artifacts. This paper focuses on addressing the problem of scratch
removal in old film footage. Despite recent advances in restoration techniques, several challenges
remain. Due to the age and condition of analog film, their digitized counterparts often suffer from
inherently poor image quality, characterized by low resolution, high levels of noise, and limited dy-
namic range Liu et al. (2024). Moreover, in scenes with rich textures or complex motion patterns,
scratches are frequently entangled with the intrinsic texture structures within frames. This entan-
glement leads to indistinct scratch boundaries and uneven intensity profiles, making it difficult for
traditional detection methods—typically based on simple brightness cues, geometric shapes, or local
statistical features to accurately distinguish genuine scratch artifacts from fine image details. Recent
methods Wan et al. (2022); Liang et al. (2022); Lin & Simo-Serra (2024) still exhibit significant
limitations in addressing the scratch–texture confusion problem in such low-quality sources, often
resulting in erroneous processing of complex background regions, as illustrated in Fig. 1.

Moreover, as a form of temporal information, old film restoration faces a critical challenge in-
duced by inter-frame motion: visual consistency.Scratches in old films typically appear randomly,
while camera motion and dynamic scenes cause continuous changes in the visibility of scratches
and their occlusion relationships with the background throughout the video sequence.If the restora-
tion algorithm lacks effective modeling of spatiotemporal context—processing frames in isolation
or relying on unreliable motion estimation—the restored regions are highly prone to severe arti-
facts across consecutive frames, such as abrupt changes in color, brightness, texture, or boundary
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Input RTN RRTN RVRT Ours

Figure 1: In complex real-world scenes, textures and scratches often exhibit similar visual character-
istics, causing models to easily confuse them and resulting in unsuccessful restoration of scratched
regions. The above figure shows the restoration results of different methods trained on the same
dataset, where our method demonstrates significantly better performance in addressing the confu-
sion between textures and scratches.

misalignments.These dynamic artifacts are visually jarring and can severely undermine the tempo-
ral coherence of the video, sometimes causing more perceptual disturbance than the original static
scratches.Among existing methods, traditional motion compensation techniques are constrained by
the inaccuracies of optical flow estimation on the low-quality images typical of old films. Mean-
while, many approaches lack explicit guidance of visual features in the temporal dimension, leading
to suboptimal performance in handling scenes with motion.

To address the dual core challenges of ”texture-scratch confusion” and ”visual consistency” in the
restoration of low-quality old film videos, we propose a video scratch restoration method based on
guided diffusion with local generation. Our key contributions are summarized as follows:

• We propose a spatiotemporal collaborative displacement-relaxed restoration strategy,
which integrates inter-frame motion information and visual features to construct a motion-
guided guidance map, enabling accurate modeling of spatiotemporal variations. The guid-
ance map further provides scratch region priors to alleviate the problems of missing or
incorrect restorations.

• We introduce a guidance-map-driven video diffusion restoration framework. Specifically,
we design a temporally-conditioned diffusion model based on the guidance map to achieve
fine-grained restoration of degraded frames, effectively mitigating motion-induced blur
and artifacts.During training, the model learns constrained generation of scratch regions in
high-dimensional feature space. During inference, a local generation strategy is employed
to fully leverage temporal dependencies and visual cues across frames.

• We conduct experiments on both synthetic and real-world video scratch datasets. Results
demonstrate that our method outperforms existing state-of-the-art approaches in both sub-
jective visual quality and objective evaluation metrics, achieving superior performance and
validating its effectiveness and practicality.

2 RELATED WORK

2.1 VIDEO RESTORATION

The task of scratch removal in old films can be regarded as a subcategory of video restoration. In this
broader context, video denoising Monakhova et al. (2022); Zheng et al. (2023); Liang et al. (2022)
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aims to remove noise from video frames. In contrast, scratches are structured artifacts, typically
manifesting as linear or patch-like occlusions, and their restoration relies more heavily on semantic
understanding and localized reconstruction.; video deblurring Kim et al. (2024); Shang et al. (2021);
Pan et al. (2023) primarily addresses frame-wide blur caused by motion or defocus, whereas scratch
removal involves localized damage that requires content-aware reconstruction methods; and weather
degradation removal, such as desnowing Ren et al. (2017); Chen et al. (2023); Wu et al. (2024),
dehazing Xu et al. (2023); Liu et al. (2022a); Van Nguyen et al. (2022), and deraining Yang et al.
(2019); Ren et al. (2017); Zhang et al. (2023), primarily addresses global degradations caused by
natural weather conditions, which typically follow well-defined physical models.Video inpainting
Xu et al. (2019); Quan et al. (2024) is conceptually similar to scratch removal, aiming to fill occluded
or missing regions in a temporally coherent manner. However, video inpainting typically deals with
relatively large, regular-shaped holes within predefined regions. In contrast, scratches in old films
are often slender, irregularly shaped, and intricately distributed, posing significant challenges for
both detection and restoration.

2.2 OLD FILM RESTORATION

DeepRemaster Iizuka & Simo-Serra (2019) was the first framework to apply temporal convolutional
neural networks for old film restoration. To create training data, the authors synthesized degradation
by combining real noisy film clips with high-quality videos, and then applied further algorithmic
corruption to simulate realistic film damage. This enabled the model to learn an effective represen-
tation of old film degradation.The method addresses old flim mixed degradations, including flicker
suppression, colorization, and overall visual enhancement.

Subsequent work Wan et al. (2022) employed a recurrent transformer network to more effectively
model temporal dependencies. The method leverages optical flow between frames to enforce tempo-
ral consistency and uses flow cues to identify potential scratch regions.These methods often incor-
porate perceptual loss Johnson et al. (2016) to boost visual quality. Lin & Simo-Serra (2024) further
improved upon this approach by integrating the Swin Transformer Liu et al. (2022b) to strengthen
global context modeling. In addition, it introduced a more effective scratch discrimination mech-
anism and adopted recursive structures to better handle challenging types of film degradation.Mao
et al. (2025) selected Mamba as the backbone network and proposed MambaOFR. Their approach
introduces degradation-aware prompting to dynamically adapt to complex and mixed degradations
in old films. Additionally, a flow-guided mask deformable alignment module is designed to reduce
the temporal propagation of structured artifacts.

Cai et al. (2023) addresses scratch restoration in printed photos by leveraging collaborative scratch
and background context. The core component, the Scratch Contextual Assisted Module, adaptively
learns pixel-wise correspondence within the mask by computing distances between masked-out and
encoder features, enhancing restoration quality.Liu et al. (2024)proposes a Gaussian probability-
based model with local adaptive one-dimensional Gaussian weighted segmentation and invalid re-
gion filtering to enhance scratch integrity and reduce false positives. By incorporating trajectory
information, it reduces missed detections and replaces unstable Kalman filtering with a U-Net-based
method for more robust trajectory prediction.

2.3 DIFFUSION MODELS

Recently, Diffusion models Xia et al. (2023); Zhu et al. (2023); Cao et al. (2025) have gained sig-
nificant attention in restoration tasks, particularly in the field of image inpainting. Their ability
to generate high-fidelity and realistic content through a gradual denoising process has made them
highly effective for image restoration. These models excel at reconstructing complex textures and
semantically meaningful structures from sparse or degraded inputs.

However, the application of diffusion models to video restoration remains in its early stages. In old
film restoration, there is significant room for improvement. We aim to leverage the high-quality
generation capabilities of diffusion models to specifically restore scratches in old films, achieving
more realistic results.
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Figure 2: Overview of the proposed framework.

3 METHOD

The model takes as input a degraded video sequence containing N + 1 frames, denoted as
{I0, I1, . . . , IN}. For each frame In, n ≤ N , its adjacent neighboring frames In−1 and In+1 are
used to compute a spatiotemporally coordinated guidance map Gn and the corresponding scratch
region mask Mn, which indicate the damaged areas that require restoration in the current frame.
Based on this conditional information, a temporal conditional diffusion model performs noise pre-
diction and reconstruction for the scratch regions on a frame-by-frame basis. The model outputs a
set of N repaired frames {Z0

1 , Z
0
2 , . . . , ZN − 10} corresponding to the input sequence, Z0

ndenotes
the repaired result of the input frame In.And each frame Z0

n is the restored clear image guided by
Gn and Mn through the diffusion process.Our method has certain limitations, notably the first and
last frames cannot be effectively restored.Pipeline overview in Fig. 2.

3.1 S-T DISPLACEMENT RELAXED FOCUSED RESTORATION METHOD

In most degraded old movie videos, there exist many small scratches that are easily mixed with
the texture information in the video content. To accurately identify the scratched regions in video
frames, this paper proposes a guided mask generation strategy that fuses spatial visual features with
temporal motion information. This method utilizes the visual features and bidirectional optical flow
information of the neighboring frames In−1 and In+1 around the current frame In to construct a
guidance map Gn for In, and generates a scratch region mask by calculating the difference between
this guidance map and the current frame. However, motion estimation between adjacent frames is
often accompanied by some estimation errors, which affect the mask generation. Therefore, a mean
filtering operation is introduced before the difference calculation to reduce the impact of motion
estimation errors and generate a more reliable mask.

To achieve this goal, we introduce an optical flow estimation model to capture the motion informa-
tion between frames, which is then used to predict the intermediate frame:

fn−1→n, fn+1→n = Flow(In−1, In+1), (1)

where In−1 and In+1 denote the adjacent frames before and after the current frame In, respectively.
The function Flow estimates the optical flow between frames. fn−1→n and fn+1→n represent the
optical flow from frame n− 1 and frame n+ 1 to the current frame n.

Thanks to some recent advance Wan et al. (2022), it has been shown that using only optical flow is
still insufficient to accurately localize potential scratch regions. Therefore, we aim to incorporate
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both optical flow and visual features to guide the detection of scratches. Specifically, we further
compute the visual features from adjacent frames and fuse them with the optical flow to generate a
guidance map:

Gn = G(Fn−1, Fn+1, fn−1→n, fn+1→n), (2)

where Fn−1 and Fn+1 denote the visual features of the adjacent frames, and G is the function
for fusing optical flow and visual features. Gn represents the guidance map for the n-th frame,
which encodes both temporal and spatial information across neighboring frames. This guidance
map is subsequently used as a conditioning input for generating restored frames, with related details
provided in the following sections.

Since the guidance map may contain deviations introduced by motion estimation, we apply a mean
filter to smooth the inter-frame motion. The filtered frames are then used to calculate the pixel-wise
difference Dn between the input and the guidance map:

Dn = |MeanFilter(In)− MeanFilter(Gn)|, (3)

The resulting pixel difference is used to generate a binary mask of potential scratch regions:

Mn(x, y) =

{
1, Dn(x, y) > τ,

0, otherwise.
(4)

Mn(x, y) is a binary mask indicating whether pixel (x, y) in frame n is marked as a scratch (1) or a
normal region (0). τ is a predefined threshold that distinguishes scratch regions from normal areas.
The resulting spatiotemporal mask is used to guide the subsequent frame restoration process.

3.2 VIDEO RESTORATION VIA TEMPORALLY CONDITIONED DIFFUSION MODEL BASED ON
GUIDANCE MAPS

Diffusion models exhibit strong generative capabilities and have been widely adopted in the image
restoration domain. However, their capacity for temporal modeling remains limited. To address
this issue, we build upon a spatiotemporal co-guidance mechanism for mask generation and further
incorporate a guidance map Gn to enhance the diffusion model’s ability to capture temporal depen-
dencies. Simultaneously, the mask serves to guide the identification of potential scratch regions.
For high-fidelity reconstruction of the corrupted areas, we employ ConvNeXt as the noise predic-
tion network. This network adopts a residual architecture, combined with deep convolutional layers,
layer normalization, and GELU activation functions, thereby providing enhanced spatial modeling
capabilities.

At each reverse diffusion step t, the model takes the current diffusion state Zt
n as input and integrates

the guidance map Gn and the original image In as conditional inputs to predict the noise components
within the masked region. During training, Z0

n is treated as the original clean image, while Zt
n is

progressively generated from Z0
n through a forward diffusion process defined as:

Zt
n =

√
αtZ

0
n +

√
1− αtϵ, ϵ ∼ N (0, I) (5)

During training, Z0
n denotes the undistorted image of the n-th frame, serving as the starting point of

the diffusion process. Zt
n represents the corrupted image at timestep t, obtained by injecting noise

into Z0
n over t steps. The noise term ϵ follows a standard multivariate Gaussian distribution, i.e.,

N (0, I), simulating random perturbations in the latent space.

To improve the model’s sensitivity to scratch regions during training, we incorporate the mask infor-
mation Mn into the loss function, thereby encouraging the network to focus more explicitly on the
reconstruction quality within the damaged areas. Specifically, we impose explicit constraints in both
pixel space and perceptual feature space on the masked regions, guiding the model to prioritize the
semantic recovery of structurally incomplete areas. This design ensures that local fidelity in scratch
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regions is optimized without compromising global consistency. The detailed formulation of the loss
function will be presented in a subsequent section.

During inference, to ensure the stability of the generated results and preserve the content outside
the masked regions, we propose a mask-based local update strategy. At each diffusion step, the
model updates only the masked region Mn by predicting its noise component, while maintaining
the unmasked region (1−Mn) in its original noisy state:

Zt
n = (1−Mn)⊙ Ẑt

n +Mn ⊙ Z̃t
n, (6)

where, Zt
n denotes the fused estimation of the n-th frame at diffusion step t. Zt

n is the result of
the forward diffusion applied to the degraded frame, while Z̃t

n is the predicted output from the
noise estimation network at the previous step. Mn is the corresponding binary mask indicating the
scratch regions. The final output at each step is represented by Ẑt

n, where, at t = 0, the non-scratch
regions retain their original input values, and the scratch regions are reconstructed by the model.
This strategy achieves a weighted fusion of restored and original content via the mask, ensuring a
balance between local restoration and global visual consistency.

3.3 LOSS FUNCTION DESIGN

To effectively restore scratched regions in video frames and enhance the overall quality of the in-
painting results, we incorporate two complementary loss functions during training: a perceptual
loss and a pixel-wise L1 loss. The perceptual loss encourages semantic consistency in the recon-
structed images, while the L1 loss ensures the accuracy of low-level details. The combination of
these losses enables the model to preserve structural and textural fidelity while increasing similarity
to the ground-truth images.

The perceptual loss evaluates the semantic similarity between the reconstructed image and the
ground-truth image by comparing their representations in a high-level feature space. Specifically,
we leverage a pre-trained VGG network to extract intermediate feature maps and compute the L2
distance between corresponding layers. The perceptual loss is formally defined as:

Lperceptual =
∑
l∈L

1

Nl

∥∥∥ϕl(Ît)− ϕl(It)
∥∥∥2
2

(7)

where ϕl(·) denotes the feature extraction function at layer l of the VGG network, L is the set of
selected layers for perceptual loss computation, and Nl is the number of elements in the feature
map at layer l. This loss function captures high-level semantic structures and textures, significantly
improving the perceptual quality of the reconstructed images.

The pixel-wise L1 loss measures the absolute difference between the restored image and the ground-
truth image at the pixel level, ensuring faithful reconstruction of fine-grained details. Compared to
the L2 loss, the L1 loss imposes more balanced penalties across pixels, avoiding over-penalization
of large errors. This makes it more robust in scenarios involving sparse noise or localized artifacts.
The pixel-wise loss is defined as:

Lpixel =
1

N

N∑
i=1

∥∥∥Ît(i)− It(i)
∥∥∥2
2

(8)

where N denotes the total number of pixels in the image, and Ît(i) and It(i) represent the values
at the i-th pixel of the restored and ground-truth images, respectively. This loss promotes accurate
reconstruction of local details and prevents over-smoothing or structural degradation.

To jointly optimize for both perceptual quality and pixel-level accuracy, the total training objective
is formulated as a weighted sum of the two loss terms:

Ltotal = Lpixel + λLperceptual (9)
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where, λ is a hyperparameter that balances the contributions of the perceptual and pixel losses. By
minimizing this total loss, the model is encouraged to restore visually plausible and semantically
coherent content while preserving local textures and structures, thereby producing more natural and
realistic inpainting results.

4 EXPERIMENTS AND RESULTS

To compare our method with state-of-the-art approaches, we trained all models, including ours, on
the same dataset and conducted both quantitative and qualitative evaluations against three leading
methods: RTN Wan et al. (2022), RRTN Lin & Simo-Serra (2024) and RVRT Liang et al. (2022).
Additionally, we tested all trained models on a real-world public old film dataset.

Input RTN RRTN RVRT Ours GT

Figure 3: Compared to other methods, our approach consistently achieves superior restoration per-
formance even in complex scenes.

At present, publicly available datasets specifically designed for video scratch removal remain scarce.
Existing methods often rely on noise artifacts extracted from old films; however, such data typically
contain various unrelated interference factors, limiting their effectiveness in the context of targeted
scratch restoration tasks. To address this limitation, we collaborated with experts in film restoration
to construct a dedicated dataset.

Approximately 1,000 scratch patches were manually extracted from real archival film material by
professional restoration artists, ensuring both the authenticity and diversity of the scratch patterns.
These small scratch images were then subjected to random transformations, including deformation,
rotation, and composition, to generate 1,000 large-scale images containing varying quantities and
types of scratches. Using custom Photoshop scripts, these synthetic scratch maps were seamlessly
blended into real video frames to simulate realistic scratch effects. For the underlying video data,
we employed the Vimeo-90K dataset as the primary source.

In this work, we utilize the triplet interpolation subset of the Vimeo-90K dataset. The Vimeo-
90K dataset Xue et al. (2019) is a large-scale video collection consisting of approximately 90,000
high-quality video clips, each comprising hundreds of frames. It is widely used in various video
processing tasks such as video super-resolution and denoising. The triplet interpolation subset pro-
vides intermediate frames between adjacent video frames. Given two input frames, In−1 and In+1,
the dataset also provides the interpolated intermediate frame In. Our model architecture requires
three input frames: the preceding frame In−1, the current frame In, and the succeeding frame In+1.
Thus, this triplet subset is particularly suitable for training and evaluating video scratch inpainting
models while remaining compatible with general video restoration frameworks.

It is important to note that separate batches of synthetic scratch images were used for training and
testing. Specifically, the large-scale scratch datasets were partitioned to ensure a clear separation
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between the training and testing sets. This design ensures that the model is evaluated on unseen
data, thereby promoting reliable generalization and robust performance assessment.

4.1 QUANTITATIVE EVALUATION

To quantitatively evaluate our method, we conduct experiments on a synthetic dataset using widely
adopted image quality metrics, including PSNR, SSIM, LPIPS and FID. The results are presented
in Table. 1. As shown, our method achieves the best performance across all four metrics.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓

RTN 34.7612 0.9830 0.0333 22.2231
RRTN 34.4915 0.9829 0.0325 21.8555
RVTN 34.6248 0.9806 0.0317 22.3697
Ours 37.3129 0.9876 0.0160 16.4844

Table 1: Quantitative comparison on the synthetic dataset across four metrics: PSNR, SSIM, LPIPS,
and FID. Our method achieves the best performance across all metrics.

Method L1↓ IoU↑ F1↑ Acc↑
RTN 0.2399 0.1148 0.1869 0.6956
RRTN 0.0221 0.4620 0.6110 0.8612
Ours 0.0196 0.4913 0.6408 0.8971

Table 2: Comparison of different methods for scratch region identification. Our method achieves
the best performance across all metrics.

To verify the effectiveness of our proposed temporally-relaxed mask, we compare it with other ap-
proaches designed for identifying potential scratch regions. Taking the ground-truth scratch regions
as reference, we evaluate the performance using four metrics: L1 score, IoU, F1 score, and pixel-
level Accuracy. The results are summarized in Table. 2. Our method outperforms the others across
all metrics, demonstrating its superior ability in scratch region localization and segmentation.

4.2 QUALITATIVE EVALUATION

For the quantitative evaluation, we conducted comparisons on both the synthesized data and real
old film. In Fig. 1, we selected four degradation cases that are difficult to detect, and the results
show that our method effectively reduces missed restorations. In Fig. 3, we used the synthetic
dataset and selected five complex scenes with significant motion interference. The experimental
results demonstrate that our approach significantly improves visual consistency. To demonstrate the
effectiveness of our method in distinguishing scratches, we selected representative samples from the
synthetic dataset. As shown in Fig. 4, our method can more accurately identify potential scratch
regions.Since RVRT does not provide explicit guidance for scratch regions, we only compared our
method with the other two approaches.

5 ABLATION STUDY

Table. 3 presents the results of our ablation study, highlighting the contributions of key components
in our method.To better assess restoration quality in degraded regions, we further calculate PSNR
and SSIM exclusively within the GT mask area (denoted as PSNRM and SSIMM ). The base
setting directly inputs consecutive frames into the diffusion model without any guidance, resulting
in suboptimal performance due to the lack of effective motion modeling. The w/o L, MG setting
removes both the mask-guided loss constraint and the local generation mechanism, leading to poorer
restoration in damaged areas. Introducing either the loss constraint (w/o MG) or the mask guidance
(w/o L) yields noticeable improvements, especially in scratch-specific metrics.

8
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RTN RRTN Ours GT

Figure 4: The comparison of mask generation results across different methods demonstrates that our
approach can more accurately identify the scratch regions.

Method PSNR↑ PSNRM↑ SSIM↑ SSIMM↑

base 21.4951 22.2896 0.6882 0.8647
w/o L, MG 37.6563 38.2032 0.9793 0.9883
w/o L 37.4488 39.0587 0.9793 0.9912

Ours 38.1208 39.1311 0.9801 0.9912

Table 3: Ablation studies on the synthetic dataset.

6 CONCLUSION

This paper proposes a novel video scratch restoration method: Video Scratch Removal Method
Based on Guided Diffusion Generation. The method leverages optical flow and visual features
between adjacent frames to generate a guidance map that encodes both temporal and spatial infor-
mation. A relaxed mask is then computed using a mean filter, effectively distinguishing potential
scratch regions. By conditioning the diffusion process on this guidance map, the model restores
degraded frames with higher accuracy and visual consistency, outperforming existing approaches.

Despite the notable improvements in scratch restoration, our method still has some limitations: The
diffusion model incurs high computational overhead; It is currently unable to restore the first and
last frames in a sequence.This could be a direction for future optimization.
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