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Abstract

Multi-hop question answering over knowledge001
graph utilizes the knowledge graph (KG) struc-002
ture to infer answers. However, KG often lacks003
edges in the reasoning path from the question004
entity to the answer entity. Recent research005
focused on various KG embedding methods006
to obtain the semantics of the reasoning path007
(called forward semantics) to repair missing008
edges. However, the forward semantics method009
could drift as the path get longer. This paper010
proposes a bidirectional semantics embedding011
and matching method (BSEM) to alleviate the012
forward semantics drift problem. BSEM first013
leverages a backward semantics method to de-014
duce the semantics of the opposite direction of015
the reasoning path. Then, BSEM constructs a016
two-stage learning method to merge the bidi-017
rectional (forward or backward) semantics and018
find the correct answer. In the two-stage learn-019
ing method, joint learning is created to learn020
the bidirectional semantics of the reasoning021
path simultaneously; contrast learning is also022
used to improve the ability of the backward023
semantics to identify the correct answers that024
are not found by the forward semantics. Ex-025
periments on the two benchmarks, MetaQA026
and WebQSP, show that BSEM surpasses the027
five baseline methods, PullNet, EmQL, LEGO,028
EmbedKGQA, and KGT5. Especially for the029
incomplete KG – WebQSP, compared with the030
other four methods except for EmQL, BSEM031
improves the accuracy by 13.1%, 12.0%, 5.2%032
and 10.0%, respectively.033

1 Introduction034

Multi-hop question answering over knowledge035

graph (MHKGQA) (Zhang et al., 2018; Lan and036

Jiang, 2020; He et al., 2021) refers to discovering037

a path from the question entity to the answer en-038

tity in a knowledge graph (KG). The right path039

depends on that the KG has all edges related to040

the question. However, KG often is sparse and in-041

complete. Furthermore, they often lack some of042

those right edges so that the right path does not ex- 043

ist. Therefore, MHKGQA needs to have the ability 044

to find edges with similar semantics to compen- 045

sate for these missing edges, which helps obtain a 046

reasoning path to infer the correct answer. 047

There are two clues in the MHKGQA research to 048

overcome the KG incompleteness challenge. One 049

is the supplementary text evidence method (Sun 050

et al., 2018, 2019; Han et al., 2020), which ex- 051

tracts evidence from the supplementary text corpus 052

and aggregates them and KG to predict the correct 053

answer. Unfortunately, the method requires the 054

corpus to be large enough to cover all semantics 055

of missing edges in KG. It is difficult, even im- 056

possible, to acquire such a comprehensive corpus 057

in most situations. The other clue is the KG em- 058

bedding and matching method (Sun et al., 2020; 059

Ren et al., 2021; Saxena et al., 2020; Niu et al., 060

2021). The method utilizes various KG embedding 061

technologies (Bordes et al., 2013; Trouillon et al., 062

2016; Yang et al., 2015) to transform KG edges 063

into an embedding space to learn their semantics. 064

It then combines the semantics of edges in the path 065

from the question entity to the answer entity (called 066

forward semantics). Furthermore, it infers the cor- 067

rect answer by matching the forward semantics 068

and question entity with the answer entity. For 069

example, EmbedKGQA(Saxena et al., 2020) uses 070

the ComplEx embedding method(Trouillon et al., 071

2016) to learn the representation (embeddings) of 072

edges in the given KG. EmbedKGQA then learns 073

the question embedding by a feed-forward neural 074

network armed with RoBERTa (Liu et al., 2019). 075

Finally, it combines these embeddings to match all 076

candidate answer entities and selects the answer 077

entity with the highest matching score. However, 078

the method only focuses on the forward seman- 079

tics, which could drift (Yadav et al., 2020) as the 080

length of a reasoning path increases. Moreover, the 081

forward semantics drift would degrade the perfor- 082

mance of the KG embedding and matching method. 083
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Figure 1: Structure of our model BSEM. The model consists of the following modules: 1) the KG embedding module,
2) the bidirectional semantics embedding module, and 3) the two-stage learning module. The KG embedding
module uses the Knowledge Graph Embedding method to learn embeddings of all entities and relations in the input
KG. The bidirectional semantics embedding module generates reasoning semantics for the given question. The
two-stage learning, consisting of joint learning and contrast learning, merges the forward and backward semantics
to infer the correct answers.

This paper proposes a new bidirectional seman-084

tics embedding and matching method (BSEM) to085

alleviate the forward semantics drift, as shown in086

Figure 1. BSEM first leverages a backward seman-087

tics embedding module to capture the semantics088

of edges in the reasoning path from the answer089

entity to the question entity (called backward se-090

mantics). The backward semantics provides the091

representation that restores the question entity from092

the given answer entity. The representation can dis-093

tinguish failure answers obtained by the forward se-094

mantics, especially when these failure answers are095

close to the correct answer in the KG embedding096

space. For example, as shown in the KG in Figure097

1, "Joke Peter", "Jordan Nagai", "Woody Harrel-098

son", and "Jeff Bridges" are semantically closed099

because they have similar semantics of neighbour100

nodes and edges. Owing to semantic drift, the for-101

ward semantics embedding module could find the102

failure answer – "Jordan Nagai". While the back103

semantics embedding module can identify that the104

answer is unsuccessful because the restored ques-105

tion obtained by the module is far from the right106

question entity. Therefore, the back semantics em-107

bedding module can repair potential failures caused108

by the forward semantics drift. 109

BSEM then constructs a two-stage learning 110

method that consists of joint learning and contrast 111

learning to merge the forward and backward se- 112

mantics and infer the correct answer. Joint learning 113

is designed to learn the bidirectional (forward and 114

backward) semantics simultaneously. Furthermore, 115

it creates a novel evaluation strategy to improve the 116

performance of the forward semantics by using the 117

backward semantics. After joint learning, contrast 118

learning is imported to enhance the ability of the 119

backward semantics to identify the unsuccessful 120

answer. Finally, BSEM combines the outputs of 121

the forward and backward semantics to predict the 122

correct answer. 123

Compared with previous MHKGQAs with se- 124

mantic embeddings, such as EmbedKGQA (Sax- 125

ena et al., 2020) and KGT5 (Saxena et al., 2022), 126

BSEM has a significant advantage in reasoning 127

paths. The reason is as follows: 1) the backward 128

embedding has the ability to restore the question 129

from the given answer, like the solution verification 130

in mathematics that ensures the solution satisfies 131

any given condition. Moreover, the backward em- 132

bedding can verify whether an answer is right or 133
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wrong. 2) With the verification, the backward se-134

mantics module can alleviate the forward semantics135

drift by the above joint learning. 3) According to136

the same argument, the forward semantics mod-137

ule can also enhance the verification ability of the138

backward semantics via contrast learning.139

The main contributions in the paper are summa-140

rized as follows.141

• We propose a backward semantics embedding142

method to verify whether an answer is right or143

wrong. To learn the backward semantics, we144

create a novel backward score function based145

on the forward score function of the embed-146

ding model (Trouillon et al., 2016), as defined147

in Equation 7. Since the novel score function148

only uses the partial forward score function,149

it avoids the disadvantage of no backward se-150

mantics dataset. This approach complements151

and enhances existing forward semantic-only152

methods.153

• We propose a bidirectional semantics embed-154

ding and matching method (BSEM) to al-155

leviate the forward semantics drift problem.156

Armed with the two-stage learning consisting157

of joint learning and contrast learning, BSEM158

can improve the performance of the forward159

semantics and enhance the ability of the back-160

ward semantics to distinguish the incorrect161

answer.162

• Experiments using two benchmarks, MetaQA163

and WebQSP, illustrate that BSEM surpasses164

the five baseline methods of MHKGQA, Pull-165

Net (Sun et al., 2019), EmQL (Sun et al.,166

2020), LEGO (Ren et al., 2021), Embed-167

KGQA (Saxena et al., 2020) and KGT5 (Sax-168

ena et al., 2022). Especially on the incom-169

plete KG benchmark – WebQeustionSP, com-170

pared with the other four methods except171

for EmQL, BSEM improves the accuracy by172

13.1%, 12.0%, 5.2% and 10.0%, respectively.173

The rest of this paper is organized as follows.174

Section 2 introduces related works on Multi-hop175

KGQA. Then, Section 3 provides details for the176

proposed BSEM method. Moreover, Section 4177

shows the experimental results and analysis. Fi-178

nally, Section 5 concludes the paper.179

2 Related Work180

Multi-hop KGQA (Zhang et al., 2018; Lan and181

Jiang, 2020; He et al., 2021) requires reasoning182

over multiple edges in a KG to predict the correct 183

answer. The method may fail in an incomplete 184

KG because the KG lacks some edges between 185

the question and answer. Some prior works (Sun 186

et al., 2018, 2019; Han et al., 2020) use external 187

relevant text corpora to augment the KG and reason 188

over the combinations of the text corpora and KG. 189

GRAFT-Net (Sun et al., 2018) and PullNet (Sun 190

et al., 2019) both supplement the incomplete KG 191

with information extracted from text corpora and 192

reason over a question-specific sub-graph contain- 193

ing the KG and text corpus. The method proposed 194

by (Han et al., 2020) utilizes the semantics of the 195

text corpus to enrich the representation of entities 196

and complete the edges through the structural in- 197

formation in the text. However, the text corpora are 198

difficult to satisfy these methods. 199

Recently, other works have attempted to over- 200

come the KG incompleteness challenge using KG 201

embeddings methods(Sun et al., 2020; Ren et al., 202

2021; Saxena et al., 2020; ?). EmQL(Sun et al., 203

2020) uses neural retrieval over embedded triples 204

in a KG to implement some logical operations and 205

applies a randomized data structure called a count- 206

min sketch to propagate scores of logically-entailed 207

entities. LEGO(Ren et al., 2021) executes a query 208

synthesis module and a KG embedding module 209

iteratively. At each step, the query synthesis mod- 210

ule uses the question embedding to infer a reason- 211

ing action and then the KG embedding module 212

matches the action in the embedding space. Em- 213

bedKGQA(Saxena et al., 2020) uses the ComplEx 214

embedding method(Trouillon et al., 2016) to learn 215

the representation (embeddings) of edges and enti- 216

ties in the given KG. EmbedKGQA then calculates 217

the score of each candidate answer entity by using 218

the question embedding to approximate the seman- 219

tics of the reasoning path. PKEEQA(Niu et al., 220

2021) utilizes a customizable path representation 221

mechanism to evaluate the ambipolar correlation 222

between a path embedding and a question embed- 223

ding. KGT5(Saxena et al., 2022) regards KG link 224

prediction and KGQA as sequence-to-sequence 225

tasks; thus KGT5 trains an encoder-decoder trans- 226

former model (Raffel et al., 2020) in the link predic- 227

tion task. These above methods only focus on the 228

forward semantic from the question entity to the 229

answer entity. Different from these methods, this 230

paper imports the backward semantics to compen- 231

sate for the forward semantics to find the correct 232

answer. 233

3



3 Bidirectional Semantics Embedding234

and Matching Method235

In this section, we first formalize the problem that236

needs to be addressed by our proposed bidirec-237

tional semantics embedding and matching method238

(BSEM). Then we describe the implementation de-239

tails of the method. The method consists of three240

modules: the KG embedding module, the question241

embedding module and the semantics reasoning242

module. As shown in Figure 1, the KG embedding243

module utilizes the Knowledge Graph Embedding244

method – ComplEx (Trouillon et al., 2016) to learn245

embeddings of all entities and edges in a given KG.246

The question embedding module generates the for-247

ward and backward semantics for the given ques-248

tion. The semantics reasoning module then imports249

joint learning and contrast learning to combine the250

forward and backward semantics and infers the cor-251

rect answers. Finally, we introduce how to train252

and predict using BSEM.253

3.1 Problem Definition254

Knowledge Graph(G) consists of a large number of255

triples ⟨h, r, t⟩s, where h and t are entities and r is256

an edge. Let E be the entity set and R be the edge257

set. Then, G = E ×R×E . Given a question q and258

a G, the goal of Multi-hop KGQA (MHKGQA) is259

to find the correct answer a from the question entity260

h via several hops in G (called reasoning path p),261

such as p = ⟨h, r1, t1, r2, ..., tn−1, rn, a⟩, defined262

by the following equation.263

argmax
a,p∈G

F(q, p, a) (1)264

, where F is a match function, i.e., F : q×p×a →265

R.266

For MHKGQA using KG embedding267

(EMHKGQA), since each embedded entity268

contains the semantics of its neighbour edges269

and entities in G, it contains the semantics of270

its reasoning path. So, EMHKGQA learns the271

reasoning path semantics p from a given question272

q to an answer and matches p with each embedded273

entity to find the correct answer a. Previous274

EMHKGQA studies only focus on extracting the275

forward reasoning semantic paths from the ques-276

tion to the answer ϕ∗(h, r∗, a) (called the forward277

semantics ), and this could lead to semantic drift278

as the length of the path between the question and279

answer becomes longer. To alleviate the semantic280

drift problem, we leverage the backward reasoning281

path semantics ϕ−∗(a, r−∗, h) from the answer 282

to the question (called the backward semantics). 283

Then we define BSEM by the following equation. 284

argmax
a,p∈G

F(q, p, a) ≈ argmax
ea∈G

F(eq, ⟨ϕ∗, ϕ−∗⟩, ea)

(2) 285

, where qe is the question embedding, and ea is an 286

entity embedding in G. 287

3.2 KG Embedding Module 288

To obtain each entity embedding ea in 289

G, we apply the ComplEx embedding 290

method(ComplEx)(Trouillon et al., 2016) to 291

embed entities and relations into a complex space. 292

Given h, t ∈ E and r ∈ R in the KG, ComplEx ap- 293

plies a triple scoring function ϕ : E ×R× E → R 294

to learn the representations as eh, er, et ∈ Cd. The 295

scoring function is as follows: 296

ϕ (h, r, t) = Re (⟨eh, er, ēt⟩)

= Re

(
d∑

k=1

e
(k)
h e(k)r ē

(k)
t

)
(3) 297

, where Re(·) refers to the real part of a complex 298

number. e(k)h , e(k)r , and ē
(k)
t are the k-th dimension 299

values in eh, er, and ēt, respectively. For each 300

correct triple ⟨h, r, t⟩ ∈ G, the model assigns the 301

score ϕ (h, r, t) > 0. While, for each incorrect 302

triple ⟨h′
, r

′
, t

′⟩ /∈ G, the model assigns the score 303

ϕ(h
′
, r

′
, t

′
) < 0. 304

3.3 Question Embedding Module 305

To acquire the question embedding eq, we con- 306

struct a feed-forward neural network (NN) that em- 307

beds the question q to the same dimension vector 308

eq ∈ Cd. The NN consists of a Bi-LSTM (or 309

pre-trained RoBERTa (Liu et al., 2019)), and two 310

fully connected layers with ReLU activation and 311

dropout. The Bi-LSTM embeds the question q into 312

a 512-dimensional vector for the large question 313

dataset (MetaQA in Section 4.1), while the pre- 314

trained RoBERTa transforms the question q into a 315

768-dimensional vector to capture rich semantics 316

for the small question dataset (WebQSP in Section 317

4.1). The final two fully connected layers project 318

the 512-dimensional (or 768-dimensional) vector 319

into a complex space Cd. 320

As the question semantics are different in the 321

forward reasoning path and the backward reason- 322

ing path, we extend eq to the forward question 323
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embeddings eq′ and backward embeddings eq−′ ,324

i.e., eq = ⟨eq′ , eq−′ ⟩. We use two NNs described325

above to obtain eq′ and eq−′ respectively, as shown326

in Figure 1.327

3.4 Semantic Reasoning Module328

The module utilizes joint learning to simultane-329

ously capture the forward and backward semantics,330

ϕ∗ and ϕ−∗. Joint learning can improve the forward331

semantics ϕ∗; in addition, the module uses contrast332

learning to enhance the backward semantics ϕ−∗333

to identify the unsuccessful answer.334

3.4.1 Forward Semantics335

The forward semantics ϕ∗ is defined as a score336

function, i.e., ϕ∗(eh, er∗ , ea) > 0 if ea is the cor-337

rect answer and er∗ is the right reasoning path;338

otherwise, ϕ∗(eh, er∗ , ea) < 0. In this paper,339

we assume that the question q contains the rea-340

soning path semantics er∗ . So, we replace er∗341

with the forward question embeddings eq′ , i.e.,342

ϕ∗(eh, er∗ , ea) = ϕ∗(eh, eq′ , ea).343

To obtain ϕ∗(eh, eq′ , ea), we apply the same344

method as EmbedKGQA (Saxena et al., 2020) that345

utilizes Equation 3 to generate the score function.346

In detail, the method is defined by the following347

two equations 4 and 5.348

ϕ∗(eh, eq′ , ea) > 0, a ∈ A

ϕ∗(eh, eq′ , ea′ ) < 0, a
′
/∈ A

(4)349

ϕ∗(eh, eq′ , ea) = Re
(〈
eh, eq′ , ēa

〉)
= Re

(
d∑

k=1

e
(k)
h e

(k)
q′ ē(k)a

)
(5)350

3.4.2 Backward Semantics351

Similar to the forward semantics, the backward352

semantics ϕ−∗ is also a score function defined by353

the following equation.354

ϕ−∗(ea, eq−′ , eh) > 0, a ∈ A

ϕ−∗′(ea′ , eq−′ , eh) < 0, a
′
/∈ A

(6)355

However, there is not any question dataset that356

represents the backward reasoning path from the357

question to the answer. So, it is difficult to ob-358

tain the backward semantics ϕ−∗(ea, eq−′ , eh) di-359

rectly from the question dataset. To overcome this360

difficulty, we utilize the ComplEx symmetry to361

compute ϕ−∗(ea, eq−′ , eh) by ϕ∗(ēh, eq−′ , ēa) ac-362

cording to the following equation.363

ϕ−∗(ea, eq−′ , eh) = Re(⟨ea, eq−′ , ēh⟩) =

Re

(
d∑

k=1

e(k)a e
(k)

q−′ ē
(k)
h

)
= Re

(
d∑

k=1

ē
(k)
h e

(k)

q−′e
(k)
a

)
= Re(⟨ēh, eq−′ , ea⟩) = ϕ∗(ēh, eq−′ , ēa)

(7) 364

3.4.3 Joint Learning 365

Joint learning is designed to simultaneously learn 366

the bidirectional (forward and backward) semantics. 367

In joint learning, we leverage the worse evaluation 368

strategy to improve the bidirectional semantics ac- 369

cording to the following equation. 370

s =

{
min{ϕ∗, ϕ−∗}, a ∈ A

max{ϕ∗, ϕ−∗}, a′ /∈ A
(8) 371

The worse evaluation strategy takes the smaller 372

value between ϕ∗ and ϕ−∗ when a is the correct 373

answer. Conversely, the worse evaluation strategy 374

adopts the bigger value between ϕ∗ and ϕ−∗ when 375

a is not the correct answer. The smaller and bigger 376

values both benefit the above two NNs of question 377

embedding to improve their semantics accuracy. 378

The reason is that the smaller and bigger values 379

allow the loss function to obtain a bigger loss value. 380

The bigger loss value can improve the NN perfor- 381

mance. 382

We use the Kullback-Leibler diver- 383

gence(KLD)(Kullback and Leibler, 1951) as 384

the loss function to train the two NNs of question 385

embeddings. 386

L = KLD(s, s∗) (9) 387

, where s∗ is the target labels. The target label 388

is 1 if a is the correct answer. Otherwise, it is 0. 389

Considering the total number of entities in KGs 390

is large, we use label smoothing to improve the 391

generalization capability. 392

3.4.4 Contrast Learning 393

Contrast learning aims to enhance the ability of the 394

backward semantics ϕ−∗ to identify unsuccessful 395

answers found by the forward semantics ϕ∗. We 396

apply the following method to provide positive and 397

negative samples for contrast learning. For each 398

question q, the forward semantics ϕ∗ computes 399

each entity in the KG G, generating the candidate 400

answer set sorted by ϕ∗. In the candidate answer 401

set, if an entity is a correct answer, the entity is the 402
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positive sample; The top-K entities that are not the403

correct answers are the negative samples.404

Different from the traditional contrast learning405

(Khosla et al., 2020), the contrast learning method406

leverages a new contrast loss function. The contrast407

loss function gives each positive sample a weighted408

score to show its importance for the backward se-409

mantics ϕ−∗. The reason is that different positive410

samples have different contributions to ϕ−∗. Con-411

sidering all questions in the training dataset, the412

contrast loss function is defined by the following413

equation.414

Lcl = −
n∑

j=1

∑
i∈Pj

γi ∗ log

exp
(
ϕ−∗
i /τ

)
exp

(
ϕ−∗
i /τ

)
+
∑

k∈Nj
exp

(
ϕ−∗
k /τ

) (10)415

, where n is the number of questions in the training416

dataset, and Pj (Nj) is the positive (negative) sam-417

ple set of the jth question. γi is the weight score of418

the ith entity in Pj . The weight scores γ of Pj are419

attained by passing the scores obtained from the for-420

ward reasoning path semantics through the softmax421

function. i.e., γ = softmax(ϕ∗(eh, eq′j
, ePj )).422

When training the backward semantics ϕ−∗ with423

the above contrast loss function (Equation 10), the424

forward reasoning path semantics ϕ∗ remain un-425

changed.426

3.5 Prediction427

In the prediction stage, the forward reasoning path428

semantics ϕ∗ is used to select top-K entities in G as429

the candidate answer set S. Then, for each entity e430

in S, e is graded by the following equation.431

s = (1− α)ϕ∗ + αϕ−∗ (11)432

, where α ∈ (0, 1) is a hyper-parameter. After433

sorting the candidate answer set, the prediction434

chooses the first (top-1) entity as the correct answer.435

4 Experiments436

We evaluate our method (BSEM) by comparing437

it with five baseline MHKGQA methods, Pull-438

Net(Sun et al., 2019), EmQL(Sun et al., 2020),439

EmbedKGQA(Saxena et al., 2020), LEGO(Ren440

et al., 2021), and KGT5(Saxena et al., 2022), on441

the two benchmark datasets, MetaQA(Zhang et al.,442

2018) and WebQSP(Yih et al., 2016). We first in-443

troduce the two benchmark datasets and BSEM444

parameters. Then, we give the experimental results 445

and analysis. 446

4.1 Datasets and Parameter Setting 447

MetaQA(Zhang et al., 2018) and WebQSP(Yih 448

et al., 2016) are both multi-hop KGQA datasets. 449

MetaQA focuses on the movie domain, with more 450

than 400k questions consisting of 1-hop, 2-hop 451

and 3-hop questions. Moreover, the answers to 452

these questions can be found in the KG Wiki- 453

Movies(Miller et al., 2016), which has 135k triples, 454

43k entities and nine relations. WebQSP contains 455

4737 natural language questions consisting of 1- 456

hop and 2-hop questions that need to be answered 457

by reasoning on the KG Freebase(Bollacker et al., 458

2008). However, our experiments do not use Free- 459

base but its subset from (Saxena et al., 2022). Our 460

QA datasets are the same as (Saxena et al., 2020, 461

2022), listed in Table 1. 462

Dataset Train Valid Test
MetaQA 1-hop 96,106 9,992 9,947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
WebQSP 2,998 100 1,639

Table 1: Statistics for MetaQA and WebQSP datasets
used in our experiments.

To simulate KG incompleteness to evaluate our 463

method, we directly use the incomplete KGs in 464

(Saxena et al., 2022). These incomplete KGs are 465

generated by randomly cutting down 50% of edges 466

from the two KGs: WikiMovies and the subset 467

of Freebase. Armed with different KGs, the two 468

above datasets are called different names. For ex- 469

ample, MetaQA with full KG (WikeMovies) is 470

called "MetaQA full-KG", while it with half KG 471

(random cut 50% edges) is called "MetaQA half- 472

KG". As some state-of-the-art methods apply these 473

incomplete KGs and the above two benchmark 474

datasets (MetaQA and WebQSP), it facilitates com- 475

parisons between our method BSEM and the above 476

five baseline methods. However, these incomplete 477

KGs are not the same owing to the above genera- 478

tion of random cuts. So, the ground truth SPARQL 479

query (GT query) method for test questions is im- 480

ported as the estimated standard. Comparing the 481

GT query with all other methods in the experiment 482

facilitates distinguishing their performance. 483

We apply hits@1 as our evaluation metric. For 484

the parameters of our method BSEM, we set top- 485

100 in the contrast learning and τ = 1.0. Through 486
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the grid search in hyperparameter tuning, we set487

α 0.8, 0.3 and 0.8 for the datasets MetaQA 1-hop-488

half, 2-hop-half and 3-hop-half, respectively. For489

the datasets WebQSP with half KG and WebQSP490

with full KG, we set α 0.5 and 0.3 respectively. All491

methods run on the machine with Nvidia 3090Ti492

GPU.493

4.2 Experimental Results and Analysis494

Table 2 shows experimental results on the MetaQA495

dataset with half-KG. BSEM surpasses the five496

baseline methods, PullNet, EmQL, LEGO, Embed-497

KGQA and KGT5, on the "1-hop" and "2-hop"498

MetaQA datasets. The reason is that the backward499

semantics can alleviate the semantic drift of the500

multi-hop reasoning path. For example, as shown501

in Figure 1, "Jordan Nagai" has a higher score than502

"Woody Harrelson" and "Jeff Bridges" in the result503

attained by the forward semantics, while "Jordan504

Nagai" has a weaker score by performing the back-505

ward semantics. After embedding the bidirectional506

semantics, BSEM has the ability to find answers507

more accurately. Especially compared with Embed-508

KGQA that only has the forward semantics, BSEM509

improves accuracy by 0.4%, 1.5%, and 2.7% in the510

"1-hop", "2-hop", and "3-hop". The more hops, the511

more accuracy improves.512

Model 1-hop 2-hop 3-hop
GT query 63.3 45.8 45.3
PullNet 65.1(+1.8) 52.1(+6.3) 59.7(+14.4)
EmbedKGQA 70.6(+7.3) 54.3(+8.5) 53.5(+8.2)
EmQL 63.8(+0.5) 47.6(+1.8) 48.1(+2.8)
LEGO 69.3(+6.0) 57.8(+12.0) 63.8(+18.5)
GT query 67.7 48.7 44.4
KGT5 75.0(+7.3) 36.2(-8.2) 64.4(+20.0)
EmbedKGQA 75.2(+7.5) 63.7(+15.0) 43.5(-0.9)
Our BSEM 75.6(+7.9) 65.2(+16.5) 46.2(+1.8)

Table 2: Results on the dataset MetaQA half-KG with
hits@1. Values in parentheses indicate increased accu-
racy compared with "GT query". A bold value is the
best result.

However, on the "3-hop" tasks, BSEM can-513

not outperform three baseline methods, PullNet,514

LEGO, and KGT5. Compared with KGT5, which515

has the transformer-based encoder-decoder model,516

BSEM only uses bidirectional semantics to find517

the correct answer. The bidirectional semantics518

can alleviate the multi-hop semantic drift but can-519

not prevent it. While KGT5 has better accuracy520

than BSEM on the "3-hop", KGT5 has very low521

accuracy (36.2%) on the "2-hop". KGT5 is against522

the commonsense, i.e., the more hops in reason- 523

ing, the more uncertain in answer. The reason is 524

that the transformer-based encoder-decoder model 525

in KGT5 could concentrate on hops in the reason- 526

ing path but overlook associations between these 527

hops. The other two baseline methods, PollNet 528

and LEGO, have similar accuracies and reasons to 529

KGT5 on "2-hop" and "3-hop". Due to the limita- 530

tion on the number of hops in the two datasets, we 531

cannot predict these anti-commonsense methods, 532

KGT5, PullNet, and LEGO, will definitely be bet- 533

ter than our BSEM in more hops (4-hop, 5-hop,...). 534

In short, BSEM has the best overall accuracy on 535

the dataset MetaQA half-KG. 536

In addition, BSEM also can obtain the most ac- 537

curate answers in the dataset WebQSP half-KG, 538

as shown in Table 3. Especially, comparing the 539

improvements of all baseline methods, PullNet, 540

LEGO, EmbedKGQA, and KGT5, on the GT query, 541

BSEM improves the accuracy by 13.1%, 12.0%, 542

5.2% and 10.0%, respectively. Results in Tables 2 543

and 3 illustrate that, compared with the five base- 544

line methods, BSEM can find a more accurate an- 545

swer to the multi-hop reasoning in a sparse KG. 546

Model WebQSP half-KG
GT query 56.9
PullNet 47.4 (-9.5)
EmbedKGQA 42.5 (-14.4)
LEGO 48.5 (-8.4)
GT query 56.9
KGT5 50.5 (-6.4)
EmbedKGQA 55.3 (-1.6)
Our BSEM 60.5 (+3.6)

Table 3: Results on the dataset WebQSP half-KG with
hits@1. As the dataset WebQSP does not provide the
obvious information on which question is "one hop" or
"two hop", the values are the accuracy of all methods
on the overall dataset WebQSP half-KG.

Table 4 show experimental results on the dataset 547

WebQSP with full-KG. These results show that 548

BESM is better than KGT5 and EmbedKGQA. 549

Moreover, BSEM can still find the more accurate 550

answer on the full KG; however, BSEM is weaker 551

than CBR-KGQA (Das et al., 2021). The reason 552

is that CBR-KGQA imports additional informa- 553

tion, such as SPARQL queries, to help it obtain 554

the right logical query form. Furthermore, CBR- 555

KGQA depends on the expensive annotations of 556

this additional information at scale. Once the KG 557

changes, CBR-KGQA needs to relabel these anno- 558

tations. So, the BSEM result is acceptable without 559
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the above additional information.560

Model WebQSP full-KG
KGT5 56.1
EmbedKGQA∗ 68.3
Our BSEM 70.8
CBR-KGQA 73.1

Table 4: Results on the dataset WebQSP full-KG with
hits@1.

4.3 Ablation Studies561

Our method BSEM mainly contains the two sub-562

models, the bidirectional reason path semantics and563

the two-stage learning consisting of joint learning564

(JL) and contrast learning (CL). To prove that these565

sub-models can improve the performance of BSEM566

running on the KG, we ablate the above sub-models567

step by step.568

Table 5 gives the ablation results on the dataset569

WebQSP half-KG. "{-JL}" means that BSEM cuts570

down joint learning; "{-CL}" cuts down contrast571

learning. "{-JL and -CL}" deletes joint learning,572

contrast learning and backward semantics. So, af-573

ter "{-JL and -CL}", BSEM degrades into Embed-574

KGQA that only contains the forward semantics.575

Model WebQSP half-KG
Our BSEM 60.5
{-JL} 58.4
{-CL} 57.8 (56.7)
{-JL and -CL} 55.3

Table 5: Ablation experiments. The value in the paren-
theses is the result outputted by the forward reasoning
path semantics.

Compared with "{-JL and -CL}" (Embed-576

KGQA), BSEM with "{-CL}" (i.e., joint learning)577

improves the accuracy from 55.3% to 56.7%. After578

injecting the backward semantics, joint learning579

has 57.8% accuracy and is 2.5% more accurate580

than EmbedKGQA. Similarly, BSEM with "{-JL}"581

(contrast learning) has 58.4% accuracy and is more582

3.1% accurate than EmbedKGQA. After merging583

joint learning and contrast learning, our BSEM584

obtains 60.5% accuracy. The above ablation exper-585

iments show that these proposed sub-models can586

improve the performance of Multi-hop KGQA.587

4.4 The Weight Scores in Contrast Learning588

Our method BSEM leverages a weighted score γi589

in contrast learning (Equation 10) to show the im-590

portance of the positive sample to the backward591

semantics ϕ−∗. Table 6 lists the results obtained by 592

BSEM with/without γi in contrast learning. The 593

weighted score γi can improve accuracy by 0.1%, 594

0.2%, 0.7% on the datasets MetaQA half-KG with 595

"1-hop", "2-hop", and "3-hop". As the number of 596

hops increases, the γi effect becomes strong. Ta- 597

ble 6 shows that importing γi improves contrast 598

learning accuracy. 599

DataSet WS NWS
MetaQA half-KG 1-hop 75.6 75.5
MetaQA half-KG 2-hop 65.2 65.0
MetaQA half-KG 3-hop 46.2 45.5
WebQSP half-KG 60.5 59.8
WebQSP full-KG 70.8 70.4

Table 6: WS represents our method results and NWS
shows results obtained by our method without the
weighted score γi in contrast learning.

5 Conclusion 600

This paper proposes BSEM, a novel bidirectional 601

semantic embedding and matching method to im- 602

plement the multi-hop KGQA. BSEM utilizes the 603

backward semantics to repair the forward seman- 604

tics drift. BSEM then applies joint learning and 605

contrast learning to merge the bidirectional seman- 606

tics to find the correct answer. Joint learning cre- 607

ates the worse evaluation strategy to improve the 608

performance of training bidirectional semantics. 609

While contrast learning imports the weighted score 610

to enhance the ability of the backward semantics to 611

identify the unsuccessful answers. 612

Compared with the state-of-the-art methods, 613

PullNet, EMQL, LEGO, EmbedKGQA, and KGT5, 614

BSEM has the best overall performance on the 615

multi-hop KGQA. However, BSEM only can alle- 616

viate the semantic drift in the reasoning path but 617

cannot prevent it. The reason is that the forward 618

and backward semantics could still drift as the rea- 619

soning path gets longer. Inspired by the KGT5 620

model, in future, we plan to explore the encoder- 621

decoder model based on bidirectional semantics to 622

prevent semantic drift. 623

References 624

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim 625
Sturge, and Jamie Taylor. 2008. Freebase: a collabo- 626
ratively created graph database for structuring human 627
knowledge. In Proceedings of the 2008 ACM SIG- 628
MOD international conference on Management of 629
data, pages 1247–1250. 630

8



Antoine Bordes, Nicolas Usunier, Alberto Garcia-631
Duran, Jason Weston, and Oksana Yakhnenko.632
2013. Translating embeddings for modeling multi-633
relational data. Advances in neural information pro-634
cessing systems, 26.635

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-636
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros637
Polymenakos, and Andrew McCallum. 2021. Case-638
based reasoning for natural language queries over639
knowledge bases. In Proceedings of the 2021 Con-640
ference on Empirical Methods in Natural Language641
Processing, pages 9594–9611.642

Jiale Han, Bo Cheng, and Xu Wang. 2020. Open do-643
main question answering based on text enhanced644
knowledge graph with hyperedge infusion. In Find-645
ings of the Association for Computational Linguistics:646
EMNLP 2020, pages 1475–1481.647

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and648
Ji-Rong Wen. 2021. Improving multi-hop knowledge649
base question answering by learning intermediate650
supervision signals. In Proceedings of the 14th ACM651
International Conference on Web Search and Data652
Mining, pages 553–561.653

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron654
Sarna, Yonglong Tian, Phillip Isola, Aaron655
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-656
pervised contrastive learning. Advances in Neural657
Information Processing Systems, 33:18661–18673.658

Solomon Kullback and Richard A Leibler. 1951. On659
information and sufficiency. The annals of mathe-660
matical statistics, 22(1):79–86.661

Yunshi Lan and Jing Jiang. 2020. Query graph gen-662
eration for answering multi-hop complex questions663
from knowledge bases. Association for Computa-664
tional Linguistics.665

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-666
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,667
Luke Zettlemoyer, and Veselin Stoyanov. 2019.668
Roberta: A robustly optimized bert pretraining ap-669
proach. arXiv preprint arXiv:1907.11692.670

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-671
Hossein Karimi, Antoine Bordes, and Jason Weston.672
2016. Key-value memory networks for directly read-673
ing documents. arXiv preprint arXiv:1606.03126.674

Guanglin Niu, Yang Li, Chengguang Tang, Zhongkai675
Hu, Shibin Yang, Peng Li, Chengyu Wang, Hao676
Wang, and Jian Sun. 2021. Path-enhanced multi-677
relational question answering with knowledge graph678
embeddings. arXiv preprint arXiv:2110.15622.679

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine680
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,681
Wei Li, Peter J Liu, et al. 2020. Exploring the limits682
of transfer learning with a unified text-to-text trans-683
former. J. Mach. Learn. Res., 21(140):1–67.684

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michi- 685
hiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure 686
Leskovec, and Denny Zhou. 2021. Lego: Latent 687
execution-guided reasoning for multi-hop question 688
answering on knowledge graphs. In International 689
Conference on Machine Learning, pages 8959–8970. 690
PMLR. 691

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. 692
2022. Sequence-to-sequence knowledge graph com- 693
pletion and question answering. arXiv preprint 694
arXiv:2203.10321. 695

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. 696
2020. Improving multi-hop question answering over 697
knowledge graphs using knowledge base embeddings. 698
In Proceedings of the 58th annual meeting of the as- 699
sociation for computational linguistics, pages 4498– 700
4507. 701

Haitian Sun, Andrew Arnold, Tania Bedrax Weiss, Fer- 702
nando Pereira, and William W Cohen. 2020. Faithful 703
embeddings for knowledge base queries. Advances 704
in Neural Information Processing Systems, 33:22505– 705
22516. 706

Haitian Sun, Tania Bedrax-Weiss, and William W Co- 707
hen. 2019. Pullnet: Open domain question answering 708
with iterative retrieval on knowledge bases and text. 709
arXiv preprint arXiv:1904.09537. 710

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn 711
Mazaitis, Ruslan Salakhutdinov, and William W Co- 712
hen. 2018. Open domain question answering using 713
early fusion of knowledge bases and text. arXiv 714
preprint arXiv:1809.00782. 715

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric 716
Gaussier, and Guillaume Bouchard. 2016. Complex 717
embeddings for simple link prediction. In Interna- 718
tional conference on machine learning, pages 2071– 719
2080. PMLR. 720

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. 721
2020. Unsupervised alignment-based iterative ev- 722
idence retrieval for multi-hop question answering. In 723
Proceedings of the 58th Annual Meeting of the Asso- 724
ciation for Computational Linguistics, pages 4514– 725
4525. 726

Min-Chul Yang, Do-Gil Lee, So-Young Park, and Hae- 727
Chang Rim. 2015. Knowledge-based question an- 728
swering using the semantic embedding space. Expert 729
Systems with Applications, 42(23):9086–9104. 730

Wen-tau Yih, Matthew Richardson, Christopher Meek, 731
Ming-Wei Chang, and Jina Suh. 2016. The value of 732
semantic parse labeling for knowledge base question 733
answering. In Proceedings of the 54th Annual Meet- 734
ing of the Association for Computational Linguistics 735
(Volume 2: Short Papers), pages 201–206. 736

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan- 737
der J Smola, and Le Song. 2018. Variational reason- 738
ing for question answering with knowledge graph. In 739
Thirty-second AAAI conference on artificial intelli- 740
gence. 741

9


