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Abstract

Multi-hop question answering over knowledge
graph utilizes the knowledge graph (KG) struc-
ture to infer answers. However, KG often lacks
edges in the reasoning path from the question
entity to the answer entity. Recent research
focused on various KG embedding methods
to obtain the semantics of the reasoning path
(called forward semantics) to repair missing
edges. However, the forward semantics method
could drift as the path get longer. This paper
proposes a bidirectional semantics embedding
and matching method (BSEM) to alleviate the
forward semantics drift problem. BSEM first
leverages a backward semantics method to de-
duce the semantics of the opposite direction of
the reasoning path. Then, BSEM constructs a
two-stage learning method to merge the bidi-
rectional (forward or backward) semantics and
find the correct answer. In the two-stage learn-
ing method, joint learning is created to learn
the bidirectional semantics of the reasoning
path simultaneously; contrast learning is also
used to improve the ability of the backward
semantics to identify the correct answers that
are not found by the forward semantics. Ex-
periments on the two benchmarks, MetaQA
and WebQSP, show that BSEM surpasses the
five baseline methods, PullNet, EmQL, LEGO,
EmbedKGQA, and KGTS5. Especially for the
incomplete KG — WebQSP, compared with the
other four methods except for EmQL, BSEM
improves the accuracy by 13.1%, 12.0%, 5.2%
and 10.0%, respectively.

1 Introduction

Multi-hop question answering over knowledge
graph (MHKGQA) (Zhang et al., 2018; Lan and
Jiang, 2020; He et al., 2021) refers to discovering
a path from the question entity to the answer en-
tity in a knowledge graph (KG). The right path
depends on that the KG has all edges related to
the question. However, KG often is sparse and in-
complete. Furthermore, they often lack some of

those right edges so that the right path does not ex-
ist. Therefore, MHKGQA needs to have the ability
to find edges with similar semantics to compen-
sate for these missing edges, which helps obtain a
reasoning path to infer the correct answer.

There are two clues in the MHKGQA research to
overcome the KG incompleteness challenge. One
is the supplementary text evidence method (Sun
et al., 2018, 2019; Han et al., 2020), which ex-
tracts evidence from the supplementary text corpus
and aggregates them and KG to predict the correct
answer. Unfortunately, the method requires the
corpus to be large enough to cover all semantics
of missing edges in KG. It is difficult, even im-
possible, to acquire such a comprehensive corpus
in most situations. The other clue is the KG em-
bedding and matching method (Sun et al., 2020;
Ren et al., 2021; Saxena et al., 2020; Niu et al.,
2021). The method utilizes various KG embedding
technologies (Bordes et al., 2013; Trouillon et al.,
2016; Yang et al., 2015) to transform KG edges
into an embedding space to learn their semantics.
It then combines the semantics of edges in the path
from the question entity to the answer entity (called
forward semantics). Furthermore, it infers the cor-
rect answer by matching the forward semantics
and question entity with the answer entity. For
example, EmbedKGQA (Saxena et al., 2020) uses
the ComplEx embedding method(Trouillon et al.,
2016) to learn the representation (embeddings) of
edges in the given KG. EmbedKGQA then learns
the question embedding by a feed-forward neural
network armed with RoBERTa (Liu et al., 2019).
Finally, it combines these embeddings to match all
candidate answer entities and selects the answer
entity with the highest matching score. However,
the method only focuses on the forward seman-
tics, which could drift (Yadav et al., 2020) as the
length of a reasoning path increases. Moreover, the
forward semantics drift would degrade the perfor-
mance of the KG embedding and matching method.



Question: who are the actors in the films directed by Scott Cooper?
Answer : Woody Harrelson|Jeff Bridges
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Figure 1: Structure of our model BSEM. The model consists of the following modules: 1) the KG embedding module,
2) the bidirectional semantics embedding module, and 3) the two-stage learning module. The KG embedding
module uses the Knowledge Graph Embedding method to learn embeddings of all entities and relations in the input
KG. The bidirectional semantics embedding module generates reasoning semantics for the given question. The
two-stage learning, consisting of joint learning and contrast learning, merges the forward and backward semantics

to infer the correct answers.

This paper proposes a new bidirectional seman-
tics embedding and matching method (BSEM) to
alleviate the forward semantics drift, as shown in
Figure 1. BSEM first leverages a backward seman-
tics embedding module to capture the semantics
of edges in the reasoning path from the answer
entity to the question entity (called backward se-
mantics). The backward semantics provides the
representation that restores the question entity from
the given answer entity. The representation can dis-
tinguish failure answers obtained by the forward se-
mantics, especially when these failure answers are
close to the correct answer in the KG embedding
space. For example, as shown in the KG in Figure
1, "Joke Peter", "Jordan Nagai", "Woody Harrel-
son", and "Jeff Bridges" are semantically closed
because they have similar semantics of neighbour
nodes and edges. Owing to semantic drift, the for-
ward semantics embedding module could find the
failure answer — "Jordan Nagai". While the back
semantics embedding module can identify that the
answer is unsuccessful because the restored ques-
tion obtained by the module is far from the right
question entity. Therefore, the back semantics em-
bedding module can repair potential failures caused

by the forward semantics drift.

BSEM then constructs a two-stage learning
method that consists of joint learning and contrast
learning to merge the forward and backward se-
mantics and infer the correct answer. Joint learning
is designed to learn the bidirectional (forward and
backward) semantics simultaneously. Furthermore,
it creates a novel evaluation strategy to improve the
performance of the forward semantics by using the
backward semantics. After joint learning, contrast
learning is imported to enhance the ability of the
backward semantics to identify the unsuccessful
answer. Finally, BSEM combines the outputs of
the forward and backward semantics to predict the
correct answer.

Compared with previous MHKGQAs with se-
mantic embeddings, such as EmbedKGQA (Sax-
ena et al., 2020) and KGT5 (Saxena et al., 2022),
BSEM has a significant advantage in reasoning
paths. The reason is as follows: 1) the backward
embedding has the ability to restore the question
from the given answer, like the solution verification
in mathematics that ensures the solution satisfies
any given condition. Moreover, the backward em-
bedding can verify whether an answer is right or



wrong. 2) With the verification, the backward se-
mantics module can alleviate the forward semantics
drift by the above joint learning. 3) According to
the same argument, the forward semantics mod-
ule can also enhance the verification ability of the
backward semantics via contrast learning.

The main contributions in the paper are summa-
rized as follows.

* We propose a backward semantics embedding
method to verify whether an answer is right or
wrong. To learn the backward semantics, we
create a novel backward score function based
on the forward score function of the embed-
ding model (Trouillon et al., 2016), as defined
in Equation 7. Since the novel score function
only uses the partial forward score function,
it avoids the disadvantage of no backward se-
mantics dataset. This approach complements
and enhances existing forward semantic-only
methods.

* We propose a bidirectional semantics embed-
ding and matching method (BSEM) to al-
leviate the forward semantics drift problem.
Armed with the two-stage learning consisting
of joint learning and contrast learning, BSEM
can improve the performance of the forward
semantics and enhance the ability of the back-
ward semantics to distinguish the incorrect
answer.

» Experiments using two benchmarks, MetaQA
and WebQSP, illustrate that BSEM surpasses
the five baseline methods of MHKGQA, Pull-
Net (Sun et al., 2019), EmQL (Sun et al.,
2020), LEGO (Ren et al., 2021), Embed-
KGQA (Saxena et al., 2020) and KGT5 (Sax-
ena et al., 2022). Especially on the incom-
plete KG benchmark — WebQeustionSP, com-
pared with the other four methods except
for EmQL, BSEM improves the accuracy by
13.1%, 12.0%, 5.2% and 10.0%, respectively.

The rest of this paper is organized as follows.
Section 2 introduces related works on Multi-hop
KGQA. Then, Section 3 provides details for the
proposed BSEM method. Moreover, Section 4
shows the experimental results and analysis. Fi-
nally, Section 5 concludes the paper.

2 Related Work

Multi-hop KGQA (Zhang et al., 2018; Lan and
Jiang, 2020; He et al., 2021) requires reasoning

over multiple edges in a KG to predict the correct
answer. The method may fail in an incomplete
KG because the KG lacks some edges between
the question and answer. Some prior works (Sun
et al., 2018, 2019; Han et al., 2020) use external
relevant text corpora to augment the KG and reason
over the combinations of the text corpora and KG.
GRAFT-Net (Sun et al., 2018) and PullNet (Sun
et al., 2019) both supplement the incomplete KG
with information extracted from text corpora and
reason over a question-specific sub-graph contain-
ing the KG and text corpus. The method proposed
by (Han et al., 2020) utilizes the semantics of the
text corpus to enrich the representation of entities
and complete the edges through the structural in-
formation in the text. However, the text corpora are
difficult to satisfy these methods.

Recently, other works have attempted to over-
come the KG incompleteness challenge using KG
embeddings methods(Sun et al., 2020; Ren et al.,
2021; Saxena et al., 2020; ?). EmQL(Sun et al.,
2020) uses neural retrieval over embedded triples
in a KG to implement some logical operations and
applies a randomized data structure called a count-
min sketch to propagate scores of logically-entailed
entities. LEGO(Ren et al., 2021) executes a query
synthesis module and a KG embedding module
iteratively. At each step, the query synthesis mod-
ule uses the question embedding to infer a reason-
ing action and then the KG embedding module
matches the action in the embedding space. Em-
bedKGQA(Saxena et al., 2020) uses the ComplEx
embedding method(Trouillon et al., 2016) to learn
the representation (embeddings) of edges and enti-
ties in the given KG. EmbedKGQA then calculates
the score of each candidate answer entity by using
the question embedding to approximate the seman-
tics of the reasoning path. PKEEQA(Niu et al.,
2021) utilizes a customizable path representation
mechanism to evaluate the ambipolar correlation
between a path embedding and a question embed-
ding. KGT5(Saxena et al., 2022) regards KG link
prediction and KGQA as sequence-to-sequence
tasks; thus KGTS5 trains an encoder-decoder trans-
former model (Raffel et al., 2020) in the link predic-
tion task. These above methods only focus on the
forward semantic from the question entity to the
answer entity. Different from these methods, this
paper imports the backward semantics to compen-
sate for the forward semantics to find the correct
answer.



3 Bidirectional Semantics Embedding
and Matching Method

In this section, we first formalize the problem that
needs to be addressed by our proposed bidirec-
tional semantics embedding and matching method
(BSEM). Then we describe the implementation de-
tails of the method. The method consists of three
modules: the KG embedding module, the question
embedding module and the semantics reasoning
module. As shown in Figure 1, the KG embedding
module utilizes the Knowledge Graph Embedding
method — ComplEx (Trouillon et al., 2016) to learn
embeddings of all entities and edges in a given KG.
The question embedding module generates the for-
ward and backward semantics for the given ques-
tion. The semantics reasoning module then imports
joint learning and contrast learning to combine the
forward and backward semantics and infers the cor-
rect answers. Finally, we introduce how to train
and predict using BSEM.

3.1 Problem Definition

Knowledge Graph(G) consists of a large number of
triples (h, 7, t)s, where h and ¢ are entities and r is
an edge. Let £ be the entity set and R be the edge
set. Then, G = € x R x £. Given a question g and
a G, the goal of Multi-hop KGQA (MHKGQA) is
to find the correct answer a from the question entity
h via several hops in G (called reasoning path p),
such as p = (h,r1,t1,72, ..., tn—1, T, a), defined
by the following equation.

argmaxJF(q, p, a) (1)
a,peG
, where F is a match function, i.e., F : g XpXa —
R.

For MHKGQA wusing KG embedding
(EMHKGQA), since each embedded entity
contains the semantics of its neighbour edges
and entities in G, it contains the semantics of
its reasoning path. So, EMHKGQA learns the
reasoning path semantics p from a given question
q to an answer and matches p with each embedded
entity to find the correct answer a. Previous
EMHKGOQA studies only focus on extracting the
forward reasoning semantic paths from the ques-
tion to the answer ¢*(h, r*, a) (called the forward
semantics ), and this could lead to semantic drift
as the length of the path between the question and
answer becomes longer. To alleviate the semantic
drift problem, we leverage the backward reasoning

path semantics ¢~ *(a,r~*, h) from the answer
to the question (called the backward semantics).
Then we define BSEM by the following equation.

argmaxF(q,p,a) ~ argmaxF(eq, (¢", ¢~ %), €q)
a,peG ea€G
)

, where ¢, is the question embedding, and e, is an
entity embedding in G.

3.2 KG Embedding Module

To obtain each entity embedding e, in
G, we apply the ComplEx embedding
method(ComplEx)(Trouillon et al., 2016) to
embed entities and relations into a complex space.
Given h,t € £ and r € R in the KG, ComplEx ap-
plies a triple scoring function ¢ : £ X R x £ — R
to learn the representations as ey, e, e; € C. The
scoring function is as follows:

¢ (h,r,t) = Re ({ep, ey, €))

SCHCRCANC)
= Re Zeh e e

k=1

, where Re(-) refers to the real part of a complex
number. egk), egk) , and égk) are the k-th dimension
values in ey, e,, and é;, respectively. For each
correct triple (h,r,t) € G, the model assigns the
score ¢ (h,r,t) > 0. While, for each incorrect
triple (', 7', t') ¢ G, the model assigns the score

o(h' 7', t) <0.
3.3 Question Embedding Module

To acquire the question embedding e;, we con-
struct a feed-forward neural network (NN) that em-
beds the question ¢ to the same dimension vector
eq € C?%. The NN consists of a Bi-LSTM (or
pre-trained RoBERTa (Liu et al., 2019)), and two
fully connected layers with ReL.U activation and
dropout. The Bi-LSTM embeds the question g into
a 512-dimensional vector for the large question
dataset (MetaQA in Section 4.1), while the pre-
trained ROBERTa transforms the question ¢ into a
768-dimensional vector to capture rich semantics
for the small question dataset (WebQSP in Section
4.1). The final two fully connected layers project
the 512-dimensional (or 768-dimensional) vector
into a complex space C.

As the question semantics are different in the
forward reasoning path and the backward reason-
ing path, we extend e, to the forward question



embeddings e, and backward embeddings e '
ie., eq = (eq,€,-r). We use two NNs described
above to obtain e, and e ' respectively, as shown
in Figure 1.

3.4 Semantic Reasoning Module

The module utilizes joint learning to simultane-
ously capture the forward and backward semantics,
¢* and ¢~ *. Joint learning can improve the forward
semantics ¢*; in addition, the module uses contrast
learning to enhance the backward semantics ¢~ *
to identify the unsuccessful answer.

3.4.1 Forward Semantics

The forward semantics ¢* is defined as a score
function, i.e., ¢*(ep, ey, e4) > 0if e, is the cor-
rect answer and e,~ is the right reasoning path;
otherwise, ¢*(ep,er+,e,) < 0. In this paper,
we assume that the question ¢ contains the rea-
soning path semantics e,«. So, we replace e,
with the forward question embeddings ey, i.e.,
?*(en, ers,eq) = ¢*(en, €q'5 €a)-

To obtain ¢*(ep, €4, €q), we apply the same
method as EmbedKGQA (Saxena et al., 2020) that
utilizes Equation 3 to generate the score function.
In detail, the method is defined by the following
two equations 4 and 5.

¢ (enseq,eq) >0,a € A
" (en, eq,e,) < 0,0 ¢ A

= Re ((eh, €q'> éa>)
d
_ Re (Zegk>eg'f>égk>> ©)
k=1

3.4.2 Backward Semantics

¢*<€h, eq’u €a>

Similar to the forward semantics, the backward
semantics ¢~ * is also a score function defined by
the following equation.

¢~ "(earp-r €n) > 0,a € A

N / (6)
o~ " (e, e,sen) <0,a ¢ A
However, there is not any question dataset that
represents the backward reasoning path from the
question to the answer. So, it is difficult to ob-
tain the backward semantics ¢~ *(€q, €/, ep,) di-
rectly from the question dataset. To overcome this
difficulty, we utilize the ComplEx symmetry to
compute ¢~ *(eq, €,-, €n) by ¢*(€n, €,-1,€q) ac-
cording to the following equation.

“(ea,€,-,n) = Re((eq, €., n)) =

d
< e k), egk ) (Z k) (k)>
k= k=1

( é q’ €a>) = ¢ (ehveqd ea)
(7

3.4.3 Joint Learning

Joint learning is designed to simultaneously learn
the bidirectional (forward and backward) semantics.
In joint learning, we leverage the worse evaluation
strategy to improve the bidirectional semantics ac-
cording to the following equation.

|

The worse evaluation strategy takes the smaller
value between ¢* and ¢~* when a is the correct
answer. Conversely, the worse evaluation strategy
adopts the bigger value between ¢* and ¢~ * when
a is not the correct answer. The smaller and bigger
values both benefit the above two NNs of question
embedding to improve their semantics accuracy.
The reason is that the smaller and bigger values
allow the loss function to obtain a bigger loss value.
The bigger loss value can improve the NN perfor-
mance.

We use the Kullback-Leibler diver-
gence(KLD)(Kullback and Leibler, 1951) as
the loss function to train the two NNs of question
embeddings.

min{¢*, ¢ *},a € A

o g ®)
max{¢", ¢~ },a’ ¢ A

L =KLD(s,s") )

, where s* is the target labels. The target label
is 1 if a is the correct answer. Otherwise, it is 0.
Considering the total number of entities in KGs
is large, we use label smoothing to improve the
generalization capability.

3.4.4 Contrast Learning

Contrast learning aims to enhance the ability of the
backward semantics ¢~ to identify unsuccessful
answers found by the forward semantics ¢*. We
apply the following method to provide positive and
negative samples for contrast learning. For each
question ¢, the forward semantics ¢* computes
each entity in the KG G, generating the candidate
answer set sorted by ¢*. In the candidate answer
set, if an entity is a correct answer, the entity is the



positive sample; The top-K entities that are not the
correct answers are the negative samples.

Different from the traditional contrast learning
(Khosla et al., 2020), the contrast learning method
leverages a new contrast loss function. The contrast
loss function gives each positive sample a weighted
score to show its importance for the backward se-
mantics ¢~ *. The reason is that different positive
samples have different contributions to ¢~ *. Con-
sidering all questions in the training dataset, the
contrast loss function is defined by the following
equation.

n

La= =30 Y v log
j=1i€P;
exp ((bi_*/r)
exp (¢;7/7) + Xyen, exp (6, /7)

, where n is the number of questions in the training
dataset, and P; (1V;) is the positive (negative) sam-
ple set of the jth question. ~; is the weight score of
the ith entity in P;. The weight scores y of P; are
attained by passing the scores obtained from the for-
ward reasoning path semantics through the softmax
function. i.e., v = softmax(¢*(ep, ey ep;))-

(10)

When training the backward semantics ¢ ~* with
the above contrast loss function (Equation 10), the
forward reasoning path semantics ¢* remain un-
changed.

3.5 Prediction

In the prediction stage, the forward reasoning path
semantics ¢* is used to select top-K entities in G as
the candidate answer set .S. Then, for each entity e
in S, e is graded by the following equation.

s=(1-a)p" +ap™ (1n

, where a@ € (0,1) is a hyper-parameter. After
sorting the candidate answer set, the prediction
chooses the first (top-1) entity as the correct answer.

4 Experiments

We evaluate our method (BSEM) by comparing
it with five baseline MHKGQA methods, Pull-
Net(Sun et al., 2019), EmQL(Sun et al., 2020),
EmbedKGQA(Saxena et al., 2020), LEGO(Ren
et al., 2021), and KGT5(Saxena et al., 2022), on
the two benchmark datasets, MetaQA(Zhang et al.,
2018) and WebQSP(Yih et al., 2016). We first in-
troduce the two benchmark datasets and BSEM

parameters. Then, we give the experimental results
and analysis.

4.1 Datasets and Parameter Setting

MetaQA(Zhang et al., 2018) and WebQSP(Yih
et al., 2016) are both multi-hop KGQA datasets.
MetaQA focuses on the movie domain, with more
than 400k questions consisting of 1-hop, 2-hop
and 3-hop questions. Moreover, the answers to
these questions can be found in the KG Wiki-
Movies(Miller et al., 2016), which has 135k triples,
43k entities and nine relations. WebQSP contains
4737 natural language questions consisting of 1-
hop and 2-hop questions that need to be answered
by reasoning on the KG Freebase(Bollacker et al.,
2008). However, our experiments do not use Free-
base but its subset from (Saxena et al., 2022). Our
QA datasets are the same as (Saxena et al., 2020,
2022), listed in Table 1.

Dataset Train Valid  Test
MetaQA 1-hop 96,106 9,992 9,947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
WebQSP 2,998 100 1,639

Table 1: Statistics for MetaQA and WebQSP datasets
used in our experiments.

To simulate KG incompleteness to evaluate our
method, we directly use the incomplete KGs in
(Saxena et al., 2022). These incomplete KGs are
generated by randomly cutting down 50% of edges
from the two KGs: WikiMovies and the subset
of Freebase. Armed with different KGs, the two
above datasets are called different names. For ex-
ample, MetaQA with full KG (WikeMovies) is
called "MetaQA full-KG", while it with half KG
(random cut 50% edges) is called "MetaQA half-
KG". As some state-of-the-art methods apply these
incomplete KGs and the above two benchmark
datasets (MetaQA and WebQSP), it facilitates com-
parisons between our method BSEM and the above
five baseline methods. However, these incomplete
KGs are not the same owing to the above genera-
tion of random cuts. So, the ground truth SPARQL
query (GT query) method for test questions is im-
ported as the estimated standard. Comparing the
GT query with all other methods in the experiment
facilitates distinguishing their performance.

We apply hits@1 as our evaluation metric. For
the parameters of our method BSEM, we set top-
100 in the contrast learning and 7 = 1.0. Through



the grid search in hyperparameter tuning, we set
« 0.8, 0.3 and 0.8 for the datasets MetaQA 1-hop-
half, 2-hop-half and 3-hop-half, respectively. For
the datasets WebQSP with half KG and WebQSP
with full KG, we set o 0.5 and 0.3 respectively. All
methods run on the machine with Nvidia 3090Ti
GPU.

4.2 Experimental Results and Analysis

Table 2 shows experimental results on the MetaQA
dataset with half-KG. BSEM surpasses the five
baseline methods, PullNet, EmQL, LEGO, Embed-
KGQA and KGTS5, on the "1-hop" and "2-hop"
MetaQA datasets. The reason is that the backward
semantics can alleviate the semantic drift of the
multi-hop reasoning path. For example, as shown
in Figure 1, "Jordan Nagai" has a higher score than
"Woody Harrelson" and "Jeff Bridges" in the result
attained by the forward semantics, while "Jordan
Nagai" has a weaker score by performing the back-
ward semantics. After embedding the bidirectional
semantics, BSEM has the ability to find answers
more accurately. Especially compared with Embed-
KGQA that only has the forward semantics, BSEM
improves accuracy by 0.4%, 1.5%, and 2.7% in the
"1-hop", "2-hop", and "3-hop". The more hops, the
more accuracy improves.

Model 1-hop 2-hop 3-hop

GT query 63.3 45.8 453

PullNet 65.1(+1.8) 52.1(+6.3) 59.7(+14.4)
EmbedKGQA 70.6(+7.3) 54.3(+8.5) 53.5(+8.2)
EmQL 63.8(+0.5) 47.6(+1.8) 48.1(+2.8)
LEGO 69.3(+6.0) 57.8(+12.0) 63.8(+18.5)
GT query 67.7 48.7 44.4

KGT5 75.0(+7.3) 36.2(-8.2)  64.4(+20.0)
EmbedKGQA 75.2(+7.5) 63.7(+15.0) 43.5(-0.9)
Our BSEM 75.6(+7.9) 65.2(+16.5) 46.2(+1.8)

Table 2: Results on the dataset MetaQA half-KG with
hits@1. Values in parentheses indicate increased accu-
racy compared with "GT query". A bold value is the
best result.

However, on the "3-hop" tasks, BSEM can-
not outperform three baseline methods, PullNet,
LEGO, and KGT5. Compared with KGTS5, which
has the transformer-based encoder-decoder model,
BSEM only uses bidirectional semantics to find
the correct answer. The bidirectional semantics
can alleviate the multi-hop semantic drift but can-
not prevent it. While KGT5 has better accuracy
than BSEM on the "3-hop", KGT5 has very low
accuracy (36.2%) on the "2-hop". KGTS5 is against

the commonsense, i.e., the more hops in reason-
ing, the more uncertain in answer. The reason is
that the transformer-based encoder-decoder model
in KGT5 could concentrate on hops in the reason-
ing path but overlook associations between these
hops. The other two baseline methods, PollNet
and LEGO, have similar accuracies and reasons to
KGTS5 on "2-hop" and "3-hop". Due to the limita-
tion on the number of hops in the two datasets, we
cannot predict these anti-commonsense methods,
KGTS?5, PullNet, and LEGO, will definitely be bet-
ter than our BSEM in more hops (4-hop, 5-hop,...).
In short, BSEM has the best overall accuracy on
the dataset MetaQA half-KG.

In addition, BSEM also can obtain the most ac-
curate answers in the dataset WebQSP half-KG,
as shown in Table 3. Especially, comparing the
improvements of all baseline methods, PullNet,
LEGO, EmbedKGQA, and KGT35, on the GT query,
BSEM improves the accuracy by 13.1%, 12.0%,
5.2% and 10.0%, respectively. Results in Tables 2
and 3 illustrate that, compared with the five base-
line methods, BSEM can find a more accurate an-
swer to the multi-hop reasoning in a sparse KG.

Model WebQSP half-KG
GT query 56.9

PullNet 47.4 (-9.5)
EmbedKGQA 42.5 (-14.4)
LEGO 48.5 (-8.4)

GT query 56.9

KGT5 50.5 (-6.4)
EmbedKGQA 55.3 (-1.6)

Our BSEM 60.5 (+3.6)

Table 3: Results on the dataset WebQSP half-KG with
hits@1. As the dataset WebQSP does not provide the
obvious information on which question is "one hop" or
"two hop", the values are the accuracy of all methods
on the overall dataset WebQSP half-KG.

Table 4 show experimental results on the dataset
WebQSP with full-KG. These results show that
BESM is better than KGT5 and EmbedKGQA.
Moreover, BSEM can still find the more accurate
answer on the full KG; however, BSEM is weaker
than CBR-KGQA (Das et al., 2021). The reason
is that CBR-KGQA imports additional informa-
tion, such as SPARQL queries, to help it obtain
the right logical query form. Furthermore, CBR-
KGQA depends on the expensive annotations of
this additional information at scale. Once the KG
changes, CBR-KGQA needs to relabel these anno-
tations. So, the BSEM result is acceptable without



the above additional information.

Model WebQSP full-KG
KGT5 56.1
EmbedKGQA* 68.3
Our BSEM 70.8
CBR-KGQA 73.1

Table 4: Results on the dataset WebQSP full-KG with
hits@1.

4.3 Ablation Studies

Our method BSEM mainly contains the two sub-
models, the bidirectional reason path semantics and
the two-stage learning consisting of joint learning
(JL) and contrast learning (CL). To prove that these
sub-models can improve the performance of BSEM
running on the KG, we ablate the above sub-models
step by step.

Table 5 gives the ablation results on the dataset
WebQSP half-KG. "{-JL}" means that BSEM cuts
down joint learning; "{-CL}" cuts down contrast
learning. "{-JL and -CL}" deletes joint learning,
contrast learning and backward semantics. So, af-
ter "{-JL and -CL}", BSEM degrades into Embed-
KGQA that only contains the forward semantics.

Model WebQSP half-KG
Our BSEM 60.5

{-JL} 58.4

{-CL} 57.8 (56.7)
{-JLand -CL} 553

Table 5: Ablation experiments. The value in the paren-
theses is the result outputted by the forward reasoning
path semantics.

Compared with "{-JL and -CL}" (Embed-
KGQA), BSEM with "{-CL}" (i.e., joint learning)
improves the accuracy from 55.3% to 56.7%. After
injecting the backward semantics, joint learning
has 57.8% accuracy and is 2.5% more accurate
than EmbedKGQA. Similarly, BSEM with "{-JL}"
(contrast learning) has 58.4% accuracy and is more
3.1% accurate than EmbedKGQA. After merging
joint learning and contrast learning, our BSEM
obtains 60.5% accuracy. The above ablation exper-
iments show that these proposed sub-models can
improve the performance of Multi-hop KGQA.

4.4 The Weight Scores in Contrast Learning

Our method BSEM leverages a weighted score 7;
in contrast learning (Equation 10) to show the im-
portance of the positive sample to the backward

semantics ¢ *. Table 6 lists the results obtained by
BSEM with/without ~; in contrast learning. The
weighted score 7; can improve accuracy by 0.1%,
0.2%, 0.7% on the datasets MetaQA half-KG with
"1-hop", "2-hop", and "3-hop". As the number of
hops increases, the ~; effect becomes strong. Ta-
ble 6 shows that importing 7; improves contrast
learning accuracy.

DataSet WS NWS
MetaQA half-KG 1-hop 75.6 75.5
MetaQA half-KG 2-hop 652 65.0
MetaQA half-KG 3-hop 46.2 455
WebQSP half-KG 60.5 59.8
WebQSP full-KG 70.8 70.4

Table 6: WS represents our method results and NWS
shows results obtained by our method without the
weighted score ; in contrast learning.

5 Conclusion

This paper proposes BSEM, a novel bidirectional
semantic embedding and matching method to im-
plement the multi-hop KGQA. BSEM utilizes the
backward semantics to repair the forward seman-
tics drift. BSEM then applies joint learning and
contrast learning to merge the bidirectional seman-
tics to find the correct answer. Joint learning cre-
ates the worse evaluation strategy to improve the
performance of training bidirectional semantics.
While contrast learning imports the weighted score
to enhance the ability of the backward semantics to
identify the unsuccessful answers.

Compared with the state-of-the-art methods,
PullNet, EMQL, LEGO, EmbedKGQA, and KGTS5,
BSEM has the best overall performance on the
multi-hop KGQA. However, BSEM only can alle-
viate the semantic drift in the reasoning path but
cannot prevent it. The reason is that the forward
and backward semantics could still drift as the rea-
soning path gets longer. Inspired by the KGTS5
model, in future, we plan to explore the encoder-
decoder model based on bidirectional semantics to
prevent semantic drift.
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