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Abstract: Precise identification of dynamic models in robotics is essential to sup-1

port dynamic simulations, friction compensation, external torque estimation, col-2

lision detection, etc. A longstanding challenge remains in the development and3

identification of friction models for robotic joints, given the numerous physical4

phenomena affecting the underlying friction dynamics which result into nonlin-5

ear characteristics and hysteresis behaviour in particular. These phenomena proof6

difficult to be modelled and captured accurately using physical analogies alone.7

This has motivated researchers to shift from physics-based to data-driven models.8

Currently, these methods are still limited in their ability to generalize effectively9

to typical industrial robot deployement, characterized by high- and low-velocity10

operations and frequent direction reversals. Empirical observations motivate the11

use of dynamic friction models but these remain particulary challenging to estab-12

lish. To address the current limitations, we propose to account for unidentified13

dynamics in the robot joints using latent dynamic states. The friction model may14

then utilize both the dynamic robot state and additional information encoded in the15

latent state to evaluate the friction torque. We cast this stochastic and partially un-16

supervised identification problem as a standard probabilistic representation learn-17

ing problem. In this work both the friction model and latent state dynamics are18

parametrized as neural networks and are integrated in the conventional lumped pa-19

rameter dynamic robot model. The complete dynamics model is directly learned20

from the noisy encoder measurements in the robot joints. We use the Expectation-21

Maximisation (EM) algorithm to find a Maximum Likelihood Estimate (MLE) of22

the model parameters. The effectiveness of the proposed method is validated in23

terms of prediction accuracy, using the Kuka KR6 R700 as a test platform.24

Keywords: Robotics, Data-driven modeling, Sensorless force estimation, Friction25

1 Introduction26

Precise identification and modeling of dynamic behavior holds significant potential to improve per-27

formance of robotic systems in multiple aspects. It is essential for achieving accurate dynamic28

simulations and improve performance in motion control tasks. In the contect of physical Human-29

Robot Interaction (pHRI), knowledge of the robot’s dynamic behavior is crucial for ensuring safety30

and enabling tasks such as collision detection and identification [1]. The integration of accurate31

dynamic models with kinematic measurements for external torque estimation offers a promising32

alternative for facilitating human-robot interaction, particularly in industrial robots that lack joint33

torque sensors. This requires the model to take into account all relevant phenomena and the effects34

they introduce on the robot dynamics. Among these, friction is one of the most dominant and unde-35

sired phenomena. Friction arises in the joints where relative motion occurs between contact surfaces,36

resulting in energy dissipation. This highly nonlinear phenomenon depends on several factors, such37

as surface material, type of lubricant, joint speed, temperature, axial load and so forth [2]. Including38

all friction characteristics in the model is therefore exhaustive and very challenging.39

It is common to assume a static friction model taking into account Coulomb and viscous friction,40

as well as the Stribeck effect [3]. However, typical motion of robotic systems is characterized by41

many direction reversals and high and low velocity operations, resulting into dynamic and hysteretic42

friction behaviour that static models fail to capture adequately. Dynamic friction models aim to43

adress this issue. The Lugre model [4] describes the transition from static to dynamic friction by44

introducing a dynamic latent state variable that represents the average deflection of the bristles at the45
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contact surfaces in the joint. The Generalized Maxwell-Slip (GMS) model [5] adresses the hysteris46

behaviour in the presliding regime, dominated by adhesive forces, which has implications around47

velocity reversals. Other factors such as backlash, elastic deformations, microscopic interactions48

between the contact surfaces, varying load etc. are often neglected. Current research efforts typically49

focus on incorporating one or more of these effects in a friction model [7, 6, 8]. However, combining50

all of these into a single model would require significant engineering effort and result into highly51

complex models, also impeding efficient identification.52

Recently, promising results have been obtained using Deep Learning (DL) methods that directly53

model friction as an input-output model from encoder and torque measurements. In [9, 10], Neural54

Networks (NNs) are used to learn a static friction characteristic. Specialized architectures for friction55

modelling have been introduced, e.g. by [11], for modelling the discontinuous friction characteristic.56

Additionally, research has focused on the inclusion of various factors influencing friction into data-57

driven models, with temperature and load torque being the most commonly addressed effects [12, 13,58

14, 15]. A minority of the work aims at establishing dynamic models. In [16], a hybrid approach of59

extending the conventional dynamic Lugre model with a static neural network, that acts as residual60

term for correcting erros of the Lugre model. In [17] RNN and LSTM are used to obtain a dynamic61

friction model. However, these fully data-driven dynamic friction models require large datasets62

and have not demonstrated consistent performance across varying velocities, direction reversals,63

different loads, and high degree-of-freedom (DOF) robotic systems. Moreover, they can lead to64

non-Markovian state-space. Futhermore, RNNs and LSTMs internalize the latent state estimation65

which impedes their general applicability post identification.66

This work is motivated by the observation that friction in robotic systems is an intrinscally dynamic67

phenomenon. Physics-based models fail to capture all effects succesfully due to their prescribed68

structure. Supervised DL methods have shown their potential in capturing complicated input-output69

relation without structural bias however they are not straightforward to apply in the partially un-70

supersived setting of latent state dynamics. To address these problems, we propose the following71

contributions: (i) We describe the dynamic model of the robotic system as a Probabilistic State-72

Space Model (PSSM). The unknown friction torque is parametrized by a NN. The friction dynamics73

are modelled by means of latent variables that represent the (partially) unknown underlying state of74

the system. The friction torque and dynamics are identified jointly with the conventional lumped pa-75

rameter model. (ii) Through the Expectation-Maximization (EM) algorithm and Sequential Monte76

Carlo (SMC) techniques we obtain a Maximum Likelihood Estimate (MLE) of the PSSM. Our77

identification method produces an accurate model and does not necessitate pre-processing or noise78

handling of the sensor data. (iii) We evaluate our approach on a KUKA KR6 700 industrial robot79

and show the improved results compared to the existing literature.80

2 Background81

2.1 Robot dynamics82

The dynamics of kinematic chains composed of rigid bodies are typically formulated using either83

the Newton-Euler or Lagrangian methods, yielding a set of equations generally referred to as the84

inverse dynamic model85

M(q)q̈+ c(q, q̇) + g(q) + τ f (q, q̇) = τm (1)

Here q, q̇ and q̈ denote the joint position, velocity and acceleration, respectively. Here, M(q) rep-86

resents the positive definite inertia matrix, c(q, q̇) accounts for the Coriolis and centrifugal effects,87

g(q) denotes the gravitational torque, and τ f and τm describe the friction and motor torque, respec-88

tively. Friction is typically modeled as a function depending on the joint velocity q̇ and sometimes89

also the position q.90

2.2 Conventional identification method91

Conventional methods for robotic system identification are typically based on the inverse dynamics92

model [19, 18]. The standard dynamic robot model is linear-in-the-parameters so that it is possible93

to rewrite (1) as follows [20]94

τm = Y (q, q̇, q̈)Θ (2)

Here Y (q, q̇, q̈) is a regressor matrix and Θ the vector of standard inertial lumped parameters.95

For rigid bodies these standard inertial parameters include the moment of inertia tensor elements,96

{Ixx,j , Iyy,j , Izz,j , Ixy,j , Ixz,j , Iyz,j}, the centre of mass, {rx,j , ry,j , rz,j}, the mass, mj , and the97

parameters describing the friction law, θf,j , for each link and joint j. For example, a simple model98

where only Coulomb and viscous friction are considered – modeled as a linear function of the joint99
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velocity and its sign, i.e. τf,j = νc,jsign(q̇j) + νv,j q̇j , – the parameter θf,j would represent the100

Coulomb and viscous friction coefficients, {νc,j , νv,j}.101

The base inertial parameters are the minimal set of identifiable parameters to parametrize the dy-102

namic model and can be obtained through proper regrouping of the linear system (2) by means of103

linear relations or a numerical method [20]. This overdetermined linear system can be solved by104

Least Squares (LS), after collecting a qualitative dataset. Therefore, periodic excitation reference105

trajectories of T +1 timesteps along, {q0:T, q̇0:T , q̈0:T }, are designed to persistently excite the base106

inertial parameters at a user defined sampling rate. By controlling the frequency spectrum of the pe-107

riodic excitation signal, the signal-to-noise level can be improved through exact frequency domain108

post-processing of the data.109

Extending this linear-in-the-parameters robot model to include more advanced friction models fur-110

ther improves accuracy. Such friction models are, however, nonlinear-in-the-parameters and consid-111

erably complicate the parameter estimation. This nonlinear optimization problem is typically solved112

using iterative gradient-based methods. For a physics-based model, such as the Stribeck model [3],113

the values obtained for the linear friction parameters can serve as inspiration for the initial guess114

of related parameters in the nonlinear model, with optimization carried out by, for example, the115

Downhill-Simplex method [21]. For data-driven models, such as a neural networks, the lack of a116

physically inspired model structure and the high number of model parameters make it impossible117

to determine a meaningful initial guess. These models are optimized using speciliazed stochastic118

gradient-based optimization methods, which often require intensive hyperparametertuning.119

Things complicate further for dynamic friction models, such as the Lugre model and the GMS120

model. Here the supervised learning structure breaks down, due to the presence of one or more un-121

observed dynamic variables for which labeled data is unavailable. These unobserved variables must122

be accounted for, and the parameters describing them need to be inferred implicitly from the mea-123

surements of q and q̇. There is no way of assessing the validity of the proposed physical structure for124

the unobserved dynamics or detecting potential mismatches between the model’s assumed structure125

and the actual latent dynamics affecting the robotic system, other than evaluating its contribution to126

the model structure. Moreover, as the model structure becomes more complex, the quality of the127

data which is used for identification becomes increasingly more important and should be obtained128

in such manner as to contain the effects of the different friction regimes. From this it is clear that129

there is an important trade-off between model accuracy and the overall modeling and estimation130

complexity.131

3 Methodology132

Our goal is to identify a dynamic robot model based on N data sequences D = {yn
0:T ,u

n
0:T }Nn=1,133

with y = {q, q̇} and u = τm. We further desire the model to have a similar structure as the134

model in (1) but additionaly incorporate latent variables to account for any unidentified friction135

dynamics. This implies that we can introduce a memory variable into the friction torque evaluation136

but also need to come up with a dynamic model for the latent variables. To this end we establish a137

prestructured Probabilistic State Space Model (PSSM) that incoporates the standard dynamic model138

with arbritrary friction torque and extends it with the latent dynamics. Unlike traditional dynamic139

friction models, which impose predefined dynamic states based on physical assumptions (e.g. the140

bristle deflection in the Lugre model), our approach does not enforce strong priors on these latent141

states. Both the friction torque models as well as the latent state dynamics are represented by NNs.142

Based on the PSSM framework we can rely on existing techniques to identify the lumped parameters143

as well as the NN parameters simultaneously.144

3.1 Probabilistic State Space Models145

A PSSM is characterised by an initial, pθ(x0), transition pθ(xt|xt−1,ut−1), and, emission density,146

pθ(yt|xt). We assume that the state, xt ∈ X ⊂ Rnx , input ut ∈ U ⊂ Rnu and yt ∈ Y ⊂ Rny are147

continuous vector quantities. Here, t ∈ N is the discrete time index. Furthermore, we impose the148

Markov assumption. Finally we assume that the densities constituting the PSSM are parametrised149

by some parameter θ ∈ Θ ⊂ Rnθ . The goal is to find a representation of these densities and a value150

for the parameter θ that describes them.151

Based on the former modelling assumptions, the joint probability over the measurement and state152

trajectory can be decomposed as follows153

pθ(y0:T ,x0:T |u0:T ) = pθ(x0)pθ(y0|x0)

T∏
t=1

pθ(yt|xt)pθ(xt|xt−1,ut−1) (3)
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In this work, we impose a specific structure on the transition function by reformulating the inverse154

dynamic model (1) as a state-space model and extending the robot state, yt, with latent states zt155

ẋt =

[
q̈t
q̇t
żt

]
=

M(q)
−1

(τm − c(q, q̇)− g(q)− τ f,θ(xt))
q̇t

ηθ(xt)

 = f ′θ(xt, τm) (4)

where ηθ(xt) defines the latent variable dynamics.156

Numerical integration methods can be used to solve this derivative function over the sampling in-157

terval to compute the next state, such that xt = fθ(xt−1,ut−1). A more general Probabilistic158

State-Space Model can now be formulated as159

p(xt|xt−1,ut−1) = fθ(xt−1,ut−1) +wt, wt ∼ Nθ(0,Q)

p(yt|xt) = gθ(xt) + vt, vt ∼ Nθ(0,R)
(5)

with gθ(xt) the measurement model. The random variables wt and vt serve as sources of process160

and measurement noise, respectively. The covariance matrices in (5) can be included in θ.161

Parameterizing the transition function ηθ(xt) of the latent states by a neural network enables the162

learning of highly nonlinear dependencies. Furthermore, parameterizing the friction characteristics163

τ f,θ(xt) and linking them to the complete extended state xt provides the necessary representational164

flexibility to obtain accurate dynamics of the robotic system. The model parameters, θ, then consist165

of the parameters of these two neural networks and the remaining base inertial parameters.166

3.2 Identification method167

3.2.1 Maximum Likelihood Estimation168

The identification of the PSSM (5) is achieved by determining the Maximum Likelihood Estimate169

(MLE) of the model parameters θ that maximizes the marginal likelihood of the observed data170

{yn
0:T },171

θ̂MLE = max
θ

L({yn0:T }Nn=1) = max
θ

N∑
n=1

log pθ(yn0:T |un
0:T ) (6)

For a PSSM, this likelihood, for a single data sequence, can be computed via the integral172

pθ(y0:T |u0:T ) =

∫
pθ(y0:T ,x0:T |u0:T )dx0:T (7)

A tractable expression for this integral can be obtained by substitution of (3) in the integrand. It is,173

however, well recognized that optimizing the Maximum Likelihood objective (6) presents signifi-174

cant challenges, given that x0:T is (partially) unobserved and pθ(xt|xt−1,ut−1) remains unknown175

prior to the estimation of the parameter θ. We make use of the Expectation-Maximization (EM)176

algorithm [22] to adress these challenges.177

The EM-algorithm is a two-step iterative optimization procedure. The Expectation step deals with178

x0:T being unavailable by assuming a value θ∗ on the model parameters θ. This allows to evaluate179

the model structure (5) and estimate the ”missing” data x0:T . Given this assumption and the ob-180

served data y0:T , the data likelihood function L can then be approximated by its minimum variance181

estimate, Qθ,θ∗ , also known as the Evidence Lower Bound (ELBO):182

Qθ,θ∗ = Eθ∗ [log pθ(y0:T ,x0:T |u0:T )|y0:T ] =

∫
log pθ(y0:T ,x0:T |u0:T )pθ∗(x0:T |u0:T ,y0:T )dx0:T

(8)
Next, in the Maximization-step, the functional Qθ,θ∗ is optimized for θ, producing an updated183

estimate for θ∗. This procedure is repeated until convergence. The EM-algorithm is summarized in184

Algorithm 1.

Algorithm 1 Expectation-Maximization Algorithm

1: Set k = 0, initialize θ0
2: repeat
3: E-step: calculate Q(θ,θk)
4: M-step: θk+1 = argmaxθ Q(θ,θk)
5: until convergence: Q(θk,θk−1)−Q(θk−1,θk−2) → 0

185

An additional challenge is the explicit evaluation of these Bayesian integrals, for which there is typi-186

cally no hope of finding an analytical solution in the general nonlinear case. We resort to Sequential187

Monte Carlo (SMC) methods as emperical approximations of these Bayesian integrals.188
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3.2.2 Sequential Monte Carlo189

The computation of Qθ,θ∗ primarly depends on the smoothed density pθ∗(x0:T |u0:T ,y0:T ), which190

can typically only be calculated once the filtered distribution pθ∗(xt|u0:t,y0:t) is available, and ex-191

pectations with respect to it. In this paper, we numerically approximate these posterior probabilities192

by relying on SMC methods, more specifically Sequential Importance Resampling (SIR) methods,193

which are better known under the informal title of particle filters and smoothers. The fundamental194

idea underlying SIR methods is to approximate the integrals of the filtering and smoothing distribu-195

tion by a sum of sufficiently many uncorrelated samples, i.e. the particles. We refer to [23] for an196

in-depth discussion.197

We would like te note that, while the conventional identification method discussed in Section 2.2 is198

not applicable to the proposed latent variable model, the identification approach based on MLE can199

be employed for all the aforementioned friction models. This probabilistic framework inherently200

manages process and measurement noise, and it allows for the simultaneous estimation of state201

variables and model parameters within a unified algorithm. Upon convergence, the identification202

algorithm provides a useful byproduct in the form of a state estimator, which can be utilized online203

for various purposes. A counterargument is that the recursive computations are time-consuming and204

convergence speed is typically slower.205

4 Experimental validation206

4.1 Test setup and dataset207

The position controlled KUKA KR6 R700 industrial robot is used as a validation platform. Fig.208

1 depicts the experimental setup. A dataset is collected that aims to capture dynamic (friction)209

behaviour, therefore, the robot joints are excited simultaneously using varying velocity profiles that210

include direction changes. For each trajectory, the joint positions and velocties are collected, along211

with the motor torque, which are computed directly from the motor currents. The dataset is collected

Figure 1: Experimental test setup with KUKA KR6 R700.
212

according to the guidelines of the conventional identification method [19, 18] in order to allow213

proper camparison with the existing methods, as discussed in section 2.2. The training dataset is214

designed as 3 different trajectories, each executed twice, with duration of 31.4s each, resulting in215

only about 3 minutes of training data. The validation dataset consist of a fourth trajectory of the same216

length. Design of experiment for each of the trajectories is formulated as a optimization problem to217

incorporate all physical constraints such as position, velocity, accelaration, jerk and self collision. A218

joint position reference trajectory is parametrized as a sum of sines and cosines219

q(t) =

K∑
k=1

(
ak
kωn

sin(kωnt)−
bk

kωn
cos(kωnt)

)
(9)
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with K = 20 coefficients and ωn = 1
5Hz the base frecuency. The KUKA Robot Sensor Interface220

(RSI) software was used for implementing and applying these cyclic excitation signals and collect221

the data at a sample rate of ∆t = 0.004s.222

In contrast to [19], we do not optimize the experiment with respect to the condition number. Al-223

though this criterion greatly improves the measurement information quality, i.e. by ensuring that224

all model parameters are excited sufficiently, the condition number is still a model-dependent cri-225

terion. As this is a dataset for nonlinear black-box identification, we decided against using model226

knowledge for the design of experiments. The optimization problem is given by227

{a∗,b∗} = argmin
a,b

J(q(t))

s.t. [q, q̇, q̈]min < [q, q̇, q̈] < [q, q̇, q̈]max

[q(t), q̇(t), q̈(t)] = 0 ∀t ∈ {0, T}

(10)

We choose J(q) = 0, in accordance with the findings in [24] that the empty objective function228

captures both stationary and high-velocity effects well. The random sampling of the initial guesses229

for a and b leads to different signal outcomes.230

5 Results231

The proposed method was benchmarked against several well-established and state-of-the-art friction232

models, including a simple model (i.e. Coulomb and viscous friction), the Stribeck characteristic,233

the Lugre model, the GMS model, a fully connected neural network, and a RNN. A quantitative234

comparison of open-loop prediction performance is provided, along with a qualitative analysis of235

the identified friction characteristics.236

5.1 Implementation details237

Identification of the benchmark models from the noisy measurements using the conventional iden-238

tification method may lead to bias in the resulting models. We make use of a non-causal zero-phase239

digital filter with flat amplitude, and a central difference method to compute joint velocities and240

accelerations from joint positions to reduce any distortion in the data. Specifically, we selected a241

4-th order butterworth filter with cutoff frequency of 10Hz. The identification of the latent variable242

model is performed using only torque and joints position measurements. From these, the joint veloc-243

ities, accelerations and latent states, which are needed to evaluate the dynamic model, are estimated244

through the particle filter.245

For implementation and identification details of the Stribeck, Lugre, and GMS models, we follow246

established best practices as described in [3], [4], and [5], respectively. In the case of the data-driven247

models, a comprehensive hyperparameter search was conducted to optimize performance. The final248

NN, RNN and LVM models were trained using the Adam optimizer, with a learning rate of 0.001.249

The batch sizes were set to 64 for the NN and 128 for the RNN. The NN architecture consists of two250

hidden layers, each with 32 nodes. The RNN architecture comprises three layers with 32 nodes and251

a hidden state size of 32. Both models apply the ReLU activation function.252

The LVM architecture comprises a neural network with a single hidden layer of 32 nodes for the253

latent dynamics function and a neural network with two hidden layers of 32 nodes for the friction254

function, both with the Mish activation function applied. The optimal dimension of the latent state255

z, was determined to be 2. During training, 200 particles were used for the SMC methods.256

5.2 Dynamic simulation257

Since the robot manufacturer does not disclose the inertial and dynamic parameters, the validation258

of the proposed method was carried out by assessing the open-loop prediction performance. These259

open-loop simulations were performed by applying the motor torques measured for the validation260

reference trajectory and comparing the predicted joint positions and velocities with the correspond-261

ing measured values. Given that we do not have access to the internal controller responsible for262

tracking the reference signals, we chose to not include control dynamics in the robotic model and to263

directly apply the measured motor torques.264

The open-loop prediction results for the complete test trajectory, as well as the first 10 seconds,265

are quantitatively summarized in Table 1 using the Mean Squared Error (MSE) and Mean Absolute266

Error (MAE) metrics. Fig. 2 depicts the absolute error of the predicted open-loop signals of the267

different models w.r.t. the reference validation trajectory. Note to logarithmic scale on the vertical268

axes. The physics-based benchmark models, i.e. the Lugre and GMS model, deliver robust open-269

loop predictions over the complete trajectory, but fail to accurately capture all the subtilities in the270
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Table 1: Open-loop prediction of the different models. Quantative results in terms of MAE en MSE.
Method 10s interval Complete trajectory

MSE MAE MSE MAE
Simple 1.97 0.96 − −
Stribeck 0.14 0.25 1.15 0.61

Lugre 0.027 0.12 0.66 0.42

GMS 0.15 0.28 1.43 0.84

Fully connected NN 0.21 0.26 2.29 1.07

RNN 0.039 0.13 − −
LVM (ours) 0.024 0.11 0.11 0.22

dynamics, for example around direction reversals. The data-driven benchmark models, i.e. the271

fully connected NN and RNN, are more accurate at the beginning of the test trajectory. However,272

as the trajectory progresses, the accumulated error increases to the extent that the inputs to these273

models encounter values outside the state-space covered in the training data, leading to unstable274

outputs and exploding values in the predictions. For the simple model and the RNN, the accumulated275

errors became so significant that their MAE and MSE values were omitted from the analysis of long276

prediction horizons. The proposed data-driven latent variable model outperforms all benchmark277

models in both accuracy and robustness. The dynamics identified by the latent state variables helps278

improving the stability and accuracy of the predictions.279

Figure 2: Absolute errors of the open-loop estimations of the different models with respect to the
reference signal.

5.3 Identified friction characteristic280

For completeness, the friction characteristics identified by the different models for Joint 1 are shown281

in Fig. 3. These friction characteristics were derived by evaluating the models on the measured282

joint positions, velocities and motor torques. Due to the lack of joint torque sensors in the KUKA283

KR6 R700, no direct ground truth for the friction characteristics is available, precluding a quanti-284

tative comparison. Nonetheless, these results are provided to give a qualitative perspective on the285

friction behavior and offer insight into the order of magnitude of the estimated friction effects. For286
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reference, the friction characteristic identified by the simple model is included, enabling an indirect287

comparison between the models.288

The friction characteristic of the proposed LVM displays more nuanced dynamics in the low velocity289

range, compared to other models. Static friction, or stiction, is well captured near zero velocity, as290

indicated by the sharp transition around 0 rad/s, where friction changes from negative to positive val-291

ues. In the low-velocity range, the model captures the Stribeck effect, characterized by a reduction in292

friction with increasing velocity before the transition to a velocity-strengthening regime. As velocity293

increases further, the model identifies the dominant viscous friction, where friction force increases294

more linearly with velocity. Additionally, the identified model exhibits clear hysteresis loops, indi-295

cating the presence of memory effects in the friction dynamics, reflecting the path-dependent nature296

of friction. These features highlight the model’s capability to capture the complex frictional behavior297

across different velocity regimes.298

(a) Stribeck (b) Lugre (c) GMS

(d) Fully connected NN (e) RNN (f) LVM (ours)

Figure 3: The estimated friction characteristics for the different models of joint 1.

6 Conclusion299

This paper proposes probabilistic LVMs for friction modelling in robot joints. Data-driven mod-300

elling techniques, here neural networks, are inserted in the dynamic model and serve as a highly301

flexible parametrization to identify the nonlinear friction behaviour in robotic joints. The system302

state is augmented by latent variables to account for unmodeled and unknown underlying phenom-303

ena influencing the robot dynamics. The friction characteristic and latent dynamics are learned, si-304

multaneously with the other base inertial parameters describing the lumped parameter model of the305

robot dynamics, directly from noisy sensor data. The inherently stochastic and unsupervised nature306

of the identification problem is addressed by framing it as a probabilistic learning problem. A Maxi-307

mum Likelihood Estimate of the model parameters is obtained using the Expectation-Maximization308

algorithm in conjuction Sequential Monte Carlo techniques. This approach also relaxes the demands309

on the Design of Experiments and eliminates the need for pre-processing of the training data. Exper-310

imental validation on the KUKA KR6 R700 shows that the proposed methodology can accurately311

identify the dynamic model. This, however, comes at a cost of increased computational complexity312

compared to conventional modelling methods. Further research should be conducted to validate the313

added value of the proposed methodoly for applications such as external torque estimation in robotic314

systems.315
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