
Small LLMs Are Weak Tool Learners: A Multi-LLM Agent

Anonymous ACL submission

Abstract

Large Language Model (LLM) agents signif-001
icantly extend the capabilities of standalone002
LLMs, empowering them to interact with exter-003
nal tools (e.g., APIs, functions) and complete004
various tasks in a self-directed fashion. The005
challenge of tool use demands that LLMs not006
only understand user queries and generate an-007
swers accurately but also excel in task plan-008
ning, tool invocation, and result summariza-009
tion. While traditional works focus on train-010
ing a single LLM with all these capabilities,011
performance limitations become apparent, par-012
ticularly with smaller models. To overcome013
these challenges, we propose a novel approach014
that decomposes the aforementioned capabili-015
ties into a planner, caller, and summarizer. Each016
component is implemented by a single LLM017
that focuses on a specific capability and collab-018
orates with others to accomplish the task. This019
modular framework facilitates individual up-020
dates and the potential use of smaller LLMs for021
building each capability. To effectively train022
this framework, we introduce a two-stage train-023
ing paradigm. First, we fine-tune a backbone024
LLM on the entire dataset without discrimi-025
nating sub-tasks, providing the model with a026
comprehensive understanding of the task. Sec-027
ond, the fine-tuned LLM is used to instanti-028
ate the planner, caller, and summarizer respec-029
tively, which are continually fine-tuned on re-030
spective sub-tasks. Evaluation across various031
tool-use benchmarks illustrates that our pro-032
posed multi-LLM framework surpasses the tra-033
ditional single-LLM approach, highlighting its034
efficacy and advantages in tool learning.035

1 Introduction036

Large Language Models (LLMs) have revolution-037

ized natural language processing with remarkable038

proficiency in understanding and generating text.039

Despite their impressive capabilities, LLMs are040

not without limitations. Notably, they lack domain041

Planner

Caller

Summarizer

Single LLM

Guidance & control Feedback

Instruction

Instruction
Tools

Tools

Figure 1: A conceptual comparison of the traditional
single-LLM agent framework (top) and the proposed
multi-LLM agent framework, α-UMi (bottom).

specificity, real-time information, and face chal- 042

lenges in solving specialized problems such as 043

mathematics (Gou et al., 2023) and program compi- 044

lation (OpenAI, 2023a). Hence, integrating LLMs 045

with external tools, such as API calls and Python 046

functions, becomes imperative to extend their capa- 047

bilities and enhance the overall performance. Con- 048

sequently, LLM agents have become a prominent 049

area for both academia and industry, employing 050

large language models to determine when and how 051

to utilize external tools to tackle various tasks. 052

In addition to exploring proprietary LLMs like 053

GPT-4, researchers have also actively engaged in 054

developing customizable agent systems by fine- 055

tuning open-source LLMs on diverse tool-use 056

datasets (Patil et al., 2023; Tang et al., 2023; Qin 057

et al., 2023b; Gou et al., 2023). The challenge of 058

tool learning demands sufficiently large and com- 059

plex LLMs. These models must not only compre- 060

hend user queries but also excel in task planning, 061

tool selection and invocation, and result summariza- 062

tion (Yujia et al., 2023). These capabilities draw 063

upon different facets of the LLMs; for instance, 064

planning relies more on reasoning ability, while 065

tool selection and invocation demand legal and ac- 066

curate request writing, and result summarization 067

1

requires adept conclusion-drawing skills. While068

conventional approaches (Qin et al., 2023b; Gou069

et al., 2023; Zeng et al., 2023) focus on training070

a single open-source LLM with all these capabili-071

ties, notable performance limitations have been ob-072

served, especially with smaller open-source LLMs073

(Touvron et al., 2023a,b). Moreover, the tools could074

be updated frequently in practical scenarios, when075

the entire LLM requires potential retraining.076

To address these challenges, we propose a multi-077

LLM agent framework for tool learning, α-UMi1.078

As illustrated in Figure 1, α-UMi decomposes the079

capabilities of a single LLM into three components,080

namely planner, caller, and summarizer. Each of081

these components is implemented by a single LLM082

and trained to focus on a specific capability. The083

planner is designed to generate the rationale based084

on the current state of the system and weighs be-085

tween selecting the caller or summarizer to gener-086

ate downstream output, or even deciding to termi-087

nate the execution. The caller is directed by the ra-088

tionale and responsible for invocating specific tools.089

The summarizer is guided by the planner to craft090

the ultimate user answer based on the execution091

trajectory. These components collaborate seam-092

lessly to accomplish various tasks. Compared to093

previous approaches, our modular framework has094

three distinct advantages. First, each component095

undergoes training for a designated role, ensuring096

enhanced performance for each capability. Second,097

the modular structure allows for individual updates098

to each component as required, ensuring adaptabil-099

ity and streamlined maintenance. Third, since each100

component focuses solely on a specific capability,101

potentially smaller LLMs can be employed.102

To effectively train this multi-LLM framework,103

we introduce a novel global-to-local progressive104

fine-tuning strategy (GLPFT). First, an LLM back-105

bone is trained on the original training dataset106

without discriminating between sub-tasks, enhanc-107

ing the comprehensive understanding of the tool-108

learning task. Three copies of this LLM backbone109

are created to instantiate the planner, caller, and110

summarizer, respectively. In the second stage, the111

training dataset is reorganized into new datasets tai-112

lored to each LLM’s role in tool use, and continual113

fine-tuning of the planner, caller, and summarizer114

1In astronomy, the name “α-UMi” is an alias of the Polaris
Star (https://en.wikipedia.org/wiki/Polaris), which
is actually a triple star system consisting of a brighter star (cor-
responding to the planner) and two fainter stars (corresponding
to the caller and the summarizer).

is performed on their respective datasets. 115

We employ LLaMA-2 (Touvron et al., 2023b) se- 116

ries to implement the LLM backbone and evaluate 117

our α-UMi agent on several tool learning bench- 118

marks (Qin et al., 2023b; Tang et al., 2023). Ex- 119

perimental results demonstrate that our proposed 120

framework outperforms the single-LLM approach 121

across various model and data sizes. Moreover, we 122

show the necessity of the GLPFT strategy for the 123

success of our framework and delve into the rea- 124

sons behind the improved performance. Finally, the 125

results confirm our assumption that smaller LLMs 126

can be used in our multi-LLM framework to culti- 127

vate individual tool learning capabilities and attain 128

a competitive overall performance. 129

To sum up, this work makes three critical contri- 130

butions. First, we demonstrate that small LLMs are 131

weak tool learners and introduce α-UMi, a multi- 132

LLM framework for building LLM agents, that 133

outperforms the existing single-LLM approach in 134

tool use. Second, we propose a GLPFT fine-tuning 135

strategy, which has proven to be essential for the 136

success of our framework. Third, we perform a 137

thorough analysis, delving into data scaling laws 138

and investigating the underlying reasons behind the 139

superior performance of our framework. 140

2 Related Works 141

2.1 Tool Learning 142

The ability of LLMs to use external tools has be- 143

come a pivotal component in the development of 144

AI agents, attracting rapidly growing attention (Qin 145

et al., 2023b; Schick et al., 2023; Yang et al., 2023b; 146

Shen et al., 2023; Patil et al., 2023; Qin et al., 147

2023a). Toolformer (Schick et al., 2023) was one of 148

the pioneering work in tool learning. Subsequently, 149

a diverse array of external tools has been employed 150

to enhance LLMs in various ways, including the 151

knowledge retriever (Yang et al., 2023a; Nakano 152

et al., 2021), visual models (Yang et al., 2023b; Wu 153

et al., 2023a; Yang et al., 2023c; Shen et al., 2023), 154

code and math reasoning (Gou et al., 2023; OpenAI, 155

2023a), and APIs (Li et al., 2023; Qin et al., 2023b). 156

Different from previous approaches relying on a 157

single LLM for tool learning, we introduce a novel 158

multi-LLM collaborated tool learning framework 159

designed for smaller open-source LLMs. 160

2.2 LLM-powered Agents 161

Leveraging the capabilities of LLMs such as Chat- 162

GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023b), 163

2

https://en.wikipedia.org/wiki/Polaris

Planner Next:
Caller？

Caller

Next:
Summarizer？

Summarizer

Instruction

Tool call &Observation Action 𝑎!

Rationale 𝑟!

Final answer

Give up
Yes

No

Yes

No

Planner prompt Caller prompt Summarizer prompt

Figure 2: An illustration of how α-UMi works to complete a task.

AI agent systems have found application in di-164

verse scenarios. For instance, BabyAGI (Naka-165

jima, 2023) and AutoGPT (Gravitas, 2023) have166

been developed to address daily problems, while167

Voyager (Wang et al., 2023) and Ghost (Zhu et al.,168

2023) engage in free exploration within Minecraft169

games. Additionally, MetaGPT (Hong et al., 2023),170

ChatDev (Qian et al., 2023a), and AutoGen (Wu171

et al., 2023b) contribute to the development of172

multi-agent frameworks tailored for software de-173

velopment and problem-solving.174

3 Methodology175

3.1 Preliminary176

Agents for tool learning are systems designed to177

assist users in completing tasks through a series178

of decision-making processes and tool use (Yujia179

et al., 2023). In recent years, these agents com-180

monly adhere to the ReACT framework (Yao et al.,181

2022). The backbone of the agent is an LLM de-182

noted as M. Given the user instruction q and the183

system prompt P , the agent solves the instruction184

step by step. In the tth step, the LLM M gener-185

ates a rationale rt and an action at based on the186

instruction and the current state of the system:187

rt, at = M(P, τt−1, q), (1)188

where τt−1 = {r1, a1, o1, ..., rt−1, at−1, ot−1} de-189

notes the previous execution trajectory. Here, ot190

denotes the observation returned by tools when the191

action at is supplied. In the final step of the inter-192

action, the agent generates rationale rn indicating193

that the instruction q is solved along with the final194

answer an or that it will abandon this execution run.195

Therefore, no observation is included in this step.196

3.2 The α-UMi Framework197

As previously mentioned, the task of tool learning198

imposes a significant demand on the capabilities199

of LLMs, including task planning, tool invocation, 200

and result summarization. Coping with all these 201

capabilities using a single open-source LLM, espe- 202

cially when opting for a smaller LLM, appears to 203

be challenging. To address this challenge, we in- 204

troduce the α-UMi framework, which breaks down 205

the tool learning task into three sub-tasks and as- 206

signs each sub-task to a dedicated LLM. Figure 1 207

presents an illustration of our framework, which in- 208

corporates three distinct LLM components: planner 209

Mplan, caller Mcall, and summarizer Msum. These 210

components are differentiated by their roles in tool 211

use, and each component model has a unique task 212

definition, system prompt2, and model input. 213

The workflow of α-UMi is shown in Figure 2. 214

Upon receiving the user instruction q, the planner 215

generates a rationale comprising hints for the this 216

step. This may trigger the caller to engage with the 217

tools and subsequently receive observations from 218

the tools. This iterative planner-caller-tool loop 219

continues until the planner determines that it has 220

gathered sufficient information to resolve the in- 221

struction. At this point, the planner transitions to 222

the summarizer to generate the final answer. Al- 223

ternatively, if the planner deems the instruction 224

unsolvable, it may abandon the execution. 225

Planner: The planner assumes responsibility 226

for planning and decision-making, serving as the 227

“brain” of our agent framework. Specifically, the 228

model input for the planner comprises the system 229

prompt Pplan, the user instruction q, and the previ- 230

ous execution trajectory τt−1. Using this input, the 231

planner generates the rationale rt: 232

rt = Mplan(Pplan, τt−1, q). (2) 233

Following the rationale, the planner generates the 234

decision for the next step: (1) If the decision is 235

“Next: Caller”, the caller will be activated and an 236

2The prompts for each LLM are provided in Appendix A.

3

Pre-trained LLMGlobal
Fine-tuning

Thought: …
Action: …
Action input: …
…
Answer: …

…<msk><msk>
Thought: …
Next: …
<msk><msk>…

…<msk><msk>
Action:…
Action input: …
<msk><msk>…

…<msk><msk>
Final Answer:…Subtasks

&
Local

Fine-tuning

Single-LLM

Planner Caller Summarizer

Figure 3: Global-to-local progressive fine-tuning.

action will be generated for calling tools. (2) If the237

decision is “Next: Summarizer”, the summarizer238

will be activated to generate the final answer for239

the user, and the agent execution will finish. (3) If240

the decision is “Next: Give up”, it means that the241

user’s instruction cannot be solved in the current242

situation, and the system will be terminated.243

Caller: Interacting with the tools requires the244

LLM to generate legal and useful requests, which245

may conflict with other abilities such as reasoning246

and general response generation during fine-tuning.247

Therefore, we train a specialized caller to generate248

the action for using tools. The caller takes the user249

instruction q and the previous execution trajectory250

τt−1 as input. To make the caller focus on the plan-251

ner’s rationale rt in the current step, we also design252

a prompt Pcall to explicitly remind the caller:253

at = Mcall(Pcall, τt−1, q, rt). (3)254

Summarizer: The agent’s final response, which255

aims to offer informative and helpful information256

to the user, is distinct from the rationales that pri-257

marily focus on planning and reasoning. Therefore,258

we employ a dedicated summarizer tasked with259

generating the final answer an. This model utilizes260

a concise prompt Psum designed to guide the model261

in concentrating on summarizing the execution tra-262

jectory and presenting the answer to the user:263

an = Msum(Psum, τn−1, q, rn). (4)264

In Figure 7 and Figure 8, we show several cases265

of our α-UMi on downstream tasks.266

3.3 Global-to-Local Progressive Fine-Tuning267

To effectively fine-tune the above multi-LLM sys-268

tem is a complex endeavor: On one hand, generat-269

ing the rationale, action, and final answer can fa- 270

cilitate each other during the training process, and 271

enhance the model’s comprehension of the entire 272

agent task (Chen et al., 2023). On the other hand, 273

the constraints on model capacity make it chal- 274

lenging to fine-tune a small LLM to achieve peak 275

performance in generating rationales, actions, and 276

final answers simultaneously (Dong et al., 2023). 277

Taking into account these two points, we propose 278

a global-to-local progressive fine-tuning (GLPFT) 279

strategy for α-UMi. The motivation behind this 280

strategy is to first exploit the mechanism by which 281

the generation of rationale, action, and final answer 282

can mutually enhance each other. Then, once the 283

single LLM reaches its performance ceiling, it is 284

subsequently split into planner, caller and summa- 285

rizer for further fine-tuning, in order to enhance its 286

capabilities in the subtasks and mitigate the perfor- 287

mance constraints due to limited model capacity. 288

As depicted in Figure 3, this GLPFT strategy 289

comprises two distinct stages. The first stage in- 290

volves global fine-tuning, where we fine-tune a 291

backbone LLM on the original training dataset 292

without distinguishing between sub-tasks. After 293

this stage, the backbone LLM is trained to sequen- 294

tially output the rationale, action, and answer as 295

introduced in Section 3.1. Then, we create three 296

copies of the backbone LLM, designated as the 297

planner, caller, and summarizer, respectively. 298

The second stage is local fine-tuning, where 299

we reorganize the training dataset tailored to each 300

LLM’s role, as introduced in Section 3.2. We then 301

proceed to fine-tune the planner, caller, and sum- 302

marizer on their respective datasets, thereby further 303

enhancing their specific abilities in each sub-task. 304

During this local fine-tuning stage, we opt to reuse 305

the set of user instructions curated in the global 306

fine-tuning stage. The only adjustment made to 307

the training set is the change in the format of the 308

training data. As illustrated in Figure 3, the fine- 309

tuning objective during the second stage for the 310

planner, caller, and summarizer is oriented towards 311

generating the rationale, action, and final answer, 312

respectively. While the gradients from other text 313

spans are stopped. Simultaneously, we refine the 314

system prompts for the training data of the planner, 315

caller, and summarizer, as detailed in Appendix A. 316

3.4 Discussions 317

Recent studies have explored multi-agent systems 318

based on LLMs across various domains, such as 319

social communication (Park et al., 2023; Wei et al., 320

4

2023), software development (Qian et al., 2023a;321

Hong et al., 2023), and tool learning (Song et al.,322

2023; Qian et al., 2023b). However, these frame-323

works typically rely on robust closed-source LLMs,324

demanding advanced functionalities such as auto-325

matic cooperation and feedback, capabilities that326

surpass those available in open-source LLMs. In327

contrast, our α-UMi aims to alleviate the LLM’s328

workload in tool-use tasks by integrating multiple329

LLMs into an agent, particularly well-suited for330

open-source, smaller LLMs. Besides, we introduce331

the GLPFT method for fine-tuning the multi-LLM332

system, a novel contribution not present in existing333

multi-agent frameworks. We plan to incorporate334

these discussions in the upcoming revision.335

4 Experimental Settings336

4.1 Benchmarks337

We evaluate the effectiveness of our α-UMi on the338

well recognized tool learning benchmark: Tool-339

Bench (Qin et al., 2023b). This benchmark involve340

integrating API calls to accomplish tasks, where341

the agent must accurately select the appropriate342

API and compose necessary API requests. More-343

over, we partition the test set of ToolBench into344

in-domain and out-of-domain based on whether345

the tools used in the test instances have been seen346

during training. This division allows us to evalu-347

ate performance in both in-distribution and out-of-348

distribution scenarios. For additional details and349

statistics regarding these datasets, please refer to350

Appendix B. We also evaluate α-UMi on other351

benchmarks such as ToolAlpaca (Tang et al., 2023)352

and program-aided agent for mathematical reason-353

ing (Hendrycks et al., 2021; Cobbe et al., 2021).354

The results are shown in Appendix E.355

4.2 Metrics356

The tasks in ToolBench involve calling APIs357

through RapidAPI3. This process frequently en-358

counters problems such as API breakdowns, which359

impacts the fairness of the comparison. To address360

this problem, we introduce two types of evaluations361

for ToolBench. In Section 5.1, we first compare362

the output of agent with the annotated reference363

at each step4, which avoids real-time API callings.364

The metrics for this evaluation include Action EM365

(Act. EM), Argument F1 (Arg. F1), and Rouge-L366

(R-L) as proposed by Li et al. (2023). Moreover,367

3https://rapidapi.com/hub.
4Refer to Appendix C for more details of the evaluation.

we examine the frequency of API name halluci- 368

nations (Hallu.) and the accuracy (Plan ACC) of 369

the agent’s planning decisions at each step for us- 370

ing tools invocation, generating answer, or giving 371

up. The reference annotations are based on verified 372

ChatGPT execution results provided in ToolBench. 373

We also provide the results based on real-time Rap- 374

idAPI calling in Section 5.2, which is the original 375

evaluation method used by the ToolBench team. 376

4.3 Implementation Details 377

We opt for LLaMA-2-chat-7B/13B (Touvron et al., 378

2023b) as the backbone to implement our frame- 379

work. In the first stage of our GLPFT, we conduct 380

fine-tuning for the backbone LLM with a learning 381

rate of 5e-5 for 2 epochs. Then, we create three 382

copies of this fine-tuned backbone to instantiate 383

the planner, caller, and summarizer, respectively. 384

In the second stage, we fine-tune the three LLMs 385

with a reduced learning rate of 1e-5. The planner 386

and caller undergo fine-tuning for 1 epoch, while 387

the summarizer undergoes fine-tuning for 2 epochs. 388

We set the global batch size to 48 and employ Deep- 389

Speed ZeRO Stage3 (Rajbhandari et al., 2021) to 390

speed up the fine-tuning process. All experimental 391

results are obtained using greedy decoding, with 392

the maximum sequence length set at 4096. 393

4.4 Baselines 394

We compare our method with three baseline meth- 395

ods, namely Single-LLM, Multi-LLMone-stage and 396

Single-LLMmulti-task. Single-LLM refers to the 397

traditional single-LLM tool learning approach. 398

Multi-LLMone-stage involves directly fine-tuning 399

the planner, caller, and summarizer on their own 400

sub-task datasets, without employing our two-stage 401

fine-tuning strategy. Single-LLMmulti-task refers to 402

using the same LLM to fulfill the roles of planner, 403

caller, and summarizer. This particular LLM is 404

fine-tuned on a combined dataset comprising the 405

three sub-task datasets and functions similarly to 406

our multi-LLM framework. We also evaluate the 407

performance of ChatGPT and GPT-4 with 0-shot 408

setting, and ToolLLaMA (Qin et al., 2023b), which 409

is a 7B LLaMA model fine-tuned on ToolBench. 410

5 Results and Analysis 411

5.1 Overall Results 412

The main results are presented in Table 1. We elab- 413

orate on our observations from six perspectives: 414

5

Model ToolBench (in-domain) ToolBench (out-of-domain)
Plan ACC Act. EM Hallu. Arg. F1 R-L Plan ACC Act. EM Hallu. Arg. F1 R-L

Close-Source LLM
ChatGPT (0-shot) 83.33 58.67 7.40 45.61 23.08 81.62 54.67 8.19 40.08 22.85
GPT-4 (0-shot) 80.28 55.52 5.98 48.74 28.69 77.80 55.26 5.12 47.45 30.61

Model Size = 7B (LoRA)
Multi-LLMone-stage (LoRA) 77.76 41.20 2.18 33.21 22.02 79.05 39.25 2.58 33.29 24.66
α-UMi (LoRA) 83.45 44.34 9.61 38.35 34.75 85.84 50.61 4.58 44.65 43.89

Model Size = 7B
ToolLLaMA (len = 4096) 66.42 19.47 33.94 15.98 2.06 68.21 30.75 25.35 25.07 5.78
ToolLLaMA (len = 8192) 77.02 47.56 4.03 42.00 15.26 77.76 45.07 3.45 40.41 18.10
Single-LLM 81.92 53.26 2.32 45.57 42.66 84.61 56.54 2.26 50.09 47.99
Multi-LLMone-stage 87.52 45.11 7.71 38.02 41.01 88.42 53.40 2.52 45.79 46.39
Single-LLMmulti-task 85.06 51.83 2.96 44.25 27.40 86.55 56.89 2.77 49.50 32.58
α-UMiw/o reuse 88.24 55.50 0.53 48.97 39.98 87.91 58.02 2.32 50.55 42.59
α-UMiw/ reuse 88.92 58.94 0.57 52.24 43.17 89.72 60.47 0.45 53.60 46.26

Model Size = 13B
Single-LLM 81.01 59.67 1.53 52.35 42.16 86.74 60.04 2.03 52.94 48.46
Multi-LLMone-stage 86.49 50.54 5.11 41.96 36.21 87.45 56.71 3.23 47.49 41.62
Single-LLMmulti-task 86.36 58.96 2.00 49.28 28.41 86.64 62.78 3.42 53.29 35.46
α-UMiw/o reuse 86.33 60.07 0.39 53.11 35.09 87.75 61.63 2.95 52.54 37.70
α-UMiw/ reuse 87.87 63.03 0.37 57.65 43.46 88.73 64.21 0.24 57.38 42.50

Table 1: Overall evaluation results on ToolBench.

α-UMi v.s. Existing Methods: When compared415

to ChatGPT and ToolLLama, α-UMi outperforms416

them on all metrics. α-UMi exceeds these two417

baselines in terms of Plan ACC and R-L consider-418

ably, demonstrating its alignment with annotated419

reference in terms of planning execution steps and420

generating final answers. It is worth mentioning421

that ToolLLaMA only exhibits acceptable perfor-422

mance when the input length is 8192. At an input423

length of 4096, ToolLLaMA shows deterioration424

across various metrics, particularly exhibiting a425

very high hallucination rate. In contrast, α-UMi426

only requires the input length of 4096 to achieve a427

satisfying performance.428

α-UMi v.s. Single-LLM: α-UMi outperforms429

the Single-LLM agent. On ToolBench, we unveil430

substantial improvements with α-UMi, particularly431

in Plan ACC, Act. EM, Hallu., and Arg. F1. This432

finding not only confirm the effectiveness of α-433

UMi in enhancing the agent’s planning and API434

calling capabilities but also suggest a notable de-435

crease in hallucinations, which can significantly436

elevate user satisfaction.437

Model Scales: When comparing the results of438

methods with different model sizes, we note that439

agents with a 13B backbone exhibit superior per-440

formance compared to their 7B counterparts. This441

observation implies that the shift from a 7B to a442

13B model results in a improvement in tool uti-443

lization capabilities. Significantly, α-UMi with a444

7B backbone even outperforms the Single-LLM445

baseline with a 13B LLM, confirming our earlier446

assumption that smaller LLMs can be utilized in 447

our multi-LLM framework to develop each capabil- 448

ity and achieve competitive overall performance. 449

Multi-LLM Fine-tuning: α-UMi outper- 450

forms Multi-LLMone-stage and Single-LLMmulti-task. 451

Multi-LLMone-stage even exhibits suboptimal per- 452

formance compared to the Single-LLM baseline in 453

metrics assessing API calling abilities, such as Act. 454

EM, Hallu., and Arg. F1. This finding highlights 455

the limitations of training each LLM on individ- 456

ual sub-tasks, compromising the comprehensive 457

understanding of the tool-use task. Moreover, the 458

subpar performance of Single-LLMmulti-task indi- 459

cates that, the limited capacity of small LLMs hin- 460

ders the agent from effectively fulfilling the roles 461

of planner, caller, and summarizer simultaneously. 462

In contrast, through the application of the GLPFT 463

strategy, α-UMi successfully mitigates this limi- 464

tation, showcasing its effectiveness in achieving 465

comprehensive tool learning capabilities. 466

Full Fine-tuning v.s. LoRA: In Multi- 467

LLMone-stage (LoRA), we directly fine-tuned three 468

LoRAs (Hu et al., 2022) for planner, caller and 469

summarizer, respectively. This strategy is similar to 470

AutoACT (Qiao et al., 2024), while its performance 471

fails to outperform α-UMi with GLPFT. Moreover, 472

we can implement LoRA on the backbone LLM 473

obtained from the first stage of the GLPFT (α- 474

UMi (LoRA)). Applying LoRA on top of this back- 475

bone yields better results than Multi-LLMone-stage 476

(LoRA), but still underperforms the full parameter 477

updating strategy GLPFT. Therefore, we conclude 478

6

Method Model I1-Inst. I1-Tool I1-Cat. I2-Inst. I2-Cat. I3-Inst. Average
Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

ReACT

Claude-2 5.5 31.0 3.5 27.8 5.5 33.8 6.0 35.0 6.0 31.5 14.0 47.5 6.8 34.4
ChatGPT 41.5 - 44.0 - 44.5 - 42.5 - 46.5 - 22.0 - 40.2 -
ToolLLaMA 25.0 45.0 29.0 42.0 33.0 47.5 30.5 50.8 31.5 41.8 25.0 55.0 29.0 47.0
GPT-4 53.5 60.0 50.0 58.8 53.5 63.5 67.0 65.8 72.0 60.3 47.0 78.0 57.2 64.4

DFSDT

Claude-2 20.5 38.0 31.0 44.3 18.5 43.3 17.0 36.8 20.5 33.5 28.0 65.0 43.1 43.5
ChatGPT 54.5 60.5 65.0 62.0 60.5 57.3 75.0 72.0 71.5 64.8 62.0 69.0 64.8 64.3
ToolLLaMA 57.0 55.0 61.0 55.3 62.0 54.5 77.0 68.5 77.0 58.0 66.0 69.0 60.7 60.0
GPT-4 60.0 67.5 71.5 67.8 67.0 66.5 79.5 73.3 77.5 63.3 71.0 84.0 71.1 70.4
α-UMi (7B) 65.0 59.5 68.0 66.0 64.0 57.0 81.5 76.5 76.5 72.0 70.0 63.0 70.9 65.9
α-UMi (13B) 65.5 61.5 69.0 66.0 65.0 62.5 84.5 75.0 81.0 74.5 71.0 66.0 72.2 67.7

Table 2: Results of real-time evaluation on ToolBench. “ReACT” and “DFSDT” denote reasoning strategies used
to construct agents, as detailed in Section 5.2. “Win” measures the relative win rate of each agent compared to
ChatGPT-ReACT (“Method”=ReACT, “Model”=ChatGPT), which does not have an associated win rate.

that employing full fine-tuning is necessary when479

constructing multi-LLM frameworks.480

Instruction Reusing: α-UMiw/o reuse represents481

that instead of reusing the user instructions in the482

first fine-tuning stage of GLPFT, a new set of user483

instructions are employed for the second stage of484

GLPFT. Previous works(Chung et al., 2022) has485

demonstrated that increasing the diversity of user486

instructions during fine-tuning can improve the487

performance and generalizability of LLMs. How-488

ever, as presented in Table 1 and visualized in Fig-489

ure 4, despite the increased diversity of instructions490

compared to α-UMiw/ reuse, α-UMiw/o reuse does not491

outperform α-UMiw/ reuse. We attribute this unex-492

pected result to the following explanation: Since493

the objectives of the two training stages are differ-494

ent, using distinct sets of user instructions, each495

with its unique distribution, may introduces a harm-496

ful inductive bias that solving one group of the497

instructions in single-LLM format while the other498

group in multi-LLM format. In contrast, through499

the reuse of user instructions, the impact of varying500

distributions from different sets is mitigated.501

5.2 Real-Time Test on ToolBench502

To assess the performance of LLMs for solving503

real tasks via RapidAPI, we follow the ToolEval504

method (Qin et al., 2023b) proposed by the Tool-505

Bench team to conduct a real-time evaluation on the506

test set of ToolBench. The LLMs under considera-507

tion include Claude-2 (Anthropic, 2023), ChatGPT,508

GPT-4, and ToolLLaMA. We apply two reasoning509

strategies for these LLMs to construct tool learn-510

ing agents: the ReACT method, as introduced in511

Section 3.1, and the Depth First Search-based De-512

cision Tree (DFSDT) (Qin et al., 2023b), which513

empowers the agent to evaluate and select between514

different execution paths. Two metrics are included 515

to measure these LLMs’ performance: pass rate, 516

which calculates the percentage of tasks success- 517

fully completed, and win rate, which compares the 518

agent’s solution path with that of the standard base- 519

line, ChatGPT-ReACT. The above two metrics are 520

assessed by a ChatGPT evaluator with carefully 521

crafted criteria. The empirical results presented in 522

Table 2 demonstrate that our α-UMi (7B) surpasses 523

both ChatGPT and ToolLLaMA by significant mar- 524

gins in terms of pass rate (+6.1 and +10.2, respec- 525

tively) and win rate (+1.6 and +5.9, respectively). 526

While α-UMi underperforms GPT-4 in win rate, 527

it exhibits pass rates on par with GPT-4 or even 528

exceeds it in certain test groups such as I1-Inst. and 529

I2-Inst.. Combining the findings from Section 5.1 530

and this section, we note that our multi-LLM agent 531

outperforms several established baselines across di- 532

verse metrics on ToolBench, validating its efficacy. 533

5.3 Data Scaling Law 534

To assess the impact of the amount of training data 535

on performance, we conduct a data scaling law anal- 536

ysis with the 7B backbone on ToolBench, varying 537

the number of annotated training instances from 538

12.1k to 62.7k. The results in different metrics are 539

depicted in Figure 45. Several observations can 540

be drawn from the results. Firstly, when compar- 541

ing α-UMi (solid red curves) to Single-LLM (solid 542

blue curves), there are significant and consistent 543

enhancements in metrics such as Plan ACC, Act. 544

EM, Hallu., and Arg. F1 across various scales of 545

training data. While only minor improvements are 546

observed in the R-L metric, which directly reflects 547

the performance of the summarizer, this suggests 548

5The trend of Arg. F1 is similar to that of Act. EM.,
therefore its results are not displayed to save space. We have
included the complete results in Figure 6 in Appendix.

7

12.1k 31.3k 47.0k 62.7k

80

85

(a) Plan ACC
12.1k 31.3k 47.0k 62.7k

50

55

60

(b) Act. EM
12.1k 31.3k 47.0k 62.7k

2

4

6

8

(c) Hallu.
12.1k 31.3k 47.0k 62.7k

30

40

(e) R-L

Single-LLM Multi-LLMone stage Single-LLMmulti task -UMiw/o reuse -UMiw/ reuse

Figure 4: Results of data scaling law study on ToolBench with different evaluation metrics: (a) Plan ACC, (b) Act.
EM, (c) Hallu, and (d) R-L. We randomly sampled five training sets with the scales of 12.1k, 15.7k, 31.3k, 47.0k,
and 62.7k instances, accounting for 19.2%, 25%, 50%, 75%, and 100% of the training set, respectively.

0 1 2 3
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Rationale (Single-LLM)
Action (Single-LLM)
Answer (Single-LLM)
Rationale (-UMi)
Action (-UMi)
Answer (-UMi)

Figure 5: Curves of training loss.

that the performance enhancement of our frame-549

work is mainly attributed to the separation of the550

planner and the caller. Secondly, the performances551

of Multi-LLMone-stage and Single-LLMmulti-task ex-552

hibit severe fluctuations in all metrics except for553

Plan ACC, indicating instability in training the554

framework through direct fine-tuning or multi-task555

fine-tuning. Thirdly, Single-LLM achieves opti-556

mal results in different metrics at different data557

scales. For example, it attains peak performance in558

Plan ACC with 31.3k instances and the best Arg.559

F1 and R-L with 62.7k instances. This suggests560

the challenge of obtaining a single LLM that uni-561

formly performs well across all metrics. In contrast,562

the performance of our framework consistently im-563

proves with increased data scale across all metrics.564

5.4 Why α-UMi Works?565

We track the training process of our α-UMi ap-566

proach to examine what makes it different from567

the Single-LLM baseline. To further investigate568

how each capability of the model evolves during569

training, we track the training loss on the rationale,570

action, and answer components of target responses.571

The results are depicted in Figure 5. As introduced572

in Section 4.3, α-UMi employs GLPFT and devi-573

ates from Single-LLM after two training epochs.574

Therefore, our discussion focuses on the training575

curves of α-UMi from the third epoch. 576

The plotted curves reveal a consistent decrease 577

in the training loss for rationale, action, and answer 578

components during the initial two epochs. How- 579

ever, in the third epoch, the losses of Single-LLM 580

exhibit a nearly stagnant trend. In contrast, α-UMi 581

experiences continued reductions in the losses asso- 582

ciated with rationale and action, indicating further 583

optimization within our α-UMi framework. 584

These observations suggest that the key factor 585

contributing to the success of α-UMi lies in its 586

ability to surpass the performance upper-bound 587

of Single-LLM. This is achieved by leveraging 588

GLPFT and decomposing the agent into a multi- 589

LLM system, even after Single-LLM has attained 590

its upper-bound abilities via sufficient fine-tuning. 591

6 Conclusion 592

The objective of this paper is to address the chal- 593

lenge of designing and fine-tuning a single small 594

LLM to acquire the extensive abilities required for 595

a tool learning agent. To this end, we introduce α- 596

UMi, a multi-LLM tool learning agent framework 597

that breaks down the tool learning task into three 598

distinct sub-tasks delegated to three small LLMs: 599

planner, caller, and summarizer. Moreover, we 600

propose a global-to-local progressive fine-tuning 601

strategy and demonstrate its effectiveness in train- 602

ing the multi-LLM framework. We evaluate our 603

approach against single-LLM baselines on four tool 604

learning benchmarks, supplemented by various in- 605

depth analyses, including a data scaling law exper- 606

iment. Our findings highlight the significance of 607

our proposed method, validating that the system’s 608

design for decomposing tool learning tasks and the 609

progressive fine-tuning strategy contribute to en- 610

hancing the upper-bound ability of a single LLM. 611

Besides, we acknowledge the potential to utilize 612

small LLMs to surpass the capabilities of an agent 613

framework that relies on a single, larger LLM. 614

8

7 Limitations615

While our framework has been demonstrated to out-616

perform the single-LLM framework in tool learn-617

ing tasks, there are still some limitations to this618

work. Firstly, there are additional avenues for ex-619

ploration, such as integrating small LLMs with a620

powerful closed-source LLM like GPT-4 to cre-621

ate a “large + small” collaborative multi-LLM tool622

learning agent. Secondly, our framework could623

be further optimized to enhance its flexibility and624

applicability to a wider range of agent tasks.625

8 Ethical Statement626

The α-UMi framework is trained on the public627

ToolBench and ToolAlpaca benchmarks, with their628

original purpose being to enhance the tool invoca-629

tion capabilities of LLMs and improve their perfor-630

mance in assisting users to complete tasks. This631

framework has not been trained on any data that632

poses ethical risks. The backbone model it uses,633

LLaMA-2-chat, has undergone safety alignment.634

References635

Anthropic. 2023. Claude-2. Website. https://www.636
anthropic.com/news/claude-2.637

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,638
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:639
Toward language agent fine-tuning. arXiv preprint640
arXiv:2310.05915.641

Hyung Won Chung, Le Hou, Shayne Longpre, Barret642
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi643
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.644
2022. Scaling instruction-finetuned language models.645
arXiv preprint arXiv:2210.11416.646

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,647
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias648
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro649
Nakano, et al. 2021. Training verifiers to solve math650
word problems. arXiv preprint arXiv:2110.14168.651

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng-652
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,653
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.654
How abilities in large language models are affected655
by supervised fine-tuning data composition. arXiv656
preprint arXiv:2310.05492.657

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,658
Minlie Huang, Nan Duan, Weizhu Chen, et al.659
2023. Tora: A tool-integrated reasoning agent660
for mathematical problem solving. arXiv preprint661
arXiv:2309.17452.662

Significant Gravitas. 2023. Autogpt: the heart of the 663
open-source agent ecosystem. Github repository. 664
https://github.com/Significant-Gravitas/ 665
Auto-GPT. 666

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 667
Arora, Steven Basart, Eric Tang, Dawn Song, and 668
Jacob Steinhardt. 2021. Measuring mathematical 669
problem solving with the math dataset. In Thirty- 670
fifth Conference on Neural Information Processing 671
Systems Datasets and Benchmarks Track (Round 2). 672

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 673
Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing 674
Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. 675
2023. Metagpt: Meta programming for multi- 676
agent collaborative framework. arXiv preprint 677
arXiv:2308.00352. 678

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 679
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 680
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 681
large language models. In International Conference 682
on Learning Representations. 683

Chenliang Li, Hehong Chen, Ming Yan, Weizhou Shen, 684
Haiyang Xu, Zhikai Wu, Zhicheng Zhang, Wen- 685
meng Zhou, Yingda Chen, Chen Cheng, Hongzhu 686
Shi, Ji Zhang, Fei Huang, and Jingren Zhou. 2023. 687
Modelscope-agent: Building your customizable 688
agent system with open-source large language mod- 689
els. 690

Yohei Nakajima. 2023. Babyagi. Github repository. 691
https://github.com/yoheinakajima/babyagi. 692

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 693
Long Ouyang, Christina Kim, Christopher Hesse, 694
Shantanu Jain, Vineet Kosaraju, William Saunders, 695
et al. 2021. Webgpt: Browser-assisted question- 696
answering with human feedback. arXiv preprint 697
arXiv:2112.09332. 698

OpenAI. 2022. Chatgpt: Conversational ai language 699
model. Website. https://openai.com/chatgpt. 700

OpenAI. 2023a. Gpt-4 code interpreter. Web- 701
site. https://chat.openai.com/?model= 702
gpt-4-code-interpreter. 703

OpenAI. 2023b. Gpt-4 technical report. 704

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered- 705
ith Ringel Morris, Percy Liang, and Michael S Bern- 706
stein. 2023. Generative agents: Interactive simulacra 707
of human behavior. In Proceedings of the 36th An- 708
nual ACM Symposium on User Interface Software 709
and Technology, pages 1–22. 710

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 711
Joseph E. Gonzalez. 2023. Gorilla: Large language 712
model connected with massive apis. arXiv preprint 713
arXiv:2305.15334. 714

9

https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
https://github.com/yoheinakajima/babyagi
https://openai.com/chatgpt
https://chat.openai.com/?model=gpt-4-code-interpreter
https://chat.openai.com/?model=gpt-4-code-interpreter
https://chat.openai.com/?model=gpt-4-code-interpreter
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,715
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong716
Sun. 2023a. Communicative agents for software de-717
velopment. arXiv preprint arXiv:2307.07924.718

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Weize719
Chen, Cheng Yang, Zhiyuan Liu, and Maosong720
Sun. 2023b. Experiential co-learning of software-721
developing agents.722

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,723
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei724
Lv, and Huajun Chen. 2024. Autoact: Automatic725
agent learning from scratch via self-planning.726

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,727
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,728
Chaojun Xiao, Chi Han, et al. 2023a. Tool729
learning with foundation models. arXiv preprint730
arXiv:2304.08354.731

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan732
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,733
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,734
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and735
Maosong Sun. 2023b. Toolllm: Facilitating large736
language models to master 16000+ real-world apis.737

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,738
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:739
Breaking the gpu memory wall for extreme scale740
deep learning. In SC21: International Conference for741
High Performance Computing, Networking, Storage742
and Analysis, pages 1–15. IEEE Computer Society.743

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta744
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola745
Cancedda, and Thomas Scialom. 2023. Toolformer:746
Language models can teach themselves to use tools.747
arXiv preprint arXiv:2302.04761.748

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,749
Weiming Lu, and Yueting Zhuang. 2023. Hugging-750
gpt: Solving ai tasks with chatgpt and its friends in751
hugging face. arXiv preprint arXiv:2303.17580.752

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,753
Han Qian, Mingbo Song, Hailiang Huang, Cheng754
Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li.755
2023. Restgpt: Connecting large language models756
with real-world restful apis.757

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,758
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-759
alized tool learning for language models with 3000760
simulated cases. arXiv preprint arXiv:2306.05301.761

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier762
Martinet, Marie-Anne Lachaux, Timothée Lacroix,763
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal764
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard765
Grave, and Guillaume Lample. 2023a. Llama: Open766
and efficient foundation language models. arXiv767
preprint arXiv:2302.13971.768

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 769
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 770
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 771
Bhosale, et al. 2023b. Llama 2: Open founda- 772
tion and fine-tuned chat models. arXiv preprint 773
arXiv:2307.09288. 774

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 775
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and 776
Anima Anandkumar. 2023. Voyager: An open-ended 777
embodied agent with large language models. arXiv 778
preprint arXiv:2305.16291. 779

Jimmy Wei, Kurt Shuster, Arthur Szlam, Jason We- 780
ston, Jack Urbanek, and Mojtaba Komeili. 2023. 781
Multi-party chat: Conversational agents in group 782
settings with humans and models. arXiv preprint 783
arXiv:2304.13835. 784

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong 785
Wang, Zecheng Tang, and Nan Duan. 2023a. 786
Visual chatgpt: Talking, drawing and editing 787
with visual foundation models. arXiv preprint 788
arXiv:2303.04671. 789

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 790
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, 791
Xiaoyun Zhang, and Chi Wang. 2023b. Auto- 792
gen: Enabling next-gen llm applications via multi- 793
agent conversation framework. arXiv preprint 794
arXiv:2308.08155. 795

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, and 796
Xindong Wu. 2023a. Chatgpt is not enough: Enhanc- 797
ing large language models with knowledge graphs 798
for fact-aware language modeling. arXiv preprint 799
arXiv:2306.11489. 800

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, 801
Xiu Li, and Ying Shan. 2023b. Gpt4tools: Teaching 802
large language model to use tools via self-instruction. 803
arXiv preprint arXiv:2305.18752. 804

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin 805
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu, 806
Ce Liu, Michael Zeng, and Lijuan Wang. 2023c. Mm- 807
react: Prompting chatgpt for multimodal reasoning 808
and action. arXiv preprint arXiv:2303.11381. 809

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 810
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022. 811
React: Synergizing reasoning and acting in language 812
models. In The Eleventh International Conference 813
on Learning Representations. 814

Qin Yujia, Yankai Lin Shengding Hu, Weize Chen, Ning 815
Ding, Ganqu Cui, Zheni Zeng, et al. 2023. Tool 816
learning with foundation models. arXiv preprint 817
arXiv:2304.08354. 818

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao 819
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning: 820
Enabling generalized agent abilities for llms. arXiv 821
preprint arXiv:2310.12823. 822

10

http://arxiv.org/abs/2312.17025
http://arxiv.org/abs/2312.17025
http://arxiv.org/abs/2312.17025
http://arxiv.org/abs/2401.05268
http://arxiv.org/abs/2401.05268
http://arxiv.org/abs/2401.05268
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei-823
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu,824
Xiaogang Wang, et al. 2023. Ghost in the minecraft:825
Generally capable agents for open-world enviroments826
via large language models with text-based knowledge827
and memory. arXiv preprint arXiv:2305.17144.828

A System prompts 829

A.1 Pplan for ToolBench and ToolAlpaca 830

You have assess to the following apis: 831

{doc} 832

The conversation history is: 833

{history} 834

You are the assistant to plan what 835

to do next and whether is caller’s or 836

conclusion’s turn to answer. 837

Answer with a following format: 838

The thought of the next step, followed by 839

Next: caller or conclusion or give up. 840

A.2 Pcall for ToolBench and ToolAlpaca 841

You have assess to the following apis: 842

{doc} 843

The conversation history is: 844

{history} 845

The thought of this step is: 846

{thought} 847

Base on the thought make an api call in 848

the following format: 849

Action: the name of api that should be 850

called in this step, should be exactly in 851

{tool_names}, 852

Action Input: the api call request. 853

A.3 Psum for ToolBench and ToolAlpaca 854

Make a conclusion based on the 855

conversation history: 856

{history} 857

A.4 Pplan for MATH and GSM8K 858

Solve the math problem step by step by 859

integrating step-by-step reasoning and 860

Python code, 861

The problem is: {instruction} 862

The historical execution logs are: 863

{history} You are the assistant to plan 864

what to do next, and shooce caller to 865

generate code or conclusion to answer the 866

problem. 867

Answer with a following format: 868

The thought of the next step, followed by 869

Next: caller or conclusion. 870

A.5 Pcall for MATH and GSM8K 871

The problem is: {instruction} 872

The historical execution logs are: 873

{history} 874

The thought of this step is: 875

11

{thought}876

generate the code for this step877

A.6 Psum for MATH and GSM8K878

The problem is: {instruction}879

The historical execution logs are:880

{history} Make a conclusion based on the881

conversation history882

B Details of Benchmarks883

B.1 ToolBench884

ToolBench (Qin et al., 2023b) is a benchmark for885

evaluating an agent’s ability to call APIs. The Tool-886

Bench team collects 16,464 real-world APIs from887

RapidAPI and a total of 125,387 execution trajec-888

tories as the training corpus. We randomly sample889

62,694 execution trajectories as the training set,890

and the average number of execution steps is 4.1.891

The test set of ToolBench is divided into 6892

groups, namely I1-instruction, I1-tool, I1-category,893

I2-instruction, I2-category, and I3-instruction. The894

groups whose name ends with “instruction” means895

the test instructions in these groups use the tools896

in the training set, which is the in-domain test data.897

Otherwise, the groups whose name ends with “tool”898

or “category” means the test instructions do not899

use the tools in the training set, which is the out-900

of-domain test data. Each group contains 100 user901

instructions, therefore the total in-domain test set902

contains 400 instructions, while the out-of-domain903

test set contains 200 instructions.904

The original evaluation metrics in ToolBench905

are the pass rate and win rate judged by ChatGPT.906

However, as introduced in Section 4.2, the APIs in907

RapidAPI update every day, which can cause net-908

work block, API breakdown, and exhausted quota.909

Therefore, to make a relatively fair comparison,910

we adopt the idea of Modelscope-Agent (Li et al.,911

2023) to compare the predictions of our model912

with the annotated GPT-4 outputs on the step level.913

Specifically, for the tth step, we input the model914

with the previous trajectory of GPT-4, ask our915

framework to generate the rationale and action of916

this step, and then compare the generated rationale917

and action of this step with the output of GPT-4.918

C Static Evaluation on ToolBench919

The evaluation method for ToolBench introduced920

in Section 4.2 is a static approach that assesses921

the output of the agent at each step individually.922

Specifically, for each step t, given the ground-truth923

Model Storage Train Infer.
Flops Time GPU Mem. Time (Per Inst.)

Model Size = 7B
Single-LLM 7B 4.8 ∗ 1015 41.54h 206G 6.41s
α-UMi 7B*3 6.2 ∗ 1015 63.34h 206G 6.27s

Model Size = 13B
Single-LLM 13B 7.2 ∗ 1015 89.56h 308G 11.91s
α-UMi 13B*3 9.7 ∗ 1015 129.96h 308G 11.09s

Table 3: The cost of training and inference.

annotation of the previous execution trajectory τ∗<t, 924

the agent generates the rationale r̂t and action ât 925

for this step: 926

r̂t, ât = Agent(τ∗<t). (5) 927

Then, metrics are computed by comparing the gen- 928

erated r̂t and ât with the annotated ground-truth 929

rationale r∗t and action a∗t for this step: 930

Metric = Evaluate(r̂t, ât, r∗t , a
∗
t). (6) 931

The advantage of this evaluation method is as 932

follows. At each step, the agent only needs to take 933

the previous ground-truth trajectory as input and 934

outputs the current step’s rationale and action. This 935

prevents error propagation due to factors such as 936

network blocks, API breakdowns, and exhausted 937

quotas in any particular step, which could affect 938

the fairness of comparison. This evaluation method 939

is an effective complement to real-time evaluation. 940

C.1 Cost of α-UMi 941

Given that α-UMi operates as a multi-LLM frame- 942

work, it introduces potential additional costs in 943

terms of training, storage, and deployment. Ta- 944

ble 3 provides a summary of the costs associated 945

with Single-LLM and α-UMi, based on execution 946

logs on 8 Nvidia A100 GPUs with a 40G capacity. 947

Our observations are threefold. Firstly, owing to 948

its composition of a planner, a caller, and a sum- 949

marizer, α-UMi demands three times the storage 950

capacity compared to the Single-LLM framework, 951

assuming they employ backbones of the same size. 952

Secondly, the training of α-UMi requires 1.3 times 953

the computational resources and 1.5 times the train- 954

ing duration compared to Single-LLM, while the 955

GPU memory cost for training remains consistent 956

between the two methods. Thirdly, during infer- 957

ence, the time required for both Single-LLM and 958

α-UMi is similar, as we only distribute sub-tasks 959

(rationale, action, and answer) to the three LLMs, 960

without forcing them to generate extra contents, 961

thus bringing nearly no extra cost when inference. 962

Note that based on the findings presented in Ta- 963

ble 1, α-UMi with a 7B backbone can outperform 964

12

Model ToolAlpaca MATH GSM8K
Proc. Ans. ACC

Model Size = 7B
Single-LLM 11 11 17.38 37.90
Multi-LLMone-stage 2 9 15.46 38.96
Single-LLMmulti-task 28 18 14.18 27.97
α-UMi 41 38 25.60 49.73

Model Size = 13B
Single-LLM 33 29 20.26 44.88
Multi-LLMone-stage 22 19 20.32 44.57
Single-LLMmulti-task 28 16 15.34 34.79
α-UMi 41 35 28.54 54.20

Table 4: Overall results on ToolAlpaca, MATH and
GSM8K.

Single-LLM with a 13B backbone. Furthermore,965

the cost associated with α-UMi featuring a 7B966

model is lower than that of Single-LLM featuring967

a 13B model, both in terms of training and infer-968

ence. This underscores the cost-effectiveness of969

α-UMi as a means to achieve, and even surpass,970

the performance of a larger LLM.971

D Case Study972

Figure 7 and Figure 8 show two cases of our α-973

UMi executing real tasks in ToolBench. In the case974

of Figure 7, the user specifies the available tools975

in the instructions, making the tool invocation pro-976

cess simpler. The α-UMi framework completes977

the task within two steps through the collabora-978

tion of the planner, caller, and summarizer. In the979

case of Figure 8, α-UMi initially attempts to use980

the “video_for_simple_youtube_search” to obtain981

detailed video information at step 0. However, it982

realizes that this API has broken and cannot be in-983

voked. Therefore, the planner informs the caller984

to try an alternative API and obtain accurate infor-985

mation. Ultimately, the user’s task is successfully986

resolved.987

To further analyze the specific advantages of988

our α-UMi and Single-LLM frameworks in task989

execution, we have presented some comparative990

examples of the two frameworks in Tables 5, 6, 7,991

and 8. Tables 5 and 6 illustrate simple tasks that992

require only a single step tool invocation to be com-993

pleted, in which case both α-UMi and Single-LLM994

can successfully accomplish the tasks. However,995

in the complex tasks presented in Tables 7 and996

8, where the tasks require the models to accom-997

plish some composite objectives, α-UMi’s plan-998

ner can quickly understand the user’s intentions999

and plan out steps based on the prompts provided1000

by the caller and summarizer. On the other hand,1001

Single-LLM exhibited some behaviors that did not 1002

align with the user’s intentions during planning, 1003

such as invoking APIs that did not match the intent 1004

and entering loops in these misaligned APIs, ulti- 1005

mately failing to provide sufficient information to 1006

complete the user’s instructions. This result indi- 1007

cates that α-UMi’s decomposing Single-LLM into 1008

a planner, caller, and summarizer reduces the bur- 1009

den on the model during reasoning, allowing the 1010

planner model to focus solely on understanding 1011

the user’s intentions and making effective plans, 1012

thereby better accomplishing the tasks. 1013

E α-UMi on Other Benchmarks 1014

Apart from ToolBench, we also evaluate α-UMi on 1015

ToolAlpaca (Tang et al., 2023), MATH (Hendrycks 1016

et al., 2021) and GSM8K (Cobbe et al., 2021). 1017

ToolAlpaca is another benchmark for evaluat- 1018

ing API calling. Unlike ToolBench, the APIs and 1019

API calling results in ToolAlpaca are mocked from 1020

ChatGPT by imitating how the real APIs work. The 1021

total number of training instances in ToolAlpaca is 1022

4098, with an average of 2.66 execution steps per 1023

instance. The test set of ToolAlpaca contains 100 1024

user instructions. The evaluation of ToolAlpaca is 1025

carried out by a simulator where the agent solves 1026

the instruction with the tools mocked by ChatGPT. 1027

Finally, GPT-4 judges if the execution process of 1028

the agent is consistent with the reference process 1029

pre-generated by ChatGPT (Proc. correctness) and 1030

whether the final answer generated by the agent 1031

can solve the user instruction (Ans. correctness). 1032

The MATH (Hendrycks et al., 2021) and 1033

GSM8K (Cobbe et al., 2021) benchmarks are 1034

originally designed to test the mathematical rea- 1035

soning ability of LLMs. Following ToRA (Gou 1036

et al., 2023), we employ a program-aided agent 1037

to solve the mathematical problems presented in 1038

these datasets. In our scenario, the planner will 1039

generate certain rationales and comments to guide 1040

the generation of program, the caller will gener- 1041

ate program to conduct mathematical calculation, 1042

and finally the summarizer will conclude the final 1043

answer. Since ToRA has not released its training 1044

data, to facilitate the training of our framework, we 1045

utilize gpt-3.5-turbo-1106 (OpenAI, 2022) and 1046

gpt-4 (OpenAI, 2023b) to collect execution tra- 1047

jectories in the training set of MATH and GSM8K 1048

and filter out the trajectories that do not lead to the 1049

correct final answer. Finally, we collect 5536 trajec- 1050

tories from ChatGPT, 573 trajectories from GPT-4 1051

13

on MATH, and 6213 from ChatGPT on GSM8K.1052

The test set sizes of MATH and GSM8K are1053

5000 and 1319, respectively. During testing, we1054

feed our agent with each of the test instructions1055

and execute the agent with a Python code inter-1056

preter. We follow the original evaluation methods1057

of MATH and GSM8K to evaluate the performance1058

of the agent with the accuracy of the final answer.1059

As the evaluation results shown in Table 4, our α-1060

UMi can still outperform the baselines on ToolAl-1061

paca, MATH and GSM8K, verifying its effective-1062

ness.1063

14

12.1k 31.3k 47.0k 62.7k

80.0

82.5

85.0

87.5

(a) Plan ACC
12.1k 31.3k 47.0k 62.7k

50

55

60

(b) Act. EM
12.1k 31.3k 47.0k 62.7k

2

4

6

8

(c) Hallu.

12.1k 31.3k 47.0k 62.7k
40

45

50

(d) Aug. F1
12.1k 31.3k 47.0k 62.7k

25

30

35

40

45

(e) R-L

Single-LLM
Multi-LLMone stage

Single-LLMmulti task

-UMiw/o reuse
-UMiw/ reuse

Figure 6: Results of data scaling law study on ToolBench with different evaluation metrics: (a) Plan ACC, (b) Act.
EM, (c) Hallu, (d) Arg. F1, and (e) R-L. We randomly sampled five training sets with the scales of 12.1k, 15.7k,
31.3k, 47.0k, and 62.7k instances, accounting for 19.2%, 25%, 50%, 75%, and 100% of the training set, respectively.

Figure 7: A case study of α-UMi. In this case, the user specifies the available tools in the instructions, making
the tool invocation process simpler. The α-UMi framework completes the task within two steps through the
collaboration of the planner, caller, and summarizer.

15

Figure 8: A case study of α-UMi, in which α-UMi initially attempts to use the “video_for_simple_youtube_search”
to obtain detailed video information at step 0. However, it realizes that this API has broken and cannot be invoked.
Therefore, the planner informs the caller to try an alternative API and obtain accurate information. Ultimately, the
user’s task is successfully resolved.

16

Case #1 of α-UMi In ToolBench
Instruction: I want to explore the catalog of products available in the ’Electronics’ category. Please
provide me with the list of products along with their details.
Planner Based on the user’s request to explore the catalog of products in the ’Electronics’ cate-

gory, I need to call the ’get_products_in_category_for_demo_project_v13’ function
with the arguments ’limit’: 10, ’skip’: 0, and ’category’: ’Electronics’. This will
allow me to retrieve the list of products along with their details specifically from the
’Electronics’ category. By calling this function, I can fulfill the user’s request and
provide them with the desired information. Next: caller.

Caller Action: get_products_in_category_for_demo_project_v13
Action Input: "{ "limit": 10, "skip": 0, "category": "Electronics"}"

Observation {’products’: [{’id’: 893292, ’name’: ’TV’, ’category’: ’electronics’}, {’id’: 893293,
’name’: ’TV’, ’category’: ’electronics’}, {’id’: 894481, ’name’: ’Gorgeous Plastic
Bench’, ’category’: ’Electronics’}, {’id’: 896484, ’name’: ’Fantastic Rubber Gloves’,
’category’: ’Electronics’}, {’id’: 912179, ’name’: ’daniel’, ’category’: ’electron-
ics’}, {’id’: 916400, ’name’: ’Tasty Frozen Pants’, ’category’: ’Electronics’}, {’id’:
917106, ’name’: ’Tasty Wooden Chips’, ’category’: ’Electronics’}, {’id’: 917821,
’name’: ’Pizza’, ’category’: ’Electronics’}, {’id’: 917875, ’name’: ’Tuna’, ’cate-
gory’: ’Electronics’}, {’id’: 917998, ’name’: ’Intelligent Frozen Pizza’, ’category’:
’Electronics’}], ’summary’: {’count’: 105}}

Planner I have retrieved the list of products available in the ’Electronics’ category. Here are
some of the products along with their details:
1. Product ID: 893292, Name: TV, Category: Electronics
2. Product ID: 893293, Name: TV, Category: Electronics
3. Product ID: 894481, Name: Gorgeous Plastic Bench, Category: Electronics
4. Product ID: 896484, Name: Fantastic Rubber Gloves, Category: Electronics
5. Product ID: 912179, Name: daniel, Category: Electronics
6. Product ID: 916400, Name: Tasty Frozen Pants, Category: Electronics
7. Product ID: 917106, Name: Tasty Wooden Chips, Category: Electronics
8. Product ID: 917821, Name: Pizza, Category: Electronics
9. Product ID: 917875, Name: Tuna, Category: Electronics
10. Product ID: 917998, Name: Intelligent Frozen Pizza, Category: Electronics
Next: conclusion.

Summarizer Here are some of the products available in the ’Electronics’ category:
1. Product ID: 893292, Name: TV, Category: Electronics
2. Product ID: 893293, Name: TV, Category: Electronics
3. Product ID: 894481, Name: Gorgeous Plastic Bench, Category: Electronics
4. Product ID: 896484, Name: Fantastic Rubber Gloves, Category: Electronics
5. Product ID: 912179, Name: daniel, Category: Electronics
6. Product ID: 916400, Name: Tasty Frozen Pants, Category: Electronics
7. Product ID: 917106, Name: Tasty Wooden Chips, Category: Electronics
8. Product ID: 917821, Name: Pizza, Category: Electronics
9. Product ID: 917875, Name: Tuna, Category: Electronics
10. Product ID: 917998, Name: Intelligent Frozen Pizza, Category: Electronics

Table 5: A case of α-UMi in ToolBench.

Case #1 of Single-LLM In ToolBench

17

Instruction: I want to explore the catalog of products available in the ’Electronics’ category. Please
provide me with the list of products along with their details.
Assistant Based on the previous actions, it seems that the function

"get_categories_for_demo_project_v13" was called to retrieve the categories,
but it returned an error. To proceed differently, I will call the function
"get_products_in_category_for_demo_project_v13" with the category set to
"Electronics" to fetch the products in the Electronics category.
Action: get_products_in_category_for_demo_project_v13
Action Input: { "limit": 10, "skip": 0, "category": "Electronics" }

Observation {’products’: [{’id’: 893292, ’name’: ’TV’, ’category’: ’electronics’}, {’id’: 893293,
’name’: ’TV’, ’category’: ’electronics’}, {’id’: 894481, ’name’: ’Gorgeous Plastic
Bench’, ’category’: ’Electronics’}, {’id’: 896484, ’name’: ’Fantastic Rubber Gloves’,
’category’: ’Electronics’}, {’id’: 912179, ’name’: ’daniel’, ’category’: ’electron-
ics’}, {’id’: 916400, ’name’: ’Tasty Frozen Pants’, ’category’: ’Electronics’}, {’id’:
917106, ’name’: ’Tasty Wooden Chips’, ’category’: ’Electronics’}, {’id’: 917821,
’name’: ’Pizza’, ’category’: ’Electronics’}, {’id’: 917875, ’name’: ’Tuna’, ’cate-
gory’: ’Electronics’}, {’id’: 917998, ’name’: ’Intelligent Frozen Pizza’, ’category’:
’Electronics’}], ’summary’: {’count’: 105}}

Assistant I have retrieved the list of products available in the ’Electronics’ category. Here are
some of the products along with their details:
1. Product ID: 893292, Name: TV, Category: Electronics
2. Product ID: 893293, Name: TV, Category: Electronics
3. Product ID: 894481, Name: Gorgeous Plastic Bench, Category: Electronics
4. Product ID: 896484, Name: Fantastic Rubber Gloves, Category: Electronics
5. Product ID: 912179, Name: daniel, Category: Electronics
6. Product ID: 916400, Name: Tasty Frozen Pants, Category: Electronics
7. Product ID: 917106, Name: Tasty Wooden Chips, Category: Electronics
8. Product ID: 917821, Name: Pizza, Category: Electronics
9. Product ID: 917875, Name: Tuna, Category: Electronics
10. Product ID: 917998, Name: Intelligent Frozen Pizza, Category: Electronics

Table 6: A case of Single-LLM in ToolBench.

Case #2 of α-UMi In ToolBench
Instruction: I am planning a vacation with my family and we are interested in scuba diving. Can
you recommend some dive sites in Thailand? Additionally, we would like to know the top-tier stays
available in that area for accommodation options.
Planner Based on the user’s request, I need to recommend dive sites in Thailand and provide

information about the top-tier stays in the area. To accomplish this, I will call the
"esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api" function with
the argument "country" set to "Thailand". This will allow me to retrieve the relevant
dive sites and accommodation options specifically for Thailand. By using this API, I
can efficiently gather the necessary information for the user’s vacation planning. Next:
caller.

Caller Action: esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api
Action Input: "{ "country": "Thailand" }"

18

Observation {’data’: [{’id’: ’0126ccc3-6d33-4cb9-a6dd-1519273acf43’, ’name’: ’The Rock’,
’region’: ’Racha Noi Island, Phuket’, ’lat’: ’7.552420449639636’, ’lng’:
’98.33433151245119’, ’ocean’: ’Indian Ocean, Andaman Sea, Strait Of Malacca’,
’Location’: ’Asia, Thailand, Southern Thailand, Phuket, Racha Noi Island’}, {’id’:
’01c6e49f-45ab-4bb4-bfee-eff9c67f9d22’, ’name’: ’Paradise Reef’, ’region’: ’Phuket,
Southern Thailand’, ’lat’: ’7.893819147272116’, ’lng’: ’98.2584571838379’, ’ocean’:
’Indian Ocean, Andaman Sea, Strait Of Malacca’, ’Location’: ’Asia, Thailand,
Southern Thailand, Phuket’}, {’id’: ’02446f8e-9466-4cec-8a7e-940fa2946c44’,
’name’: ’Shark Fin Reef’, ’region’: ’Payang Island, Similan Islands’, ’lat’:
’8.50966017107524’, ’lng’: ’97.66388654708864’, ’ocean’: ’Indian Ocean, Andaman
Sea’, ’Location’: ’Asia, Thailand, Southern Thailand, Phang Nga, Similan Islands,
Payang Island’}, {’id’: ’02dea021-ef79-4ee4-929a-46dfb03e5f6e’, ’name’: ’Bang
Bao Reef’, ’region’: ’Kut Island, Trat’, ’lat’: ’11.612304159956192’, ’lng...

Planner Based on the user’s request, I need to recommend dive sites in Thailand and provide
information about the top-tier stays in the area. To accomplish this, I will call
the "get_top_tier_stays_filter_for_airbnb_v2" function. Since the user specifically
mentioned the need for top-tier accommodations, I will call this function without any
arguments to retrieve the relevant options. By using this API, I can efficiently gather
the necessary information for the user’s vacation planning and ensure they have a great
experience during their trip. Next: caller.

Caller Action: get_top_tier_stays_filter_for_airbnb_v2
Action Input: "{}"

Observation {’status’: True, ’message’: ’Success’, ’timestamp’: 1688973421406, ’data’: [{’id’:
’1’, ’title’: ’Airbnb Plus’, ’subtitle’: ’Every Plus home is reviewed for quality’}, {’id’:
’2’, ’title’: ’Airbnb Luxe’, ’subtitle’: ’Handpicked luxury homes with personally
arranged services’}]}

Planner The user has requested recommendations for dive sites in Thailand and informa-
tion about top-tier stays in the area. To fulfill their request, I called the "es-
ites_by_a_country_or_a_region_for_world_scuba_diving_sites_api" function with
the argument "country" set to "Thailand". This API allows me to efficiently retrieve
relevant dive sites and accommodation options specifically for Thailand. By using
this function, I can provide the user with accurate and up-to-date information for their
vacation planning. Additionally, I called the "get_top_tier_stays_filter_for_airbnb_v2"
function to retrieve the available options for top-tier accommodations. By using
these APIs, I can ensure that the user has a great experience during their trip. Next:
conclusion.

Summarizer Here are some dive sites in Thailand: The Rock in Racha Noi Island, Phuket; Paradise
Reef in Phuket, Southern Thailand; Shark Fin Reef in Payang Island, Similan Islands;
Bang Bao Reef in Kut Island, Trat. For accommodation options, you can consider
Airbnb Plus and Airbnb Luxe, which offer high-quality and luxury homes respectively.
Enjoy your scuba diving adventures in Thailand!

Table 7: A case of α-UMi in ToolBench.

Case #2 of Single-LLM In ToolBench
Instruction: I am planning a vacation with my family and we are interested in scuba diving. Can
you recommend some dive sites in Thailand? Additionally, we would like to know the top-tier stays
available in that area for accommodation options.

19

Assistant Based on the previous action, it seems that the API call to get dive sites in Thai-
land was not successful. To generate a different action, I will try using the
"ranked_world_crime_cities_for_ranked_crime_cities" function to get a list of ranked
crime cities. This will help me identify if Thailand is listed as a crime-free city.
Action:ranked_world_crime_cities_for_ranked_crime_cities
Action Input: {}

Observation {’products’: [{’id’: 893292, ’name’: ’TV’, ’category’: ’electronics’}, {’id’: 893293,
’name’: ’TV’, ’category’: ’electronics’}, {’id’: 894481, ’name’: ’Gorgeous Plastic
Bench’, ’category’: ’Electronics’}, {’id’: 896484, ’name’: ’Fantastic Rubber Gloves’,
’category’: ’Electronics’}, {’id’: 912179, ’name’: ’daniel’, ’category’: ’electron-
ics’}, {’id’: 916400, ’name’: ’Tasty Frozen Pants’, ’category’: ’Electronics’}, {’id’:
917106, ’name’: ’Tasty Wooden Chips’, ’category’: ’Electronics’}, {’id’: 917821,
’name’: ’Pizza’, ’category’: ’Electronics’}, {’id’: 917875, ’name’: ’Tuna’, ’cate-
gory’: ’Electronics’}, {’id’: 917998, ’name’: ’Intelligent Frozen Pizza’, ’category’:
’Electronics’}], ’summary’: {’count’: 105}}

Assistant Based on the previous action, it seems that the API call to get dive sites in Thai-
land was not successful. To generate a different action, I will try using the
"get_city_by_filter_for_ranked_crime_cities" function to get the details of a spe-
cific city in Thailand. This will help me determine if Thailand is listed as a crime-free
city.
Action: get_city_by_filter_for_ranked_crime_cities
Action Input: {"id":1}

Observation {"message": "Function executing from my_tools.Travel.ranked_crime_cities.api im-
port get_city_by_filter error... get_city_by_filter() got an unexpected keyword argu-
ment ’id’"}

Assistant Based on the current state and the previous actions, it seems that the API calls to get
dive sites in Thailand have been unsuccessful. To generate a different action, I will
try using the "esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api"
function to get a list of dive sites in Thailand. This might provide the desired informa-
tion about dive sites in the country.
Action: esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api
Action Input: {"country": "Thailand"}

Observation {’data’: [{’id’: ’0126ccc3-6d33-4cb9-a6dd-1519273acf43’, ’name’: ’The Rock’,
’region’: ’Racha Noi Island, Phuket’, ’lat’: ’7.552420449639636’, ’lng’:
’98.33433151245119’, ’ocean’: ’Indian Ocean, Andaman Sea, Strait Of Malacca’,
’Location’: ’Asia, Thailand, Southern Thailand, Phuket, Racha Noi Island’}, {’id’:
’01c6e49f-45ab-4bb4-bfee-eff9c67f9d22’, ’name’: ’Paradise Reef’, ’region’: ’Phuket,
Southern Thailand’, ’lat’: ’7.893819147272116’, ’lng’: ’98.2584571838379’, ’ocean’:
’Indian Ocean, Andaman Sea, Strait Of Malacca’, ’Location’: ’Asia, Thailand,
Southern Thailand, Phuket’}, {’id’: ’02446f8e-9466-4cec-8a7e-940fa2946c44’,
’name’: ’Shark Fin Reef’, ’region’: ’Payang Island, Similan Islands’, ’lat’:
’8.50966017107524’, ’lng’: ’97.66388654708864’, ’ocean’: ’Indian Ocean, Andaman
Sea’, ’Location’: ’Asia, Thailand, Southern Thailand, Phang Nga, Similan Islands,
Payang Island’}, {’id’: ’02dea021-ef79-4ee4-929a-46dfb03e5f6e’, ’name’: ’Bang
Bao Reef’, ’region’: ’Kut Island, Trat’, ’lat’: ’11.612304159956192’, ’lng...

20

Assistant Based on the current state and the previous actions, it seems that the API calls to get
dive sites in Thailand have been successful. I have retrieved a list of dive sites in
Thailand, including The Rock in Racha Noi Island, Phuket, Paradise Reef in Phuket,
Southern Thailand, and Shark Fin Reef in Payang Island, Similan Islands. These dive
sites offer potential accommodation options for your family vacation. Now, I will
proceed to provide you with the final answer.
conclusion:Here are some dive sites in Thailand that you might find interesting:
1. The Rock - Racha Noi Island, Phuket
2. Paradise Reef - Phuket, Southern Thailand
3. Shark Fin Reef - Payang Island, Similan Islands
4. Bang Bao Reef - Kut Island, Trat
These dive sites offer potential accommodation options for your family vacation.
Enjoy your scuba diving adventure in Thailand!

Table 8: A case of Single-LLM in ToolBench.

Case In ToolAlpaca
Instruction: I’m moving to a new apartment and need to update my address with various companies.
Can you first verify if my new address is valid and then standardize it? Here’s the address: 321
Maple Dr, Apt 12C, Houston, TX, 77002.
Planner I need to verify the address and then standardize it.

Next: caller.
Caller Action: verifyUSAddress

Action Input: {"addressLine1": "321 Maple Dr", "addressLine2":"Apt 12C", "city":
"Houston", "state": "TX", "zipCode": "77002"}

Observation {"status":"valid","standardizedAddress":{"addressLine1":"123 Main
St","addressLine2":"Apt 4B","city":"New York","state":"NY","zipCode":"10001"}}

Planner The address is valid and has been successfully standardized.
Next: conclusion.

Summarizer The address you provided is valid and has been successfully standardized. The
standardized address is 123 Main St, Apt 4B, New York, NY, 10001

Table 9: A case study of α-UMi in ToolAlpaca.

Case In MATH
Instruction: Compute the range of the function $f(x) = sqrt{x**2}$.
Planner Next: caller.
Caller from sympy import symbols, Interval, oo

def function_range():
x = symbols(‘x’)
f = sqrt(x**2)
range_f = Interval(0, oo)
return range_f

result = function_range()
print(result)

Observation NameError: name ’sqrt’ is not defined
Planner The code provided for the solution to the given problem will result in an error. To fix

this error, the ‘sqrt‘ function needs to be imported from the ‘sympy‘ library.
Next: caller.

21

Caller from sympy import symbols, Interval, oo, sqrt
def function_range():

x = symbols(‘x’)
f = sqrt(x**2)
range_f = Interval(0, oo)
return range_f

result = function_range()
print(result)

Observation Interval(0, oo)
Planner Next: conclusion.
Summarizer The range of the function $f(x) = sqrt{x*2}$ is $boxed{[0, infty)}$.

Table 10: A case study of α-UMi in MATH.

22

	Introduction
	Related Works
	Tool Learning
	LLM-powered Agents

	Methodology
	Preliminary
	The -UMi Framework
	Global-to-Local Progressive Fine-Tuning
	Discussions

	Experimental Settings
	Benchmarks
	Metrics
	Implementation Details
	Baselines

	Results and Analysis
	Overall Results
	Real-Time Test on ToolBench
	Data Scaling Law
	Why -UMi Works?

	Conclusion
	Limitations
	Ethical Statement
	System prompts
	Pplan for ToolBench and ToolAlpaca
	Pcall for ToolBench and ToolAlpaca
	Psum for ToolBench and ToolAlpaca
	Pplan for MATH and GSM8K
	Pcall for MATH and GSM8K
	Psum for MATH and GSM8K

	Details of Benchmarks
	ToolBench

	Static Evaluation on ToolBench
	Cost of -UMi

	Case Study
	-UMi on Other Benchmarks

