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Abstract

Pre-trained large language models (LMs) strug-001
gle to perform logical reasoning reliably de-002
spite advances in scale and compositional-003
ity. In this work, we tackle this challenge004
through the lens of symbolic programming. We005
propose DSR-LM, a Differentiable Symbolic006
Reasoning framework where pre-trained LMs007
govern the perception of factual knowledge,008
and a symbolic module performs deductive009
reasoning. In contrast to works that rely on010
hand-crafted logic rules, our differentiable sym-011
bolic reasoning framework efficiently learns012
weighted rules and applies semantic loss to013
further improve LMs. DSR-LM is scalable,014
interpretable, and allows easy integration of015
prior knowledge, thereby supporting extensive016
symbolic programming to robustly derive a log-017
ical conclusion. The results of our experiments018
suggest that DSR-LM improves the logical rea-019
soning abilities of pre-trained language models,020
resulting in a significant increase in accuracy of021
over 20% on deductive reasoning benchmarks.022
Furthermore, DSR-LM outperforms a variety023
of competitive baselines when faced with sys-024
tematic changes in sequence length.025

1 Introduction026

Complex applications in natural language process-027

ing involve dealing with two separate challenges.028

On one hand, there is the richness, nuances, and029

extensive vocabulary of natural language. On the030

other hand, one needs logical connectives, long rea-031

soning chains, and domain-specific knowledge to032

draw logical conclusions. The systems handling033

these two challenges are complementary to each034

other and are likened to psychologist Daniel Kah-035

neman’s human “system 1” and “system 2” (Kah-036

neman, 2011): while the former makes fast and in-037

tuitive decisions, akin to neural networks, the latter038

thinks more rigorously and methodically. Consid-039

ering LMs as “system 1” and symbolic reasoners040

Language Model Symbolic Reasoner

• Rapid reasoning
• Sub-symbolic knowledge
• Handling noise, ambigui-

ties, and naturalness
• Process open domain text
• Can learn in-context

• Multi-hop reasoning
• Compositionality
• Interpretability
• Data efficiency
• Can incorporate domain-

specific knowledge

Table 1: Respective advantages of language models
and symbolic reasoners.

as “system 2”, we summarize their respective ad- 041

vantages in Table 1. 042

Although pre-trained LMs have demonstrated 043

remarkable predictive performance, making them 044

an effective “system 1”, they fall short when asked 045

to perform consistent logical reasoning (Kassner 046

et al., 2020; Helwe et al., 2021; Creswell et al., 047

2022), which usually requires “system 2”. In part, 048

this is because LMs largely lack capabilities of 049

systematic generalization (Elazar et al., 2021; Hase 050

et al., 2021; Valmeekam et al., 2022). 051

In this work, we seek to incorporate deductive 052

logical reasoning with LMs. Our approach has the 053

same key objectives as neuro-symbolic program- 054

ming (Chaudhuri et al., 2021): compositionality, 055

consistency, interpretability, and easy integration 056

of prior knowledge. We present DSR-LM, which 057

tightly integrates a differentiable symbolic reason- 058

ing module with pre-trained LMs in an end-to-end 059

fashion. With DSR-LM, the underlying LMs gov- 060

ern the perception of natural language and are fine- 061

tuned to extract relational triplets with only weak 062

supervision. To overcome a common limitation 063

of symbolic reasoning systems, the reliance on 064

human-crafted logic rules (Huang et al., 2021; Nye 065

et al., 2021), we adapt DSR-LM to induce and fine- 066

tune rules automatically. Further, DSR-LM allows 067

incorporation of semantic loss obtained by logi- 068

cal integrity constraints given as prior knowledge, 069

which substantially helps the robustness. 070

We conduct extensive experiments showing that 071
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DSR-LM can consistently improve the logical rea-072

soning capability upon pre-trained LMs. Even if073

DSR-LM uses a RoBERTa backbone with much074

less parameters and does not explicitly take triplets075

as supervision, it can still outperform various base-076

lines by large margins. Moreover, we show that077

DSR-LM can induce logic rules that are amenable078

to human understanding to explain decisions given079

only higher-order predicates. As generalization080

over long-range dependencies is a significant weak-081

ness of transformer-based language models (Lake082

and Baroni, 2018; Tay et al., 2020), we highlight083

that in systematic, long-context scenarios, where084

most pre-trained or neural approaches fail to gen-085

eralize compositionally, DSR-LM can still achieve086

considerable performance gains.087

2 Related Work088

Logical reasoning with LMs. Pre-trained LMs089

have been shown to struggle with logical reason-090

ing over factual knowledge (Kassner et al., 2020;091

Helwe et al., 2021; Talmor et al., 2020a). There is092

encouraging recent progress in using transformers093

for reasoning tasks (Zhou et al., 2020; Clark et al.,094

2021; Wei et al., 2022; Chowdhery et al., 2022;095

Zelikman et al., 2022) but these approaches usu-096

ally require a significant amount of computation097

for re-training or human annotations on reason-098

ing provenance (Camburu et al., 2018; Zhou et al.,099

2020; Nye et al., 2021; Wei et al., 2022). Moreover,100

their entangled nature with natural language makes101

it fundamentally hard to achieve robust inference102

over factual knowledge (Greff et al., 2020; Saparov103

and He, 2022; Zhang et al., 2022).104

There are other obvious remedies for LMs’ poor105

reasoning capability. Ensuring that the training106

corpus contains a sufficient amount of exemplary107

episodes of sound reasoning reduces the depen-108

dency on normative biases and annotation arti-109

facts (Talmor et al., 2020b; Betz et al., 2020; Hase110

et al., 2021). Heuristics like data augmentation are111

also shown to be effective (Talmor et al., 2020b).112

But the above works require significant efforts for113

crowdsourcing and auditing training data. Our114

method handily encodes a few prototypes/tem-115

plates of logic rules and is thus more efficient in116

terms of human effort. Moreover, our goal is funda-117

mentally different from theirs in investigating the118

tight integration of neural and symbolic models in119

an end-to-end manner.120

Neuro-symbolic reasoning. Neuro-symbolic121

approaches are proposed to integrate the percep-122

tion of deep neural components and the reasoning 123

of symbolic components. Representative works can 124

be briefly categorized into regularization (Xu et al., 125

2018), program synthesis (Mao et al., 2018), and 126

proof-guided probabilistic programming (Evans 127

and Grefenstette, 2018; Rocktäschel and Riedel, 128

2017; Manhaeve et al., 2018; Zhang et al., 2019; 129

Huang et al., 2021). To improve compositional- 130

ity of LMs, previous works propose to parame- 131

terize grammatical rules (Kim, 2021; Shaw et al., 132

2021) but show that those hybrid models are ineffi- 133

cient and usually underperform neural counterparts. 134

In contrast to the above works, DSR-LM focuses 135

on improving LMs’ reasoning over logical propo- 136

sitions with tight integration of their pre-trained 137

knowledge in a scalable and automated way. 138

3 Methodology 139

3.1 Problem Formulation 140

Each question answering (QA) example in the 141

dataset is a triplet containing input text x, query 142

q, and the answer y. Figure 1 shows an instance 143

which we will use as our running example. The 144

input text x is a natural language passage within 145

which there will be a set of entities, possibly refer- 146

enced by 3rd person pronouns. The sentences hint 147

at the relationships between entities. For example, 148

“Dorothy went to her brother Rich’s birthday party” 149

implies that Rich is Dorothy’s brother and Dorothy 150

is Rich’s sister. The query q is a tuple of two en- 151

tities, representing the people whom we want to 152

infer the relation between. The expected relation 153

is stored in the answer y, which will be one of a 154

confined set of possible relations R, allowing us 155

to treat the whole problem as an ∣R∣-way classifi- 156

cation problem. We focus only on the problems 157

where the desired relation is not explicitly stated 158

in the context, but need to be deduced through a 159

sequence of reasoning. 160

3.2 Methodology Overview 161

DSR-LM’s design concerns tightly integrating a 162

perceptive model for relation extraction with a 163

symbolic engine for logical reasoning. While we 164

apply LMs for low level perception and relation 165

extraction, we employ a symbolic reasoning mod- 166

ule to consistently and logically reason about the 167

extracted relations. With a recent surge in neuro- 168

symbolic methods, reasoning engines are made 169

differentiable, allowing us to differentiate through 170

the logical reasoning process. In particular, we em- 171
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Loss   

Predicted Query Output

0.01::kin(sister, A, D)

0.02::kin(father, A, D)

...

0.84::kin(niece, A, D)


kin(r3, x, z) :- co(r1, r2, r3),

    kin(r1, x, y), kin(r2, y, z).

kin(r, y, x) :- sym(r), kin(r, x, y).

...


0.99::co(son, son, grandson)
0.01::co(father, sister, son)
...
0.98::co(brother, son, nephew)

Input Text

0.92::kin(daughter, K, R)

0.05::kin(sister, K, R)

...

0.03::kin(father, K, A)

0.89::kin(sister, K, A)

...

0.95::kin(uncle, J, B)


Language

Model


Differentiable Symbolic Reasoner 


Rich's daughter Kelly made
dinner for her sister Kim.
Dorothy went to her brother
Rich's birthday party. Anne
went shopping with her

sister Kim. Julia decided to
call her uncle Benjamin on

his birthday. Frank took his
son Charles and daughter

Rachel out for pizza.

Ground Truth Query Output

kin(niece, A, D)


Query

kin(r, A, D)?


forall(a, b: kin(father, a, b) => 

  kin(son, b, a) ∨ kin(daughter, b, a))


Semantic Loss (weighted sum)

Question

How is Dorothy

related to Anne?


Probabilistic Input Facts

Figure 1: Overview of DSR-LM with a motivating example where “Anne is the niece of Dorothy” should be
logically inferred from the context. We abbreviate the names with their first initials in the relational symbols.

ploy Scallop (Huang et al., 2021) as our reasoning172

engine. We propose two add-ons to the existing173

neuro-symbolic methodology. First, some rules174

used for logical deduction are initialized using lan-175

guage models and further tuned by our end-to-end176

pipeline, alleviating human efforts. Secondly, we177

employ integrity constraints on the extracted rela-178

tion graphs and the logical rules, to improve the179

logical consistency of LMs and the learnt rules.180

Based on this high-level design, we formalize181

our method as follows. We adopt pretrained LMs182

to build relation extractors, denoted Mθ, which183

takes in the natural language input x and returns184

a set of probabilistic relational symbols r. Next,185

we employ a differentiable deductive reasoning186

program, Pϕ, where ϕ represents the weights of the187

learnt logic rules. It takes as input the probabilistic188

relational symbols and the query q and returns a189

distribution over R as the output ŷ. Overall, the190

deductive model is written as191

ŷ = Pϕ(Mθ(x), q). (1)192

Additionally, we have the semantic loss (sl) de-193

rived by another symbolic program Psl computing194

the probability of violating the integrity constraints:195

lsl = Psl(Mθ(x), ϕ) (2)196

Combined, we aim to minimize the objective J197

over training set D with loss function L:198

J(θ, ϕ) =
1

∣D∣
∑

(x,q,y)∈D

w1L(Pϕ(Mθ(x), q), y)

+w2Psl(Mθ(x), ϕ),
(3)199

where w1 and w2 are tunable hyper-parameters to200

balance the deduction loss and semantic loss.201

3.3 Relation Extraction202

Since pre-trained LMs have strong pattern recog-203

nition capabilities for tasks like Named-Entity-204

Recognition (NER) and Relation Extraction (RE) 205

(Tenney et al., 2019; Soares et al., 2019), we adopt 206

them as our neural components in DSR-LM. To 207

ensure that LMs take in strings of similar length, 208

we divide the whole context into multiple windows. 209

The goal is to extract distribution of relations be- 210

tween every pair of entities in each windowed con- 211

text. Concretely, our relation extractorMθ com- 212

prises three components: 1) a Named-Entity Recog- 213

nizer (NER) to obtain the entities in the input text, 214

2) a pre-trained language model, to be fine-tuned, 215

that converts windowed text into embeddings, and 216

3) a classifier that takes in the embedding of en- 217

tities and predicts the relationship between them. 218

The set of parameters θ contains the parameters of 219

both the LM and the classifier. 220

We assume the relations to be classified come 221

from a finite set of relations R. For example in 222

CLUTRR (Sinha et al., 2019), we have 20 kin- 223

ship relations including mother, son, uncle, father- 224

in-law, etc. In practice, we perform (∣R∣ + 1)- 225

way classification over each pair of entities, where 226

the extra class stands for “n/a”. The windowed 227

contexts are split based on simple heuristics of 228

“contiguous one to three sentences that contain at 229

least two entities”, to account for coreference res- 230

olution. The windowed contexts can be overlap- 231

ping and we allow the reasoning module to deal 232

with noisy and redundant data. Overall, assum- 233

ing that there are m windows in the context x, 234

we extract mn(n − 1)(∣R∣ + 1) probabilistic re- 235

lational symbols. Each symbol is denoted as an 236

atom of the form p(s, o), where p ∈ R ∪ {n/a} 237

is the relational predicate, and s, o are the two 238

entities connected by the predicate. We denote 239

the probability of such symbol extracted by the 240

LM and relational classifier as Pr(p(s, o) ∣ θ). All 241

these probabilities combined form the output vector 242

r =Mθ(x) ∈ Rmn(n−1)(∣R∣+1). 243
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3.4 Differentiable Symbolic Inference244

The symbolic inference modules Pϕ and Psl are245

responsible for processing the extracted relations to246

deduce 1) an expected output relation inR, and 2) a247

semantic loss encoding the probability of constraint248

violation. There are two main objectives for these249

modules. First, they need to logically reason about250

the output relation and the semantic loss based on251

the extracted relational symbols r, the query q, and252

the rule weights ϕ. Second, they need to compute253

the gradients of ŷ and lsl with respect to θ and254

ϕ, namely ∂ŷ
∂θ , ∂ŷ

∂ϕ , ∂lsl
∂ϕ , and ∂lsl

∂θ , in order for the255

fine-tuning and rule learning to happen.256

Logical deduction. Logic rules can be applied257

to known facts to deduce new ones. For example,258

below is a horn clause, which reads “if b is a’s259

brother and c is b’s daughter, then c is a’s niece”:260

niece(a, c) ← brother(a, b) ∧ daughter(b, c).261

Note that the structure of the above rule can262

be captured by a higher-order logical predi-263

cate called “composite” (abbreviated as co ).264

This allows us to express many other similarly265

structured rules with ease. For instance, we266

can have co(brother, daughter, niece) and267

co(father, mother, grandmother) . With this268

set of rules, we may derive more facts based on269

known kinship relations. In fact, composition is the270

only kind of rule we need for kinship reasoning. In271

general, there are many other useful higher-order272

predicates to reason over knowledge bases, which273

we list out in Table 2.274

Predicate Example
transitive transitive(relative)

symmetric symmetric(spouse)
inverse inverse(husband,wife)
implies implies(mother, parent)

Table 2: Higher-order predicate examples.

Probability propagation. We seek to have the275

deduced facts to also be associated with probabili-276

ties computed using probabilities predicted by the277

underlying relation extractorMθ. This is achieved278

by allowing the propagation of probabilities. For279

example, we have the proof tree with probabilities:280

0.9 ∶∶ brother(D,R) 0.8 ∶∶ daughter(R,K)

0.72 ∶∶ niece(D,K)
281

In practice, there could be multiple steps in the282

proof tree (multi-hop) and one fact can be derived283

by multiple proof trees. We employ the inference284

algorithms based on approximated weighted model285

counting (WMC) presented in (Manhaeve et al., 286

2018) to account for probabilistic inference under 287

complex scenarios. Since the WMC procedure is 288

augmented for differentiation, we can obtain the 289

gradient ∂ŷ
∂r . From here, we can obtain ∂ŷ

∂θ =
∂ŷ
∂r

∂r
∂θ , 290

where the second part can be automatically derived 291

from differentiatingMθ. 292

Rule learning. Hand-crafted rules could be ex- 293

pensive or even impossible to obtain. To alleviate 294

this issue, DSR-LM applies LMs to help automati- 295

cally extract rules, and further utilizes the differen- 296

tiable pipeline to fine-tune the rules. Each rule such 297

as co(brother, daughter, niece) is attached 298

a weight, initialized by prompting an underlying 299

LM. For example, the prompt we use for extract- 300

ing co(r,p,q) is “one’s r’s p is their <q:mask>”. 301

Given that the relations r, p, q ∈ R, DSR-LM auto- 302

matically enumerates r and p fromR while query 303

for LM to unmask the value of q. LM then returns 304

a distribution of words, which we take an intersec- 305

tion withR. The probabilities combined form the 306

initial rule weights ϕ. This type of rule extraction 307

strategy is different from existing approaches in in- 308

ductive logic programming, since we are exploiting 309

LMs for existing knowledge about relationships. 310

Note that LMs often make simple mistakes an- 311

swering such prompt. In fact, with the above 312

prompt, even GPT-3 can only produce 62% of 313

composition rules correctly. While we can edit 314

prompt to include few-shot examples, in this work 315

we consider fine-tuning such rule weights ϕ within 316

our differentiable reasoning pipeline. The gradient 317

with respect to ϕ is also derived with the WMC 318

procedure, giving us ∂ŷ
∂ϕ . In practice, we use two 319

optimizers with different hyper-parameters to up- 320

date the rule weights ϕ and the underlying model 321

parameter θ, in order to account for optimizing 322

different types of weights. 323

Semantic loss and integrity constraints. In gen- 324

eral, learning with weak supervision label is hard, 325

not to mention that the deductive rules are learnt as 326

well. We thereby introduce an additional semantic 327

loss during training. Here, semantic loss is derived 328

by a set of integrity constraints used to regular- 329

ize the predicted entity-relation graph as well as 330

the learnt logic rules. In particular, we consider 331

rules that detect violations of integrity constraints. 332

For example, “if A is B’s father, then B should be 333

A’s son or daughter” is an integrity constraint for 334

relation extractor—if the model predicts a father 335
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relationship between A and B, then it should also336

predict a son or daughter relationship between B337

and A. Encoded in first order logic, it is338

∀a, b, father(a, b) ⇒ (son(b, a) ∨ daughter(b, a)).339

Through differentiable reasoning, we evaluate the340

probability of such constraint being violated, yield-341

ing our expected semantic loss. In practice, arbi-342

trary number of constraints can be included, though343

too many interleaving ones could hinder learning.344

4 Experiments345

We evaluate DSR-LM on both CLUTRR and346

DBpedia-INF. We show that DSR-LM has accurate347

and generalizable long-range reasoning capability.348

4.1 Datasets349

CLUTRR (Sinha et al., 2019) consists of kinship350

reasoning questions. Given a context that describes351

a family’s routine activity, the goal is to deduce352

the relationship between two family members that353

is not explicitly mentioned in the story. Although354

the dataset is synthetic, the sentences are crowd-355

sourced and hence there is a considerable amount356

of naturalness inside the dataset. The family kin-357

ship graph is synthetic and the names of the family358

members are randomized. For ablation study, we359

manually crafted 92 kinship composition rules as360

an external symbolic knowledge base. This yields361

the following symbolic information for each data-362

point: 1) the full kinship graph corresponding to363

the story, 2) the symbolic knowledge base (KB),364

and 3) a query representing the question. The365

CLUTRR dataset is divided into different difficul-366

ties measured by k, the number of facts used in367

the reasoning chain. For training, we only have368

10K data points with 5K k = 2 and another 5K369

k = 3, meaning that we can only receive supervi-370

sion on data with short reasoning chains. The test371

set, on the other hand, contains 1.1K examples with372

k ∈ {2, . . . ,10}.373

DBpedia-INF is a curated subset of the evalua-374

tion dataset used in RuleBert (Saeed et al., 2021).375

Similar to CLUTRR, it is generated synthetically376

to test the reasoning capability of LMs. Given a377

synthetic passage describing the relation between378

entities, and soft deductive logic rules, we aim to379

deduce the relationship between any two entities.380

The symbolic program of DBpedia-INF consists381

of 26 predicates, 161 soft rules mined from DB-382

pedia, and 16 rules defining the negation and sym-383

metricity between the predicates. The difficulty384

of the questions is represented in terms of reason- 385

ing length from k ∈ {0, . . . ,5}.1 Larger k implies 386

harder question. Compared to the exact dataset 387

used in Rulebert, we clean it in order to ensure the 388

question-answer pairs are logically consistent and 389

probabilistically correct. 390

4.2 Experimental Setup 391

Implementation. We employ Scallop (Huang 392

et al., 2021) as the differentiable symbolic infer- 393

ence module. We show the program used for 394

CLUTRR reasoning task in Figure 2. It comprises 395

relation type declarations, deductive rules for kin- 396

ship reasoning, and integrity constraints for com- 397

puting semantic loss (attached in the Appendix). 398

The program used for DBpedia-INF is written in 399

a similar manner with additional high-order predi- 400

cates listed in Table 2. 401

Pre-trained LMs for fine-tuning. We used the 402

HuggingFace (Wolf et al., 2019) pre-trained w2v- 403

google-news-300, RoBERTa-base, and DeBERTa- 404

base as the pretrained language models. We fine- 405

tune RoBERTa-base and DeBERTa-base during 406

training with binary cross entropy loss. Our rela- 407

tion extraction module is implemented by adding 408

an MLP classifier after the LM, accepting a con- 409

catenation of the embedding of the two entities and 410

the embedding of the whole windowed context. 411

Our model. Our main model, DSR-LM, uses 412

RoBERTa as the underlying LM. The relation clas- 413

sifier is a 2-layer fully connected MLP. For training, 414

we initialize ϕ by prompting the LM. To accelerate 415

the learning process, we use multinomial sampling 416

to retrieve 150 rules for symbolic reasoning. Dur- 417

ing testing, we will instead pick the top 150 rules. 418

We use two Adam optimizer to update θ and ϕ, 419

with learning rate 10−5 and 10−2 respectively. 420

For ablation studies, we present a few other mod- 421

els. First, we ablate on back-bone LMs. Specifi- 422

cally, we have DSR-LM-DeBERTa which uses De- 423

BERTa as the back-bone LM. DSR-w2v-BiLSTM, 424

on the other hand, uses as back-bone the word2vec 425

(Mikolov et al., 2013) model for word embedding 426

and BiLSTM (Huang et al., 2015) for sequential en- 427

coding. For DSR-LM-with-Manual-Rule we treat 428

the logic rules to be given, meaning that we provide 429

92 composition rules for CLUTRR and around 180 430

rules for DBpedia-INF. In this case, we set ground 431

1A length of 0 means that the hypothesis can be verified
using the facts alone without using any rules.

5



// Relation declaration
type kinship(rela: String, subject: String, object: String)
type query(subject: String, object: String)
type composite(r1: String, r2: String, r3: String)
// Rules to derive the final answer
rel kinship(r3,a,c) = kinship(r1,a,b), kinship(r2,b,c), composite(r1,r2,r3), a != c
rel answer(r) = query(s, o), derive(r, s, o)
// Integrity constraints (6 for kinship graph and 2 for rule learning)
rel violation(!r) = r := forall(a, b: kinship(FATHER, a, b) =>

kinship(SON, b, a) or kinship(DAUGHTER, b, a)) // Other constraints are omitted...

Figure 2: The Scallop program used in the CLUTRR reasoning task.

truth rules to have 1.0 weight and therefore ϕ is432

not learnt. Then, we have DSR-LM-without-IC433

which does not have integrity constraints and se-434

mantic loss. Lastly, we have DSR-without-LM that435

takes ground truth structured entity relation graph436

as input. This way, we do not need the underlying437

relation extractor and only ϕ needs to be learnt.438

Baselines. We compare DSR-LM with a spec-439

trum of baselines from purely neural to logically440

structured. The baselines include pretrained large441

language models (BERT (Kenton and Toutanova,442

2019) and RoBERTa (Liu et al., 2019)), non-LM443

counterparts (BiLSTM (Hochreiter and Schmid-444

huber, 1997; Cho et al., 2014) and BERT-LSTM),445

structured models (GAT (Veličković et al., 2018),446

RN (Santoro et al., 2017), and MAC (Hudson and447

Manning, 2018)), and other neuro-symbolic mod-448

els (CTP (Minervini et al., 2020), RuleBert (Saeed449

et al., 2021)). The structured models include those450

models with relational inductive biases, while the451

neuro-symbolic model uses logic constraints.452

Baseline setup. We highlight a few baselines we453

include for completeness but are treated as unfair454

comparison to us: GAT, CTP, and GPT-3 variants.455

All baselines other than GAT and CTP take as input456

natural language stories and the question to produce457

the corresponding answer. GAT and CTP, on the458

contrary, takes entity relation graph rather than459

natural language during training and testing.460

The model sizes are different across baselines as461

well. Model size generally depends on two parts,462

the backbone pre-trained LM, and the classifica-463

tion network built upon the LM. GPT-3 contains464

175B parameters, and RoBERTa uses 123M param-465

eters. The classification model of our method has466

2.97M parameters (assuming using embeddings467

from RoBERTa). With extra 10K parameters for468

rule weights, our DSR-LM framework has around469

127M parameters.470

For GPT-3 variants, we conduct experiments on471

CLUTRR with GPT-3 under the Zero-Shot (GPT-3 472

ZS), GPT-3 Fine-Tuned (GPT-3 FT), and Few(5)- 473

Shot (GPT-3 5S) (Brown et al., 2020), as well as 474

Zero-Shot-CoT (GPT-3 ZS-CoT) (Kojima et al., 475

2022a) settings. For fair comparison, we also in- 476

clude the ground truth kinship composition knowl- 477

edge in GPT-3 zero shot (GPT-3 ZS w/ Rule), and 5 478

shot (GPT-3 5S w/ Rule). We include the prompts 479

we used and additional details in Appendix A.
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Figure 3: DSR-LM’s performance on CLUTRR compared
with various baselines

480

4.3 Experimental Results 481

DSR-LM systematically outperforms a wide 482

range of baselines by a large margin. We eval- 483

uate DSR-LM and baselines on both CLUTRR and 484

DBpedia-INF, as reported in Figure 3 and Table 3. 485

In the CLUTRR experiment, DSR-LM achieves 486

the best performance among all the models (Fig- 487

ure 3). Next, we examine how models trained on 488

stories generated from clauses of length k ≤ 3 and 489

evaluated on stories generated from larger clauses 490

of length k ≥ 4. A fine-grained generalizabil- 491

ity study reveals that although all models’ perfor- 492

mances decline as the reasoning length of the test 493

sequence increases, pure neural-based models de- 494

crease the fastest (Figure 4a and 4b). It manifests 495

the systematic issue that language models alone 496

are still not robust for length generalization (Lake 497
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Test Length DSR-LM RuleBert
Overall 95.87 72.59

0 100.0 98.40
1 100.0 54.80
2 98.4 75.20
3 89.2 64.00
4 88.1 69.89
5 100.0 72.29

Table 3: DBpedia-INF generalization evalu-
ation under different test reasoning length.
Models are trained on 10K reasoning length
k = 0 sequences, and tested on sequences of
reasoning length k = [0,5].

Confidence Learnt Rules
1.154 mother(a,c)← sister(a,b) ∧ mother(b,c)
1.152 daughter(a,c)← daughter(a,b) ∧ sister(b,c)
1.125 sister(a,c)← daughter(a,b) ∧ aunt(b,c)
1.125 father(a,c)← brother(a,b) ∧ father(b,c)
1.123 granddaughter(a,c)← grandson(a,b) ∧ sister(b,c)
1.120 brother(a,c)← sister(a,b) ∧ brother(b,c)
1.117 brother(a,c)← son(a,b) ∧ uncle(b,c)
1.105 brother(a,c)← daughter(a,b) ∧ uncle(b,c)
1.104 daughter(a,c)← wife(a,b) ∧ daughter(b,c)
1.102 mother(a,c)← brother(a,b) ∧ mother(b,c)
. . . . . .

Table 4: The learnt top-10 confident logic rules over CLUTRR.
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Figure 4: Systematic generalization performance comparison on CLUTRR dataset. Models except GPT-3-ZS*,
GPT-3-FS are trained (or fine-tuned) on k ∈ {2,3}. All models are tested on k ∈ {2, . . . ,10}.

and Baroni, 2018). On the other hand, the perfor-498

mance of DSR-LM decreases much slower as test499

reasoning length increases and outperforms all the500

baselines when k ≥ 4.501

In the DBpedia-INF experiment, DSR-LM out-502

performs RuleBert by 37% in terms of overall per-503

formance (Table 3), showing that DSR-LM has504

much more robust generalization. Recall that Rule-505

Bert aims to improve the logical reasoning of LMs506

by straightforward fine-tuning with soft rules and507

facts. Our results show that augmenting data alone508

for fine-tuning do not effectively improve system-509

aticity. Meanwhile, DSR-LM imbues reasoning510

inductive biases throughout training and learns use-511

ful rules to generalize to longer reasoning lengths.512

Learning interpretable logic rules. DSR-LM is513

capable of producing explicit logic rules as part of514

the learning process. For presentation, we show the515

top-10 rules learnt from DSR-LM model in Table 4.516

We compare the top-92 most likely prompted and517

fine-tuned rules against the 92 hand-crafted rules,518

and 70 of them match. Additionally, we find that519

our rule weight fine-tuning helps correct 11 of the520

incorrect rules produced by LM. Through this qual-521

itative analysis, it is clear that DSR-LM provides522

an interface to probe and interpret the intermediate 523

steps, enhancing the interpretability. 524

GPT-3 variants are inferior in long-range rea- 525

soning. Interestingly, ZS scores 28.6% accuracy 526

on CLUTRR while ZS-CoT scores 25.6%, sug- 527

gesting that the chain-of-thought prompting might 528

not work in long-range reasoning (Figure 3). In 529

fact, there are many cases where GPT-3 favors 530

complication over simplicity: GPT-3 frequently an- 531

swers “stepdaughter”, “stepmother”, and “adopted 532

son”, while the real answers are simply “daugh- 533

ter”, “mother”, and “son”. Additionally, GPT-3 534

could derive the correct result for the wrong rea- 535

son, e.g. “Jeffrey is Gabrielle’s son, which would 536

make William her grandson, and Jeffrey’s brother.” 537

While we count the final answer to be correct 538

(William is Jeffrey’s brother), there is a clear in- 539

consistency in the reasoning chain: William cannot 540

be Gabrielle’s grandson and Jeffrey’s brother si- 541

multaneously, given that Jeffrey is Gabrielle’s son. 542

Lastly, we observe that, both GPT-3 FT and many 543

other methods have an accuracy drop as k becomes 544

larger (Figure 4b), ZS and ZS-CoT stay relatively 545

consistent, suggesting that the size of context and 546

the reasoning chain may have a low impact on GPT- 547
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3’s performance.548

4.4 Analyses and Ablation Studies549

Symbolic reasoner consistently improves LMs550

and word embeddings. Since DSR-LM has551

a model agnostic architecture, we study how552

the choice of different LMs impacts the reason-553

ing performance. As shown in Table 5, the554

two transformer-based models have on-par perfor-555

mance and outperform the word2vec one. However,556

note that the word2vec-based model still has bet-557

ter performance than all other baselines. Besides558

higher final accuracy, the pre-trained transformer-559

based language model also accelerates the train-560

ing process. Both DSR-LM-RoBERTa and DSR-561

LM-DeBERTa reach their best performance within562

20 epochs, while it takes DSR-w2v-BiLSTM 40563

epochs to peak.564

Model Accuracy (%)
DSR-LM (RoBERTa) 60.98 ± 2.64
DSR-LM-DeBERTa 60.92 ± 2.72
DSR-w2v-BiLSTM 40.39 ± 0.06

Table 5: Ablation study about neural backbones of
DSR-LM. We compare the CLUTRR performance of
DSR-LM using different LMs.

Incorporate domain knowledge. DSR-LM al-565

lows injecting domain specific knowledge. In DSR-566

LM-with-Rule, we manually crafted 92 rules for567

kinship reasoning to replace the learnt rules. As568

shown in Table 6, it obtained a 0.36% performance569

gain over DSR-LM. The fact that the improvement570

is marginal implies our method extracts useful rules571

to obtain on-par performance with manually crafted572

ones. DSR-LM-without-IC, our model without in-573

tegrity constraints specified on predicted relations574

and rules, performs worse than DSR-LM, suggest-575

ing that logical integrity constraints are essential576

component for improving the model robustness.577

Model Accuracy (%)
DSR-LM 60.98 ± 2.64

DSR-LM-without-IC 51.48 ± 0.57
DSR-LM-with-Manual-Rule 61.34 ± 1.56

Table 6: Ablation study. We compare our model’s per-
formance on CLUTRR with different setups.

The impact of the relation extractor. To under-578

stand what causes the failure case of DSR-LM, we579

study the performance of our relation classification580

model separately. We isolate the trained relation581

extractor and found that it reaches 84.69% accu- 582

racy on the single relation classification task. For 583

comparison, we train a relation extractor using all 584

the intermediate labels in the training dataset, and it 585

reaches 85.32% accuracy. It shows that even using 586

only weak supervision (i.e., the final answers to 587

multi-hop questions), our approach can reach on- 588

par performance as supervised relation extraction. 589

Reasoning over structured KBs. To understand 590

the rule learning capability of our approach, we de- 591

sign our ablation model DSR-without-LM to take 592

as input ground-truth KBs instead of natural lan- 593

guage. In this case, rule weights are not initialized 594

by LM but randomized. As shown in Table 7, our 595

model outperforms GAT and CTP which also op- 596

erates on structured KBs. It demonstrates that our 597

differentiable rule learning paradigm learns rules 598

to reason about KBs consistently. 599

Model Accuracy (%)
GAT 39.05
CTP 95.57

DSR-without-LM 98.81

Table 7: DSR-without-LM compared against GAT and
CTP on reasoning with ground truth KBs. For this
comparison we train on k ∈ [2,3] and test on k ∈ [4,10].

Failure cases of DSR-LM. We showcase in Ap- 600

pendix Table 8 that even state-of-the-art large LMs 601

are prone to logical fallacies. On the other hand, 602

the failure case of our method usually occurs in the 603

stage of relation extraction. For example, for the 604

following sentence “Christopher and Guillermina 605

are having a father-daughter dance”, our RoBERTa 606

based relation extractor fails to recognize the father- 607

daughter relationship but rather thinks C and G 608

have a husband-wife relationship. We require most 609

of the relation extraction to be correct in order to 610

avoid cascading error. As the error rate on individ- 611

ual relation extraction accumulates, it leads to the 612

observed drop in accuracy as k becomes larger. 613

5 Concluding Remarks 614

We investigate how to improve LMs’ logical rea- 615

soning capability using differentiable symbolic rea- 616

soning. Through extensive experiments, we demon- 617

strate the effectiveness of DSR-LM over challeng- 618

ing scenarios where widely deployed large LMs 619

fail to reason reliably. We hope our work can lay 620

the groundwork for exploring neuro-symbolic pro- 621

gramming techniques to improve the robustness of 622

LMs on reasoning problems. 623
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Limitations624

The primary limitation of DSR-LM is the need for a625

confined problem space. It requires a well-defined626

relational schema to perform logical reasoning, and627

thus will not be suited for an open-ended problem628

setup. Nevertheless, DSR-LM is suitable for many629

domain specific problems within Natural Language630

Understanding and Reasoning, allowing domain631

experts to freely inject domain-specific knowledge632

in a structured and logical manner.633

Another limitation is the expressiveness of the634

symbolic reasoning module we use. As a design635

choice, Scallop’s expressiveness based on Datalog636

is sufficient to solve a variety of deductive reason-637

ing tasks. However, reasoning reliably over much638

more complex scenarios like natural language satis-639

fiability (NLSat) (Richardson and Sabharwal, 2021)640

problems will be much harder for DSR-LM. On641

that front, one could extend SATNet (Wang et al.,642

2019) for it to be combined with LMs in order to643

solve satisfiability problems.644

Ethics Statement645

In our experimental results, we find a notable646

ethical bias of LMs when prompting GPT-3 us-647

ing “Myrna is Christopher’s wife. Guillermina648

is Christopher’s daughter.” will give the answer649

“So Guillermina is Myrna’s stepdaughter.”. The650

results imply the historical marriage conditions of651

Myrna and Christopher, which might be untruth-652

ful or even harmful for users. DSR-LM holds the653

potential to alleviate those biases by leveraging654

human-specified schema to learn logic rules for655

robust inference with fact verification, which we656

leave for future work.657
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A Implementation Details850

Hardware. We perform all the experiments on851

a server with two 20-core Intel Xeon CPUs, four852

GeForce RTX 2080 Ti GPUs, and 768 GB RAM.853

Reasoner details. The learning of rules and854

the fine-tuning of the underlying LM should hap-855

pen separately with different learning rates – fine-856

tuning LM is an intricate process that requires a857

very small learning rate, while rules should be858

learned with larger learning rates since gradients859

are directly back-propagated onto the weights. This860

can be realized by employing two separate optimiz-861

ers, one for fine-tuning and the other for rule learn-862

ing. During training time, we rotate training the863

two parts by toggling one and the other optimizer864

for every 10 batches of data points.865

Rule learning training setup. For rule learning,866

we can initialize the transitivity tensor using the867

language model provided composite rules. Since868

the CLUTRR dataset consists of 20 different rela-869

tions and a transitivity relationship is defined over870

3 relations, there are 8K possible transitivity facts871

over these relations. Specifically, we give every872

predicted composite rule by the GPT with a 0.5873

weight, while initializing the other rules with a874

range such as [0,0.1], since otherwise, an insen-875

sible transitive fact may be getting a random high876

weight while it effectively does nothing for rea-877

soning. The learning process encourages the rules878

that yield the correct query result and suppresses879

the rules that lead to wrong answers. To avoid the880

exponential blow-up caused by injecting all the 8K881

rules in the reasoning engine, we sample 200 rules882

according to their weights during the training time883

and deterministically use the top 200 learned rules884

during the test time. For the QA-No-Rule setup,885

the confidence score of rules, the MLP classifier886

for relation extraction, and the underlying LM are887

learned and updated simultaneously during train-888

ing. To account for their difference, we employ two889

Adam optimizers ARL and ARE. ARE is used for890

optimizing models for relation extraction, and thus891

will take as parameters the MLP classifier and the892

underlying LM. It has a low learning rate 0.00001893

since it needs to fine-tune LMs. ARL, on the other894

hand, will take as a parameter the confidence score895

tensor for the transitive rules, and is set to have896

a higher learning rate of 0.001. For the integrity897

constraints, we set the result integrity violation loss898

with the weight 0.1, and set the rule integrity con-899

straint violation loss with the weight 0.01. We set900

the batch size to 16 and train for 20 epochs. 901

To obtain the initial rule weights for the compo- 902

sition rule in our CLUTRR experiment, the prompt 903

we use is “Mary’s P’s Q is her <mask>.” where P 904

and Q are enumerations of all possible relationships, 905

and the unmasked value is treated as the answer 906

R, producing composite(P, Q, R). For the 907

other rule templates we used, the prompts are 908

1. transitive: “is R’s R one’s R? <mask>”; 909

the probability of the unmasked word be- 910

ing “yes” is treated the rule weight for 911

transitive(R). 912

2. symmetric: “does A is R of B means B is R 913

of A? <mask>”; the probability of the un- 914

masked word being “yes” is treated the rule 915

weight for symmetric(R). 916

3. inverse: “A is R of B means B is <mask> 917

of A”; the unmasked value is treated as the 918

answer P, producing inverse(R, P). 919

4. implies: “does R imply P? <mask>”; the 920

probability of unmasked value being “yes” is 921

treated as the rule weight for implies(R, 922

P). 923

GPT-3 Prompt Setups. For Zero-Shot, we 924

use the prompt “So B is A’s:” for the query pair 925

(A,B) to ask GPT-3 to complete the relationship 926

between A and B. We pick the phrase in the first 927

line or before the first period from the completed 928

text and compare it directly with the ground truth 929

relation. For the Few(5)-Shot setting, we randomly 930

select 5 examples from the training dataset used for 931

other models (k ∈ [2,3]) to serve as examples. We 932

use the same prompt for Few-Shot and Fine-Tuned 933

as the Zero-Shot and the automated GPT-3 fine- 934

tuning setup for our training dataset, trained for 4 935

epochs. To add in the transitive KB, we simply in- 936

clude 92 hand-crafted rules in natural language as 937

a part of the prompt, and we performed Zero-shot 938

with KB, and Few(5)-shot with KB experiments. 939

For the Zero-Shot-CoT setting, we use the prompt 940

“Who is B to A? Let’s think step by step” to sug- 941

gest GPT-3 to auto-complete while working out a 942

reasoning chain. Under this setup, it is impossible 943

to compare the answer to the ground truth automat- 944

ically. Therefore, we manually check through the 945

whole test dataset of CLUTRR. 946

Licenses. The CLUTRR dataset is of CC-BY- 947

NC 4.0 (Attr Non-Commercial Inter.) license. The 948

DBpedia-INF is under MIT license. 949
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B Additional Experimental Results950

In Table 8, we showcase the failure cases of large951

LMs for logical inference, where Zero-shot-CoT952

denotes zero-shot chain-of-thoughts (Kojima et al.,953

2022b).954
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k Prompt GPT-3 CoT Output Ground Truth
2 Jeffrey asked his brother William if he would come help him fix

his car next weekend. Gabrielle was delighted to see her grandson,
William, at her birthday party. Who is Jeffrey to Gabrielle? Let’s
do it step by step:

Jeffrey is Gabrielle’s grandson.
William is Jeffrey’s brother.

grandson

3 Elliott felt lonely when his wife Marian was gone to see her mother
Molly. Elliott and his daughter Karen took a day off school to go to
the zoo. Who is Karen to Molly? Let’s do it step by step:

Karen is Elliott’s daughter. Molly
is Elliott’s wife’s mother. There-
fore, Karen is Molly’s grand-
daughter.

granddaughter

4 Frank took his daughter Julia to the park. Beverly, Emilie´s sister
went with them. Kimberley was excited because today she was
going to the zoo with her uncle Frank. Jenny spent a great day
shopping with her daughter, Kimberley. Who is Beverly to Jenny?
Let’s do it step by step:

Beverly is Jenny’s sister-in-law. niece

5 Melissa and her father, Stephen, went to the marina. Stephen’s
daughter, Margaret, had purchased a boat, and they were eager to
see it. Annie and her aunt, Evelyn, went to the deli. They got a half
a pound of corned beef, and two pounds of salami. Melissa and
her sister Annie were arguing over a toy. While they were fighting,
Melissa’s sister Margaret grabbed the toy, and ran off to play with
it by herself. Who is Evelyn to Melissa? Let’s do it step by step:

Melissa’s father is Stephen.
Stephen has a daughter, Margaret.
Margaret is Annie’s aunt. There-
fore, Evelyn is Annie’s aunt, and
Melissa’s great-aunt.

aunt

6 James took his grandson Davis to the baseball game. Sharon and
her son Brian went out to lunch together yesterday. Brian and his
brother Oliver went to the park to play basketball. Davis played
scrabble with his mother Sharon and his brother Oliver. Davis
asked his brother Oliver if he would come help him fix his car next
weekend. Who is James to Oliver? Let’s do it step by step:

James is Davis’s grandfather, so
he is Oliver’s great-grandfather.

grandfather

7 George rushed to the hospital to find out that his wife and already
given birth to a boy and had named him David. Larry was playing
checkers with his brother Craig. Larry’s sister Jean was waiting to
play. Judy made mixed drinks for her son Craig. Judy’s daughter
Jean was jealous because she was n’t offered one. Jean planned a
trip to the zoo for her brother, Craig. They had a great time. George
was having trouble with his divorce because he only got to see his
daughter Jean a few times a week. Who is David to Craig? Let’s
do it step by step:

George’s wife gave birth to a boy
and named him David. David is
Craig’s nephew.

brother

8 Anthony went to the bakery with his uncle Roger to pick up some
bread for lunch. Anthony loved going to the store with his mom
Mary. She always bought him snacks Charles would n’t let his son
Floyd go to the park by himself. Floyd’s brother Anthony offered
to go with him. Faye was hoping to travel out of state to visit her
son Cecil. Ellie’s brother, Charles, was doing his best to find the
best flight. Mary and her son Anthony went out to lunch together
yesterday. Cecil took her sister, Christine, out to dinner for her
birthday. Who is Roger to Christine? Let’s do it step by step:

Cecil is Faye’s son, so Faye is
Christine’s mother-in-law. Chris-
tine is married to Faye’s son, so
Christine is Faye’s daughter-in-
law. Charles is Ellie’s brother,
so Charles is Christine’s brother-
in-law. Anthony is Charles’s son,
so Anthony is Christine’s nephew.
Roger is Anthony’s uncle, so
Roger is Christine’s brother-in-
law.

uncle

9 Gino bought gifts for his lovely sister, Jami. Michele and William
left that evening to go bowling. Ethel and her son, Gordon, went
to the park, and had a wonderful time. Manuel’s father, Kenneth,
thought his son was a monster. Meanwhile Michele thought her son
Manuel was a little angel. Gino, Kenneth’s other son, agreed with
his dad. William asked his brother Larry if he would come help
him fix his car next weekend. Joseph was so happy for his brother,
Larry, getting a promotion. Gordon and his uncle Joseph went to
the movies Sunday after church and got popcorn and candy while
they were there. Who is Jami to Ethel? Let’s do it step by step:

1. Jami is Gino’s sister. 2. Ethel
is Gino’s mother. 3. Therefore,
Jami is Ethel’s daughter-in-law.

niece

Table 8: Qualitative analysis of GPT-3 Zero-Shot-CoT on the CLUTRR dataset. The novelty comes from the
sentence marked in orange. Queries that are of interest are marked in blue. Correct answer in the output is marked
green and incorrect ones are marked red.
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Confidence Rule
1.154 mother(A,B) ← sister(A,C) ∧ mother(C,B)
1.152 daughter(A,B) ← daughter(A,C) ∧ sister(C,B)
1.125 sister(A,B)← daughter(A,C) ∧ aunt(C,B)
1.125 father(A,B)← brother(A,C) ∧ father(C,B)
1.123 granddaughter(A,B) ← grandson(A,C) ∧ sister(C,B)
1.120 brother(A,B) ← sister(A,C) ∧ brother(C,B)
1.117 brother(A,B) ← son(A,C) ∧ uncle(C,B)
1.105 brother(A,B) ← daughter(A,C) ∧ uncle(C,B)
1.104 daughter(A,B) ← wife(A,C) ∧ daughter(C,B)
1.102 mother(A,B)← brother(A,C) ∧ mother(C,B)
1.102 brother(A,B) ← father(A,C) ∧ son(C,B)
1.096 sister(A,B) ← mother(A,C) ∧ daughter(C,B)
1.071 sister(A,B)← father(A,C) ∧ daughter(C,B)
1.071 son(A,B)← son(A,C) ∧ brother(C,B)
1.070 uncle(A,B)← father(A,C) ∧ brother(C,B)
1.066 daughter(A,B) ← son(A,C) ∧ sister(C,B)
1.061 brother(A,B)← brother(A,C) ∧ brother(C,B)
1.056 grandson(A,B) ← husband(A,C) ∧ grandson(C,B)
1.055 sister(A,B)← son(A,C) ∧ aunt(C,B)
1.053 grandmother(A,B) ← sister(A,C) ∧ grandmother(C,B)
1.050 granddaughter(A,B) ← granddaughter(A,C) ∧ sister(C,B)
1.050 grandmother(A,B)← brother(A,C) ∧ grandmother(C,B)
1.047 grandson(A,B)← granddaughter(A,C) ∧ brother(C,B)
1.046 grandfather(A,B)← mother(A,C) ∧ father(C,B)
1.036 son(A,B)← daughter(A,C) ∧ brother(C,B)
1.035 sister(A,B)← brother(A,C) ∧ sister(C,B)
1.029 grandmother(A,B)← mother(A,C) ∧ mother(C,B)
1.027 grandfather(A,B) ← sister(A,C) ∧ grandfather(C,B)
1.019 brother(A,B)← mother(A,C) ∧ son(C,B)
1.017 granddaughter(A,B) ← wife(A,C) ∧ granddaughter(C,B)

Table 9: Showcase of the learnt logic rules with top@30 confidence of DSR-LM rule learning.
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// question :: (sub, obj) represents a question asking about relation
// between `sub` and `obj`
type question(sub: String, obj: String)

// context :: (rela, sub, obj) represents there is a `rela`
// between `sub` and `obj`
type kinship(rela: usize, sub: String, obj: String)

// Composition rule :: (r1, r2, r3) represents compositing r1 and r2 yields r3
type composite(r1: usize, r2: usize, r3: usize)

// Constants used for defining relation properties
const DAUGHTER = 0, SISTER = 1, ..., MOTHER_IN_LAW = 19
const MALE = 0, FEMALE = 1

type gender(r: usize, gender_id: i32)
rel gender = {(DAUGHTER, FEMALE), (SISTER, FEMALE), ..., (MOTHER_IN_LAW, FEMALE)}

type gen(r: usize, gen_id: i32)
rel gen = {(DAUGHTER, -1), (SISTER, 0), ..., (MOTHER_IN_LAW, 1)}

// Composition
rel kinship(r3, x, z) = composite(r1, r2, r3),
kinship(r1, x, y), kinship(r2, y, z), x != z

// Answer
rel answer(r) = question(s, o), kinship(r, s, o)

// Integrity constraints on results
rel violation(!r) = r := forall(a, b: kinship(GRANDFATHER, a, b) =>

(kinship(GRANDSON, b, a) or kinship(GRANDDAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(GRANDMOTHER, a, b) =>

(kinship(GRANDSON, b, a) or kinship(GRANDDAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(FATHER, a, b) =>

(kinship(SON, b, a) or kinship(DAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(MOTHER, a, b) =>

(kinship(SON, b, a) or kinship(DAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(HUSBAND, a, b) => kinship(WIFE, b, a))
rel violation(!r) = r := forall(a, b: kinship(BROTHER, a, b) =>

(kinship(SISTER, b, a) or kinship(BROTHER, b, a)))

// Integrity constraints on rules
rel violation(!r) = r := forall(r1, r2, r3:

composite(r1, r2, r3) and gender(r2, g) => gender(r3, g))
rel violation(!r) = r := forall(r1, r2, r3:

composite(r1, r2, r3) and gen(r1, g1) and gen(r2, g2) => gen(r3, g1 + g2))

Figure 5: Full Scallop program including deductive rules and integrity constraints
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