

Improved Logical Reasoning of Language Models via Differentiable Symbolic Programming

Anonymous ACL submission

Abstract

Pre-trained large language models (LMs) struggle to perform logical reasoning reliably despite advances in scale and compositionality. In this work, we tackle this challenge through the lens of symbolic programming. We propose DSR-LM, a Differentiable Symbolic Reasoning framework where pre-trained LMs govern the perception of factual knowledge, and a symbolic module performs deductive reasoning. In contrast to works that rely on hand-crafted logic rules, our differentiable symbolic reasoning framework efficiently learns weighted rules and applies semantic loss to further improve LMs. DSR-LM is scalable, interpretable, and allows easy integration of prior knowledge, thereby supporting extensive symbolic programming to robustly derive a logical conclusion. The results of our experiments suggest that DSR-LM improves the logical reasoning abilities of pre-trained language models, resulting in a significant increase in accuracy of over 20% on deductive reasoning benchmarks. Furthermore, DSR-LM outperforms a variety of competitive baselines when faced with systematic changes in sequence length.

1 Introduction

Complex applications in natural language processing involve dealing with two separate challenges. On one hand, there is the richness, nuances, and extensive vocabulary of natural language. On the other hand, one needs logical connectives, long reasoning chains, and domain-specific knowledge to draw logical conclusions. The systems handling these two challenges are complementary to each other and are likened to psychologist Daniel Kahneman’s human “system 1” and “system 2” (Kahneman, 2011): while the former makes fast and intuitive decisions, akin to neural networks, the latter thinks more rigorously and methodically. Considering LMs as “system 1” and symbolic reasoners

Language Model	Symbolic Reasoner
<ul style="list-style-type: none">• Rapid reasoning• Sub-symbolic knowledge• Handling noise, ambiguities, and naturalness• Process open domain text• Can learn in-context	<ul style="list-style-type: none">• Multi-hop reasoning• Compositionality• Interpretability• Data efficiency• Can incorporate domain-specific knowledge

Table 1: Respective advantages of **language models** and **symbolic reasoners**.

as “system 2”, we summarize their respective advantages in Table 1.

Although pre-trained LMs have demonstrated remarkable predictive performance, making them an effective “system 1”, they fall short when asked to perform consistent logical reasoning (Kassner et al., 2020; Helwe et al., 2021; Creswell et al., 2022), which usually requires “system 2”. In part, this is because LMs largely lack capabilities of systematic generalization (Elazar et al., 2021; Hase et al., 2021; Valmeekam et al., 2022).

In this work, we seek to incorporate deductive logical reasoning with LMs. Our approach has the same key objectives as neuro-symbolic programming (Chaudhuri et al., 2021): compositionality, consistency, interpretability, and easy integration of prior knowledge. We present DSR-LM, which tightly integrates a differentiable symbolic reasoning module with pre-trained LMs in an end-to-end fashion. With DSR-LM, the underlying LMs govern the perception of natural language and are fine-tuned to extract relational triplets with only weak supervision. To overcome a common limitation of symbolic reasoning systems, the reliance on human-crafted logic rules (Huang et al., 2021; Nye et al., 2021), we adapt DSR-LM to induce and fine-tune rules automatically. Further, DSR-LM allows incorporation of semantic loss obtained by logical integrity constraints given as prior knowledge, which substantially helps the robustness.

We conduct extensive experiments showing that

DSR-LM can consistently improve the logical reasoning capability upon pre-trained LMs. Even if DSR-LM uses a RoBERTa backbone with much less parameters and does not explicitly take triplets as supervision, it can still outperform various baselines by large margins. Moreover, we show that DSR-LM can induce logic rules that are amenable to human understanding to explain decisions given only higher-order predicates. As generalization over long-range dependencies is a significant weakness of transformer-based language models (Lake and Baroni, 2018; Tay et al., 2020), we highlight that in systematic, long-context scenarios, where most pre-trained or neural approaches fail to generalize compositionally, DSR-LM can still achieve considerable performance gains.

2 Related Work

Logical reasoning with LMs. Pre-trained LMs have been shown to struggle with logical reasoning over factual knowledge (Kassner et al., 2020; Helwe et al., 2021; Talmor et al., 2020a). There is encouraging recent progress in using transformers for reasoning tasks (Zhou et al., 2020; Clark et al., 2021; Wei et al., 2022; Chowdhery et al., 2022; Zelikman et al., 2022) but these approaches usually require a significant amount of computation for re-training or human annotations on reasoning provenance (Camburu et al., 2018; Zhou et al., 2020; Nye et al., 2021; Wei et al., 2022). Moreover, their entangled nature with natural language makes it fundamentally hard to achieve robust inference over factual knowledge (Greff et al., 2020; Saparov and He, 2022; Zhang et al., 2022).

There are other obvious remedies for LMs’ poor reasoning capability. Ensuring that the training corpus contains a sufficient amount of exemplary episodes of sound reasoning reduces the dependency on normative biases and annotation artifacts (Talmor et al., 2020b; Betz et al., 2020; Hase et al., 2021). Heuristics like data augmentation are also shown to be effective (Talmor et al., 2020b). But the above works require significant efforts for crowdsourcing and auditing training data. Our method handily encodes a few prototypes/templates of logic rules and is thus more efficient in terms of human effort. Moreover, our goal is fundamentally different from theirs in investigating the tight integration of neural and symbolic models in an end-to-end manner.

Neuro-symbolic reasoning. Neuro-symbolic approaches are proposed to integrate the percep-

tion of deep neural components and the reasoning of symbolic components. Representative works can be briefly categorized into regularization (Xu et al., 2018), program synthesis (Mao et al., 2018), and proof-guided probabilistic programming (Evans and Grefenstette, 2018; Rocktäschel and Riedel, 2017; Manhaeve et al., 2018; Zhang et al., 2019; Huang et al., 2021). To improve compositionality of LMs, previous works propose to parameterize grammatical rules (Kim, 2021; Shaw et al., 2021) but show that those hybrid models are inefficient and usually underperform neural counterparts. In contrast to the above works, DSR-LM focuses on improving LMs’ reasoning over logical propositions with tight integration of their pre-trained knowledge in a scalable and automated way.

3 Methodology

3.1 Problem Formulation

Each question answering (QA) example in the dataset is a triplet containing input text x , query q , and the answer y . Figure 1 shows an instance which we will use as our running example. The input text x is a natural language passage within which there will be a set of entities, possibly referenced by 3rd person pronouns. The sentences hint at the relationships between entities. For example, “Dorothy went to her brother Rich’s birthday party” implies that Rich is Dorothy’s brother and Dorothy is Rich’s sister. The query q is a tuple of two entities, representing the people whom we want to infer the relation between. The expected relation is stored in the answer y , which will be one of a confined set of possible relations \mathcal{R} , allowing us to treat the whole problem as an $|\mathcal{R}|$ -way classification problem. We focus only on the problems where the desired relation is not explicitly stated in the context, but need to be deduced through a sequence of reasoning.

3.2 Methodology Overview

DSR-LM’s design concerns tightly integrating a perceptive model for relation extraction with a symbolic engine for logical reasoning. While we apply LMs for low level perception and relation extraction, we employ a symbolic reasoning module to consistently and logically reason about the extracted relations. With a recent surge in neuro-symbolic methods, reasoning engines are made differentiable, allowing us to differentiate through the logical reasoning process. In particular, we em-

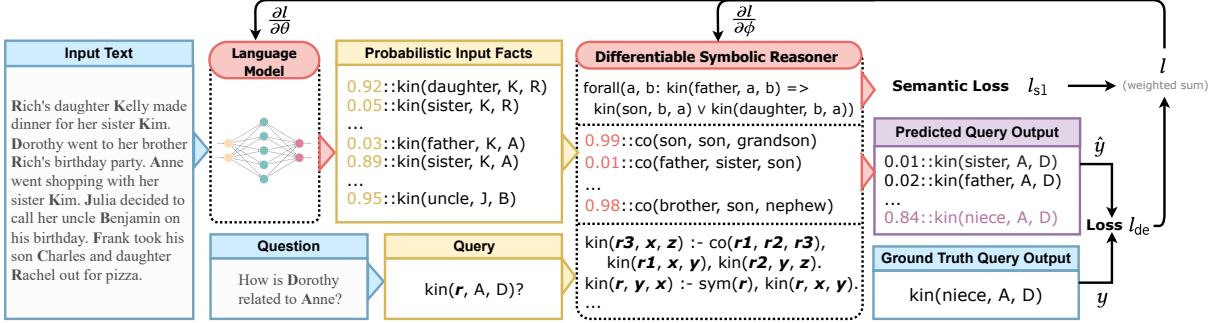


Figure 1: Overview of DSR-LM with a motivating example where “Anne is the niece of Dorothy” should be logically inferred from the context. We abbreviate the names with their first initials in the relational symbols.

ploy Scallop (Huang et al., 2021) as our reasoning engine. We propose two add-ons to the existing neuro-symbolic methodology. First, some rules used for logical deduction are initialized using language models and further tuned by our end-to-end pipeline, alleviating human efforts. Secondly, we employ integrity constraints on the extracted relation graphs and the logical rules, to improve the logical consistency of LMs and the learnt rules.

Based on this high-level design, we formalize our method as follows. We adopt pretrained LMs to build relation extractors, denoted \mathcal{M}_θ , which takes in the natural language input x and returns a set of probabilistic relational symbols \mathbf{r} . Next, we employ a differentiable deductive reasoning program, \mathcal{P}_ϕ , where ϕ represents the weights of the learnt logic rules. It takes as input the probabilistic relational symbols and the query q and returns a distribution over \mathcal{R} as the output \hat{y} . Overall, the deductive model is written as

$$\hat{y} = \mathcal{P}_\phi(\mathcal{M}_\theta(x), q). \quad (1)$$

Additionally, we have the semantic loss (s_1) derived by another symbolic program \mathcal{P}_{s1} computing the probability of violating the integrity constraints:

$$l_{s1} = \mathcal{P}_{s1}(\mathcal{M}_\theta(x), \phi) \quad (2)$$

Combined, we aim to minimize the objective J over training set \mathcal{D} with loss function \mathcal{L} :

$$\begin{aligned} J(\theta, \phi) = & \frac{1}{|\mathcal{D}|} \sum_{(x, q, y) \in \mathcal{D}} w_1 \mathcal{L}(\mathcal{P}_\phi(\mathcal{M}_\theta(x), q), y) \\ & + w_2 \mathcal{P}_{s1}(\mathcal{M}_\theta(x), \phi), \end{aligned} \quad (3)$$

where w_1 and w_2 are tunable hyper-parameters to balance the deduction loss and semantic loss.

3.3 Relation Extraction

Since pre-trained LMs have strong pattern recognition capabilities for tasks like Named-Entity-

Recognition (NER) and Relation Extraction (RE) (Tenney et al., 2019; Soares et al., 2019), we adopt them as our neural components in DSR-LM. To ensure that LMs take in strings of similar length, we divide the whole context into multiple windows. The goal is to extract distribution of relations between every pair of entities in each windowed context. Concretely, our relation extractor \mathcal{M}_θ comprises three components: 1) a Named-Entity Recognizer (NER) to obtain the entities in the input text, 2) a pre-trained language model, to be fine-tuned, that converts windowed text into embeddings, and 3) a classifier that takes in the embedding of entities and predicts the relationship between them. The set of parameters θ contains the parameters of both the LM and the classifier.

We assume the relations to be classified come from a finite set of relations \mathcal{R} . For example in CLUTRR (Sinha et al., 2019), we have 20 kinship relations including mother, son, uncle, father-in-law, etc. In practice, we perform $(|\mathcal{R}| + 1)$ -way classification over each pair of entities, where the extra class stands for “n/a”. The windowed contexts are split based on simple heuristics of “contiguous one to three sentences that contain at least two entities”, to account for coreference resolution. The windowed contexts can be overlapping and we allow the reasoning module to deal with noisy and redundant data. Overall, assuming that there are m windows in the context x , we extract $mn(n-1)(|\mathcal{R}| + 1)$ probabilistic relational symbols. Each symbol is denoted as an atom of the form $p(s, o)$, where $p \in \mathcal{R} \cup \{\text{n/a}\}$ is the relational predicate, and s, o are the two entities connected by the predicate. We denote the probability of such symbol extracted by the LM and relational classifier as $\text{Pr}(p(s, o) | \theta)$. All these probabilities combined form the output vector $\mathbf{r} = \mathcal{M}_\theta(x) \in \mathbb{R}^{mn(n-1)(|\mathcal{R}|+1)}$.

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

3.4 Differentiable Symbolic Inference

The symbolic inference modules \mathcal{P}_ϕ and \mathcal{P}_{s1} are responsible for processing the extracted relations to deduce 1) an expected output relation in \mathcal{R} , and 2) a semantic loss encoding the probability of constraint violation. There are two main objectives for these modules. First, they need to logically reason about the output relation and the semantic loss based on the extracted relational symbols \mathbf{r} , the query q , and the rule weights ϕ . Second, they need to compute the gradients of \hat{y} and l_{s1} with respect to θ and ϕ , namely $\frac{\partial \hat{y}}{\partial \theta}$, $\frac{\partial \hat{y}}{\partial \phi}$, $\frac{\partial l_{s1}}{\partial \phi}$, and $\frac{\partial l_{s1}}{\partial \theta}$, in order for the fine-tuning and rule learning to happen.

Logical deduction. Logic rules can be applied to known facts to deduce new ones. For example, below is a horn clause, which reads “if b is a ’s brother and c is b ’s daughter, then c is a ’s niece”:

$$\text{niece}(a, c) \leftarrow \text{brother}(a, b) \wedge \text{daughter}(b, c).$$

Note that the structure of the above rule can be captured by a higher-order logical predicate called “composite” (abbreviated as `co`). This allows us to express many other similarly structured rules with ease. For instance, we can have `co(brother, daughter, niece)` and `co(father, mother, grandmother)`. With this set of rules, we may derive more facts based on known kinship relations. In fact, composition is the only kind of rule we need for kinship reasoning. In general, there are many other useful higher-order predicates to reason over knowledge bases, which we list out in Table 2.

Predicate	Example
transitive	transitive(relative)
symmetric	symmetric(spouse)
inverse	inverse(husband, wife)
implies	implies(mother, parent)

Table 2: Higher-order predicate examples.

Probability propagation. We seek to have the deduced facts to also be associated with probabilities computed using probabilities predicted by the underlying relation extractor \mathcal{M}_θ . This is achieved by allowing the propagation of probabilities. For example, we have the proof tree with probabilities:

$$\begin{array}{ll} 0.9 :: \text{brother}(D, R) & 0.8 :: \text{daughter}(R, K) \\ \hline & 0.72 :: \text{niece}(D, K) \end{array}$$

In practice, there could be multiple steps in the proof tree (multi-hop) and one fact can be derived by multiple proof trees. We employ the inference algorithms based on approximated *weighted model*

counting (WMC) presented in (Manhaeve et al., 2018) to account for probabilistic inference under complex scenarios. Since the WMC procedure is augmented for differentiation, we can obtain the gradient $\frac{\partial \hat{y}}{\partial \mathbf{r}}$. From here, we can obtain $\frac{\partial \hat{y}}{\partial \theta} = \frac{\partial \hat{y}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \theta}$, where the second part can be automatically derived from differentiating \mathcal{M}_θ .

Rule learning. Hand-crafted rules could be expensive or even impossible to obtain. To alleviate this issue, DSR-LM applies LMs to help automatically extract rules, and further utilizes the differentiable pipeline to fine-tune the rules. Each rule such as `co(brother, daughter, niece)` is attached a weight, initialized by prompting an underlying LM. For example, the prompt we use for extracting `co(r, p, q)` is “one’s r ’s p is their $< q : \text{mask} >$ ”. Given that the relations $r, p, q \in \mathcal{R}$, DSR-LM automatically enumerates r and p from \mathcal{R} while query for LM to unmask the value of q . LM then returns a distribution of words, which we take an intersection with \mathcal{R} . The probabilities combined form the initial rule weights ϕ . This type of rule extraction strategy is different from existing approaches in inductive logic programming, since we are exploiting LMs for existing knowledge about relationships.

Note that LMs often make simple mistakes answering such prompt. In fact, with the above prompt, even GPT-3 can only produce 62% of composition rules correctly. While we can edit prompt to include few-shot examples, in this work we consider fine-tuning such rule weights ϕ within our differentiable reasoning pipeline. The gradient with respect to ϕ is also derived with the WMC procedure, giving us $\frac{\partial \hat{y}}{\partial \phi}$. In practice, we use two optimizers with different hyper-parameters to update the rule weights ϕ and the underlying model parameter θ , in order to account for optimizing different types of weights.

Semantic loss and integrity constraints. In general, learning with weak supervision label is hard, not to mention that the deductive rules are learnt as well. We thereby introduce an additional semantic loss during training. Here, semantic loss is derived by a set of integrity constraints used to regularize the predicted entity-relation graph as well as the learnt logic rules. In particular, we consider rules that detect *violations* of integrity constraints. For example, “if A is B ’s father, then B should be A ’s son or daughter” is an integrity constraint for relation extractor—if the model predicts a father

336 relationship between A and B, then it should also
337 predict a son or daughter relationship between B
338 and A. Encoded in first order logic, it is

339 $\forall a, b, \text{father}(a, b) \Rightarrow (\text{son}(b, a) \vee \text{daughter}(b, a))$.

340 Through differentiable reasoning, we evaluate the
341 probability of such constraint being violated, yielding
342 our expected *semantic loss*. In practice, arbitrary
343 number of constraints can be included, though
344 too many interleaving ones could hinder learning.

345

4 Experiments

346 We evaluate DSR-LM on both CLUTRR and
347 DBpedia-INFO. We show that DSR-LM has accurate
348 and generalizable long-range reasoning capability.

349

4.1 Datasets

350 **CLUTRR** (Sinha et al., 2019) consists of kinship
351 reasoning questions. Given a context that describes
352 a family’s routine activity, the goal is to deduce
353 the relationship between two family members that
354 is not explicitly mentioned in the story. Although
355 the dataset is synthetic, the sentences are crowd-
356 sourced and hence there is a considerable amount
357 of naturalness inside the dataset. The family kin-
358 ship graph is synthetic and the names of the family
359 members are randomized. For ablation study, we
360 manually crafted 92 kinship composition rules as
361 an external symbolic knowledge base. This yields
362 the following symbolic information for each data-
363 point: 1) the full kinship graph corresponding to
364 the story, 2) the symbolic knowledge base (KB),
365 and 3) a query representing the question. The
366 CLUTRR dataset is divided into different difficul-
367 ties measured by k , the number of facts used in
368 the reasoning chain. For training, we only have
369 10K data points with 5K $k = 2$ and another 5K
370 $k = 3$, meaning that we can only receive supervi-
371 sion on data with short reasoning chains. The test
372 set, on the other hand, contains 1.1K examples with
373 $k \in \{2, \dots, 10\}$.

374 **DBpedia-INFO** is a curated subset of the evalua-
375 tion dataset used in RuleBert (Saeed et al., 2021).
376 Similar to CLUTRR, it is generated synthetically
377 to test the reasoning capability of LMs. Given a
378 synthetic passage describing the relation between
379 entities, and soft deductive logic rules, we aim to
380 deduce the relationship between any two entities.
381 The symbolic program of DBpedia-INFO consists
382 of 26 predicates, 161 soft rules mined from DB-
383pedia, and 16 rules defining the negation and sym-
384 metricty between the predicates. The difficulty

385 of the questions is represented in terms of reason-
386 ing length from $k \in \{0, \dots, 5\}$.¹ Larger k implies
387 harder question. Compared to the exact dataset
388 used in Rulebert, we clean it in order to ensure the
389 question-answer pairs are logically consistent and
390 probabilistically correct.

391

4.2 Experimental Setup

392 **Implementation.** We employ Scallop (Huang
393 et al., 2021) as the differentiable symbolic infer-
394 ence module. We show the program used for
395 CLUTRR reasoning task in Figure 2. It comprises
396 relation type declarations, deductive rules for kin-
397 ship reasoning, and integrity constraints for com-
398 puting semantic loss (attached in the Appendix).
399 The program used for DBpedia-INFO is written in
400 a similar manner with additional high-order pre-
401 dictates listed in Table 2.

402 **Pre-trained LMs for fine-tuning.** We used the
403 HuggingFace (Wolf et al., 2019) pre-trained *w2v-
404 google-news-300*, RoBERTa-base, and DeBERTa-
405 base as the pretrained language models. We fine-
406 tune RoBERTa-base and DeBERTa-base during
407 training with binary cross entropy loss. Our rela-
408 tion extraction module is implemented by adding
409 an MLP classifier after the LM, accepting a con-
410 catenation of the embedding of the two entities and
411 the embedding of the whole windowed context.

412 **Our model.** Our main model, DSR-LM, uses
413 RoBERTa as the underlying LM. The relation clas-
414 sifier is a 2-layer fully connected MLP. For training,
415 we initialize ϕ by prompting the LM. To accelerate
416 the learning process, we use multinomial sampling
417 to retrieve 150 rules for symbolic reasoning. Dur-
418 ing testing, we will instead pick the top 150 rules.
419 We use two Adam optimizer to update θ and ϕ ,
420 with learning rate 10^{-5} and 10^{-2} respectively.

421 For ablation studies, we present a few other mod-
422 els. First, we ablate on back-bone LMs. Specifi-
423 cally, we have DSR-LM-DeBERTa which uses De-
424 BERTa as the back-bone LM. DSR-w2v-BiLSTM,
425 on the other hand, uses as back-bone the word2vec
426 (Mikolov et al., 2013) model for word embedding
427 and BiLSTM (Huang et al., 2015) for sequential en-
428 coding. For DSR-LM-with-Manual-Rule we treat
429 the logic rules to be given, meaning that we provide
430 92 composition rules for CLUTRR and around 180
431 rules for DBpedia-INFO. In this case, we set ground

¹A length of 0 means that the hypothesis can be verified using the facts alone without using any rules.

```

// Relation declaration
type kinship(rela: String, subject: String, object: String)
type query(subject: String, object: String)
type composite(r1: String, r2: String, r3: String)
// Rules to derive the final answer
rel kinship(r3,a,c) = kinship(r1,a,b), kinship(r2,b,c), composite(r1,r2,r3), a != c
rel answer(r) = query(s, o), derive(r, s, o)
// Integrity constraints (6 for kinship graph and 2 for rule learning)
rel violation(!r) = r := forall(a, b: kinship(FATHER, a, b) =>
kinship(SON, b, a) or kinship(DAUGHTER, b, a)) // Other constraints are omitted...

```

Figure 2: The Scallop program used in the CLUTRR reasoning task.

truth rules to have 1.0 weight and therefore ϕ is not learnt. Then, we have DSR-LM-without-IC which does not have integrity constraints and semantic loss. Lastly, we have DSR-without-LM that takes ground truth structured entity relation graph as input. This way, we do not need the underlying relation extractor and only ϕ needs to be learnt.

Baselines. We compare DSR-LM with a spectrum of baselines from purely neural to logically structured. The baselines include pretrained large language models (BERT (Kenton and Toutanova, 2019) and RoBERTa (Liu et al., 2019)), non-LM counterparts (BiLSTM (Hochreiter and Schmidhuber, 1997; Cho et al., 2014) and BERT-LSTM), structured models (GAT (Veličković et al., 2018), RN (Santoro et al., 2017), and MAC (Hudson and Manning, 2018)), and other neuro-symbolic models (CTP (Minervini et al., 2020), RuleBert (Saeed et al., 2021)). The structured models include those models with relational inductive biases, while the neuro-symbolic model uses logic constraints.

Baseline setup. We highlight a few baselines we include for completeness but are treated as unfair comparison to us: GAT, CTP, and GPT-3 variants. All baselines other than GAT and CTP take as input natural language stories and the question to produce the corresponding answer. GAT and CTP, on the contrary, takes entity relation graph rather than natural language during training and testing.

The model sizes are different across baselines as well. Model size generally depends on two parts, the backbone pre-trained LM, and the classification network built upon the LM. GPT-3 contains 175B parameters, and RoBERTa uses 123M parameters. The classification model of our method has 2.97M parameters (assuming using embeddings from RoBERTa). With extra 10K parameters for rule weights, our DSR-LM framework has around 127M parameters.

For GPT-3 variants, we conduct experiments on

CLUTRR with GPT-3 under the Zero-Shot (GPT-3 ZS), GPT-3 Fine-Tuned (GPT-3 FT), and Few(5)-Shot (GPT-3 5S) (Brown et al., 2020), as well as Zero-Shot-CoT (GPT-3 ZS-CoT) (Kojima et al., 2022a) settings. For fair comparison, we also include the ground truth kinship composition knowledge in GPT-3 zero shot (GPT-3 ZS w/ Rule), and 5 shot (GPT-3 5S w/ Rule). We include the prompts we used and additional details in Appendix A.

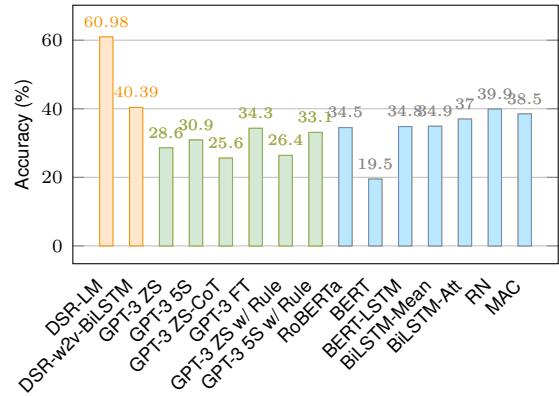


Figure 3: DSR-LM’s performance on CLUTRR compared with various baselines

4.3 Experimental Results

DSR-LM systematically outperforms a wide range of baselines by a large margin. We evaluate DSR-LM and baselines on both CLUTRR and DBpedia-INF, as reported in Figure 3 and Table 3.

In the CLUTRR experiment, DSR-LM achieves the best performance among all the models (Figure 3). Next, we examine how models trained on stories generated from clauses of length $k \leq 3$ and evaluated on stories generated from larger clauses of length $k \geq 4$. A fine-grained generalizability study reveals that although all models’ performances decline as the reasoning length of the test sequence increases, pure neural-based models decrease the fastest (Figure 4a and 4b). It manifests the systematic issue that language models alone are still not robust for length generalization (Lake

432
433
434
435
436
437
438

439
440
441
442
443
444
445
446
447
448
449
450
451
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

472
473
474
475
476
477
478
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

Test Length	DSR-LM	RuleBert
Overall	95.87	72.59
0	100.0	98.40
1	100.0	54.80
2	98.4	75.20
3	89.2	64.00
4	88.1	69.89
5	100.0	72.29

Table 3: DBpedia-INF generalization evaluation under different **test reasoning length**. Models are trained on 10K reasoning length $k = 0$ sequences, and tested on sequences of reasoning length $k = [0, 5]$.

Confidence	Learnt Rules
1.154	$\text{mother}(a,c) \leftarrow \text{sister}(a,b) \wedge \text{mother}(b,c)$
1.152	$\text{daughter}(a,c) \leftarrow \text{daughter}(a,b) \wedge \text{sister}(b,c)$
1.125	$\text{sister}(a,c) \leftarrow \text{daughter}(a,b) \wedge \text{aunt}(b,c)$
1.125	$\text{father}(a,c) \leftarrow \text{brother}(a,b) \wedge \text{father}(b,c)$
1.123	$\text{granddaughter}(a,c) \leftarrow \text{grandson}(a,b) \wedge \text{sister}(b,c)$
1.120	$\text{brother}(a,c) \leftarrow \text{sister}(a,b) \wedge \text{brother}(b,c)$
1.117	$\text{brother}(a,c) \leftarrow \text{son}(a,b) \wedge \text{uncle}(b,c)$
1.105	$\text{brother}(a,c) \leftarrow \text{daughter}(a,b) \wedge \text{uncle}(b,c)$
1.104	$\text{daughter}(a,c) \leftarrow \text{wife}(a,b) \wedge \text{daughter}(b,c)$
1.102	$\text{mother}(a,c) \leftarrow \text{brother}(a,b) \wedge \text{mother}(b,c)$
...	...

Table 4: The learnt top-10 confident logic rules over CLUTRR.

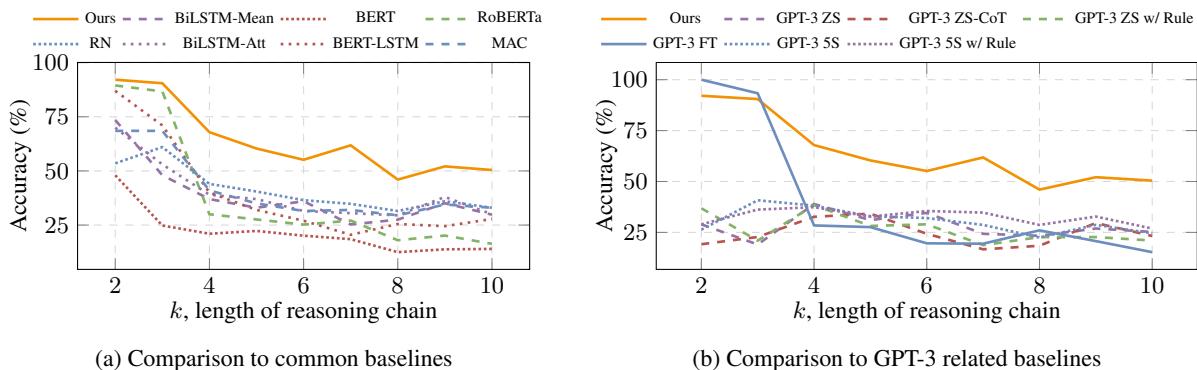


Figure 4: **Systematic generalization** performance comparison on CLUTRR dataset. Models except GPT-3-ZS*, GPT-3-FS are trained (or fine-tuned) on $k \in \{2, 3\}$. All models are tested on $k \in \{2, \dots, 10\}$.

and Baroni, 2018). On the other hand, the performance of DSR-LM decreases much slower as test reasoning length increases and outperforms all the baselines when $k \geq 4$.

In the DBpedia-INF experiment, DSR-LM outperforms RuleBert by 37% in terms of overall performance (Table 3), showing that DSR-LM has much more robust generalization. Recall that RuleBert aims to improve the logical reasoning of LMs by straightforward fine-tuning with soft rules and facts. Our results show that augmenting data alone for fine-tuning do not effectively improve systematicity. Meanwhile, DSR-LM imbues reasoning inductive biases throughout training and learns useful rules to generalize to longer reasoning lengths.

Learning interpretable logic rules. DSR-LM is capable of producing explicit logic rules as part of the learning process. For presentation, we show the top-10 rules learnt from DSR-LM model in Table 4. We compare the top-92 most likely prompted and fine-tuned rules against the 92 hand-crafted rules, and 70 of them match. Additionally, we find that our rule weight fine-tuning helps correct 11 of the incorrect rules produced by LM. Through this qualitative analysis, it is clear that DSR-LM provides

an interface to probe and interpret the intermediate steps, enhancing the interpretability.

GPT-3 variants are inferior in long-range reasoning. Interestingly, ZS scores 28.6% accuracy on CLUTRR while ZS-CoT scores 25.6%, suggesting that the chain-of-thought prompting might not work in long-range reasoning (Figure 3). In fact, there are many cases where GPT-3 favors complication over simplicity: GPT-3 frequently answers “stepdaughter”, “stepmother”, and “adopted son”, while the real answers are simply “daughter”, “mother”, and “son”. Additionally, GPT-3 could derive the correct result for the wrong reason, e.g. “Jeffrey is Gabrielle’s son, which would make William her grandson, and Jeffrey’s brother.” While we count the final answer to be correct (William is Jeffrey’s brother), there is a clear inconsistency in the reasoning chain: William cannot be Gabrielle’s grandson and Jeffrey’s brother simultaneously, given that Jeffrey is Gabrielle’s son. Lastly, we observe that, both GPT-3 FT and many other methods have an accuracy drop as k becomes larger (Figure 4b), ZS and ZS-CoT stay relatively consistent, suggesting that the size of context and the reasoning chain may have a low impact on GPT-

548 3’s performance.

549 4.4 Analyses and Ablation Studies

550 **Symbolic reasoner consistently improves LMs**
551 and word embeddings. Since DSR-LM has
552 a model agnostic architecture, we study how
553 the choice of different LMs impacts the reasoning
554 performance. As shown in Table 5, the
555 two transformer-based models have on-par perfor-
556 mance and outperform the word2vec one. However,
557 note that the word2vec-based model still has bet-
558 ter performance than all other baselines. Besides
559 higher final accuracy, the pre-trained transformer-
560 based language model also accelerates the train-
561 ing process. Both DSR-LM-RoBERTa and DSR-
562 LM-DeBERTa reach their best performance within
563 20 epochs, while it takes DSR-w2v-BiLSTM 40
564 epochs to peak.

Model	Accuracy (%)
DSR-LM (RoBERTa)	60.98 ± 2.64
DSR-LM-DeBERTa	60.92 ± 2.72
DSR-w2v-BiLSTM	40.39 ± 0.06

565 Table 5: Ablation study about **neural backbones** of
566 DSR-LM. We compare the CLUTRR performance of
567 DSR-LM using different LMs.

568 **Incorporate domain knowledge.** DSR-LM al-
569 lows injecting domain specific knowledge. In DSR-
570 LM-with-Rule, we manually crafted 92 rules for
571 kinship reasoning to replace the learnt rules. As
572 shown in Table 6, it obtained a 0.36% performance
573 gain over DSR-LM. The fact that the improvement
574 is marginal implies our method extracts useful rules
575 to obtain on-par performance with manually crafted
576 ones. DSR-LM-without-IC, our model without in-
577 tegrity constraints specified on predicted relations
and rules, performs worse than DSR-LM, suggest-
ing that logical integrity constraints are essential
component for improving the model robustness.

Model	Accuracy (%)
DSR-LM	60.98 ± 2.64
DSR-LM-without-IC	51.48 ± 0.57
DSR-LM-with-Manual-Rule	61.34 ± 1.56

578 Table 6: Ablation study. We compare our model’s per-
579 formance on CLUTRR with different setups.

580 **The impact of the relation extractor.** To under-
581 stand what causes the failure case of DSR-LM, we
582 study the performance of our relation classification
583 model separately. We isolate the trained relation

584 extractor and found that it reaches 84.69% accu-
585 racy on the single relation classification task. For
586 comparison, we train a relation extractor using all
587 the intermediate labels in the training dataset, and it
588 reaches 85.32% accuracy. It shows that even using
589 only weak supervision (i.e., the final answers to
590 multi-hop questions), our approach can reach on-
591 par performance as supervised relation extraction.

592 **Reasoning over structured KBs.** To understand
593 the rule learning capability of our approach, we de-
594 sign our ablation model DSR-without-LM to take
595 as input ground-truth KBs instead of natural lan-
596 guage. In this case, rule weights are *not* initialized
597 by LM but randomized. As shown in Table 7, our
598 model outperforms GAT and CTP which also op-
599 erates on structured KBs. It demonstrates that our
599 differentiable rule learning paradigm learns rules
to reason about KBs consistently.

Model	Accuracy (%)
GAT	39.05
CTP	95.57
DSR-without-LM	98.81

600 Table 7: DSR-without-LM compared against GAT and
601 CTP on reasoning with ground truth KBs. For this
602 comparison we train on $k \in [2, 3]$ and test on $k \in [4, 10]$.

603 **Failure cases of DSR-LM.** We showcase in Ap-
604 pendix Table 8 that even state-of-the-art large LMs
605 are prone to logical fallacies. On the other hand,
606 the failure case of our method usually occurs in the
607 stage of relation extraction. For example, for the
608 following sentence “Christopher and Guillermina
609 are having a father-daughter dance”, our RoBERTa
610 based relation extractor fails to recognize the father-
611 daughter relationship but rather thinks C and G
612 have a husband-wife relationship. We require most
613 of the relation extraction to be correct in order to
614 avoid cascading error. As the error rate on individ-
615 ual relation extraction accumulates, it leads to the
616 observed drop in accuracy as k becomes larger.

617 5 Concluding Remarks

618 We investigate how to improve LMs’ logical rea-
619 soning capability using differentiable symbolic rea-
620 soning. Through extensive experiments, we demon-
621 strate the effectiveness of DSR-LM over challeng-
622 ing scenarios where widely deployed large LMs
623 fail to reason reliably. We hope our work can lay
the groundwork for exploring neuro-symbolic pro-
gramming techniques to improve the robustness of
LMs on reasoning problems.

624 Limitations

625 The primary limitation of DSR-LM is the need for a
626 confined problem space. It requires a well-defined
627 relational schema to perform logical reasoning, and
628 thus will not be suited for an open-ended problem
629 setup. Nevertheless, DSR-LM is suitable for many
630 domain specific problems within Natural Language
631 Understanding and Reasoning, allowing domain
632 experts to freely inject domain-specific knowledge
633 in a structured and logical manner.

634 Another limitation is the expressiveness of the
635 symbolic reasoning module we use. As a design
636 choice, Scallop’s expressiveness based on Datalog
637 is sufficient to solve a variety of deductive reason-
638 ing tasks. However, reasoning reliably over much
639 more complex scenarios like natural language satis-
640 fiability (NLSat) (Richardson and Sabharwal, 2021)
641 problems will be much harder for DSR-LM. On
642 that front, one could extend SATNet (Wang et al.,
643 2019) for it to be combined with LMs in order to
644 solve satisfiability problems.

645 Ethics Statement

646 In our experimental results, we find a notable
647 ethical bias of LMs when prompting GPT-3 us-
648 ing “Myrna is Christopher’s wife. Guillermina
649 is Christopher’s daughter.” will give the answer
650 “**So Guillermina is Myrna’s stepdaughter.**” The
651 results imply the historical marriage conditions of
652 Myrna and Christopher, which might be untruth-
653 ful or even harmful for users. DSR-LM holds the
654 potential to alleviate those biases by leveraging
655 human-specified schema to learn logic rules for
656 robust inference with fact verification, which we
657 leave for future work.

658 References

659 Gregor Betz, Christian Voigt, and Kyle Richardson.
660 2020. Critical thinking for language models. *arXiv*
661 *preprint arXiv:2009.07185*.

662 Tom Brown, Benjamin Mann, Nick Ryder, Melanie
663 Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
664 Neelakantan, Pranav Shyam, Girish Sastry, Amanda
665 Askell, et al. 2020. Language models are few-shot
666 learners. *NeurIPS*.

667 Oana-Maria Camburu, Tim Rocktäschel, Thomas
668 Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
669 ral language inference with natural language expla-
670 nations. *Advances in Neural Information Processing*
671 *Systems*, 31.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong Yue, et al. 2021. <i>Neurosymbolic Programming</i> .	672 673 674
Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In <i>EMNLP</i> .	675 676 677 678 679
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways. <i>arXiv preprint arXiv:2204.02311</i> .	680 681 682 683 684 685
Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021. Transformers as soft reasoners over language. In <i>IJCAI</i> .	686 687 688
Antonia Creswell, Murray Shanahan, and Irina Higgins. 2022. Selection-inference: Exploiting large language models for interpretable logical reasoning. <i>arXiv preprint arXiv:2205.09712</i> .	689 690 691 692
Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schütze, and Yoav Goldberg. 2021. Measuring and improving consistency in pretrained language models. <i>TACL</i> .	693 694 695 696
Richard Evans and Edward Grefenstette. 2018. Learning explanatory rules from noisy data. <i>Journal of Artificial Intelligence Research</i> , 61:1–64.	697 698 699
Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. 2020. On the binding problem in artificial neural networks. <i>arXiv preprint arXiv:2012.05208</i> .	700 701 702
Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit Bansal, and Srinivasan Iyer. 2021. Do language models have beliefs? methods for detecting, updating, and visualizing model beliefs. <i>arXiv preprint arXiv:2111.13654</i> .	703 704 705 706 707
Chadi Helwe, Chloé Clavel, and Fabian M. Suchanek. 2021. Reasoning with transformer-based models: Deep learning, but shallow reasoning. In <i>AKBC</i> .	708 709 710
Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. <i>Neural computation</i> .	711 712
Jiani Huang, Ziyang Li, Bingshong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. 2021. Scallop: From probabilistic deductive databases to scalable differentiable reasoning. <i>NeurIPS</i> .	713 714 715 716
Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec- tional lstm-crf models for sequence tagging. <i>arXiv preprint arXiv:1508.01991</i> .	717 718 719
Drew A Hudson and Christopher D Manning. 2018. Compositional attention networks for machine rea- soning. In <i>ICLR</i> .	720 721 722
Daniel Kahneman. 2011. <i>Thinking, fast and slow</i> . Macmillan.	723 724

725	Nora Kassner, Benno Krojer, and Hinrich Schütze. 2020.	777
726	Are pretrained language models symbolic reasoners	778
727	over knowledge? <i>CoNLL</i> .	779
728	Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina	780
729	Toutanova. 2019. Bert: Pre-training of deep bidirectional	
730	transformers for language understanding. In	
731	<i>NAACL</i> .	
732	Yoon Kim. 2021. Sequence-to-sequence learning with	784
733	latent neural grammars. <i>NeurIPS</i> .	
734	Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-	785
735	taka Matsuo, and Yusuke Iwasawa. 2022a. Large	
736	language models are zero-shot reasoners. <i>NeurIPS</i> .	
737	Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-	786
738	taka Matsuo, and Yusuke Iwasawa. 2022b. Large	
739	language models are zero-shot reasoners. <i>NeurIPS</i> .	
740	Brenden Lake and Marco Baroni. 2018. Generalization	787
741	without systematicity: On the compositional skills of	
742	sequence-to-sequence recurrent networks. In <i>ICML</i> .	
743	Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-	788
744	dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,	
745	Luke Zettlemoyer, and Veselin Stoyanov. 2019.	
746	Roberta: A robustly optimized bert pretraining ap-	
747	proach. <i>arXiv preprint arXiv:1907.11692</i> .	
748	Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-	789
749	mig, Thomas Demeester, and Luc De Raedt. 2018.	
750	Deepproblog: Neural probabilistic logic program-	
751	ming. <i>NeurIPS</i> .	
752	Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B	790
753	Tenenbaum, and Jiajun Wu. 2018. The neuro-	
754	symbolic concept learner: Interpreting scenes, words,	
755	and sentences from natural supervision. In <i>ICLR</i> .	
756	Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-	791
757	rado, and Jeff Dean. 2013. Distributed representa-	
758	tions of words and phrases and their compositionality.	
759	<i>NeurIPS</i> .	
760	Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,	792
761	Edward Grefenstette, and Tim Rocktäschel. 2020.	
762	Learning reasoning strategies in end-to-end differen-	
763	tiable proving. In <i>ICML</i> .	
764	Maxwell Nye, Michael Tessler, Josh Tenenbaum, and	793
765	Brenden M Lake. 2021. Improving coherence and	
766	consistency in neural sequence models with dual-	
767	system, neuro-symbolic reasoning. <i>NeurIPS</i> .	
768	Kyle Richardson and Ashish Sabharwal. 2021. Push-	794
769	ing the limits of rule reasoning in transformers	
770	through natural language satisfiability. <i>arXiv preprint</i>	
771	<i>arXiv:2112.09054</i> .	
772	Tim Rocktäschel and Sebastian Riedel. 2017. End-to-	795
773	end differentiable proving. <i>NeurIPS</i> .	
774	Mohammed Saeed, Naser Ahmadi, Preslav Nakov, and	796
775	Paolo Papotti. 2021. Rulebert: Teaching soft rules to	
776	pre-trained language models. In <i>EMNLP</i> .	
777	Adam Santoro, David Raposo, David G Barrett, Ma-	797
778	teusz Malinowski, Razvan Pascanu, Peter Battaglia,	
779	and Timothy Lillicrap. 2017. A simple neural net-	
780	work module for relational reasoning. <i>NeurIPS</i> .	
781	Abulhair Saparov and He He. 2022. Language models	798
782	are greedy reasoners: A systematic formal analysis of	
783	chain-of-thought. <i>arXiv preprint arXiv:2210.01240</i> .	
784	Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and	799
785	Kristina Toutanova. 2021. Compositional generaliza-	
786	tion and natural language variation: Can a semantic	
787	parsing approach handle both? In <i>ACL</i> .	
788	Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle	800
789	Pineau, and William L. Hamilton. 2019. Clutrr: A	
790	diagnostic benchmark for inductive reasoning from	
791	text. <i>EMNLP</i> .	
792	Livio Baldini Soares, Nicholas Fitzgerald, Jeffrey Ling,	801
793	and Tom Kwiatkowski. 2019. Matching the blanks:	
794	Distributional similarity for relation learning. In	
795	<i>ACL</i> .	
796	Alon Talmor, Yanai Elazar, Yoav Goldberg, and	802
797	Jonathan Berant. 2020a. olmpics-on what language	
798	model pre-training captures. <i>TACL</i> .	
799	Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-	803
800	berg, and Jonathan Berant. 2020b. Leap-of-thought:	
801	Teaching pre-trained models to systematically reason	
802	over implicit knowledge. <i>NeurIPS</i> .	
803	Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,	804
804	Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,	
805	Sebastian Ruder, and Donald Metzler. 2020. Long	
806	range arena: A benchmark for efficient transformers.	
807	In <i>ICLR</i> .	
808	Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert	808
809	redisCOVERS the classical nlp pipeline. In <i>ACL</i> .	
810	Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,	811
811	and Subbarao Kambhampati. 2022. Large language	
812	models still can't plan (a benchmark for llms on plan-	
813	ning and reasoning about change). <i>arXiv preprint</i>	
814	<i>arXiv:2206.10498</i> .	
815	Petar Veličković, Guillem Cucurull, Arantxa Casanova,	816
816	Adriana Romero, Pietro Liò, and Yoshua Bengio.	
817	2018. Graph attention networks. In <i>ICLR</i> .	
818	Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico	818
819	Kolter. 2019. Satnet: Bridging deep learning and	
820	logical reasoning using a differentiable satisfiability	
821	solver. In <i>ICML</i> .	
822	Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten	823
823	Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.	
824	Chain of thought prompting elicits reasoning in large	
825	language models. <i>NeurIPS</i> .	
826	Thomas Wolf, Lysandre Debut, Victor Sanh, Julien	827
827	Chaumond, Clement Delangue, Anthony Moi, Pier-	
828	ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,	
829	et al. 2019. Huggingface's transformers: State-of-	
830	the-art natural language processing. <i>EMNLP</i> .	

831 Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
832 Guy Broeck. 2018. A semantic loss function for deep
833 learning with symbolic knowledge. In *ICML*.

834 Eric Zelikman, Yuhuai Wu, and Noah D Goodman.
835 2022. Star: Bootstrapping reasoning with reason-
836 ing. *NeurIPS*.

837 Hanlin Zhang, Yi-Fan Zhang, Li Erran Li, and Eric
838 Xing. 2022. The impact of symbolic representations
839 on in-context learning for few-shot reasoning. *arXiv*
840 *preprint*.

841 Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Rama-
842 murthy, Bo Li, Yuan Qi, and Le Song. 2019. Effi-
843 cient probabilistic logic reasoning with graph neural
844 networks. In *ICLR*.

845 Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiao-
846 dan Liang, Maosong Sun, Chenyan Xiong, and Jian
847 Tang. 2020. Towards interpretable natural language
848 understanding with explanations as latent variables.
849 *NeurIPS*.

A Implementation Details

Hardware. We perform all the experiments on a server with two 20-core Intel Xeon CPUs, four GeForce RTX 2080 Ti GPUs, and 768 GB RAM.

Reasoner details. The learning of rules and the fine-tuning of the underlying LM should happen separately with different learning rates – fine-tuning LM is an intricate process that requires a very small learning rate, while rules should be learned with larger learning rates since gradients are directly back-propagated onto the weights. This can be realized by employing two separate optimizers, one for fine-tuning and the other for rule learning. During training time, we rotate training the two parts by toggling one and the other optimizer for every 10 batches of data points.

Rule learning training setup. For rule learning, we can initialize the transitivity tensor using the language model provided composite rules. Since the CLUTRR dataset consists of 20 different relations and a transitivity relationship is defined over 3 relations, there are 8K possible transitivity facts over these relations. Specifically, we give every predicted composite rule by the GPT with a 0.5 weight, while initializing the other rules with a range such as $[0, 0.1]$, since otherwise, an insensible transitive fact may be getting a random high weight while it effectively does nothing for reasoning. The learning process encourages the rules that yield the correct query result and suppresses the rules that lead to wrong answers. To avoid the exponential blow-up caused by injecting all the 8K rules in the reasoning engine, we sample 200 rules according to their weights during the training time and deterministically use the top 200 learned rules during the test time. For the *QA-No-Rule* setup, the confidence score of rules, the MLP classifier for relation extraction, and the underlying LM are learned and updated simultaneously during training. To account for their difference, we employ two Adam optimizers A_{RL} and A_{RE} . A_{RE} is used for optimizing models for relation extraction, and thus will take as parameters the MLP classifier and the underlying LM. It has a low learning rate 0.00001 since it needs to fine-tune LMs. A_{RL} , on the other hand, will take as a parameter the confidence score tensor for the transitive rules, and is set to have a higher learning rate of 0.001. For the integrity constraints, we set the result integrity violation loss with the weight 0.1, and set the rule integrity constraint violation loss with the weight 0.01. We set

To obtain the initial rule weights for the composition rule in our CLUTRR experiment, the prompt we use is “Mary’s P’s Q is her <mask>.” where P and Q are enumerations of all possible relationships, and the unmasked value is treated as the answer R, producing $\text{composite}(P, Q, R)$. For the other rule templates we used, the prompts are

1. transitive: “is R’s R one’s R? <mask>”; the probability of the unmasked word being “yes” is treated the rule weight for $\text{transitive}(R)$.
2. symmetric: “does A is R of B means B is R of A? <mask>”; the probability of the unmasked word being “yes” is treated the rule weight for $\text{symmetric}(R)$.
3. inverse: “A is R of B means B is <mask> of A”; the unmasked value is treated as the answer P , producing $\text{inverse}(R, P)$.
4. implies: “does R imply P? <mask>”; the probability of unmasked value being “yes” is treated as the rule weight for $\text{implies}(R, P)$.

GPT-3 Prompt Setups. For Zero-Shot, we use the prompt “So B is A ’s:” for the query pair (A, B) to ask GPT-3 to complete the relationship between A and B . We pick the phrase in the first line or before the first period from the completed text and compare it directly with the ground truth relation. For the Few(5)-Shot setting, we randomly select 5 examples from the training dataset used for other models ($k \in [2, 3]$) to serve as examples. We use the same prompt for Few-Shot and Fine-Tuned as the Zero-Shot and the automated GPT-3 fine-tuning setup for our training dataset, trained for 4 epochs. To add in the transitive KB, we simply include 92 hand-crafted rules in natural language as a part of the prompt, and we performed Zero-shot with KB, and Few(5)-shot with KB experiments. For the Zero-Shot-CoT setting, we use the prompt “Who is B to A ? Let’s think step by step” to suggest GPT-3 to auto-complete while working out a reasoning chain. Under this setup, it is impossible to compare the answer to the ground truth automatically. Therefore, we manually check through the whole test dataset of CLUTRR.

Licenses. The CLUTRR dataset is of CC-BY-NC 4.0 (Attr Non-Commercial Inter.) license. The DBpedia-INFO is under MIT license.

950 **B Additional Experimental Results**

951 In Table 8, we showcase the failure cases of large
952 LMs for logical inference, where Zero-shot-CoT
953 denotes zero-shot chain-of-thoughts (Kojima et al.,
954 2022b).

<i>k</i>	Prompt	GPT-3 CoT Output	Ground Truth
2	Jeffrey asked his brother William if he would come help him fix his car next weekend. Gabrielle was delighted to see her grandson, William, at her birthday party. Who is Jeffrey to Gabrielle? Let's do it step by step:	Jeffrey is Gabrielle's grandson. William is Jeffrey's brother.	grandson
3	Elliott felt lonely when his wife Marian was gone to see her mother Molly. Elliott and his daughter Karen took a day off school to go to the zoo. Who is Karen to Molly? Let's do it step by step:	Karen is Elliott's daughter. Molly is Elliott's wife's mother. Therefore, Karen is Molly's granddaughter.	granddaughter
4	Frank took his daughter Julia to the park. Beverly, Emilie's sister went with them. Kimberley was excited because today she was going to the zoo with her uncle Frank. Jenny spent a great day shopping with her daughter, Kimberley. Who is Beverly to Jenny? Let's do it step by step:	Beverly is Jenny's sister-in-law.	niece
5	Melissa and her father, Stephen, went to the marina. Stephen's daughter, Margaret, had purchased a boat, and they were eager to see it. Annie and her aunt, Evelyn, went to the deli. They got a half a pound of corned beef, and two pounds of salami. Melissa and her sister Annie were arguing over a toy. While they were fighting, Melissa's sister Margaret grabbed the toy, and ran off to play with it by herself. Who is Evelyn to Melissa? Let's do it step by step:	Melissa's father is Stephen. Stephen has a daughter, Margaret. Margaret is Annie's aunt. Therefore, Evelyn is Annie's aunt, and Melissa's great-aunt.	aunt
6	James took his grandson Davis to the baseball game. Sharon and her son Brian went out to lunch together yesterday. Brian and his brother Oliver went to the park to play basketball. Davis played scrabble with his mother Sharon and his brother Oliver. Davis asked his brother Oliver if he would come help him fix his car next weekend. Who is James to Oliver? Let's do it step by step:	James is Davis's grandfather, so he is Oliver's great-grandfather.	grandfather
7	George rushed to the hospital to find out that his wife and already given birth to a boy and had named him David. Larry was playing checkers with his brother Craig. Larry's sister Jean was waiting to play. Judy made mixed drinks for her son Craig. Judy's daughter Jean was jealous because she was n't offered one. Jean planned a trip to the zoo for her brother, Craig. They had a great time. George was having trouble with his divorce because he only got to see his daughter Jean a few times a week. Who is David to Craig? Let's do it step by step:	George's wife gave birth to a boy and named him David. David is Craig's nephew.	brother
8	Anthony went to the bakery with his uncle Roger to pick up some bread for lunch. Anthony loved going to the store with his mom Mary. She always bought him snacks Charles would n't let his son Floyd go to the park by himself. Floyd's brother Anthony offered to go with him. Faye was hoping to travel out of state to visit her son Cecil. Ellie's brother, Charles, was doing his best to find the best flight. Mary and her son Anthony went out to lunch together yesterday. Cecil took her sister, Christine, out to dinner for her birthday. Who is Roger to Christine? Let's do it step by step:	Cecil is Faye's son, so Faye is Christine's mother-in-law. Christine is married to Faye's son, so Christine is Faye's daughter-in-law. Charles is Ellie's brother, so Charles is Christine's brother-in-law. Anthony is Charles's son, so Anthony is Christine's nephew. Roger is Anthony's uncle, so Roger is Christine's brother-in-law.	uncle
9	Gino bought gifts for his lovely sister, Jami. Michele and William left that evening to go bowling. Ethel and her son, Gordon, went to the park, and had a wonderful time. Manuel's father, Kenneth, thought his son was a monster. Meanwhile Michele thought her son Manuel was a little angel. Gino, Kenneth's other son, agreed with his dad. William asked his brother Larry if he would come help him fix his car next weekend. Joseph was so happy for his brother, Larry, getting a promotion. Gordon and his uncle Joseph went to the movies Sunday after church and got popcorn and candy while they were there. Who is Jami to Ethel? Let's do it step by step:	1. Jami is Gino's sister. 2. Ethel is Gino's mother. 3. Therefore, Jami is Ethel's daughter-in-law.	niece

Table 8: Qualitative analysis of GPT-3 Zero-Shot-CoT on the CLUTRR dataset. The novelty comes from the sentence marked in orange. Queries that are of interest are marked in blue. Correct answer in the output is marked green and incorrect ones are marked red.

Confidence	Rule
1.154	$\text{mother}(A,B) \leftarrow \text{sister}(A,C) \wedge \text{mother}(C,B)$
1.152	$\text{daughter}(A,B) \leftarrow \text{daughter}(A,C) \wedge \text{sister}(C,B)$
1.125	$\text{sister}(A,B) \leftarrow \text{daughter}(A,C) \wedge \text{aunt}(C,B)$
1.125	$\text{father}(A,B) \leftarrow \text{brother}(A,C) \wedge \text{father}(C,B)$
1.123	$\text{granddaughter}(A,B) \leftarrow \text{grandson}(A,C) \wedge \text{sister}(C,B)$
1.120	$\text{brother}(A,B) \leftarrow \text{sister}(A,C) \wedge \text{brother}(C,B)$
1.117	$\text{brother}(A,B) \leftarrow \text{son}(A,C) \wedge \text{uncle}(C,B)$
1.105	$\text{brother}(A,B) \leftarrow \text{daughter}(A,C) \wedge \text{uncle}(C,B)$
1.104	$\text{daughter}(A,B) \leftarrow \text{wife}(A,C) \wedge \text{daughter}(C,B)$
1.102	$\text{mother}(A,B) \leftarrow \text{brother}(A,C) \wedge \text{mother}(C,B)$
1.102	$\text{brother}(A,B) \leftarrow \text{father}(A,C) \wedge \text{son}(C,B)$
1.096	$\text{sister}(A,B) \leftarrow \text{mother}(A,C) \wedge \text{daughter}(C,B)$
1.071	$\text{sister}(A,B) \leftarrow \text{father}(A,C) \wedge \text{daughter}(C,B)$
1.071	$\text{son}(A,B) \leftarrow \text{son}(A,C) \wedge \text{brother}(C,B)$
1.070	$\text{uncle}(A,B) \leftarrow \text{father}(A,C) \wedge \text{brother}(C,B)$
1.066	$\text{daughter}(A,B) \leftarrow \text{son}(A,C) \wedge \text{sister}(C,B)$
1.061	$\text{brother}(A,B) \leftarrow \text{brother}(A,C) \wedge \text{brother}(C,B)$
1.056	$\text{grandson}(A,B) \leftarrow \text{husband}(A,C) \wedge \text{grandson}(C,B)$
1.055	$\text{sister}(A,B) \leftarrow \text{son}(A,C) \wedge \text{aunt}(C,B)$
1.053	$\text{grandmother}(A,B) \leftarrow \text{sister}(A,C) \wedge \text{grandmother}(C,B)$
1.050	$\text{granddaughter}(A,B) \leftarrow \text{granddaughter}(A,C) \wedge \text{sister}(C,B)$
1.050	$\text{grandmother}(A,B) \leftarrow \text{brother}(A,C) \wedge \text{grandmother}(C,B)$
1.047	$\text{grandson}(A,B) \leftarrow \text{granddaughter}(A,C) \wedge \text{brother}(C,B)$
1.046	$\text{grandfather}(A,B) \leftarrow \text{mother}(A,C) \wedge \text{father}(C,B)$
1.036	$\text{son}(A,B) \leftarrow \text{daughter}(A,C) \wedge \text{brother}(C,B)$
1.035	$\text{sister}(A,B) \leftarrow \text{brother}(A,C) \wedge \text{sister}(C,B)$
1.029	$\text{grandmother}(A,B) \leftarrow \text{mother}(A,C) \wedge \text{mother}(C,B)$
1.027	$\text{grandfather}(A,B) \leftarrow \text{sister}(A,C) \wedge \text{grandfather}(C,B)$
1.019	$\text{brother}(A,B) \leftarrow \text{mother}(A,C) \wedge \text{son}(C,B)$
1.017	$\text{granddaughter}(A,B) \leftarrow \text{wife}(A,C) \wedge \text{granddaughter}(C,B)$

Table 9: Showcase of the learnt logic rules with top@30 confidence of DSR-LM rule learning.

```

// question :: (sub, obj) represents a question asking about relation
// between `sub` and `obj`
type question(sub: String, obj: String)

// context :: (rela, sub, obj) represents there is a `rela`
// between `sub` and `obj`
type kinship(rela: usize, sub: String, obj: String)

// Composition rule :: (r1, r2, r3) represents compositing r1 and r2 yields r3
type composite(r1: usize, r2: usize, r3: usize)

// Constants used for defining relation properties
const DAUGHTER = 0, SISTER = 1, ..., MOTHER_IN_LAW = 19
const MALE = 0, FEMALE = 1

type gender(r: usize, gender_id: i32)
rel gender = {(DAUGHTER, FEMALE), (SISTER, FEMALE), ..., (MOTHER_IN_LAW, FEMALE) }

type gen(r: usize, gen_id: i32)
rel gen = {(DAUGHTER, -1), (SISTER, 0), ..., (MOTHER_IN_LAW, 1) }

// Composition
rel kinship(r3, x, z) = composite(r1, r2, r3),
kinship(r1, x, y), kinship(r2, y, z), x != z

// Answer
rel answer(r) = question(s, o), kinship(r, s, o)

// Integrity constraints on results
rel violation(!r) = r := forall(a, b: kinship(GRANDFATHER, a, b) =>
  (kinship(GRANDSON, b, a) or kinship(GRANDDAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(GRANDMOTHER, a, b) =>
  (kinship(GRANDSON, b, a) or kinship(GRANDDAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(FATHER, a, b) =>
  (kinship(SON, b, a) or kinship(DAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(MOTHER, a, b) =>
  (kinship(SON, b, a) or kinship(DAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(HUSBAND, a, b) => kinship(WIFE, b, a))
rel violation(!r) = r := forall(a, b: kinship(BROTHER, a, b) =>
  (kinship(SISTER, b, a) or kinship(BROTHER, b, a)))

// Integrity constraints on rules
rel violation(!r) = r := forall(r1, r2, r3:
  composite(r1, r2, r3) and gender(r2, g) => gender(r3, g))
rel violation(!r) = r := forall(r1, r2, r3:
  composite(r1, r2, r3) and gen(r1, g1) and gen(r2, g2) => gen(r3, g1 + g2))

```

Figure 5: Full Scallop program including deductive rules and integrity constraints